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Symmetries of Quiver schemes

Ryo Terada*and Daisuke Yamakawa!

April 17, 2024

Abstract

We introduce reflection functors on quiver schemes in the sense of Hausel-Wong—Wyss,
generalizing those on quiver varieties. Also we construct some isomorphisms between quiver
schemes whose underlying quivers are different.

1 Introduction

Let Q be a finite quiver with no edge-loops and d = (d;);e; be a collection of positive integers
indexed by the vertex set I. We think of each d; as the “multiplicity” of 7 and call the pair (Q,d)
a quiver with multiplicities.

In [I2], the second author associated to A € @0,.; Clei]/(€]%), v € ZL, a complex symplectic
manifold N&d(}\, v), called the quiver variety with multiplicitie. In the multiplicity-free case
(di = 1 for all i), it coincides with the quiver variety (v, w) in the sense of Nakajima [9] with
w =0, ( = (0,A). One of the main theorems in [12] says that, in roughly speaking, the quiver
with multiplicities (Q, d) determines a symmetrizable (possibly non-symmetric) generalized Cartan
matrix, and the quiver varieties with multiplicities N&d()\,v) for various A, v admit symmetry
of the associated Weyl group, which coincides with the Weyl group symmetry of quiver varieties
generated by reflection functors [10] in the multiplicity-free case.

On the other hand, Geiss—Leclerc-Schréer [3] associated an algebra II to each symmetrizable
generalized Cartan matrix C with a symmetrizer. If C is symmetric (with the trivial symmetrizer),
then II coincides with the usual preprojective algebra of type C. Recall that Nakajima’s quiver
variety 9y ® (v, 0) parametrizes isomorphism classes of irreducible representations of a preprojective
algebra with dimension vector v. Thus their work also leads to generalization of Nakajima’s quiver
varieties to the non-symmetric case.
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Based on the work of Geiss-Leclerc-Schroer, Hausel-Wong-Wyss [4] modified the definition of

Q.d(A; v) to introduce an affine scheme, called the quiver scheme, which we denote by Sqa(A, v)

in this paper. The purpose of this paper is to obtain analogues/generalization of the results
obtained in [12] for quiver schemes.

We briefly explain the main results in this paper. We associate to each (Q,d) a symmetrizable
generalized Cartan matrix following Geiss—Leclerc—Schroer, and let the associated Weyl group act
both on ,.; Cle;]/(ef) and on Z!. Thus for each j € I, the j-th simple reflection gives rise to
linear transformations r;: @,c; Clei]/(ef) — @,c; Clei]/(e%) and s;: Z! — Z!. The first main
result generalizes reflection functors of Lusztig [7], Maffei [8] and Nakajima [10] .

Theorem 1.1 (see Section ). Take j € I, A = (\;) € @ig(@[q]/(efi), v € ZL, so that \; is a

unit of (C[ej]/(e?j). Then there exists an isomorphism of schemes
Fit Saa(X,v) = Sqa(r(A), s;(v)).

Note that Geiss—Leclerc-Schréer [3] also introduced reflection functors for II but we cannot use
them to show the above since A # 0 by the assumption.
The second main result is generalization of [I2, Theorem 5.8].

Theorem 1.2 (see Section H). Suppose that a sequence of pairwise distinct vertices, which we
denote by 0,1,...,1 (1 >0), satisfies the following conditions:

e vertices i,j in {0,1,...,1} are connected by exactly one arrow if |i — j| = 1, and otherwise
no arrow connects them;

e no arrow connects any i € I\ {0,1,...,1} and j € {1,2,...,1};

e dy=1andd;=d (i=1,2,...,1) for some integer d > 1.
Also, suppose that a pair (X, v) € @,.; Clei]/(€]) x 7L, satisfies the following conditions:

e the sequence vy, vy, ...,V 1S NON-INCTEASING;

e \(0) + XNi1(0) + - - - 4+ X;(0) # 0 for all pairsi < jin {1,2,...,1}.
Then there exist another quiver with multiplicities (Q,d) with the same vertex set I and a pair
(A,V) € Dic; Cle;] /(€4 x ZL, such that Sq.a(X,v) and 3@73(5\, V) are isomorphic.

In fact, both (Q,d) and (A, ¥) are explicitly given and (Q,d) does not depend on (X, v). Using
this theorem we can show that some quiver schemes are (affine) algebraic varieties.

This paper is organized as follows: In Section 2, we recall the definition of preprojective algebra
IT in the sense of Geiss-Leclerc-Schroer and quiver schemes Sq 4(A, v). Also, we recall some result
of Hausel-Wong—Wyss on coadjoint orbits, which we will use to prove our second main theorem.
Sections 3 and 4 are devoted to prove our first and second main theorems, respectively.

Throughout the paper, we write ® for ®c.



2 Quiver schemes

In this section we recall the definitions of preprojective algebras in the sense of Geiss—Leclerc—
Schréer [3] and quiver schemes introduced by Hausel-Wong-Wyss [4].

2.1 Preliminaries

In this subsection we introduce some symplectic vector spaces related to truncated polynomial
rings; they are building blocks of quiver schemes.
For a positive integer d, put

Rq:=Cle]/e'Cle], R?:=e"C[e]/C[e] € C(€)/Cle].

We also denote the variable € by ¢4 in order to distinguish it from other variables. The bilinear
form

Cle] x €Tl — C:  (f.9) = xes (f(e)g(e)de)

induces a non-degenerate pairing Ry x R? — C, by which we may identify the vector space
R? with the C-dual space R} of R;. On the other hand, the multiplication by e induces a C-
linear isomorphism R? ~ R;. Thus we may also identify Ry with RY; the corresponding pairing
Rd X Rd — Cis

(f,9) = (f,9)a = res (f(E)g(E) g) :

More generally, for homomorphisms X: W — V, Y:V — W between free Rs-modules V, W, we

define g
(XYMZH%Gm&ﬂﬁé):@mAXﬂJM, (2.1)
€= €

where trg,: Endg,(V) — R, is the trace. It gives an isomorphism Hompg, (V, W) ~ Hompg, (W, V)*.
The C-algebra Ry is d-dimensional with a basis {1,¢,...,€¢"1}. More generally, if d is a
multiple of some positive integer ¢, the homomorphism

Rc - Rd; €c— EZ/C
makes R, into a free R -algebra with a basis {1,€q4, ..., ez/ et }. In this manner we equip each
R -module V with a structure of R.-module.

Lemma 2.1. Suppose that V is a free Rg-module. Then the map

d/c—1
pr.q: Endg, (V) — Endg,(V); Z— Z ESZEZ/c—l—k
k=0

is the transpose of the inclusion Endg, (V) < Endg, (V):

(proa(2), ZYa = (Z,2")e (Z € Endp (V), Z' € Endg,(V)).
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Proof. Since pr, ,(Z)Z' = pr, (Z7Z') for Z € Endg,(V), Z" € Endg,(V), it suffices to show

res <ter (preq(2)) d—if) = res <trRC(Z)%) (Z € Endg,(V)).
€d= ’ €d €c= g

Take an ordered Rg4-basis (v1,vs,...,v,) of V and let (Z;;) € M, (R;) be the matrix representation
of pr. 4(Z). Also, let (Zix)j1) € Mnase(Rc) be the matrix representation of Z with respect to the
Re-basis vy, = ebv;, i =1,2,...,n, k=0,1,...,d/c— 1 of V. Then

d/c—1
o d/c—1—1+k
Zij = €4 ZG k)G | e -
k,l=0
From this formula one easily deduces
d/c—1
dEd dEc
res | Z; = res | 2 —
= (G) - & m (2 )
Hence
de = de
res <ter (preq(2)) dd) - res (Z“ dd)
€d= €4 7 = €4
n d/C—l
dEC dEc
— > 2 Tes (Z(i,k)(i,k) e_g) = Ies (tch(Z)E—g) :

For a finite dimensional C-vector space V', define
Ga(V) = Autg,(V ® Rg), g4(V) = Endg,(V ® Rq).

Since G4(V) C GLc(V ® Ry) is the centralizer of the multiplication by ¢, it is a linear algebraic
group with Lie algebra g4(V). We have an obvious isomorphism g,(V) ~ gl:(V) ® R4, which
enables us to identify each element of g4(V) with a matrix polynomial

d-1
=D &e, Geal(V)
5=0

For instance, the identity Idygg, is identified with Idy. As a subset of gq(V'), the group G4(V)
consists of all g = Zz;é gre® € ga(V) such that det gy # 0. Also, the pairing 2] for W = V
enables us to identify g4(V') with its C-dual space.

Now let V, W be two finite dimensional C-vector spaces and d, ¢ be positive integers with ¢ | d.
Put V=V ® Ry, W=W ® R, and consider the vector space

M = Hompg (W, V) @ Hompg, (V, W),
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together with the action of the linear algebraic group G4(V) x G.(W) defined by
(9.h): (X,Y) = (gXh™" hY g ™).
Since V is also free as an R.-module, the two-form

w = (dX NdY), = res (e, trp (dX NdY))

€c=

is a G4(V) x G.(W)-invariant symplectic form on M.
The symplectic form w has another description. The extension of scalar gives an isomorphism

HomRC(W,V) = Hode(W ®Rc Rd,V),

which we denote by X + X% Furthermore, the projection

d/c—1
W @, Ri= P Web — Wey/ ' ~ W

k=0

induces an isomorphism
Hompg,(V,W @z, R;) — Hompg, (V, W),

whose inverse is explicitly described as

d/c—1
Y= Y8 V30— Z Y (¥ Ry @ €k
k=0

Observe that for X € Hompg, (W, V) and Y € Hompg, (V, W), we have

d/c—1
Xyl = N A Xyl = pr, (XY).
k=0

Thus the previous lemma shows
(X,Y), = (Y XR), ((X,Y) €M),

and hence
w = (dX T A gy Ha),.

Proposition 2.2. The map
p: M= ga(V) = ga(V)5 (X,Y) o X Ty Ha

is a moment map generating the Gq(V')-action.



Proof. We have
w = —{dYTi pdX ), = —d(YHa axFay,

Also, the generating vector fields £*, £ € gq(V) are given by SE‘XA,) = (£X,-Y¢). Hence the
moment map pu: M — gq(V) with ¢(0,0) = 0 is

(u(X,Y),€) = (Y, dXT(g"))g = (Y, XMy = (XY &)y (€ € ga(V)).

Remark 2.3. Through the isomorphism
M ~ Hode(W ®Rc Rd,V) ) HOde(V,W ®Rc Rd),

the action of G.(1W) extends to an action of G4(W) = Autg,(W®pg, Rs). This action is Hamiltonian
with moment map
v:i M — gy(W); (X,Y) s —YHaxHa

Since gq(W) ~ g.(W) ®@g, Rqg ~ glc(W) ® R4, we may also identify the dual space gq(W)* with
gle(W) ® R* ~ g.(W) ®p, R?,

where we regard R? as a free Rg-module of rank one using the linear isomorphism ¢~¢: R; = R?.
Under this identification, the moment map v is expressed as

d/c—1
v(X,Y)==> YeiX®el
k=0
When ¢ = 1, we may rewrite it as
d—1
V(X Y) ==Y YN'X®e ' =-V(eg— N)7'X,
k=0

where N € gl:(V) is the multiplication by €;. Such a moment map appears in [12 [13] [14].

2.2 GLS preprojective algebras and quiver schemes

In this paper a quiver Q is always assumed to be finite, and usually denoted as Q = ([, €2, s, t), where
I is the set of vertices, €2 is the set of arrows, and s,t: 2 — I are the source/target maps. For a
quiver Q = (I, s,t), we denote by Q = (I, Q, s,t) the quiver obtained by reversing the orientation
of each arrow of Q; so for each h € Q we have the reversed arrow h € Q, satisfying s(h) = t(h),
t(h) = s(h). Putting together all the arrows of Q and Q we get a quiver Q + Q = (I, H, s, t) with
arrow set H = Q U Q, called the double of Q, together with an involution H — H, h — h. We
define a map sgn: H — {£1} by sgn|o =1, sgn|qg = —

Definition 2.4. A quiver with multiplicities is a quiver Q with each vertex ¢ equipped with a
positive integer d;, called the multiplicity of 7.



Take a quiver Q = (I, €2, s,t) with multiplicities d = (d;);e;. For i,j € I, put

.
dij = ng(di,dj)> fij = df%
ij
and for h € H, put
dn = dsmyin)y,  frn = Fsmyen)-

Let Q' = (I, H', s,t) be the quiver obtained by adding an edge-loop ¢; to the double Q + Q for each
i € I. Let us recall the preprojective algebras in the sense of Geiss—Leclerc—Schréer [3]:

Definition 2.5. The GLS preprojective algebra 11 associated to the quiver with multiplicities
(Q,d) is defined to be the quotient of the path algebra of Q" modulo the following relations:

(P1) ffi =0 for any 7 € [;
(P2) oo )h — hff(ﬁh) for each arrow h of Q + Q;

t(h

(P3) the mesh relations
fn—1

S>> sen(h)rn =0 (i€ 1),

heH;t(h)=i k=0
By definition, a (finite dimensional) representation of II is given by a datum consisting of
e a finite dimensional C-vector space V; for each i € I;
e a linear map By,: V; — V; for each arrow h: i — j of Q + Q;
e a linear transformation N; of V; for each ¢ € I,
such that
(P’1) N% =0 for any i € I;
(P’2) Ngz’;L)Bh = BhN!(Hh) for each arrow h of Q + Q;
(P’3) the mesh relations

fn—1

> D sen(WNFBR BN/ =0 (i€ 1),
heH;t(h)=i k=0

Observe that relations (P’1) make each V; into a module over R, and then relations (P’2) are
equivalent to that each Bj: V) — Vi, is an Rg,-homomorphism. In what follows we consider
the case where each V; is a free Ry,-module (such a representation is said to be locally free), and
take an /-graded C-vector space V = @, , Vi so that

Vi:‘/z’@)Rdi (ZEI)
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Then the tuple B = (B},)nen lives in the vector space
Mqa(V) = @ Hompg, (Vsa), Vi)
heH

Put
Ga(V) =[] Ga(V)), ga(V) = LieGa(V) = P ga,(Vi)-
i€l i€l
For simplicity, we use the following notation for variables:
€ = €q, € Rd“ €p = €q, € Rdh-
The observations made in the previous subsection show that Mg 4(V) has a symplectic form
1
w=Y (dB,AdBy), = 5 > sgn(h) (dB, AdBy),,
heq heH

and the obvious action of Gq(V) on Mq4(V) is Hamiltonian with moment map

pa = (fai)ier: Mqa(V) — g4(V),

fn—1
Ry, R, L
pai(B) = > sgn(h)B, "B, = Y ") " sgn(h)el(ByBy)el

t(h)=i t(h)=i

Therefore the mesh relations (P’3) are exactly the same as the moment map relation pq(B) = 0.

Since two points on pq(B) are in the same Gg(V)-orbit if and only if the corresponding repre-
sentations of II are isomorphic, we see that the isomorphism classes of locally free representations
of II with fixed dimension vector are parametrized by the orbit space ug'(0)/Ga(V). Motivated
by this observation, we define the quiver schemes in the sense of Hausel-Wong-Wyss [4] as follows:

Definition 2.6. For A = (\;) € Rq = P
V., we define

.e; Ra; and a finite dimensional I-graded C-vector space

Saa(X,v) = Spec (Clyg! (=Aldy) ™)) |

where v := (dim V;);e; € ZL, is the dimension vector of V and Aldy = (X\;Idy;) € gq(V)%™).
Also, for convenience we put Sq.a(X,v) = 0 for v e Z'\ ZL ;. We call Sqqa(A, V) the quiver scheme
associated to (Q,d) with dimension vector v and complex parameter .

When d; = 1 for all ¢ € I, the quiver scheme Sq (A, V) is Nakajima’s quiver variety (with
trivial real parameter).

Remark 2.7. If V, V' are two [-graded C-vector spaces with dim'V = dim V' = v, then we have
a canonical isomorphism

Spec (Clpg' (—=AIdy)]“4™Y)) ~ Spec ((C[,ugl(—)\ Idvy) ]Gd(vl)> .

Thus we are identifying them, which is the reason why we use the notation Sq 4(A, v) rather than
Sq.a(A, V) for the quiver scheme.
Also, the isomorphism class of Sqa(A, v) does not depend on the orientation of the quiver Q.
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Remark 2.8. Note that the subgroup
C*ldy = {(cIdy,)icr | c€ C* } C G4(V)

trivially acts on Mq q(V). Hence the moment map jiq takes values perpendicular to the Lie algebra
of C*Idy, namely, the image of 1q is contained in

Z res (teri(fi) %) =0 } .

€;=

el

ga(V)o = { (&i)ier € 8a(V)

It follows that the quiver scheme Sq4(, v) is empty unless
de;
E v; Tes ()\i 76) = 0. (2.2)
- ;=0 et
el ?
Remark 2.9. Let A = (a;;);jer be the adjacency matrix of the underlying graph of Q, i.e.,

=#{heH]|sh) =i, t(h)=j},

and put
A, = <%) , D = diag(d,-),-g, C = (Cij)i,jel = QId — A,D,
v/ dgel
where Id denotes the identity matrix. Define a symmetric bilinear form ( , ) on Z! by

(v,w) =vDCw (v,w € Z"). (2.3)

If we formally apply the dimension formula for Hamiltonian reductions, then the dimension of
Sq.a(A, V) is equal to

S dS
dim Mg (V) — 2dim (Gq(V)/C*1d) = 3 = (hd“t —23 0%, +2
heH el
_Zd vid;v;d,; 221)2d +2
1,7€1 i el

=2-'v(2D -DA'D)v =2 — (v,v).

Hence the “expected dimension” of Sqa(A, v) is equal to 2— (v, v), as in the case of quiver varieties.

Note that if Q has no edge-loops, then C is a symmetrizable generalized Cartan matrix with
symmetrizer D, and ( , ) is the standard symmetric bilinear form on the root lattice (identified
with Z! using the basis consisting of the simple roots) associated to D. Clearly C, D do not
depend on the orientation of the quiver Q, so they only depend on the underlying “graph with
multiplicities”. All symmetrizable generalized Cartan matrices may be constructed in this way;
see [3] for the inverse construction.



Remark 2.10. Let Vg4 be the I-graded vector space €
vector space

i1 Vi @ Ry, and consider the symplectic

Mq(Va) = @ Hom(C(VS(h) ® Rds(h)’ Vi) ® Rdt(h))

heH
instead of Mq a(V). The group G4(V) acts on Mq(Vgq) as a subgroup of

GL(Va) = [[ GLe(Vi @ Ry),

el

and the quiver varieties with multiplicities introduced by the second author [12] are defined as
Hamiltonian reductions of Mq(V4) by the action of Gq(V). If ged(d;, dj) =1 for all 4,5 € I with
a;; > 1, then Mqa(V) = Mq(Va) and hence they are essentially the same as quiver schemes,
although they are defined as complex manifolds (not schemes) using geometric invariant theory.

2.3 Some G;(V)-coadjoint orbits

In this subsection we fix a finite dimensional C-vector space V' together with a positive integer d,
and review a result of Hausel-Wong-Wyss on some G4(V')-coadjoint orbits.

Take any direct sum decomposition V = @220 W; and elements 6y, 6,,...,0;, € Ry (I > 0) so
that 6; — 0; is a unit whenever ¢ # j. Put

l
0 = P bildw,er, € (V).

1=0

and let Og C g4(V') be the Gy4(V)-coadjoint orbit of ©.

Hausel-Wong—Wyss proved that Og is an example of quiver schemes. Let (Q,d) be the quiver
consisting of [ vertices {1,2,...,l} and (I — 1) arrows h;: i — i+ 1,4 = 1,2,...,1 — 1 with
multiplicities

di=d (i=1,2,...,])

for some positive integer d. We call it the d-leg of length |. Define a graded C-vector space
V= @2:1 Vi by
Vi=@WwW: (i=12...1),

Jj=i

and consider the symplectic vector space
Mq.a(V) @ Home(V, Vi @ Ry) @ Home (V) @ Ry, V')
acted (diagonally) on by the group G4(V). An element B of this space consists of R;-homomorphisms
Bit1;: Vio Ry — Vis1i ® Ry, Biij1: Vipi®@ Rg—= Vo Ry (1=1,2,...,1—-1),
together with C-linear maps

a:V —-Vi®R;y, b:Vi®R;—V.
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For such an element we put
Big=a":V@R;—Vi®Ry, By, =0":V,®R;—V®Ry.
Observe that the Gq(V)-action is Hamiltonian with moment map
fia = (flai), fai(B) = Bii1Bi1i— BiiBiyi: (1=1,2,...,1),
where Bj 11, Biy1,; are understood to be zero.
Proposition 2.11 (Hausel-Wong-Wyss [4 Proposition 6.3.4]). Define A = (\;) € Rq by
Ni=0;—0;_.

Then the Gq(V)-action on the level set fig' (=X 1dy) is free and has a geometric quotient. More-
over, the map

v: Mqa(V) @ Home(V, Vi ® Rq) @ Home (Vi ® Ry, V) — ga(V); B =By 1B+ 6 Idy
induces a symplectic isomorphism from fiz*(—A1dv)/Ga(V) to the coadjoint orbit Og.

See e.g. [11] for the definition of geometric quotient. Because our convention and the statement
are slightly different to those of [4], we will give a proof below (our proof is different to the proof

of []).

Lemma 2.12. Let B € ﬁgl(—AIdv). Then B;,iy1 is injective and Biyq; is surjective for all
i=0,1,...,01—1.

Proof. First consider the case of d = 1. In this case, [2 Lemma 9.1] (with a different sign
convention) shows that the affine quotient fig"'(—AIdy)/G4(V) is isomorphic to the closure of the
orbit Og C gl:(V) via the map v. Furthermore, it is known (see e.g. [15, 5.1.2, 5.1.4]) that the
image of a point B € jiz'(—AIdy) lies in Og if and only if B;;; is injective and B, is surjective
forall i = 0,1,...,1 — 1. Since Og is closed (O is semisimple), it follows that B; ;1 is injective
and B, is surjective for all B € /1(;1(—)\ Idy) and i =0,1,...,0— 1.

Now consider the general case. Take any B € fig'(—AIdy). Specializing € to zero, we then
obtain C-linear maps

Bia1i(0): Vi = Vi, Biia(0): Vi — Vi (i=0,1,....01—1),
where V := V, such that
B;i-1(0)B;—1,:(0) = B;i+1(0)Bi+1,(0) = =X;(0)Idy, (i =1,2,...,1).
Since 0;(0) # 60;(0) whenver ¢ # j, the above fact in the case of d = 1 shows that B, ;1(0) is

injective and B;;1,(0) is surjective for all ¢ = 0,1,...,1 — 1. This implies that B; ;1 is injective
and B, ; is surjective for all = 0,1,...,1 — 1. O
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Proof of Proposition[211. Using the above lemma one can easily check that Gq(V) acts freely on
fig' (=X 1dvy). Hence jig'(—AIdy) is non-singular and equidimensional. Also, note that the group
G4(V') acts on the space Mq a(V) @ Home(V, Vi ® R;) @ Home (V) ® Ry, V') in Hamiltonian fashion
with moment map v (see Remark 23] and this action preserves fig' (—=AIdy).
Now we take any B € fiz'(—AIdy) and show that A := v(B) lies in Og. Fori = 1,2,...,1,
put
Byi = Bo1Bi2- - Bi-1i, DBio= Bii-1---B21DBy.

Then using the moment map relation iteratively one easily deduces

(Bo,1Boa + (M + -+ XN)Idy) By, = Bo+1Biy1; (1=0,1,...,1—1),
(BO,IBO,I + ()\1 + ttt + >\l)IdV) BO,l == 0,

that is,
(—A + 92 Idv) BO,Z‘ - BO,i+lBi+1,i (Z - O, 1, ey l - 1), (—A —|— 9[ Idv) BO,l - 0 (24)
Thus for any ¢ =0,1,...,] — 1, we have

Byit1Biv10=(—A+6;1dy) By, B
(—A + 9 Idv) (—A + Qi_l Idv) BO,i—lBi—l,O

- _H —A+0;1dy) BoiBig = [[ (—A+6;1dy),

7=0
and
!
H ~A+0;1dy) = (~A+6,1dy) By, By = 0.
By the above lemma, Bo,i is injective and B; o is surjective for all ¢ = 1,2, ...,{. Hence

ImH —A40,1dy) ~ Vi1 @Ry (i=0,1,...,1—1). (2.5)

Since 0; — 6; € R} (i # j) and Hi’:o (A—#6;1dy) = 0, the idempotent decomposition

l
Idv = ZT{'Z‘, T = ]‘_[(9Z - Hj)_l H(A — Qj Idv)
i=0

i#i i
gives a direct sum decomposition V ® Ry = @i-:o Ker(A — 0;1dy ), and equalities (2.5]) show that
Ker(A —0;1dy) ~ W; ® Ry. Hence A € Og. Furthermore, if we put

i—1
Vi=Im[[(~A+6;1dy) =ImBy; (i=1,2,...,1),

J=0

12



then equalities (2.4]) yield the following commutative diagrams for ¢ = 0,1,...,m — 2:

7,+1 7 z si41

inclusion

Vi®w Rg—= Vi1 ® Ry Vig1 ® Rg——=V; ® Ry
BO,i\L O \LBO,i+1 Bo,i+1l O \LBO,i
\ mVH—I’ Vi i

Here we use the conventions Vo = V@ Ry, Vo =V, By = Idygr, in the case of 1 = 0. Note that the
vertical arrows are all isomorphisms. It follows that each fiber of the map v: fiy' (—=AIdy) — Og is
a single G4(V)-orbit. Since this map is G4(V')-equivariant and G4(V') transitively acts on Og, the
group Gq(V) x G4(V) transitively acts on jig'(—AIdy). In particular, fig*(—AIdy) is irreducible.
Thus [I1, Theorem 4.2] shows that v: jig'(=AIdy) — Oe is a geometric quotient. Also, since
v is a moment map the induced isomorphism fiy'(=AIdy)/Ga(V) ~ Og preserves the Poisson
structure (and hence the symplectic structure).

O

In fact, the geometric quotient in Proposition 2.11lis an example of quiver schemes. Let ( ~)
be the quiver with multiplicities obtained from (Q,d) by addlng a new vertex 0 of multlphc 1
and dim V' arrows from 0 to 1. Define a graded C-vector space V = D, Vi by Vo = C, V=V
(i > 0). Then fixing a linear isomorphism V ~ C4V we have

dimV
Mg 3(V) =Mqu(V) & @ (Home(C, Vi ® Ry) & Home(V; ® Ry, C))
=1

~ Mq.a(V) @ Home(V, Vi ® Ry) @ Home (V) @ Ry, V).
Also, the moment map g is described as
taoB) = —trBo1Bio, pg,(B) = Bii1Bi-1i — Biiv1Biyv1i = pai(B) (i >0).
Let X be as in Proposition 21T and define X = ();) € R3 by

- - 1 de;
A = N (’L>O), )\0:— - Vi reso ()\2 TEZ) ,
i>0
so that (2.2]) holds. Then any B € MQ&(\N/) satisfying pa(B) = —Aldy also satisfies pg,(B) =
—Xo as pg(B) lives in ga({f)o (see Remark 2.8)). Thus
pst(=A1dg) = pg' (= Aldy).
Furthermore, since C*Idg; C Ga(\N/) = C* x G4(V) acts trivially, we have
Cluz' (~A1dg) %) = Clug' (—~Aldy) |5V,

Corollary 2.13. The orbit Og is isomorphic to the quiver scheme SQ&(:\, V).

Proof. Proposition 2.11] implies that SQ&(S\,V) is isomorphic to the affinization Spec C[Og] of
Og. On the other hand, Og is known to be affine (see [4, Lemma 2.2.4] or Corollary A.3]). Thus
Spec (C[O@] = O@. ]
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3 Reflection functors for quiver schemes

In this section, we modify the arguments made in [I2), Section 4] to generalize the reflection functors
of Lusztig [7], Maffei [§ and Nakajima [10] for quiver schemes. Fix a quiver with multiplicities
(Q,d) with Q having no edge-loops.

3.1 Reflection functors

Let C, D be the symmetrizable generalized Cartan matrix and the symmetrizer defined in Re-
mark 2.9 Fix a realization (b, {a;}ier, {o) }ier) of C in the sense of [6]; so b is the Cartan subal-
gebra, {a;}ier C b* is the set of simple roots, and {«; }ie; C b is the set of simple coroots. Let
Q = _,c; Za; be the root lattice and identify it with 7! using the basis {a; }ic;. Then the dimen-
sion vectors of finite dimensional /-graded C-vector spaces live in the subset Q4 =", Z>o«;.

Recall that the Weyl group W (C) of C is the subgroup of GL¢(h*) generated by the simple
reflections

sith —=b5 A= A-—(Nao Yo (i€l).

The group W(C) is a Coxeter group with defining relations
s? = 1dg, (8i8;)™ =1dy- (i,j € I, i # j),

where m;; are determined from c¢;;c;; by the following table.

CijCji 0123 Z 4

We define an W (C)-action on Rq X (). The action on the second component @) is just the
restriction of the action on bh*; explicitly,

Si(V) =V — Zcijvjozi, vV = Z’U]'Oéj €Q (’L c ])

Jjel jel

This action is effective; so we may regard W (C) as a subgroup of GLz(Q). On the other hand,
the action on the first component Rq is defined by

—Ai (J =1),
TZ(A) = (TZ(A)])jelv TZ(A)j = dii—1 dj—&l—l ) )
Aj = 2210 )‘i,(di—%z_l)cij%' . (j #1),

where A = (\;)ie; € Ra, \i = Zi:_ol )\i,kef.

Proposition 3.1. The above r;,i € I satisfy relations (B.1]).
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Proof. For each ¢ € I, the transpose §;: Rq — Rq of r; is explicitly described as

=v — ZC” Z vj, fwmef” e; (V = (Z vi,kef) S Rd> ,

jel

where e; =

(
(Camun) €C

dij)jer- Put [ = {(i,k) | i € I, k= 0,1,...,d; — 1} and define a matrix C =
I Isothat

5(V)ig =vig — E Clik) (G Vil
(el

explicitly,

= cij (k= fjm, L= fiym for some m € Z),
ClamG =
GRG0 0  (otherwise).

Then the matrix C is a symmetrizable generalized Cartan matrix with symmetrizer D= diag(d k),
where d;j, = d;. For (i,k) € I, let s,y 7! — 71 be the (i, k)-th simple reflection acting on the

root lattice Z! for C. Then for any ¢ € I, the reflections s; 0, si1, ..., 8;4,—1 commute pairwise, and
s; coincides with the linear map

(83,0851 Sid;—1) @z Idc: cl - ¢f

under the obvious identification C! = R4q. Now relations (3I)) follow from the defining relations
for the Weyl group W (C). O

Remark 3.2. Define a linear map p: Rq — C! by

dEi
o (o (4)).
i el

Then one can easily check that p(r;(A)) = 's;(p(A)) for all « € I. In particular, if d; = 1 for all
i € I, then the W (C)-action on Rq = C! is dual to that on Q ®; C

Example 3.3. (i) Suppose that (Q,d) has the graph with multiplicities given below
d 1 1
O—0—0
Jj i k

Here we assume d > 1. Then the corresponding generalized Cartan matrix is

011 1 00 2 —d -1
2d—- {11 0 O 0doOo]l=[-1 2 0
1 00 0 01 -1 0 2

We have
’/’Z()\)Z = —)\i, ’/’i()\)j = )\z — Cij>\i€§-l_1 — >\j -+ d)\iE?_l, TZ(A)k = >\k — Cik>\i = >\2 + )‘k
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It coincides with the ones in [I2] Section 4]. In general, if ged(d;, d;) =1 for all j € I joining the
vertex i, then the action coincides with the action in [12], Section 4].
(ii) Suppose that (Q,d) has the graph with multiplicities given below

d d 1
O—0O0—0
Jj 1 k

Here we assume d > 1. Then the Cartan matrix of it is

011 d 00 2 —d -1
2d—- {1 0 O 0dO)]=|—-d 2 0
100 0 01 —-d 0 2

We have
’/’Z()\)Z = —)\i, ’/’i()\)j = >\j — Cij>\i = >\j -+ d)\l, TZ(A)k = >\k — Cik>\i,d—1 = >\k -+ >\i,d—1-

Theorem 3.4. Suppose that Q has no edge-loops. Take A € Rq, v € Q4,1 € I and suppose that
Ai € Ry, is a unit. Then there exists an isomorphism of C-schemes

Fi: Sqa(A, v) = Sqalri(A), si(v)).

The map F; generalizes the i-th reflection functor of quiver varieties [10].
We will prove this theorem in the next subsection.

3.2 Proof of Theorem 3.4
71
For h € H, define V), := Z Vs(h)ei(h) so that V), ® Rg, = Vi) ® Rds(h). Then the extension of

1=0
scalar gives isomorphisms

ap: Home(Vi, Vi) ® Ra,,,)) — Homp, (Vin) @ R, Vi @ Ray,),
Br: Home(Vin) ® R, Vi) = Hodeh (Vi) ® R, Vin) @ Rdt(h))'

Fix a vertex i € I and set V; = @t(h):i Vi, so

dimf}; = Z dimV}, = Z Tvsn) = Z aij%vj.
ij

t(h)=i t(h)=i jel

Then we can decompose the vector space Mqq(V) as

Moa(V) = Home (V;, Vi @ Ry, ) & Home (V; @ Ry, V;) & MG, (V),
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where MG (V) = @ sz Home (Vi ® Ray Vi @ Ry, ) - Fach B € Mqa(V) corre-
sponds to the triple (B;_, B_;, Bx;), where

Bi = (sgn(h)a;(Bn))egn—: € Homg (m, V; ® Ry, )

= (87" (By))um=i € Home (Vi@ Ry, Vi) |
Bui = (Bu)uny st € Mgla(V),

and the group Gy, (V;) acts trivially on Mg?d(V).
Applying Proposition .11 with [ = 1 to the symplectic vector space

Home (V;. Vi Ry, ) @ Home (Vi ® Ra, Vi)

we obtain the following corollary (we also use the description of the moment map given in Re-

mark 2.3]).
Corollary 3.5. Let A; be a unit of Rg,.
(i) If dimV; < dim V;, then the set ,ugl( i Idy,) is empty.

(i) If dim V; > dim V;, then the Gq,(V;)-action on ,udz( i Idy,) has a geometric quotient, and
the map
— N;)'Bi,

1

®;: Mqa(V) — g4, (Vi); B —€jBoi(ea
where N; € gle(V; ® Ry,) is the multiplication by €q,, induces a symplectic isomorphism
Hai(—Ai1dv) /G, (Vi) = O x Mgy(V),
where O is the Gy, (V) coadjomt orbit consisting of elements having a matrix representation of the
form diag(\, ..., A\, 0,...,0) with A\ appearing dim V; times in the diagonal entries.

Proof. Suppose that ,ugl( A Idy,) is non—empty and take any B € ,u:l’li(—)\i Idy;). Since J\; is a

unit, the moment map condition B ZB = —\; Idy, implies that Bii * is surjective and Bff s
injective. In particular, we have dim V; > dlm V;. (ii) follows from Proposition 2.1 O

By Corollary 3.5 the level set ug}i(—)\i Idy,) is non-empty if and only if
v; < dimlz = 2u; — Zcijvj,
J

which is equivalent to s;(v) € ZL > as the i-th component of s;(v) is equal to dim V; — dim V.
We assume this condition, because otherwise Sqa(,Vv) and Sqa(ri(\), si(v)) are both empty.
We embed V; into ‘72 as a vector subspace and take any complement V., so ‘72 =V, V! By
Corollary B.5 we have an isomorphism

Pt (=N Idy,) /Ga (Vi) = O x Mgy (V),
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where O is the Gy, (V;)-coadjoint orbit of

C(NIdy 0
A= (M0 oray):

We define an I-graded C-vector space V' by
N
et o V; if g

Then dim V' = s;(v). By replacing V and \; with V' and —\;, respectively in Corollary B3] we
also have an isomorphism

pas N Idy) /G (V) = O x MG (V),

where (' is the Gy, (V;)-coadjoint orbit of

N = (O o _Aioldw) — A—Aldg.

Note that Mg?d(V’ ) = Mg?d(V). Therefore, the scalar shift @ = O’ induces an isomorphism
Fit pgs(=\1dy,) /Ga (Vi) = pgh(NiTdyy) /G (V).

For B € 1ug}h(—\;1dy;), take B’ € 1ig}(\;Idyy) so that F;[B] = [B'].
Lemma 3.6. If uq(B) = —Aldy, then pg(B’) = —r;(X) Idy.
Proof. By the definition, ®;(B’) equals to ®;(B) — A;Idy. Thus we have

; di—1

Z BL(N))'B_e* ' = BLN!Bice ¥ + ¢\ 1dg,

k=0

where N; € gle(Vi ® Ry,), N! € gle(V/ ® Ry;) are the multiplication by ¢;. This implies that for
any arrow h with ¢(h) = i, the following equality holds:

di—
> sen(h)sz (BR)(N) a, ' (By)e ! ngn )8 (B) Ny (Br)e ¥t + 6 A Idy,,.
k=0

fhl 1

Forall [ =0,...,d, — 1, comparing the coefficient of ¢, in the above equality yields

sgn(h) B (Br) (N3, H(By) = sen(h) B (By) Ny, ' (Br) + i —p—n)1dv,,
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where N, = N/ and N; = (N/)"». On the other hand, for B € Home (Vi, Vi) ® Rg,) and

Z

B € Home (Vi) ® Ry ,Vh) we have

dp—1
Br(B)ay(B) = € B(eyld — Ny, ) ' B = ej >~ BN} Be,' ™.
1=0
Thus we obtain
dp—1
sgn(h)B Bh = sgn(h)B Bh + Z )\ (di— frl— 1) Ith
1=0
Replacing h with h, we also obtain
dp—1
sgn(h)BhB' = sgn(h)BhB — Z )\ J(d; fl 1) —l= 1Id\/
1=0
for arrow h with s(h) =i. Note that
ol o —fl—1
-1 dp—l—1_fr—k—1 v(hy—In
PTay, d, <€hh Idv) - Z 6lltg(h)ehh {(}h Idy,,, = fre t(f(L}) } Idv, -
k=0
Thus
. deiny—fnl—
’ 1
PTay, dyn) (Sgn(h)B;LBlﬁ) = Play, d; (sgn(h) BBy, Z i (d; —fri=1) fhe (h) " Ith(h)
1=0

On the other hand, since Bj = By, whenever t(h), s(h) # i, we have

Pla,.d, g, (B;LB/E> = Play, d, (BhBE).
Thus, for all j # i, we obtain

dp—1

ful=1y
paj(B) = pai(B)— > ZA (et frey M dy
heH
s(h)=i,t(h)=j
-1 d;
dij dj—5L1-1
ij

whence the result.
Proof of Theorem[34l. Since the morphism
-1
Fu=1(=xi Idy,)/Ga, (Vi ( Aldy) — M (Aildv_/)/Gdi(VZ_')(_TZ'(A)IdV’)
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is a [, Ga;(Vj)-equivariant, it induces an isomorphism of C-algebras
_ G i Ga (V
C[Mu}l(—ki IdVi)/Gdi (Vz)(_A Idv)] J#i T dj —) C[ 1()\ Idvl)/Gd ( )( ri(A)IdV,)]HJ#z d]( J).

Therefore we obtain an isomorphism of C-schemes

Sq.a(A,v) = Saa(ri(A), si(v)).

4 Regularization

In this section, we generalize [12, Theorem 5.8] using a result of Hausel-Wong-Wyss.

4.1 Shifting trick

In this subsection we fix a finite dimensional C-vector space V together with a positive integer
d, and recall a sort of “shifting trick” found by Boalch [I] relating to the G4(V')-coadjoint orbits
considered in Section For simplicity, we put G := GL¢(V) and g = gle(V).

Let By(V) be the kernel of the homomorphism

Ga(V) = G; g—nge — o,

and by (V) be its Lie algebra. Then we have a direct sum decomposition
ga(V) = g ® ba(V).
Taking dual via the pairing on g4(V'), we also have a decomposition
ga(V) = ¢/ ga(V) @ b3(V), (4.1)

where

d—2

V)= ale(V)er = ga(V)/e ga(V),

k=0

It may be regarded as the dual space of by(V'), and the coadjoint action of g € By(V') is given by
g-n=gng~" mod e ga(V).

According to the decomposition (A1), we can decompose A = Zz;é Apet € ga(V) as

A= Ed_lAd_1 + AO, A e bZ(V)
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Now take any direct sum decomposition V = @220 W; and elements 6y, 60,,...,60;, € Ry so that
¢; — 0; is a unit whenever ¢ # j. Put

l
0 = P b ldw,er, € 0a(V).

1=0

and consider the G4(V)-coadjoint orbit Og of © as in Section 23 Let Op C b%(V) be the
Bgy(V)-coadjoint orbit of ©° and put

l
Go =[] GLc(W)) C G,

1=0

whose Lie algebra is ge = @220 glc(W;) C g. Using the trace pairing we identify the dual space
g6 with ge. Since gbg~"' € By(V) and g8°g~" = ©° for all g € Ge and b € By(V'), we see that the
orbit Qg is invariant under the conjugation by Gg.

Proposition 4.1. There exists an Gg-equivariant symplectic isomorphism

@@ :> @ HOIIl(c(VVZ', Wj)®(d_2) D @ HOHI(C(VVZ', VVj)EB(d_m

i<j >]

sending ©° to the origin.

Proof. This is a special case of [5, Corollary 3.9]. O
In particular, Qg is affine and the Gg-action on Og admits a moment map %% Op — g6 =~ go

with p5(0%) = 0.

We let Gg act on the cotangent bundle T#G via the left translation and consider the diagonal
action on the product T*G x Og, which has a moment map

lipeavog: T°G x Oe — gb; (9, R, B) — —pry, (9Rg™") + pp(B),

where T*G is identified with G x g via the left translation and pr,_: g — ge is the transpose of
the inclusion go — g.
Note that ©,4_; lies in gg(a.

Proposition 4.2. The Gg-action on the level set ,u;fGX@(—@d_l) is free and the affine quotient
—04-1)/Ge is a geometric quotient. Moreover, the map

-1
“T*Gx@(
tort oo (—0a1) = 8a(V); (9, R, B) — ¢ 'R+ ¢ "By

induces a symplectic isomorphism

N;}GX@(_@d—l)/GG = Op.
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Proof. The Gg-action on u;iGX@(—@d_l) is free as Gg acts freely on T*G. Hence all the Gg-orbits

have equal dimension, and hence are closed. Thus [11l, Theorem 4.10] implies that the affine quo-
tient ,u;l avo(—0d-1)/Ge is a geometric quotient. For the rest assertions, see [3, Propositions 2.6,
2.12]. O

Corollary 4.3. The orbit Og s affine.

Corollary 4.4. Let M be a non-singular affine symplectic variety acted on by G in Hamiltonian
fashion with moment map pp: M — g. Then for each ¢ € C, the map

V: Og x M — gq(V) x M; (B,z)+— (B — e tupy(z) — ¢ 1dy, x)
induces an isomorphism between affine quotients
,U(leM(—Gd—l —(Idy)/Ge = pgyp(—¢1dy)/G,
where [pya and ptoxn are the moment maps
oreat(B,2) = 116 B) Dty (1 (@), Howar(A,2) = Ay +iii(z) (B € Oo, A€ O, € M),

Proof. By the above proposition, the Hamiltonian reduction of O x M by the G-action at level
—( Idy is isomorphic to that of T*G x Og x M by the Gg x G-action

(u,v): (g, R, B,x) — (ugv™ ', vRv " uBu™'v-2), (u,v)€ Gex G

at level (_@d—lj —(Idy). If we first perform the Hamiltonian reduction by G, then the result is
isomorphic to Og x M via the map

Oo X M — TG x Og x M; (B,z)— (Idy, —pup(z) — CIdy, B, z),

with the induced Gg-moment map equal to i, 5, +¢ Idy. Thus performing further the Hamiltonian
reduction by Gg, we obtain a desired isomorphism MélxM(—@d—l —CIdy)/Ge = gt (—C¢1dy) /G,
which is explicitly given by (B, z) — (—e? Y (up(x) + CIdy) + B, z). O

4.2 Irregular legs and regularization

Let Q = (7,9, s,t) be a quiver with multiplicities d. For integers ¢ < j we put [¢,j] = {i,i +
1,...,7}

Definition 4.5. (Q,d) is said to have an irreqular leg if there exists a sequence of pairwise distinct
vertices such that, if we denote it by 0,1,...,[, then [ > 0 and the following hold:

1. vertices 4, j in [0, [] are connected by exactly one arrow if |i — j| = 1, and otherwise no arrow
connects them;

2. no arrow connects any ¢ € I\ [0,!] and j € [1,1];
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3.dy=1land d; =d (i =1,2,...,1) for some integer d > 1.

In what follows we consider such a quiver with multiplicities, and for simplicity, assume that the
arrows connecting 0,1, ..., [ are oriented as 0 — 1 — --- — [. We denote by Qieg = ([1, ], Qeg, 5, )
the subquiver 1 — 2 — -+ — [ and call it the irregular leg of (Q,d) with base 0.

Definition 4.6. Let Q = (1, Q, s, t) be the quiver obtained from Q by the following procedure:
1. first, delete the [ arrows 0 — 1 — --- — [; then
2. for each arrow h with ¢(h) = 0 and each i € [1,!], add an arrow from s(h) to i;
3. for each arrow h with s(h) = 0 and each i € [1,1], add an arrow from i to t(h);
4. finally, for each pair i < j in [0,[], add (d — 2) arrows from i to j.

Also, define d = (d;) by

i (i € [1,1]),
Y lds eI\ [11]).

We call (Q,d) the regularization of (Q,d) along the irregular leg Qieg-

Remark 4.7. When [ = 1, the regularization is the same as the normalization introduced by the
second author in [12].

We define a map Rq x Z! — Ry x Z! as follows. For v = (v;) € Z!, define v = (v;) € Z' by

y {Ui_vi+1 (i € [0,0—1]),

U; =
' v; (otherwise).

Also, for A = (\;) € Rq, define A = ()\;) € Ry by

)\0 (Z = O),
Ai = QAo+ 2o A1 (@€ [L]),
Ai (otherwise).

The following theorem generalizes [12, Theorem 5.8].

Theorem 4.8. Let (Q,d) be a quiver with multiplicities having an irregular leg Qieg as above, and
let (Q,d) be the regularization of (Q,d) along Queg. Take a pair (X, v) € Rq X ZIZO satisfying the
following conditions:

1. v; >0 forallie[0,1—1];
2. Ni+Nip1 + -+ X € RY for all pairsi < j in[1,1].

Then Sqa(X,v) and Sg 4(A, V) are isomorphic.
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Proof. By the first condition on (A, v), the sequence vy, vy, ..., v, is non-increasing. We take [-
graded C-vector spaces V,V so that dimV =v, V; D V; D --- DV, and

eV Gepi-),
B 7 (otherwise).

Then dimV = v and V, = @._, V.
In what follows, for a subset L C I, the suffix L means the restriction of the index set to L; for
instance,

VL - @ ‘/7:7 dL = (di)i€L7 AL = (Ai>i€L7 Ha,rL. = (:ud,i)iEL-

ieL
Let Q; be the maximal subquiver of Q with vertex set J =1\ [1,{]. Then
Mq.a(V) = Mq,.q,(Vs) ® Mq,,.a,,(Vy) ® Home(Vo, Vi @ Ra) ® Home (Vi @ R, Vo).

Also, let Qg be the Vmaximayl subquiver of Q with vertex set K := J \ {0}. Then Qg is also a
subquiver of Q and d; = d;, V; =V, for all i« € K. Hence

!
Mg a(V) = Mq, ax(Vk) ® @ @ Home (V, Vi) ® Ry, ) ® @ Home (Vi) ®st(h)7‘7z‘)
i=0 | t(h)ek
s(h)=i t(h)=i

® @ Homg(V;, V;) @42,
.4 €[0,1]; i)

By the definition of Q and the equality Vj = @220 Vi, we obtain a canonical isomorphism

MQA(V) ~ MQJ7dJ(VL]) ) @ HOmc(V V)@(d 2).
i, €[0,1]; i)

Now define © € g4(V) by

l .
0 (Z - O)>
0=P01d;,, 6=
ie:? Vi {A1+---+Ai (i >0).
Then 0; — 0;,_1 = \; for i € [1,]] and
l
Go = [ [ GLe(Vi) = Gy, (Viou)-
=0

The second condition on (A, v) implies that §; —0; € R} whenever i # j. Therefore Proposition 1]
implies that there exists an isomorphism

MQ&(V) ~ MQJ7dJ<VJ) X @@.
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On the other hand, Proposition 2.11] implies that the Gd[ly”(V[l,”)-action on ,ugl[l ”(—)\[U] Idv[w)
has a geometric quotient isomorphic to the affine variety Mq, a,(Vs) xOg. Therefore Corollary 4]
shows that there exists an isomorphism between affine varieties

P oy (=04 1dvig )/ Gy (Vi) = 13 jo (= Mog 1dvy,))/Gay, , (Vien)-

Taking the affine quotients (as schemes) of the level sets of the Gq, (V)-moment maps on both
sides, we obtain a desired isomorphism Sqa(A, v) =~ Sg (A, V). O

The following corollary is useful.

Corollary 4.9. Let (Q.d) be a quiver with multiplicities having an irreqular leg Queg as above with
I =1, and let (Q,d) be the regularization of (Q,d) along Qug. Take a pair (X, v) € Rq x ZL, so
that \y € R} . Then Sqa(\,v) and SQH(X,\?) are isomorphic.

Proof. If vy < 0, then Corollary implies that both Sq4(A,v) and SQa(;\, v) are empty. If
U9 > 0, then they are isomorphic by the above theorem. O

Using the above corollary we can show that some quiver schemes are algebraic varieties.

Corollary 4.10. Let (Q,d) be a quiver with multiplicities and put I, = {i € I | d; > 1}. Suppose
that each i € Iy, is an irreqular leg of length one, and any distinct pair i # j in Ly, has distinct
bases. Take a pair (A, v) € Ra X ZL, so that \; € R} for any i € J. Then Sqa(X, V) is a variety.

Proof. Applying Corollary to each i € I, we obtain an isomorphism from Sqq4(A, V) to
Nakajima’s quiver variety. O

Here are some examples.

Example 4.11. (i) Consider the quiver with multiplicities (Q, d) given in [I2, Example 5.6 (i),(ii)],
which has the following underlying graph with multiplicities.

d 1 1 -1
O—O—O——0
[ [0]
Here the number of vertices is n > 2 and [0], [1] are labels of vertices (d,1,1,...,1 are the multi-

plicities). Then the regularization (Q,d) has the following underlying graph Wlth multiplicities.

o
1 1 1 ...
O =0 (n=2), <> O—10 2y
1] a2 [0

Since it is multiplicity-free, Corollary L9 implies that Sqa(A, v) is a variety if A\;(0) # 0.
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(ii) Consider the quiver with multiplicities (Q, d) given in [12, Example 5.6 (iii)], which has the
following underlying graph with multiplicities.

2 1 ... 1 2
O—O——0—0
LI (N

Here the number of vertices is n > 4. Then one can perform the regularization twice, and the
resulting quiver with multiplicities (Q, d) has the following graph with multiplicities.

1] b—b 0] [ 3 5 [0]
N/
‘ (n=4), O—-—0 (n>5)
H1p——qM w&

Since it is multiplicity-free, Corollary .9 implies that Sq.a(A, v) is a variety if A;3(0), Aj14(0) # 0.

4.3 Weyl groups and regularization

Let (Q,d) be a quiver with multiplicities having an irregular leg Qieg = ([1, 1], (heg, 5, 1), and let
(Q, d) be the one obtained by the regularization of (Q,d) along Qs We denote by C=2d-AD
the generalized Cartan matrix associated to (Q,d), and by b, Q, dy, 5, the Cartan subalgebra, the
root lattice, the simple roots and simple reflections, of the Kac—-Moody algebra with Cartan matrix
C. In this subsection we give some relationship between the two Weyl groups W(C) and W (C)
as in |12 Section 5.3].

Define a homomorphism ¢: Q@ — Q by vi— v =v — Zz‘e[o,l—l} Vit10y.

Lemma 4.12. If we regard ¢ as an element of Homy(Z!, Z") = Z'! | then 'pDCy = DC.

Proof. To prove it, we express the matrices in block form with respect to the decomposition of the
index set I = [0,{] U K. First, ¢ is expressed as

1 -1 0 -~ 0 O
0 o
B
. T
o -- 0 0 1 0
0O -« --- 0 0 Id

By the properties of Qi and the definition of regularization, the matrices D, D, A’ and A’ are
respectively expressed as

 (diag(1,d,...,d) 0 . (ld 0
D—< 0 5), D—(o ﬁ)=



0 1 0 0 ‘ta
) 0 d-—2 d—2 ‘a
10 3 : .
1 d—2
A= 0 .E . . (1] ’ A= : . od=2 >
R B d—2 .- d—2 0 ‘a
0 0 0 A

where D (resp. A/ ) is the sub-matrix of D (resp. A’) obtained by restricting the index set to K,
and a = (apo)rer- Now we check the equality. We have

2 —d 0 - 0 —'aD
~d 2d . . 0
DC=2D-DAD=| 0 "~ - 0 ,
Lo 240
0 -+ 0 —d 2d 0
~Da 0 --- 0 0 DC
where C = 2Id — A’D. On the other hand,
2 2—-d -+ 2-d —taD
2—d . . : :
DC =2D - DA'D = : . 2-d —taD
2-d - 2—d 2 —taD
—Da -+ —-Da —-Da DC
By direct calculation, we obtain ‘¢DC¢ = DC. O

The above lemma implies that ¢ preserves the symmetric bilinear form (2.3]).
Let S;y1 be the symmetric group of [0,1]. It effectively acts on Q = Z! via permutations of
coordiates.

Lemma 4.13. 05,0~ = 3, for any o € Sipy and k € 1.

Proof. Observe that the matrices C, D are invariant under permutations of indices in [0, 1]. Hence
the action of S;y; on @) preserves the symmetric bilinear form. Recall that the simple reflections

satisfy
2(8, d&; . .
(5) =5~ Totla, (i1 5e Q)
For k € I and § € Q, we thus have
So(n)(B) = B — Mdo(m

(Co(k)s Co(k))
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=08- G ) o
_ -1 _ 2(0 1(6)76%) < oio 1
—o (o) - 2R ) = e

O

If we regard W(C) and Si;; as subgroups of GLz(Q), then the above lemma implies that
W(C)S)41 is a semi-direct product W(C) x Spy.

Proposition 4.14. Under the isomorphism ¢, the Weyl group W (C) is isomorphic to the semidi-

rect product W (C) x Sj11.

Proof. We calculate the subgroup W (C)e~' € GLz(Q). Since ¢ preserves the symmetric bilinear
form, the automorphism ¢s;~! of () satisfies

2(8, ()

psip (B) =B — ((p(ai)’(p(ai))w(ai) (iel, Beq).

By the defintition of ¢, we have

ola) = {a —a (e [1,0),

& (otherwise).
It follows that @s;po~' = s, if i € [1,1]. For i € [1,1], a direct calculation shows

d (k=1),
(i), plaw)) = (i, ) =2d, (G, — Gi1) = —d (k=1 —1),
0  (otherwise),

which imply that ps;o ' (dg) = G,y for all k € I, where o; € Sy is the transposition of ¢ — 1
and 7. Hence ps;¢0~! = 0;. As a conclusion, oW (C)p~! is equal to the subgroup generated by o;,

i€ [1,l] and s, k & [1,1], which coincides with W (C)S;41 ~ W(C) x Si41 by Lemma T3] O
Let Sp41 act on Ry by permutations of components. Then it is straightforward to show (using
the S;,i-invariance of D, C) that orpo! = To(k) for any o € S;y and k € I, where 7 Rg — Rg

is the linear map corresponding to the simple reflection $, for the action of W (C). Thus we obtain

an action of the semi-direct product W(C) x Si41 on Ry.

Proposition 4.15. Let W(C) act on R4 X Q through the isomorphism W(C) ~ W (C) x Si4;.
Then the map Rq x Q — Rg X Q, (X, v) — (A, V) is W(C)-equivariant.

Proof. Let ©: Rq — Rg be the map A — X. Then the transpose ) : Ry — Rq is

b (i ¢ [1,1]),

v=(0)mv=(v), u= {Ziﬁ:i{]k (i € [L,1]).
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For the assertion it is sufficient to show that 4 is equivariant with respect to the dual actions.
Fori e I, let §;: Rq — Ra, §;: Ry — R4 be the actions of the i-th simple reflection. In the proof
of the above lemma we checked that

Y -1 _ S (z€[1>l])
o {a- (i € [1,1)).

Thus it is sufficient to show that

for any v € Ry.
Fix v € Ry and put v = "(v). First, suppose i € [1,{]. In the proof of Proposition Bl we
already calculated 3;(v) as follows:

dij—1
‘§Z( ) =V - Z C'lj Z Uj fljmefjl Z? (Z ,UZ kEd )
JeI
Since i € [1,1], we have
2 (j = 7:>7
cj=4—-1 (jel[0o,d], |i—j]=1),

0  (otherwise),

and
1] -1

f]zm .
E : UJ fl]me - Uj

whenever ¢;; # 0. Thus

fiim . .
E Cij E Vj fym€d, = = 2v; — g vV = U — Vi1,

Jel J€[0,l]; [i—j|=1

and hence §;(v) = v — (0; — 0;_1)e;. On the other hand, a direct calculateion shows that the i-th
component of “)(o;(V)) is equal to

l

260;1( =01+ Z Op = v; — (05 — V1),

k=i k=i+1

while the other components are the same as those of v. Hence “4)(0;(V)) = v — (0; — ;1 )&; = 5;(v).
Next, suppose @ & [1,1]. For j € I, let ¢&; be the (i, j)-entry of C and

Czij = ng(diaCZj>a JEz‘j = CZJ/CZU
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Then we have

t¢(§;(v)) :t A ZC” Z Y5, fim® d "e;

JeI
dij—1
-t fzm
=V =D " | D v
jel m=0
Since i & [1,1], the description of “¢) shows
dij—1
fzm fzm
Z UJ fl]m dJ i = Z ,U] fZJmedJ €.
m=0
On the other hand,
Lj_l
Si(v)=v— ch Z vj, f”mef” e;.

Jjel

Therefore it is sufficient to show

> e Z O pmel ™ =3 ey z e

JeI Jjel
If i # 0, then
Lj_l
D G D Vgl = G0 Y B = ciove,
j€[0,]] m=0 j€[0,1]
and hence
dij—1 dij—1
. fﬂm o
DG D Ul = D G D Uy caoty
Jel m=0 J¢10,1] m=0
_ sz
- : :CZ.Y : :U.?fumed
JEIL] m=0
_§ : § : fim
- CU UJ fl]me
Jjel
If =0, then

Z%Z Uj figm d” _2U0+(2—d)zﬁj

jelo,1] JE[L]
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_ _ fiim
=20y — dv; = E cijg V) fi;m€G

jelog)  m=0
while )
. . fjm fiim
E Cij E Vi fiym€q, = E Cij E Yj,fiym€d; -
jel m=0 Jel m=0
Thus we obtain the desired equality. O
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