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Abstract

A stochastic discrete slip approach is proposed to model plastic deformation
in submicron domains. The model is applied to the study of submicron pil-
lar (D ≤ 1µm) compression experiments on tungsten (W), a prototypical
metal for applications under extreme conditions. Slip events are geometri-
cally resolved in the specimen and considered as eigenstrain fields producing
a displacement jump across a slip plane. This novel method includes several
aspects of utmost importance to small-scale plasticity, i.e. source truncation
effects, surface nucleation effects, starvation effects, slip localization and an
inherently stochastic response. Implementation on an FFT-spectral solver re-
sults in an efficient computational 3-D framework. Simulations of submicron
W pillars (D ≤ 1µm) under compression show that the method is capable
of capturing salient features of sub-micron scale plasticity. These include the
natural competition between pre-existing dislocations and surface nucleation
of new dislocations. Our results predict distinctive flow stress power-law de-
pendence exponents as well as a size-dependence of the strain-rate sensitivity
exponent. The results are thoroughly compared with experimental literature.
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1. Introduction

Progress towards fulfilling the promise of nanoscale solutions to engineer-
ing problems hinges on the development of computational and character-
ization techniques for an adequate assessment of the mechanical response
of the resulting materials and parts. For instance, micropillar compression
testing (Uchic et al., 2004; Uchic and Dimiduk, 2005) can provide critical
data for the development of a number of technologies at different engineering
scales, from the micro/nanoscale (e.g micro/nano electromechanical systems
-MEMS / NEMS-, microsensors and actuators and microscale energy harvest-
ing and storage systems) to the macroscale. The technique is instrumental
in establishing correlations between the microstructure and the mechanical
properties of materials (Greer and De Hosson, 2011; Dehm et al., 2018). The
analysis and interpretation of the experimental data obtained often relies on
advanced computational simulations at different length scales, which aim at
determining the underlying deformation micromechanisms responsible of the
observed behavior.

At the lowest scale, molecular dynamics simulations (MD) were used to
study the interaction of dislocations with pillar surfaces, leading to the pro-
posal of a surface-induced cross-slip mechanism (Weinberger and Cai, 2008).
In addition, several studies have been published with different focuses, such
as unraveling the tension-compression asymmetry observed experimentally
(Healy and Ackland, 2014) or analyzing the origin of size effects observed
experimentally (Yang et al., 2021; Yaghoobi and Voyiadjis, 2016), to name
a few. Nevertheless, the detailed nature of atomistic simulations, together
with integration timesteps of the order of 1-3 fs, enforces the use of ultra-high
strain rates of 107/s and above and very small pillar sizes (D < 100 nm).
The comparison between MD simulations and micropillar compression ex-
periments is thus limited by the inherent drawbacks associated with the sim-
ulation technique. Still, MD has made fundamental contributions to the un-
derstanding of source nucleation in micropillars and nanowires (Weinberger
and Cai, 2008; Zhu et al., 2008), even allowing to estimate nucleation stresses
on pristine fcc nanowires within 20% of the experimental values (Jennings
et al., 2013).

At the mesoscale, discrete dislocation dynamics simulations (DDD) have
been used to provide insights into the mechanisms responsible for the ex-
perimentally observed staircase stress-strain behavior (Tang et al., 2008) as
well as athermal size-dependent strengthening (Rao et al., 2008). The tech-
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nique has also been used to study the effect of specimen size on plastic flow
and work-hardening (El-Awady et al., 2009) and also to study the charac-
teristics of source truncation controlled flow behavior for submicron FCC
single crystal micropillars (Cui et al., 2014). Moreover, in order to capture
surface-related effects, MD simulation-derived models of surface nucleation
(Ryu et al., 2011; Zhu et al., 2008) and surface-induced cross-slip (Wein-
berger and Cai, 2008) have been incorporated into DDD frameworks (Ryu
et al., 2013, 2015; Hu et al., 2019), allowing for the exploration of pillar sizes
in the range of 100 nm to a few microns. The technique has also been used to
develop stochastic models for the onset of plasticity in micro- and nano-scale
structures (Shao et al., 2014). In spite of their advantages, DDD simulations
still suffer from timescale limitations (few ns to few µs) and typical strain
rates used are in the range of 103/s − 106/s, though strain rates as small
as 0.1/s are possible depending on the computational resources (Fan et al.,
2021). Both techniques, MD and DDD, typically rely on an implementation
in the form of massively parallel solvers to obtain results in a reasonable
time, which in turn impose important hardware requirements.

At the continuum scale, several groups had opted for finite element simu-
lations (FE) with different material model approaches. FE simulations using
simple isotropic plasticity have proven useful in providing recommendations
for experiments design and reliable testing (Zhang et al., 2006; Kiener et al.,
2009). Simulations using crystal plasticity constitutive equations (CPFE)
simulations have been successfully used to study the effects of initial crystal-
lographic orientation, diameter-to-length ratio and friction on the response of
Cu single crystalline pillars (Raabe et al., 2007). CPFE has also been used
for the study of polycrystalline Ni-based superalloy micropillars (Cruzado
et al., 2015). The use of CPFE models has also extended to size effects
in Al pillar compression, focusing on a continuum description of starvation
(Jérusalem et al., 2012). CPFE relies on homogenization of the evolution
of large dislocation ensembles and on scale-separation, hypotheses that can
be perfectly assumed when studying the deformation of large crystal grains
or specimens of several microns. However, in small-scale testing the number
of dislocations in the specimen can be very small (just a few dislocations
in the full specimen), such that their effect on the deformation is localized
in specific planes and show an stochastic nature. These aspects cannot be
homogenized in a continuum-scale law.

In order to fill gaps between DDD and CPFE models several attempts
have been made to extend standard CPFE models to account for some char-
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acteristic features of small-size tests (i.e. the stochastic nature of the response
and slip-band localization). Regarding the stochastic response, Ng and Ngan
(2008) proposed a Monte Carlo model based on the survival probability and
the burst size vs. stress distributions but with no further connection with the
material structure. Later on, Konstantinidis et al. (2014) proposed a cellular
automaton, based on the gradient plasticity framework of Zhang and Aifan-
tis (2011), to model stochastic effects in pillar compression. In addition, Lin
et al. (2015) presented a crystal plasticity model in which stochasticity was
introduced by defining the plastic strain as composed of a series of strain
bursts whose sizes follow a power-law distribution function and whose rates
are determined by a constitutive equation. More recently, a general stochas-
tic CP formulation based on kinetic Monte Carlo, was proposed in which
the active slip systems were selected based on the strain rates dictated by a
mobility law depending on resolved stress and temperature (Yu et al., 2021).
However, the homogenized nature of the formulation prevents its direct use
in applications where slip localization is expected.

The slip-band localization observed in experiments, resulting from the
activation of discrete slip events in a particular plane, cannot be naturally
captured by CPFE models. Some attempts have been made to emulate this
localization in CP frameworks. Lin et al. (2016) developed a dislocation-
based crystal plasticity model in which, in order to trigger localization in a
single slip band, strain-softening was added to the slip resistance evolution
law and a void was introduced in the center of the pillar to trigger localiza-
tion. More recently, Wijnen et al. (2021) presented a CPFE model adapted
for simulating heterogeneous plastic deformation in single crystals. In this
model, only some regions of the domain under study are modeled using CP
keeping the others as elastic material. These slip areas are sampled from
a probability distribution based on characteristics of the dislocation sources
and plastic localization is accomplished by considering different slip bands
and the weakest link principle (Norfleet et al., 2008). These extended CPFE
models allow to describe the strain localization in pillars but maintain a de-
terministic nature and do not explicitly consider plastic events by individual
dislocations.

Summarizing, the mechanical response of metals and alloys under micro
compression testing is typically characterized by certain features: i) samples
usually have a low dislocation density and exhibit source truncation harden-
ing; ii) Plastic deformation is usually localized and in the form of slip bands;
iii) For diameters below 150 nm, or starved samples such as those produced
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by mechanical annealing, surface nucleation of dislocations is likely to occur.
As a consequence, plasticity takes place by events of discrete nature and the
mechanical response of such structures is typically stochastic. Despite all the
aforementioned computational advances, capturing all these features into a
single and efficient computationally-cheap 3-D framework is still a challenge.

The purpose of this work is two fold. Firstly, we present a multiscale com-
putational framework capable of capturing the fundamental aspects of the
mechanical response of submicron metallic parts. In this model, the displace-
ment jumps along a cross sectional plane of the sample produced by the slip
of a dislocation are introduced as eigenstrains around that plane using the
Eshelby formalism. The framework also accounts for surface nucleation by
implementing a model derived from MD simulations. The stochastic nature
of the mechanical response is captured by means of a kinetic Monte Carlo
selection process. In this kMC approach, the events correspond to the sin-
gle slip events produced by dislocations, whose probabilities are dictated by
physically-based laws. This approach is implemented in an FFT-based solver
resulting in a very efficient and computationally-cheap framework that allows
to model complex 3D geometries. Secondly, we revisit micropillar compres-
sion experiments of single crystalline bcc submicron pillars (D ≤ 1µm) with
focus on tungsten (W). We show that not only our method can successfully
capture fundamental aspects of the mechanical response at these scales, but
also allows for detailed investigation of size-effects, strain-rate effects and
statistics of strain-bursts.

2. Methodology

The framework developed assumes dislocation-mediated plasticity as the
underlying inelastic deformation micromechanism. We consider pre-existing
dislocations as well as newly developed dislocations due to surface nucleation.
The amount of pre-existing dislocations Nd on a pillar of diameter D = 2R,
height H, and initial dislocation density ρ, is determined as

Nd = int(ρ
π R2 H

Ld

) (1)

where Ld is the average length of a dislocation segment, here taken as R
for simplicity. Then, Nd slip planes are randomly selected along the pillar
axis with normal directions consistent with the available slip systems.
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Surface nucleation can potentially happen at any position on the pillar
surface. From a practical point of view, in order to consider a dislocation
nucleation and its subsequent slip in our framework, a large but finite number
of nucleation sites NSN is considered. In practice, 100 < NSN < 200. The
positions of the resulting slip planes are randomly selected along the pillar
axis, and their orientations are also based on the available slip systems.

In our framework, dislocations are not explicitly considered, but the effect
of their extension when reaching the surface of the pillar. This effect consists
in a relative displacement between the upper and lower parts of their plane
and experimentally would define a slip trace. This description is equivalent to
the definition of a closed dislocation loop in phase-field dislocation dynamics
as an inclusion with an eigenstrain (an Eshelby inclusion) (Wang et al., 2001;
Rodney et al., 2003). In our case, only the final stage of the loop is considered
which consists then in a loop with a shape defined by the intersection of the
pillar with the slip plane; see Sec. 2.1 for details. The different parts of the
model are introduced in the next sections.

2.1. Kinematics of a slip event

First we derive the elastic displacement introduced by a dislocation loop
considering it as an equivalent Eshelbian inclusion. Under this representa-
tion, the loop is idealized by moving the upper side of surface S, denoted
by S+, by b with respect to the lower side S−, as shown in Fig. 1.a. Let n
be the normal to the loop, then the relative displacement between the upper
and lower parts of the loop in direction n is given by

JuKn(x) = b δS(x), (2)

where b is the burgers vector of the loop and δS(x) denotes the surface Dirac
delta function, that is infinite if x ∈ S and zero elsewhere. If the loop is
fully embedded in a material, the resulting elastic fields of this incompatible
deformation can be obtained using Green’s function (Mura, 2013). In our
model, the only stage considered is when the loop has filled all the pillar
cross section.

The displacement jump due to a full plane slip has been considered in
the past using a strong discontinuity approach in the context of finite ele-
ments and discrete dislocation dynamics (Romero et al., 2008) . However,
introducing this discontinuity in other numerical frameworks as FFT imply
smoothing out the jump to make the model numerically tractable. This can
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be done by distributing the jump along a thin band of size h, such that it
renders the same total displacement as in the initial ideal case. In a simplified
way, the line integral along a path parallel to n corresponds to∫ z=h/2

z=−h/2

ε(x)dz = JuKn (3)

Figure 1: Dislocation eigenstrain formalism and the application to a single crystalline
pillar. (a) A dislocation loop L acting as a boundary of a dislocation surface S. By
sweeping the upper part S+ with respect to S− in an amount b, a dislocation is effectively
introduced. (b) For a dislocation sweeping a pillar, the dislocation can be replaced by a
plate-like Eshelbian inclusion of thickness h.

Extending the use of the equivalent Eshelbian inclusion, Figure 1.b de-
picts a scenario in which the cross-section of cylindrical pillar has been fully
swept in an amount of b by a single dislocation loop. The associated displace-
ment is linearly distributed over a thickness h in the direction perpendicular
to the loop. As explained later on (Sec. 2.4), the simulation domain is dis-
cretized in a box of [Nx, Ny, Nz] voxels, so in practice, h is taken as twice
the distance between voxels (Capolungo and Taupin, 2019). As presented in
the Supplementary Material file, the method is relatively insensitive to the
election of the voxel size. In consequence, the strain εEIG (i)(x) associated
with a slip event i, is taken as:

εEIG (i)(x) =

{
b
h
(si ⊗ ni), if x ϵ plastic region

0, elsewhere
(4)
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where b is the burgers vector modulus, h is the thickness of the slip
band and si and ni stand for the burgers vector direction (slip) and normal
direction to the slip plane, si ⊗ ni being the Schmid tensor. Consequently,
for a pillar that underwent M slip events, the total eigenstrain field εEIG(x)
is the superposition of all the eigenstrains applied,

εEIG(x) =
M∑
i=1

εEIG (i)(x) (5)

2.2. Constitutive laws for the slip events

The laws linking the stress at a given plane with its slip rate will be
presented in next sections.

2.2.1. Pre-existing dislocations

The model assumes that the pillar contains a certain number of disloca-
tions which will drive the slip events. Two types of pre-existing dislocations
are considered, these are single-arm sources and screw dislocation segments.
The former aid in the introduction of source truncation effects, while the
latter allow for source exhaustion effects.

Single-Arm Sources. A dislocation with a pinning point in the interior of the
crystal and a free end on the surface acts as a source of dislocations in small
pillars and is commonly termed as Single-Arm Source (SAS) (Parthasarathy
et al., 2007). In the present model, these sources are randomly distributed
in the pillar volume, assigning to each source a particular slip plane. The
critical resolved stress for activating a SAS is determined by its arm length
λ,

τSAS
CRSS =

αSAS µ b

λ
+ τ0 (6)

where αSAS is a source-strength coefficient that considers the nature of
the source, its length and material, here taken as 0.6 after (Rao et al., 2007).
µ is the shear modulus, b the Burgers vector and τ0 the friction stress. In
their presentation of the SAS model, Parthasarathy et al. (2007) include a
Taylor-type term in eq. 6 to account for dislocation forest interactions. This
term is not considered here since, for D ≤ 1 µm specimens and typical dislo-
cation densities of the order of 1012m−2−1013m−2, the number of dislocations
present in the pillar becomes too small to homogenize their effect (Nd ≤ 10).
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Under such conditions, weak interactions are expected. Thus, we essentially
neglect hardening. For pillar diameters above 1 micron, hardening should be
incorporated, as explained in Sec. 4.

In order to generate a random arrangement of SAS, for each source a
random pining point is generated in the pillar interior. Then, a slip plane
among the characteristic active planes of the metal lattice is randomly as-
signed. The source is defined as a straight line of length λ connecting the
pinning point with the nearest point in the elliptical boundary resulting from
the intersection of the plane with the pillar surface. For more details on this
model, the reader is referred to (Parthasarathy et al., 2007).

This model has been widely used on experimental studies (Abad et al.,
2016), DDD simulations (Hu et al., 2019), Crystal Plasticity simulations (Gu
et al., 2021), as well as on recent discrete slip plane models (Wijnen et al.,
2021). In the present work, it is assumed that single-arm sources remain
immutable after activation. Changes in SAS could be potentially included in
the model, for example the incorporation of SAS destruction as proposed in
the work by Cui et al. (2015) on coated submicron pillars.

Screw dislocation segments. In addition to SASs, we also consider the possi-
bility of pre-existing pure-screw segments. In essence, such dislocations are
not pinned and can sweep across the slip plane, exiting the cylinder as they
reach its surface. Under these operating conditions, screw segments allow
to capture the so-called ”dislocation-starvation” behavior (Greer and Nix,
2006). In this case, the resolved stress necessary to move the dislocation is
only the lattice friction,

τ screwCRSS = τ0 (7)

The position of the screw dislocation within the pillar cross-section is
randomly chosen. As shown in section 3.3, this allows capturing different
cases of mechanical annealing observed in the literature, with variable stress
drop due to the activation of these sources. It is worth noting that in our
implementation, dislocation cross-slip due to image forces in the vicinity of
the free surfaces is not considered. This is further discussed in Sec. 4.

2.2.2. Surface nucleation model

For pillars and nanowires in the range of a few tenth of nanometers
to a few hundred of nanometers, virtually defect-free microstructures are
not unlikely. Under these conditions, mechanical testing of nanopillars and
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nanowires reveal extremely high tensile stress and atomistic simulations point
to surface nucleation of dislocations as the source of plasticity (Zhu et al.,
2008). In consequence, the framework developed includes surface nucleation
effects.

The surface nucleation model adopted here was initially proposed after
atomistic simulations (Zhu et al., 2008; Ryu et al., 2011) and later adopted
on discrete dislocation dynamics (DDD) simulations (Ryu et al., 2015; Hu
et al., 2017, 2019). Briefly, within a time span ∆t, the probability of a surface
nucleation event in a pillar of surface S is given by

P = ν0 exp[−F (σ, T )

kB T
] · S

b2
·∆t. (8)

Here, ν0 is an attempt frequency and kB the Boltzmann constant.Thus, the
ratio S

b2
stands for the number of potential nucleation sites. Finally, F (σ, T )

is an activation free energy that depends on stress and temperature through

F (σ, T ) = (1− T

Td

) · F0(σ) (9)

with

F0(σ) = A · (1− σ

σathm

)αSN . (10)

Here, A is the zero-stress, zero-temperature activation energy, while αSN

and Td are constants corresponding to the stress and temperature dependen-
cies, respectively. Td is usually taken as half the bulk melting temperature
(Zhu et al., 2008). Finally, σathm is an athermal nucleation stress, correspond-
ing to the tensile stress required for surface nucleation at zero-temperature.
The possibility of surface nucleation is considered once P = 1.

The parameters A, Td, αSN and σathm are material-dependent and their
calibration require dedicated studies, either based on atomistic simulations
(Zhu et al., 2008) or on experiments (Chen et al., 2015). To the best of the
authors’ knowledge, there are no such studies on W. Therefore, we opt to fit
these parameters to the available experimental data, following suggestions
by Chen et al. (2015). Nanopillar compression and nanowire tensile test
for [100]-oriented W are extremely scarce in the literature. Srivastava et al.
(2021) report yield stresses of the order of 3.5 GPa in their 100 nm diameter
pillar compression tests, whereas Córdoba et al. (2017) report yield stresses
of 6.6 ± 1.2 GPa for their 93 nm suspended wires under bending. Therefore,
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Symbol Property Value Unit
Td Disorder temperature 1800 K
A zero σ, zero T activation energy 6 eV
αSN Fitting exponent stress dependence 4 -
σathm Athermal nucleation stress 16 GPa

Table 1: Surface nucleation model parameters.

we opted to fit the parameters of eqn. 8 to a 100 nm target yield strength
of 4.5 GPa, in between the mean value of Srivastava et al. (2021) and the
lower bound of the range reported by Córdoba et al. (2017). The result-
ing parameters are included in Table 1 after the fitting procedure presented
in the Supplementary Material file. The surface nucleated dislocations are
considered as pure screw segments, as described in the previous subsection.

2.2.3. Dislocation mobility and displacement rates

The displacement rate of the pillar in the slip direction si due to the slip
produced in a plane i by the movement of a dislocation can be obtained using
a reasoning similar to Orowan’s equation,

u̇i
p = bi

vi

Di
si (11)

where bi and vi are the Burgers vector modulus, and dislocation velocity
corresponding to source i, respectively. Di corresponds to the length in
direction si swept by a single dislocation when fully crossing the slip plane
i. If the unit vector e stands for the pillar axis and D for its diameter, then
Di = D/(ni · e), and the vertical displacement rate corresponds to

u̇i
p = u̇i

p · e = bi
vi

D/ni · e
si · e =

bi viM i

D
(12)

where M i is the Schmid factor of slip system associated to source i projected
in direction e⊗ e.

In order to compute the displacement rate for each plane i, the associated
dislocation velocity vi must be determined. Dislocation-mediated plasticity
in bcc metals can take place in 48 bcc slip systems including the {110},{112}
and {123} families of slip planes. Interestingly, some works propose the

11



Symbol Property Value Unit
µ0 Attempt frequency 9.1 1011 s−1

h′ Distance between Peierls valleys
√
6/3 a0

w Kink pair width 11 b
ζ Mean dislocation segment width 25 b
τP Peierls stress 2.03 GPa
∆H0 Kink-pair energy at 0 K 1.63 eV
p Energy profile parameter 0.86 -
q Energy profile parameter 1.69 -
B Phonon drag coefficient 9.8 10−4 Pa*s

Table 2: Parameters for the dislocation mobility law. Obtained from molecular dynamics
simulations (Cereceda et al., 2013; Stukowski et al., 2015; Cereceda et al., 2016; Po et al.,
2016)

decomposition of {112} and {123} slip planes on alternating {110} slip planes
(Christian, 1983; Marichal et al., 2013; Ruestes et al., 2014). Based on this,
and for the sake of simplicity, we consider bcc metals with only {110} slip
planes (b̄ = 1/2 a0 < 111 > dislocations). That is, |b̄| is unique and equal
to a0

√
3/2, with a0 the bcc lattice parameter.

The mobility laws for bcc tungsten dislocations have been deeply studied
using atomistic simulations (Cereceda et al., 2013; Stukowski et al., 2015;
Cereceda et al., 2016; Po et al., 2016). For tungsten, and considering rela-
tively low temperatures, dislocation velocities can be estimated by:

v =

{
µ0 h′ (ζ−w)

b
exp(−∆H(τeff )

kB T
), ∆H > 0

τeff b

B
, ∆H ≤ 0

(13)

∆H(τeff ) = ∆H0⌈1− (
τeff
τ∗

)p⌉q (14)

In the expression, µ0 is an attempt frequency, h′ is the distance between
Peierls valleys, ζ is the mean dislocation segment length for the slip system, w
is the kink-pair width and ∆H0 is the kink-pair formation energy. Parameters
p and q allow for the adjustment of the ”tail” (τeff ≃ 0) and ”top” (τeff ≃ τ∗)
of the energy profile ∆H, respectively (Kocks et al., 1975). The parameters
for W are presented in Table 2.

The upper part of the definition (∆H > 0) corresponds to the kink-
pair thermally-activated regime, typical of bcc metals (Kocks et al., 1975).
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The lower part, in turn, corresponds to the phonon-drag-dominated regime,
typical of high stress / high strain-rate conditions (Po et al., 2016). In Eq.
(14) τeff represents the effective resolved stress on the plane i,

τeff = |τ i| − τ ia (15)

where τ i is the resolved shear stress, averaged over the plane, for source i
resulting from the Cauchy stress projected in the particular system to which
that source belongs to,

τ i = σ : (si ⊗ ni). (16)

In Eq. (15) τa is the resistance to slip due to athermal barriers, as dislocation
groups, precipitates, which are not considered in the present study (τ ia = 0).
Finally, τ∗ represents the part of the resistance to slip due to thermally
activatable obstacles. In the case of pure W the only thermal barrier is the
Peierls resistance, hence τ∗ = τP .

In essence, the use of eq. 13 for the calculation of the pillar displace-
ment rates (eq. 12) allows to incorporate the thermally-activated motion
character of screw dislocations at low stresses and temperatures, as well as
the phonon-drag-dominated regime for newly surface-nucleated dislocations
under high stresses. Equations 12-13 allow for the effect of each plane i in
the displacement rate of the pillar.

2.3. Kinetic Monte Carlo procedure for stochastic slip events

In our model, the activation of the previously described microscopic slip
mechanisms is controlled by a kinetic Monte Carlo selection process. Con-
sidering a displacement-controlled micropillar compression experiment with
an applied strain rate of ε̇0, the velocity of the upper part of the pillar cor-
responds to u̇0 = Hε̇0. This displacement is accommodated by either elastic
or plastic deformation. The plastic contribution to the displacement of the
pillar corresponds to the superposition of the displacement produced by slip
in the active planes

u̇p =
∑
i

u̇i
p

with u̇i
p given by eq. 12. The elastic displacement rate then corresponds to

u̇E = u̇0 − u̇p. (17)

Yu et al. (2021) proposed a rejection-free kinetic Monte Carlo algorithm
to obtain the stress-strain evolution in a deforming single crystal in which
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the strain rates of the different slip systems provide the set of event rates.
In this work, this idea is generalized to a full deforming specimen solving
the macroscopic stress-strain response as well as the spatial distribution of
the fields involved. At time tn, each of the i escape pathways has a rate
constant u̇i

p, that characterizes the probability per unit time that the system
escapes to that state i. These rates can be used to assemble an array of
partial sums representing the accumulated rate of all the objects up to and
including object j,

rj =

j∑
i=1

u̇i
p + r0 (18)

with r0 = ε̇0 Then, the total escape rate is the sum of all the rates

rtot =
N∑
i=1

u̇i
p + r0 (19)

N being the total number of sliding planes considered. In agreement with
rejection-free kMC theory, the next event to be executed is the kth process
satisfying

rk−1 < ξ1rtot ≤ rk (20)

If the event selected corresponds to the rate r0, the next event will cor-
respond to an elastic event, i.e. no inelastic deformation will be introduced
in the plastic layers. Otherwise, a plastic event is chosen, for which the
corresponding eigenstrain will be applied. The pillar geometry, array of dis-
placement rates, and the resulting pillar shape after the whole process are
exemplified in Figure 2.

Then the next time step is computed as:

δtn+1 = − logξ2 ∆ε∗

rtot
(21)

such that the time is advanced as:

tn+1 = tn + δtn+1 (22)

ξ1 and ξ2 are random numbers uniformly distributed in (0, 1] and ∆ε∗ is a
normalization factor (∆ε∗ <= 1) to adjust the time step within physical time
scale bounds (Yu et al., 2021). Once an event is executed, the strain fields
and stress fields are updated.
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Figure 2: Schematic of stochastic selection process. a) a number of plastic regions are
randomly selected both for pre-existing dislocations (blue) and possible surface nucleation
sites (red). b) Upon loading and based on eqns. 12 through 19, a sampling array of events
in built. The total rate rtot is composed of the prescribed applied strain rate r0 and the
vertical displacement rates of each plastic region. In general, the value of each vertical
displacement rate u̇i

p is different from the rest of the displacement rates during each time
step, as represented by the different box sizes. c) After selection of a number of events
using rejection-free kMC, the final deformed state of the pillar reflects the operation of
pre-existing dislocations as well as a surface nucleation site. Arrow indicates most probable
event.

Time scale bounds. The absolute time scale emanating from the sampling
of eq. 17 using eqns. 18 through 21 represents the maximum time step
compatible with the rate equation under consideration. As shown by Yu
et al. (2021), it is indeed possible to use an arbitrarily smaller time step
without invalidating the method. A physically-reasonable upper bound for
the time step is that of the total time for a single dislocation to sweep the
pillar section:

ti =
Di

vi
(23)

In addition, the existence of ti also poses a constraint. On each plastic
event, the eigenstrain applied cannot be larger than that of eq. 4, which
corresponds to a dislocation fully sweeping a pillar on a time ti. Thus, ti is

15



an upper bound for the time increment δtn+1. As consequence, δtn+1/ti ≤ 1.
In practice, the eigenstrain applied once a plastic event is selected is:

εEIG (i)(x) =

{
( δt

n+1

ti
)( b

h
) (ŝ⊗ n̂), if x ϵ plastic region

0, elsewhere
(24)

Weakest link principle and deformation localization. Under the weakest link
principle, plastic flow occurs when the stress is high enough to activate the
weakest source available in the crystal (Norfleet et al., 2008). In our model,
weaker sources with a lower activation stress will tend to produce higher dis-
location velocities (eq. 13) and thus render higher plastic displacement rates
(eq. 12). In consequence, a sample with several SASs, out of which one is
significantly longer than the others, will result in a higher probability of acti-
vation of such source, thus favoring localization in the corresponding plastic
region. In contrast, for a sample with several SASs of commensurate length,
the kMC selection process will translate into the sequential activation of sev-
eral SASs, favoring delocalization of deformation into several plastic regions.
These aspects are further discussed in Sec. 4 after the results presented in
Sec. 3.

2.4. Solving the mechanical problem with an FFT algorithm

In order to obtain the strain and stress distribution in the pillar, which
drives the activation of slip in the plastic regions, an elastic problem with
eigenstrains has to be solved at each time step. An FFT-based approach will
be used for this purpose.

The total strain is the sum of the eigenstrains (input) and the elastic strain
εe, which appears to enforce total strain compatibility and stress equilibrium,

ε = εe + εEIG. (25)

Under linear elasticity, stress is related to strain through

σ = C : εe = C : (ε− εEIG) (26)

where C is the stiffness tensor of the crystal.
The mechanical equilibrium corresponds to

∇ · [C : (ε− εEIG)] = 0 (27)
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and rearranging terms, the result is a linear differential equation

∇ · [C : ε] = −∇ · [C : εEIG]. (28)

If the right-hand side of Eq. (28) is known, as in our case, the total strain ε
can be directly obtained by the convolution of this term with the correspond-
ing Green’s function derivative. Moreover, if the medium is homogeneous and
periodic, closed expressions for Green’s function exist in Fourier space, and
the solution is just a multiplication.

However, when considering the present problem in a FFT framework,
the actual geometry has to be embedded in a cuboidal periodic domain Ω
which also contains the outer free space. In this case, the domain can be
considered as an heterogeneous microstructure formed by two phases and
this microstructure can be described by

C =

{
C1, if x in Ω1

C2, if x in Ω2

(29)

In the simulation domain, the metallic pillar occupies the region (Ω1) and
is surrounded by an infinite compliant medium which occupies the region
(Ω2). For the solution of Eq. 28, considering Eq. 29, we follow the Fourier-
Galerkin approach. The details of the method can be found in (Vondřejc
et al., 2014; Zeman et al., 2017) and here only the final equations are recalled.
The problem is discretized in a box of [Nx, Ny, Nz] voxels which correspond
to the same number of frequencies in the discrete Fourier space. The value of
C, strain and stress fields are approximated by trigonometrical polynomial,
whose coefficients are given by the FFT of the value of these fields at the
voxels. Let G be the projection operator that, by convolution, extracts the
compatible part of a tensor field (Vondřejc et al., 2014). The mechanical
equilibrium of the discrete stress field translates into,

G ∗ σ = 0 (30)

where ∗ indicates a convolution. Introducing the value of σ from eq. 26,

G ∗ (C(x) : (ε− εEIG)) = 0. (31)

The total strain ε is decomposed into a homogeneous average strain ten-
sor, represented by the macro-scale applied strain ET , and a periodic fluctu-
ating micro-scale strain field ε̃, which is the unknown.

ε = ε̃+ET (32)
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Combining the last two equations results in a linear system in which the
strain fluctuation at the voxels are the unknowns.

G ∗ (C(x) : ε̃) = −G ∗ (C(x) : (ET − εEIG)) (33)

This equation can be solved easily by transformation to Fourier space where
the operator has a closed expression and convolutions are transformed into
products. If a linear discrete operator GC(•) is defined as

GC(•) = F−1(Ĝ : F(C(x) : (•))) (34)

with F and F−1 the discrete Fourier transform operations and Ĝ the projec-
tion operator in Fourier space, the equation to solve is

GC(ε̃) = −GC(E
T − εEIG)). (35)

To solve this linear problem efficiently, an iterative solver has to be used. The
convergence rate and quality of the solution depend on the phase property
contrast, which here is infinite because one of the phases is empty. Following
Lucarini et al. (2022) this problem can be solved efficiently and with minimal
noise by using a discrete projection operator (here rotated discrete G-operator
(Willot, 2015)) and a minimum residual iteration method as linear solver.

It is important to highlight that the framework presented is thought to
study general geometrical domains in 3-D with heterogeneous microscopic
fields. While this may not be regarded as fundamental for a simple cylin-
drical pillar, it is essential for the modeling of complex geometries, such as
nanoporous metals and nanoarchitected meta-materials.

For a set of initialization parameters, our method can be summarized by
the algorithm 1 presented in the Appendix.

3. Application to single-crystalline W pillar compression

Tungsten is a prototypical refractory metal with a high melting point
and good corrosion resistance. Its outstanding mechanical properties at high
temperatures, together with its low sputtering rate, make this material an
ideal candidate for plasma-facing components in fusion energy devices (Rieth
et al., 2013). In addition, tungsten is one of the most studied bcc metals
by micropillar compression testing (Schneider et al., 2009; Kim et al., 2010;
Abad et al., 2016; Srivastava et al., 2021) and its dislocation mobility laws are
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well-documented (Cereceda et al., 2013, 2016; Po et al., 2016). These aspects
make W an ideal candidate to test the applicability of our framework.

Single crystalline tungsten pillars were simulated using the framework
described in the previous section. The pillar dimensions were varied in the
range from 25 nm to 1 µm at a strain-rate of 10−3 s−1. The crystalline orien-
tation and loading axis were consistent with the [100] direction. In all cases,
an initial dislocation density of ρ = 5 ·1012 m−2 was taken. Note that such an
election renders an initial dislocation count Nd in the range of 1 for the small-
est pillars to 8 for the largest ones. The number of potential nucleation sites
was taken as NSN = 128. The parameters of the surface nucleation model
are presented in Table 1. The parameters of the physically-based dislocation
mobility law are presented in Table 2. A list of the slip systems considered
can be found in Table A.3. The models used were discretized in a grid of
128 · 128 · 128 voxels with a kMC normalization factor of ∆ε∗ = 10−3. See
Supplementary Material file for sensitivity of the results to the discretization.

In particular, we focus on three important aspects: size effects (Sec.3.1),
strain-rate effects (Sec.3.2) and mechanical annealing effects (Sec.3.3). For
validation purposes, the results of the model are later compared with exper-
imental results in Sec. 4.

3.1. Size effects

Figure 3 presents the stress-strain curves for all the simulations performed
in this study. For each of the pillar dimensions probed, ten simulations were
conducted. Blue lines correspond to source truncation (SAS) dominated
cases, whereas red lines correspond to surface nucleation-dominated ones.
The envelope of the mechanical response for all the stress-strain curves is
illustrated by the corresponding colored areas. Black lines correspond to the
average of the results.

For the largest pillars, with a diameter of 1 µm, the plastic regime is
characterized by a rather smooth output with minimum scatter among the
curves. This is a consequence of having several single-arm sources distributed
along the sample, allowing the activation of several slip planes in a sequential
way. For 500 nm diameter pillars, the plastic regime is again smooth, but now
the curves appear more scattered, as judged by the upper and lower limits of
the blue-shaded region. For a smaller pillar diameter, the average number of
dislocations is close to one. As their pinning position is randomly selected,
significant scatter is then translated to the loading curves. The mean flow
stress is higher than before, as expected for a decreased pillar diameter.
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For 200 nm diameter pillars, again a significant scatter is seen for the load-
ing curves. Interestingly, one case rendered a significantly high flow stress,
associated to surface nucleation of dislocations instead of the activation of
the SAS mechanism. This corresponds to the red curve, for which a SAS
length of 8 nm was randomly generated. The short length thus renders an
activation stress that is higher than that of the SN model. This behavior is
further analyzed in the Supplementary Material.

For 100 nm diameter pillars, now several cases appear both for the ac-
tivation of SA sources (blue) as well as surface nucleation (red). Both the
mean flow stresses for the SAS cases as well as the average (black) increase
with respect to the previous pillar diameter. For 50 nm diameter pillars, the
surface nucleation mechanism is dominant, with few cases of activation of SA
sources at higher stresses compared to previous dimensions. Finally, for 25
nm diameter pillars, surface nucleation was found to be the only operating
mechanism. Note that as surface nucleation becomes the dominant mecha-
nism, the curves show smaller scatter. This is consistent with experimental
observations (Kiener and Minor, 2011; Huang et al., 2011).
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Figure 3: Stress-strain response for W micro/nanopillars under compression. For each
of the pillar dimensions probed, ten simulations were conducted. Shaded regions corre-
spond to the envelope of the mechanical response for all the stress-strain curves, where
blue corresponds to single-arm source dominated cases and red corresponds to surface
nucleation dominated cases. Blue and red lines correspond to the average of each subset
(SAS-dominated and SN-dominated, respectively), whereas black lines correspond to the
average of all the results, irrespectively of their nature.

3.2. Strain-rate effects

In order to evaluate the strain rate sensitivity of the flow strength, W
pillar simulations were conducted at different strain rates (10−3/s, 10−2/s
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and 10−1/s) and for different pillar diameters (1 µm, 500 nm, 200 nm and
100 nm). Figure 4 presents the logarithm of the flow stress as function
of the logarithmic applied strain rate obtained by the model for pillars of
different diameter and compared to that of Srivastava et al. (2021) at room
temperature. The log-log flow stress data was then fitted with a power-law
function of the strain rate, σ ∝ ϵ̇m. The strain rate sensitivity parameter m
is then m = ∂(lnσ)/∂(lnϵ̇).

The resulting curves are approximately linear in the double-logarithm
diagram, indicating a strain rate sensitivity m approximately constant in the
strain range explored. Comparison with Srivastava et al. (2021) shows not
only similar strain rate sensitivity parameters but also a similar transition
trend from positive to null values as the pillar diameter decreases.
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Figure 4: Size-dependent strain-rate effects on the flow stress of W pillars. Empty circles
and dashed lines correspond to experimental results by Srivastava et al. (2021). For
comparison purposes, the colors are the same as the ones used in Srivastava et al. (2021)
and correspond to: blue - 1 µm; red - 500 nm; magenta - 200 nm; green - 100 nm.

3.3. Mechanical annealing

In addition to single-arm sources, pre-existing pure screw dislocations can
also be considered, as presented in the methods section. These are valuable
for capturing mechanical annealing effects (Shan et al., 2008; Huang et al.,
2011; Shan, 2012) associated with dislocation starvation (Greer and Nix,
2006). Figure 5 presents three distinctive stress-strain curves corresponding
to 100 nm diameter pillar simulations where one pre-existing screw dislo-
cation has been considered. The red curve corresponds to a pillar without
SASs and a screw segment located in the middle of the cross-section (SN-
dominated - case 1), while the green curve corresponds to a pillar without
SASs and a screw segment located halfway between the center of the pillar
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and its surface (SN-dominated - case 2). In both cases, after the opera-
tion of the screw dislocation, the source has exhausted. In consequence, the
simulated test continues elastically until activation of the SN mode. A simi-
lar scenario would have been found for a case in which a pre-existing screw
dislocation habits a pillar with a SAS of sufficiently small length. In our
implementation, the position of the screw segment is randomly chosen in the
pillar cross section considering a uniform distribution. Specific knowledge
of the material under consideration would allow to modify such distribution
accordingly and without invalidating our methodology. Differences in load
drops for the activation of screw segments are discussed in Sec. 4. In con-
trast, the blue curve corresponds to a pillar with a screw dislocation in the
middle of the cross section and a sufficiently long SA source. Upon loading,
and after an initial elastic stage, the screw dislocation is activated -recall
that the critical resolved shear stress is lower than that of SASs -. After
exhaustion of the screw source, the mechanical response proceeds elastically
until reaching a stress corresponding to the CRSS of the SA source, which
gets activated several times for the rest of the simulation.
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Figure 5: Stress-strain response for 100 nm diameter pillar simulations containing a pure
screw dislocation. Red and green curves correspond to pillars without SASs and a screw
dislocation located in the middle of the cross section (red - case 1) and halfway between
the center of the pillar and its surface (green - case 2). Blue curve corresponds to a pillar
with a sufficiently long SAS and a screw dislocation located in the middle of the cross
section.

4. Discussion

Comparison with other methods. Several aspects of our proposed frame-
work are worth discussing. The framework proposed aims at modelling the
full elastic-plastic response with 3D resolution of microfields. Its particular
application to nano-pillars and submicron-pillars allows to obtain the size
effect in the yield like other simple models (Parthasarathy et al., 2007; Jen-
nings et al., 2013), but here the microfields and post yield behavior are also
recovered, with the aided benefit of obtaining the 3-D deformation pattern
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(see below). Our model can therefore be placed in between DDD approaches
and continuum descriptions, such as crystal plasticity. Regarding CP, con-
tinuum microfields are used but deformation is localized here. In this aspect,
our method shares a similarity with the concept of thin discrete slip bands
used by Wijnen et al. (2021) but the nature of our model is stochastic and
based on the displacement discontinuity created by slip events. Like in DDD
approaches (El-Awady et al., 2009; Srivastava et al., 2013; Cui et al., 2014;
Ryu et al., 2013, 2015, 2020), important aspects of the dislocation mobil-
ity laws and underlying physics are considered. The selection of the plastic
events does not take place using the weakest-link principle, like in (El-Awady
et al., 2009; Wijnen et al., 2021), but a Monte Carlo selection process over
the displacement rates calculated using an approach similar to Orowan’s
equation.

However, unlike DDD approaches, dislocations are not modeled explicitly,
but their effect is introduced by means of the concept of Eshelby inclusions,
such that the effect of dislocation gliding is introduced through an equiva-
lent eigenstrain. The total strain is thus the superposition of two fields, (ε
and the inelastic strain obtained as a sum of eigenstrains due to slip events
εEIG). Therefore, the calculation of the strain and stress fields becomes lin-
ear, in contrast to models based on localized crystal plasticity as (Wijnen
et al., 2021). This aspect, together with an inherently fast FFT solver, re-
sults in an efficient and computationally cheap stochastic framework capable
of simulating experiments with 3D spatial resolution at strain rates lower
than 10−3/s on nano and submicron samples within a few hours on an off-
the-shelf workstation. The present implementation is based on small strains
since we are focusing on the initial flow of the pillars, but can be extended to
finite strains by assuming a non-linear elasticity energy and solving the FFT
problem in finite strains (Zeman et al., 2017). Other aspects for further ex-
tension of the model include non-Schmid effects. This could be done following
steps already taken with recent advances on the development of a physically-
informed continuum crystal plasticity model for tantalum (Lee et al., 2023).
The framework would also allow for the incorporation of twinning as a com-
plementary deformation mechanism. Discrete dislocation plasticity models
have proven useful for the understanding of dislocation slip-mediated twin-
ning mechanisms (Wang et al., 2022) and could be used as input for the
extension of the framework presented here.
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Flow stress size dependence. The proposed framework allows to obtain
the statistical distribution of the mechanical response of a pillar as a function
of its size, as shown in Fig 3. To analyze these results, in Figure 6 the
flow stress for different pillar sizes obtained with our model is compared to
selected experimental references (Schneider et al., 2009; Abad et al., 2016;
Srivastava et al., 2021; Kim et al., 2010) in a double logarithm representation.
Flow stress values presented correspond to the average stress in the plastic
regime of the curves presented in Fig. 3, while vertical bars correspond
to standard deviation of all the results presented in Fig. 3, capturing the
dispersion of results produced by the stochastic selection of the SAS length.
Schneider et al. (2009) performed load-controlled compression tests on [100]-
oriented W pillars spanning from the nm scale (200 nm) to the micrometer
scale (6 µm). Later on, the same group produced an experimental study
probing temperature effects onW pillars with similar orientation (Abad et al.,
2016). Our model successfully captures these experimental measurements as
well as an overall σ ∝ 1/λ dependence of the yield strength in the 200
nm - 1 µm range (black dashed line). Srivastava et al. (2021) performed
displacement-controlled compression tests on [100]-oriented W nanopillars in
the range of 100 nm - 1 µm. Their results are systematically lower than
those reported in Schneider et al. (2009); Abad et al. (2016) yet following a
similar yield strength trend increase with decreasing size (σ ∝ 1/λ). Kim
et al. (2010) performed displacement-controlled compression tests on [100]-
oriented W nanopillars in the range of 200 - 900 nm. Their results represent
a lower bound for the experimental data set chosen. Yet their values again
follow similar trends (σ ∝ 1/λ). To the best of the authors knowledge, there
are no reports on [100]-oriented W pillars with diameters below 100 nm,
probably due to the associated experimental difficulties. At the limit of a
100 nm, we predict higher yield stresses than those reported in Srivastava
et al. (2021), yet our estimations agree with their measurements if we take
into account the standard deviation.

For diameters below 200 nm, the exponential dependence σ ∝ 1/λ yields
to a surface nucleation-dominated trend (red dashed line), indicating a crossover
between predictions from the SAS and SN models. The critical sample size
observed is approximately 120 nm. Below this threshold, the flow stress de-
termined by the SN model is lower than that by the SAS model, highlighting
the comparative difficulty of activating a single-arm source over nucleating
a dislocation from a free surface, emphasizing a preference for surface nu-
cleation. In contrast, when dealing with samples that exceed this critical
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size, plasticity is typically ruled by the activation of pre-existing disloca-
tion sources, such as those represented by the SAS mechanism. A handful
of previous studies had focused on the critical size for bcc and fcc metals
using both experimental and computational techniques. For fcc materials,
Hu et al. (2019) used DDD simulations to predict the the flow stress and
dominant yielding mechanisms in Cu nanopillars (100 nm < D < 800 nm),
reporting on a cross-over from SAS activation to SN operation as D reaches
≈ 110nm. Similarly, Shan et al. (2008) utilized transmission electron mi-
croscopy (TEM) to investigate the behavior of pre-existing dislocations in Ni
pillars of different diameters. The authors observed that in the case of a 160
nm diameter pillar, the pre-existing dislocations gradually exited the pillar,
followed by the emergence of new dislocations, which can be attributed to
the phenomenon known as SN. Conversely, in the case of pillars with a di-
ameter of 290 nm, dislocations persisted even after undergoing compression,
which can be tentatively associated with SAS. For bcc metals, experiments
conducted on bcc Mo pillars suggest a critical size of around 200 nm (Huang
et al., 2011; Shan, 2012). We conclude that our critical size prediction for
[100]-oriented W pillars is in agreement with previous observations for other
metals at these scales.
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Figure 6: Log-log size-dependence of the flow stress compared with experimental literature.
Black dashed line indicates 1/λ dependence, in agreement with a SAS dominated regime.
Blue dashed line indicates the estimated power law exponent, while light-blue shadow
indicates ± values (αW ≈ 0.31 ± 0.11). Red dashed line indicates a surface nucleation
(SN) trend. Its intersection indicates a cross-over transition size. Vertical bars correspond
to standard deviation.

The results can be interpreted through the well-known power law relation,
namely

σy = σ0 + k1D
−αW (36)

where σ0 is the strength of the bulk material, k1 is a constant and αW is the
power law exponent. In practice, σ0 is usually neglected (Brinckmann et al.,
2008; Abad et al., 2016; Srivastava et al., 2021) as the second term in eq. 36
dominates at these small scales. As a reference, Srivastava et al. (2021) report
on exponent of 0.319 for their 10−3 s−1 experiments, close to the αW = 0.33
value obtained by Abad et al. (2016) for the same strain rate. In turn, Kim
et al. (2010) informed a power law exponent in the range of 0.33 < αW < 0.55.
On a lower end, Schneider et al. (2009) report on α1 = 0.21. By linear fitting
eq. 36 on the SAS-dominated regime (D > 120 nm), we obtain an exponent
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αW ≈ 0.31±0.11, in agreement with most of the experimental evidence. This
further supports the ability of the single-arm source model to understand the
power-law relation on the strength vs size dependence of micropillars (Lee
and Nix, 2012). The red dashed line, connecting the average yield stress
values obtained for the smaller pillars, presents a slope that seems to be an
indication of a possibly weaker size dependence.

The underlying cause for the values of αW are worth a discussion. Brinck-
mann et al. (2008) used the screw dislocation cross-slip mechanism concept,
derived from high strain-rate MD and DD simulations (Weinberger and Cai,
2008; Greer et al., 2008), to provide an explanation for their bcc Mo pil-
lar compression test results. They argued that the relatively low power law
exponent of bcc metals (αMo = 0.45) could be attributed to such effects.
Interestingly, Kim et al. (2010) performed pillar compression tests on W, re-
porting on strikingly similar power-law exponents (αW = 0.44± 0.11). One
could then assume that the same mechanism takes place in bcc W. Yet, our
power-law exponent estimations are on the lower bound of this regime, while
our model does not incorporate a single characteristic of the cross-slip mecha-
nism presented in (Weinberger and Cai, 2008). Therefore, our results suggest
that screw dislocation mobility alone could indeed provide adequate power-
law exponents provided the underlying physics of the dislocation mobility
law are fully incorporated ( eq. 13).

It is worth highlighting that previous experimental observations on bcc
Mo suggest that size effect itself has a strong size effect (Huang et al., 2011;
Shan, 2012). In their in-situ TEM bcc Mo studies, Huang et al. (2011) found
a strong increase in the power law exponent as the pillar diameter decreases
beyond 200 nm. In contrast, we predict a break down in the power-law
exponent as the W pillar diameter decreases below 200 nm. This difference
in behavior could be attributed to different activation energies between Mo
and W. Small variations in activation energy can strongly influence yield
stress at the nanoscale. A break down in exponent can also be inferred
from dislocation dynamics simulations on Cu (Hu et al., 2019). We attribute
the break down in power law exponent to the change of mechanism, from
SAS-dominated to surface nucleation dominated, for which a weaker stress
dependence on diameter is expected (Zhu et al., 2008; Huang et al., 2015;
Hu et al., 2019). Certainly, this alternative explanation of the results leaves
space for future research and informed discussion.
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Strain-rate sensitivity. Our results show a size dependence of the strain
rate sensitivity parameter, which changes from positive m to nearly null val-
ues (Figure 4). Huang et al. (2015) and Srivastava et al. (2021) observed the
same positive to null trends for their bcc Fe and W pillar experiments, re-
spectively. The strain rate sensitivity exponent m depends on the activation
volume Va and on the resolved stress on the active plane τ through (Kocks
et al., 1975):

m =
kBT

τVa

. (37)

In the previous equation, both the critical shear τ and the activation vol-
ume Va can be size dependent, and the origin of size dependency of m might
have both contributions. Regarding the effect of activation volume, Huang
et al. (2015) rationalized that in Fe this might be the main contribution to size
effect in m. This size dependent m in Fe arises from a competition between a
size-independent friction term -that rules for large pillar diameters (D > 500
nm)- and a size-dependent term -that rules for smaller pillar diameters-, with
larger activation volumes for increasingly smaller pillars (100 nm < D < 500
nm). They also argue that as the pillar diameter further decreases (D < 100
nm), the activation volume becomes again smaller. Still, Fe is known to have
an activation volume that may display larger variations with stress compared
to other bcc metals with higher melting point (Christian and Masters, 1964).
Tungsten, in constrast, and particularly for low homologous temperatures,
displays a very low activation volume (Va ≤ 10b3) (Kiener et al., 2019), con-
sistent with the dominance of the kink mechanism at low temperatures. Our
calculations of the activation volume (see Suppl. Mat.) render that for the
kink-pair activated mechanism, the stress-dependent activation volume is in
the range of 4 b3 < V kink

a < 11 b3 for the stress range of the SAS-dominated
regime, whereas for the surface nucleation mechanism is in the range of 2.5
b3 < V SN

a < 4.5 b3 for the stress range of the SN-dominated regime.
Therefore, considering the relatively low variations in the activation vol-

ume Va in W, changes in the strain rate sensitivity exponent m can be un-
derstood based on the size-dependence of the stress reached on the pillar due
to the size dependent strength of SAS, as well as on the stress-dependence
of the dislocation mobility law. Similar conclusions on the importance of τ
were reached by Srivastava et al. (Srivastava et al., 2021) for their strain-rate
sensitivity studies on W pillars.

Future investigations using our proposed framework could also focus on
temperature effects, as a recently developed CP model using similar disloca-
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tion mobility laws has proven useful in exploring the temperature dependence
of deformation localization in irradiated tungsten (Li et al., 2021).

Mechanical annealing. Earlier MD simulation studies predict that such
behavior cannot take place in bcc pillars. Such simulations suggested that
the combined effects of image forces, together with the dislocation core struc-
ture, would facilitate dislocation multiplication by a surface-assisted cross-
slip mechanism (Weinberger and Cai, 2008). SEM observations of multi-
ple slip traces on compressed bcc pillars seem to support this mechanism
(Schneider et al., 2009). On the other hand, in-situ TEM compression of Mo
nanopillars (Huang et al., 2011; Shan, 2012) and Fe–3% Si pillars (Zhang
et al., 2012) show clear evidence that mechanical annealing by dislocation
starvation can indeed take place in bcc metals. Our proposed computational
framework takes into account such scenarios. Interestingly, load drops due
to mechanical annealing are, in general, less marked than in our Figure 5, as
shown in (Shan et al., 2008). Other works do report stress drops of the order
of 0.5 - 1.0 GPa (Huang et al., 2011; Zhang et al., 2012). Both situations
can be taken into account in our method by an adequate selection of the
statistical distribution of pre-existing screw segments.

Deformation patterns and localization. Figure 7 presents the typical
deformation patterns obtained in our simulations, together with a compari-
son with a selected reference (Srivastava et al., 2021). For our largest pillar
diameter (D = 1µm), the deformation pattern reveals the activation of sev-
eral SASs on a variety of slip systems (see Supplementary Material movie), in
agreement with scanning electron microscopy (SEM) analysis of W micron-
sized pillars (Schneider et al., 2009; Abad et al., 2016). As the pillar diameter
decreases to the submicron regime (D = 500 nm and D = 200 nm) and for
the dislocation density chosen, only one SAS is present. Upon activation,
significant deformation takes place and concentrates on a single slip band,
in agreement with SEM micrographs of W pillars with comparable diame-
ters (Srivastava et al., 2021). Further decrease of pillar diameter into the
nanometer regime (D = 100 nm) triggers surface nucleation instead of SAS
activation. The former takes place on multiple slip systems.

As explained in Sec. 2.3, our model favors the activation of weaker
sources. Localization of plastic activity in one or a few number of planes
depends on the number of potential slip sites (e.g. number of SAS) and
the statistical distribution of the slip resistance on that planes (linked with
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the length of each SAS). Our 1 µm diameter pillars with ρ = 5 · 1012 m−2

have multiple SASs of variable length. They show a tendency for a rather
delocalized (homogeneous) distribution of deformation. In contrast, 200 nm
- 500 nm diameter pillars with similar dislocation density have 1 - 2 SASs on
average. In such cases, localization is favored (Figure 7). Cui et al. (2018)
presented a 2D Monte-Carlo model of DD source activation coupled with
crossslip channel widening to reproduce and physically explain the transi-
tion in the mechanism of plastic flow localization in irradiated materials from
irradiation-controlled to dislocation source-controlled. They showed that as
the size decreases, the spatial correlation of plastic deformation decreases due
to weaker dislocation interactions and less frequent cross-slip, thus producing
thinner dislocation channels. For a low irradiation damage, they show that
as the diameter decreases from 1.5 µm to 300 nm, deformation transitions
from rather homogeneous to highly localized. Our results broadly agree with
this picture.

Statistical analysis of burst displacement. In order to analyze the
statistics of the plastic bursts obtained in the simulations, the complementary
cumulative distribution function (CCDF) of the burst displacement magni-
tude ∆U is obtained. The CDDF is computed using the method presented by
Cui et al. (2016) and its result for a 1 µm diameter pillar is represented in Fig-
ure 8. The Figure suggest that, under the displacement-controlled conditions
(strain control) explored here, the system does not exhibit power-law scaling,
in agreement with Cui et al. (2016). In addition, the data spans less than two
orders of magnitude. In contrast, typical load-displacement controlled com-
pression experiments usually span several orders of magnitude, with bursts
often exceeding 10 nm (Alcalá et al., 2020; Srivastava et al., 2021). Detailed
tracking of the plastic strain rate (Inset of Figure 8) shows that the dynamical
behavior is quasiperiodic, in agreement with displacement-controlled simu-
lations (Cui et al., 2016) and experiments (Papanikolaou et al., 2012). In
contrast, experiments under load-controlled conditions lead to a completely
different scenario, where plasticity does not lead to marked stress drops,
allowing to trigger the operation of several SAS simultaneously and thus
exhibiting power law scaling. As a result, avalanche events can develop,
leading to a highly correlated dynamical response, consistent with the con-
cept of self-organized criticality (Bak et al., 1988). The framework presented
here, inherently implies the activation of one source at a time, leading to a
quasiperiodic response that it is consistent with displacement-control condi-
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tions.

On the incorporation of strain hardening effects. In all the cases pre-
sented in Figure 3, the flow stress keeps constant, in agreement with the
assumptions introduced in Sec. 2. This is consistent with an scenario in
which the slip planes swept by the SAS exhibit a scarcity of dislocations in
intersecting planes, and where the pinning point of the SAS is stable un-
der the prevailing stress levels. Consequently, the activated SAS does not
encounter other defects, hence preventing the formation of new junctions
or the reduction of the source length. In addition, experiments on W sin-
gle crystalline pillars (Schneider et al., 2009) do not show hardening for the
relatively low strains explored in Figure 3.

For larger samples, our method could be extended to incorporate harden-
ing effects by including a Taylor hardening-like term in eq. 6 and a disloca-
tion density evolution law (Cui et al., 2014). The latter should incorporate
size-dependent terms and bulk-like terms. Size-dependent terms include the
generation of dislocations due to the operation of existing sources (∝ 1/λ)
and the escape of dislocations reaching a free surface (∝ −1/D) (Cui et al.,
2014). Bulk-like terms include dislocation multiplication due to forest dislo-
cations (∝ √

ρ) and the annihilation of closely spaced dislocations of opposite
signs (∝ −ρ) (Devincre et al., 2008). If self and pair interactions must be
taken into account (e.g. for micron scale pillars above 1 µm), the correspond-
ing hardening coefficient matrix can also be incorporated (Yu et al., 2021;
Lee et al., 2023). It must be emphasized that for submicron pillars, simple
calculations show that the contributions of the bulk-like terms are nearly an
order of magnitude smaller than the size-dependent terms (Cui et al., 2014).
Thus, by neglecting the former and provided the dislocation generation rate
is balanced with the escape rate from free surface which, together with a
relatively low dislocation density, the results presented in Sec.3.1 would be
reproduced.

To wrap up, the results presented here focus solely on tungsten and a
relatively simple geometry. Yet, these are not restrictions. For instance,
FeCrAl alloys and refractory multi-principal element alloys (RMPEAs) are
also promising candidate materials for use under extreme conditions in the
nuclear industry. FeCrAl alloys have already been probed using discrete dis-
location dynamics (Pachaury et al., 2023) as well as with crystal plasticity
approaches using Arrhenius-type rate equations (Gong et al., 2023). With
respect to RMPEAs, kink-migration of screw dislocations have been shown
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to play a dominant role in their deformation (Balbus et al., 2024) and it is
expected that developments in dislocation mobility laws (Shen and Spearot,
2021) would allow for systematic investigations on these promising alloys us-
ing upper scale methods. Our proposed framework offers flexibility to explore
the micropillar compression behavior of such alloys by the incorporation of
specific dislocation mobility laws. To further extend its potential, the use
of a 3D FFT solver offers opportunities for the exploration of a variety of
complex geometries, including nanoporous metals and nanoarchitected meta-
materials.

Figure 7: Residual deformation patterns for different pillar diameters explored, together
with SEM observations by Srivastava et al. (2021). Reprinted with permission from Else-
vier. Frame colors correspond to dominating deformation mechanism (Blue - Single-Arm
source, Red - Surface nucleation).
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Figure 8: Complementary cumulative distribution function (CCDF) of burst displacement
for one example of our 1 µm diameter pillars. Inset, corresponding evolution of plas-
tic strain rate showing typical quasiperiodic strain bursts, consistent with displacement-
controlled compression conditions. Note the breakdown from power law scaling (dashed
line).

5. Conclusions

A novel approach is presented to simulate the deformation of submicron
specimens, accounting for the discrete events produced by the slip of in-
ternal dislocation and surface nucleated ones in a stochastic manner. The
framework considers the slip events as eigenstrain fields that produce a dis-
placement jump across a slip plane and whose activation is driven by a Monte
Carlo (MC) method. Physically-based laws are incorporated to account for
activation probabilities, dislocation mobility and surface nucleation.

Two factors of stochasticity are taken into account: a random selection
of the position of defects and a random selection of plastic events after a
MC process on a sampling array of possible displacement rates, computed
using a similar concept as in Orowan’s equation. Implementation on a fast
FFT solver, results on an efficient, computationally-cheap algorithm which
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allows to simulate accurately the deformation of a specimen in a wide range
of strain rates and sizes in a fraction of the time needed using techniques as
MD or DDD.

The framework developed has been applied to the compression of tung-
sten (W) on [100]-oriented pillars in the 25 nm to 1 µm diameter range.
We find an adequate agreement between simulations and experimental data.
The study a size-dependence of flow stress, characterized by distinct power-
law exponents for regimes dominated by source truncation (D > 120 nm,
αW ≈ 0.31± 0.11) and a break down of the power law scaling as surface sur-
face nucleation becomes dominant (D < 120 nm). Pre-existing dislocations
naturally compete with surface nucleation of new dislocations. The former
are favored for pillars above 120 nm diameter, whereas the latter is favored
below such critical size. In addition, strain-rate sensitivity effects are ade-
quately captured, including a size-dependence of the strain-rate sensitivity
exponent. This is attributed not only to changes in activation volume and
source strength but also to the stress-dependent dislocation mobility law,
whose form considers both the kink-pair regime, dominating at the relatively
low stresses found in submicron pillars, as well as the phonon drag regime,
that rules for very high stresses found in pillars of 200 nm and below. The
framework inherently implies the activation of one source at a time, leading
to a quasiperiodic response that it is consistent with displacement-control
conditions.

Finally, the framework presented here opens the possibility to provide
valuable analysis and interpretations of other small-scale testing techniques,
such as microtensile testing and microbending. Future developments of dis-
location mobility laws for FeCrAl alloys and multi-principal element alloys
would allow for a systematic investigation of these relevant metals, while
the possibility to include other micro and nanoscale geometries further ex-
tends the potential applications map to include nanolattices and nanoporous
materials, among other nanostructures of interest.
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Appendix A. Appendix Section

Algorithm 1 kMC discrete slip approach with eigenstrains

1: procedure Initialization

• Define pillar geometry, C(x), in the discrete domain.

• Set positions, eigenstrain fields and strength of each plastic region i

• Set loading conditions ET (t),∆ε∗.

2: procedure Solution
3: while t < tTOT do:
4: Get rnd no. ξ1, ξ2 ∈ (0,1]
5: Solve the equilibrium (Eq. 35) using FFT solver to obtain σ (Eq.

26) , |τ i| (Eq. 16)
6: for each region do
7: if |τi| > τCRSS then
8: Compute: P (SN sites only), vi (Eq. 13) , ti (Eq. 23) and

u̇i
p (Eq. 12).

9: else
10: vi = 0
11: Compute accumulated rates rj, rtot
12: δtn+1 = − logξ2 ∆ε∗

rtot
13: if ξ1 <

r0
rt

then

14: δtn+1 = dt0

15: next event is elastic: εEIG (i) = 0
16: else
17: next event is plastic
18: Compute eigenstrain: εEIG (i) (Eq. 24)
19:

20: Update total eigenstrain field εEIG (Eq. 5)

The slip systems considered in this study are presented in Table A.3.
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i Slip system si ni

1 [11̄1](011) [11̄1] [011]
2 [1̄1̄1](011) [1̄1̄1] [011]
3 [111](01̄1) [111] [01̄1]
4 [1̄11](01̄1) [1̄11] [01̄1]
5 [1̄11](101) [1̄11] [101]
6 [1̄1̄1](101) [1̄1̄1] [101]
7 [111](1̄01) [111] [1̄01]
8 [11̄1](1̄01) [11̄1] [1̄01]
9 [1̄11](110) [1̄11] [110]
10 [1̄11̄](110) [1̄11̄] [110]
11 [111](1̄10) [111] [1̄10]
12 [111̄](1̄10) [111̄] [1̄10]

Table A.3: Slip systems considered in this study
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Alcalá, J., Očenášek, J., Varillas, J., A. El-Awady, J., Wheeler, J.M., Michler,
J., 2020. Statistics of dislocation avalanches in fcc and bcc metals: dis-
location mechanisms and mean swept distances across microsample sizes
and temperatures. Scientific reports 10, 19024.

Bak, P., Tang, C., Wiesenfeld, K., 1988. Self-organized criticality. Physical
review A 38, 364.

Balbus, G., Rao, S., Senkov, O., Payton, E., 2024. Orientation dependent
plasticity of the refractory multi-principal element alloy monbti investi-
gated via micropillar compression. Acta Materialia 262, 119401.

Brinckmann, S., Kim, J.Y., Greer, J.R., 2008. Fundamental differences in
mechanical behavior between two types of crystals at the nanoscale. Phys-
ical Review Letters 100, 155502.

Capolungo, L., Taupin, V., 2019. Gd 3: generalized discrete defect dynamics.
Materials Theory 3, 1–21.

39



Cereceda, D., Diehl, M., Roters, F., Raabe, D., Perlado, J.M., Marian, J.,
2016. Unraveling the temperature dependence of the yield strength in
single-crystal tungsten using atomistically-informed crystal plasticity cal-
culations. International Journal of Plasticity 78, 242–265.

Cereceda, D., Stukowski, A., Gilbert, M., Queyreau, S., Ventelon, L.,
Marinica, M.C., Perlado, J., Marian, J., 2013. Assessment of interatomic
potentials for atomistic analysis of static and dynamic properties of screw
dislocations in w. Journal of Physics: Condensed Matter 25, 085702.

Chen, L.Y., He, M.r., Shin, J., Richter, G., Gianola, D.S., 2015. Measur-
ing surface dislocation nucleation in defect-scarce nanostructures. Nature
materials 14, 707–713.

Christian, J., 1983. Some surprising features of the plastic deformation of
body-centered cubic metals and alloys. Metallurgical transactions A 14,
1237–1256.

Christian, J.W., Masters, B., 1964. Low-temperature deformation of body-
centred cubic metals. ii. mechanism of thermally activated flow. Proceed-
ings of the Royal Society of London. Series A. Mathematical and Physical
Sciences 281, 240–257.
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Mécanique 343, 232–245.

Yaghoobi, M., Voyiadjis, G.Z., 2016. Size effects in fcc crystals during the
high rate compression test. Acta Materialia 121, 190–201.

Yang, W., Ruestes, C.J., Li, Z., Abad, O.T., Langdon, T.G., Heiland, B.,
Koch, M., Arzt, E., Meyers, M.A., 2021. Micro-mechanical response of
ultrafine grain and nanocrystalline tantalum. journal of materials research
and technology 12, 1804–1815.

Yu, Q., Mart́ınez, E., Segurado, J., Marian, J., 2021. A stochastic solver
based on the residence time algorithm for crystal plasticity models. Com-
putational Mechanics 68, 1369–1384.
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