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We study solitary wave solutions for the nonlinear Schrödinger equation perturbed by the effects
of third-, and fourth-order dispersion, maintaining a wavenumber gap between the solitary waves
and the propagation constant. We numerically construct members of a family of such solitary
waves, including Kruglov and Harvey’s exact solution, using the spectral renormalization method
and establish empirical relations between the pulse parameters. A deeper insight into the properties
of solitary waves and solitons can be obtained through collisions. Therefore we perform pulse
propagation simulations demonstrating different collision regimes. Depending on the pulses initial
phase difference, this can lead to the formation of short-lived two-pulse bound states. While these
collisions are generally inelastic, singular phase values exist at which they are elastic. Finally, we
detail the properties of Kruglov and Harvey’s soliton solution under loss, verifying earlier predictions
of perturbation theory and suggesting a convergence to the soliton solution of the standard nonlinear
Schrödinger equation in the limit of large propagation distances.

I. INTRODUCTION

As introduced by Zabusky and Kruskal [1], the term
“solitary wave” (SW) describes pulse-like solutions of cer-
tain nonlinear wave equations which travel with constant
shape and speed. In a SW, the effects of linear dispersion
on the pulse envelope are balanced by the effects imposed
by the nonlinearity. Quoting Scott in Ref. [2], “There is
just enough yin for the yang ; it is a dynamically self-
sufficient object, a ‘thing‘”. Commonly, if two SW’s are
initialized so as to engange in a collision, the nonlinear in-
teraction upon collision destroys their integrity and iden-
tity. However, as demonstrated by Zabusky and Kruskal
in terms of numerical simulations for the Korteweg-de
Vries equation [1], special SW’s exist, coined ‘solitons‘,
that emerge from collisions with unchanged shape and
speed [3]. The only effect of their mutual interaction is
a phase-shift that both pulses acquire during their colli-
sion [4, 5]. It is this preservation of shape and speed that
renders the soliton interesting from a point of view of ap-
plied science [6, 7]. Solitons, and, more generally, SW’s
arise in diverse fields of physics such as, e.g., hydrody-
namics [8], plasma dynamics [1], domain wall dynamics
[9], and nonlinear optics [7].

For the nonlinear equations that govern several of the
above-mentionen fields, mathematical techniques have
been developed that yield closed form solutions in terms
of inverse problems [10–13]. For instance, for the non-
linear Schrödinger equation (NSE), which, as considered
below, models the combined effects of group-velocity dis-
persion (GVD) and third-order nonlinearity in nonlinear
optics [7], soliton solutions can be obtained by the in-
verse scattering transform [4, 14, 15]. While the stan-
dard NSE is fully integrable [4], exhibiting an infinite
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number of conserved quantities, perturbation by further
linear and/or nonlinear contributions destroys its exact
integrability. The dynamics of solitons in such perturbed,
yet nearly integrable systems is reviewed in Ref. [16]. As
pointed out above, collisions of true solitons in the stan-
dard NSE proceed elastically with no radiation losses,
and affect only the carrier phase and peak location of
both pulses [1, 17]. In contrast, SW collisions in per-
turbed variants of the NSE proceed inelastically [16, 18–
27], demonstrating several non-integrable characteristics:
colliding SWs can exchange energy and momentum, they
may suffer radiation losses, and the energy exchange be-
tween two SWs can lead to the formation of an unstable,
short-lived bound state. The resulting scattering dynam-
ics, which are very sensitive to the initial conditions, have
been carefully analyzed and explained, e.g., for the per-
turbed NSE [22, 23], coupled NSEs [21], Bose-Einstein
condensates [26, 28], and a general ordinary differential
equation model [29].

Let us note that propagation constants that account
for higher orders of dispersion, with negative fourth-order
dispersion (4OD), facilitate a variety of additional effects
such as spectral tunneling [30, 31], two-frequency soliton
molecules and meta-atoms [32–34], and can even support
further special types of SWs [35–38]. Such systems are
still essentially unexplored. In this regard, perturbing the
standard anomalous GVD NSE by a term that accounts
for third-order dispersion (3OD), SW-like pulses, located
within the domain of anomalous dispersion, suffer radi-
ation losses to a phase-matched frequency beyond the
zero-dispersion point in the domain of normal dispersion
[39–43]. Considering fourth-order dispersion (4OD), it is
necessary to distinguish: given anomalous GVD, positive
4OD causes SW-like pulses to radiate [41], while negative
4OD does not impede SW propagation [35, 44]. It is in
this latter setting, i.e. the NSE perturbed by a negative
4OD term, wherein which Karlsson and Höök showed the
existence of a family of SW solutions with fixed param-
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eters and sech2-shaped envelope [35]. For large values
of the soliton propagation constant, these solutions were
found to exhibit radiationless oscillating tails [44]. While
two-soliton and multisoliton bound states were shown to
exist in the parameter range allowing for oscillating tails,
all bound states turned out to be unstable [45]. Pulse
propagation studies further suggested this SW solution
to persist for small perturbations by 3OD [46]. More re-
cently, Kruglov and Harvey presented an exact station-
ary sech2-shaped SW solution for the standard anoma-
lous GVD NSE perturbed by 3OD and negative 4OD
[36], herafter referred to as the KH SW solution, ob-
tained via reduction to an ordinary differential equation
for which solutions can be expressed in terms of elliptic
Jacobi functions [47]. This SW solution exhibits no non-
trivial free parameter, has a fixed velocity that depends
on all orders of dispersion, and reduces to the above
Karlsson-Höök soulution for vanishing 3OD. Under addi-
tional perturbation by self-steepening, the existence and
stability of quartic and dipol-solitons was later demon-
strated [48, 49]. Also, multi-quartic and multi-dipole soli-
tons were reported in absence of self-steepening [50], and
the existence of periodic solutions and SWs in the NSE
with 3OD, 4OD, self-steepening, and cubic-quintic non-
linearity was shown [51].

Here, we perform numerical simulations to study the
propagation dynamics of Kruglov and Harvey’s sech2-
shaped SW solution and to complement previous theo-
retical results [36]. The article is organized as follows. In
Sect. II we detail the propagation model and algorithms
used to perform the numerical simulations reported in
Sect. III. In Sect. III A we analyzing an auxiliary linear
problem, previously considered to classify localized so-
lutions of the NSE perturbed by 4OD in terms of the
decay along their tails [44, 45, 52]. We further construct
members of a family of SWs, including the KH SW so-
lution, in terms of the spectral renormalization method
(SRM) [53], and assess how the pulse parameters depend
on their wavenmuber. In Sect. III B we study the in-
teraction dynamics of the KH SW and an independent
SW with different properties, obtained using the spectral
renormalization method SRM. In Sect. III C we consider
the effect of absorption on the propagation dynamics of
the KH SW and compare the results of our simulations
to those of a perturbation analysis presented earlier in
Ref. [36]. In addition, going beyond the predictions of
perturbation theory, we here also clarify the behavior for
long propagation distances in terms of a simple model.
Section IV concludes with a summary.

II. MODEL AND METHODS

Propagation model. Below we consider a higher-order
NSE (HONSE) for the pulse envelope ψ ≡ ψ(z, τ), in-
cluding second-, third-, and fourth-order dispersion in

the form

i∂zψ = −iµ
2
ψ +

β2
2
∂2τψ + i

β3
6
∂3τψ − β4

24
∂4τψ − γ|ψ|2ψ,

(1)

where z is the propagation coordinate, τ = t−β1z is a re-
tarded time, β2, β3, and β4 are the parameters specifying
GVD, 3OD, and 4OD, respectively. µ describes absorp-
tion (µ > 0), and γ is a scalar nonlinear parameter. As
shown by Kruglov and Harvey in Ref. [36], for µ = 0 and
when the dispersion coefficients satisfy the conditions

β2 < 0, β4 < 0, and, 2β2β4 > β2
3 , (2)

Eq. (1) exhibits the exact SW solution

ψKH(z, τ) = u sech2
[
w(τ − η − z

v )
]
ei(κz−δτ+ϕ), (3)

with initial pulse peak-position η and initial phase ϕ. The
amplitude u, inverse temporal width w, velocity v in the
retarded frame, frequency offset δ and wavenumber κ are
given by [36]

u =

√
9

20γ|β4|

(
β2
3 − 2β2β4

β4

)
, (4a)

w =

√
6β2β4 − 3β2

3

10β2
4

, (4b)

v =
3β2

4

β3(β2
3 − 3β2β4)

, (4c)

δ = −β3
β4
, (4d)

κ = −
6
(
β2
3 − 2β2β4

)2
25β3

4

−
β2
3

(
β2
3 − 4β2β4

)
8β3

4

. (4e)

As pointed out in Ref. [36], Eq. (3) has no nontrivial free
parameter, hence the parameters Eqs. (4) are fixed by
setting γ, as well as β2, β3, and β4 in correspondence
with conditions (2). Subsequently we consider µ = 0,
γ = 1 W−1/km, β2 = −1 ps2/km, β3 = 0.5 ps3/km,
and β4 = −1 ps4/km. For this choice of parameters,
Eqs. (4a)-(4e) yield u ≈ 1.174 W1/2, w ≈ 0.725 ps−1

(w−1 ≈ 1.380 ps), v ≈ −2.182 km/ps, δ = 0.5 ps−1, and
κ ≈ 0.618 km−1. Energy and momentum, given by

E(z) =

∫
|ψ|2 dτ, and, (5)

M(z) =
i

2

∫ (
ψ
∂ψ∗

∂τ
− ψ∗ ∂ψ

∂τ

)
dτ, (6)

for ψ = ψKH read EKH ≈ 2.536 Wps and MKH ≈
−1.268 W. (Let us note that MKH = −EKH δ [48].)
Spectral renormalization method. In order to obtain

further SW solutions, different from the special solution
ψKH, we employ the spectral renormalization method
(SRM) [53], amended to work for Eq. (1) using the above
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parameters. Independent SW solutions for specified ve-
locity and wavenumber will allow us to study the colli-
sion dynamics involving KH SWs in Sect. III B below.
The SRM constitutes an iterative optimization proce-
dure, based on Petviashvili’s method for the numerical
approximation of stationary solutions of nonlinear wave
equations [54, 55], which has been adapted to numerous
variants of the NSE [56–58]. Here, we opt for the SRM
since it allows to conveniently set the wavenumber for
which a SW solution is sought for. To demonstrate the
applicability of the SRM to the present setting, we first
aim to reproduce the exact KH SW solution Eq. (3). Let
us note that, when employing the SRM, it is most con-
venient to look for the SW in a reference frame where
its location remains stationary in time. This can be
achieved by considering, instead of the propagation con-
stant β(Ω) = β2

2 Ω2+ β3

6 Ω3+ β4

24Ω
4 of Eq. (1), the modified

propagation constant β′(Ω) = β(Ω)−Ω/v [Fig. 1(a)], and
by accounting for the corresponding shift in wavenumber
by κ′ = κ − δ/v ≈ 0.847 km−1 [36]. From the modified
propagation constant shown in Fig. 1(a) we can expect
to find localized solutions only above a certain threshold
given by κ0 ≡ maxΩ(β

′) = 0.112 km−1. For values κ >
κ0, a finite wavenumber gap separates these localized so-
lutions from β′. We find that at κ′ = 0.847 km−1, a trial-
function of the form ψ0(τ) = exp(−τ2) rapidly converges
to the exact solution ψKH(0, τ) [Figs. 1(c,d)]. This is evi-

dent from the local error ϵloc,n ≡
(∫

|ψn − ψn−1|2 dτ
)1/2

,
which exhibits an exponential decrease with increasing
iteration step n of the SRM procedure and converges
after 32 iteration steps [Fig. 1(b)]. Let us add that
the global error with respect to the exact solution, i.e.

ϵglob,n ≡
(∫

|ψKH − ψn|2 dτ
)1/2

, decreases in the same

manner, resulting in ϵglob,n=30 ≈ 6 × 10−13 (Wps)1/2.
Results for two further SW wavenumbers κ′ = 0.5 km−1

and 1.2 km−1 are included with Fig. 1.

Propagation algorithm. For the pulse propagation
simulations in Sects. III B, i.e. when solving the initial-
value problem for Eq. (1) with µ = 0, we employ the con-
servation quantity error (CQE) method [59, 60], which
uses a conservation law of the considered HONSE to con-
trol adaption of the stepsize h. Specifically, we use the
relative energy error δE(z) = |E(z + h) − E(z)|/E(z),
wherein E specifies the pulse energy Eq. (5) conserved by
Eq. (1) in case of µ = 0 [36]. Here, the CQE method is
set to maintain the relative error δE within the goal error
range (10−11, 10−10), by decreasing the stepsize h when
necessary while increasing h when possible. To advance
the field from position z to z + h, we use the forth-order
Runge-Kutta in the interaction picture (RK4IP) method
[61]. In Sect. III C we instead employ the RK4IP with
fixed stepsize.

FIG. 1. SW solutions for Eq. (1) with µ = 0, γ = 1 W−1/km,
β2 = −1 ps2/km, β3 = 0.5 ps3/km, and β4 = −1 ps4/km,
obtained using the SRM. (a) Modified propagation con-
stant β′, defining the reference frame in which the sought-
for solitary waves are stationary. (b-d) SRM results for se-
lected wavenumbers using a Gaussian trial-function ψ0(τ) =
exp(−τ2). (b) Decrease of the local error ϵloc upon iteration.
(c) Intensity of the solutions. Thin grey lines indicate fits to
the three-paramter model detailed in the text. (d) Spectrum
of the solutions. Results for κ′ = 0.847 km−1 produce the
exact KH SW solution Eq. (3).

III. RESULTS

Subsequently, in Sect. III A, we discuss the asymptotic
behavior of the low-intensity tails of solutions to Eq. (1)
in terms of a linear auxiliary equation and assess how
the properties of the nonlinear localized states depend
on their wavenumber. We then report results of pulse
propagation simulations that clarify the collision dynam-
ics involving KH SWs in Sect. III B. Finally, we discuss
the decay of the KH SW under absorption in Sect. III C.

A. SW solutions parameterized by wavenumber

Asymptotic decay of the solutions. Neglecting the
nonlinear contribution to Eq. (1), and focusing on the
asymptotic decay of the localized states towards τ → ∞
in terms of an Ansatz of the form ψ(τ, z) ∝ eλτ+iκz,
yields the algebraic equation

κ = −iβ1λ− β2
2
λ2 − i

β3
6
λ3 +

β4
24
λ4. (7)

As discussed for the NSE with added 4OD [37, 44, 45],
and similarly for the generalized Lugiato-Lefever equa-
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tion [62, 63], an analysis of the four roots λn, with
n = 1 . . . 4, of Eq. (7) allows to classify the localized
solutions of the full nonlinear model according to the
behavior of their low-intensity tails. As pointed out in
the context of the Karlsson-Höök SW solution to Eq. (1)
for β1 = 0 and β3 = 0, decaying solutions are char-
acterized by roots of Eq. (7) exhibiting a negative real
part [44]. These are two out of the four roots, which
we below refer to as λ1 and λ2, ordered so as to satisfy
Re[λ1] ≤ Re[λ2]. However, the existence of decaying so-
lutions of Eq. (7) does not automatically guarantee the
existence of SW-like solutions of the full nonlinear Eq. (1)
[44]. While closed form solutions for the biquadratic ver-
sion of Eq. (7) for β1 = 0 and β3 = 0 can be speci-
fied in closed form [37, 44], we here solve Eq. (7) nu-
merically in the range κ ∈ (0, 2.5) km−1. Considering
the paramters listed in Tab. I under label A, above a
threshold value of κ = 3β2

2/(2|β4|) = 1.5 km−1 [37, 44],
both roots form complex conjugate pairs λ1(κ) = λ∗2(κ)
[Fig. 2(a), see curves labeled A; cf. Fig. 1 of Ref. [44]].
Below this threshold, they are purely real and differ in
value. For decreasing wavenumber κ → 0 we can ex-
pect the behavior of the localized solution to Eq. (1)
to be determined by λ2, i.e. the root with the smallest
negative real part, providing the correct limiting behav-
ior λ(κ) = −

√
2κ/|β2| of the fundamental NSE soliton

[Fig. 2(a), see short dashed line]. While the real part of λ2
specifies the exponential decay of the tails, its imaginary
part determines the frequency offset at which the solution
exists. Let us emphasize that for the parameters listed
in Tab. I under A, our numerical results reproduce those
of Ref. [35]. Now, for the parameters considered here,
listed in Tab. I under B, the exact SW solution found in
Ref. [36] has wavenumber κ ≈ 0.618 km−1, and velocity
v ≈ −2.182 km/ps in the retarded frame of reference. So-
lutions corresponding to Eq. (7) with β1 = 1/v indicate
that, as suggested above, stationary nontrivial solutions
exist only beyond κ0 = 0.112 km−1 [Fig. 2(a), see curves
labeled B]. Also in this case there exists a threshold value
at κ ≈ 1.260 km−1, above which the real parts of the
roots λ1,2 are degenerate. In this case, however, they do
not form a complex conjugate pair. Below this thresh-
old the roots are purely real and satisfy Re[λ1] < Re[λ2].
Specifically, at κ′ ≈ 0.847 km−1, i.e. the wavenumber of
the KH SW in the reference frame in which it is station-
ary, we find λ2 = (−1.449 − i 0.500) ps−1. Let us point
out the excellent agreement of Re[λ2] with the asymp-
totic decay of the true SW, given by sech2(wτ) ∝ e−2wτ ,
for τ → ∞, with −2w ≈ −1.450 ps−1 [see filled cir-
cle in Fig. 2(a)]. Further, the value of Im[λ2] agrees
with the corresponding value in the exact SW solution
Eq. (3), given by −δ = −0.5 ps−1 [see open circle in
Fig. 2(a)]. (For completeness, the features of the sech2-
solution of Ref. [35] for the parameters listed under label
A in Tab. I, given by −2w = −12/5 ps−1 and −δ = 0
at κ = 24/25 km−1, are shown by the open and filled
squares in Fig. 2(a).)

FIG. 2. Characteristics of localized solutions for Eq. (1) with
parameters listed in Tab. I. (a) Roots λ1,2(κ), determining
the asymptotic decay according to Eq. (7). Parameters cor-
responding to labels A and B are listed in Tab. I. In case of
B, nontrivial solutions exist only for κ > κ0 = 0.112 km−1.
Short-dashed line (labeled NSE) indicates the limiting case of
the standard NSE. Filled and open circles at κ = 0.847 km−1

indicate −δ = −0.5 ps−1 and −2w ≈ −1.450 ps−1, respec-
tively. (b-d) Results for parameter setting B obtained using
the SRM. (b) Dependence of pulse amplitude on inverse pulse
duration (labeled B). (c) Variation of the shape parameter ν
as function of wavenumber. (d) Variation of the pulse en-
ergy as function of wavenumber (labeled B). In (b,d) dashed
lines (labeled NSE) indicate the corresponding relations for
the standard NSE (see text for details).

Analysis of localized states obtained by the SRM. So
as to assess in which way the shape of full SW solutions
to Eq. (1) depend on their wavenumber, we performed a
parameter study keeping the inverse group velocity of
the retarded frame of reference fixed at β1 = 1/v ≈

TABLE I. Parameters corresponding to cases labeled A and B
in Fig. 2. Columns from left to right: Labels, and parameters
specifying the inverse GV, GVD, 3OD, and 4OD.

β1 β2 β3 β4
Label (ps/km) (ps2/km) (ps3/km) (ps4/km)
A 0 -1 0 -1
B 1/v ≈ −0.458 -1 1/2 -1
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−0.458 km/ps. We then employed the SRM to retrieve
localized states for a sequence of wavenumbers κ > κ0.
For the resulting family of SWs we performed a fit to the
three-parameter model Afit(τ) = A0 sech

ν(τ/τ0) in order
to retrieve the pulse peak amplitude (A0), pulse dura-
tion (τ0), and shape parameter (ν) via parameter fitting
to A = |ψ|. Exemplary results of the fitting procedure for
three selected wavenumbers are shown in Fig. 1(c) along-
side the numerically exact SRM results. In summary, we
found the pulse amplitude and duration to satisfy the
empirical scaling relation

A0(τ0) = 0.12− 0.43

τ0
+

5.47

τ20
− 8.63

τ30
+

6.45

τ40
, (8)

while pulse amplitude and wavenumber satisfy

A0(κ) = 1.36 (κ− 0.113)0.48. (9)

For clarity, the physical units of the parameters in
Eqs. (8-9) are suppressed. While coming very close to

the scaling behavior A0(κ) =
√
2κ/γ, expected for fun-

damental solitons of the standard NSE, Eq. (9) indi-
cates smaller peak amplitudes for the considered local-
ized states. In this regard, we found that the linear de-
pendence of pulse amplitude on inverse pulse duration,
characteristic for the NSE, can be recovered in the limit
of small wavenumbers where the localized state has a very
narrow spectrum. This can be seen in Fig. 2(b), where
the SRM results (solid line labeled B) are compared to

A0(τ0) =
√
|β′

2|/(γτ20 ) (dashed line labeled NSE) with
the value of GVD taken at the frequency offset of the lo-
calized state, i.e. β′

2 ≡ ∂2Ωβ
′(Ω)|Ω=δ = −0.875 ps2/km.

This naive limit finds further support by noting that
the pulse shape parameter approaches unity as κ → κ0
[Fig. 2(c)], indicative of the sech-shape of the fundamen-
tal NSE soliton. As evident from the energy-wavenumber
diagram in Fig. 2(d), the considered localized states ex-
hibit larger energy, and, due to Eq. (9), lower peak in-
tensity than fundamental solitons of the standard NSE at
any given values of κ. As κ → κ0, the pulse energy also
satisfies the naive NSE limit E(κ) =

√
8|β′

2|(κ− κ0)/γ.
Let us note that we found the above three-paramter
model to approximate the localized states obtained by
the SRM very well for κ0 < κ < 0.9 km−1. For wavenum-
bers κ > 0.9 km−1, the fit-model does not provide the
correct asymptotics, but describes the central part of the
pulses reasonably well [Fig. 1(c)].

B. Collision dynamics involving the KH SW

As for other systems, which are described by perturbed
variants of the NSE [18, 21–23, 64–66], we expect the
collision of the specific KH SW with an independent
SW of Eq. (1) to exhibit diverse outcomes that depend
on their mismatch in wavenumber, velocity, and initial
phase. Subsequently, we employ the SRM to obtain an
independent SW solution ψ′(τ) of Eq. (1) for a given

FIG. 3. Interaction dynamics of two KH solitary waves,
depending on their relative phase ϕ at z = 0. (a)
Time-domain propagation dynamics showing I(z, t) =
|ψ(z, t)|2/max(|ψ(0, t)|2) for ϕ/π = 0.533. The zoom-in
shows a close up view of the pulse phase φ(z, τ) in the vicin-
ity of their collision. (b,c) Same as (a) for ϕ/π = 0.733,
and ϕ/π = 0.79577443, respectively. (d) Energy, and, (e)
momentum of the left (L) and right (R) localized pulses at
z = 80 km. In (d-e) short-dashed lines indicate energy and
momentum of the KH SW and the zoom-in shows the range
ϕ/π ∈ (0.779, 0.798).

wavenumber κ′ and given inverse velocity v′−1, and per-
form pulse propagation simulations for the initial condi-
tion

ψ0(τ) = ψ′(τ − τ ′0) + ψKH(0, τ), (10)

with ψKH defined by Eq. (3) for η = 0. Therein, our aim
is to assess the dependence of the collision process on the
initial phase ϕ of the KH SW, entering through Eq. (3).
Collision of two KH SWs. Considering v′ = v, and

κ′ = κ − δ/v, with v, δ, and κ determined by Eqs. (4c-
4e), yields an initial condition with two KH SWs at ini-
tial delay τ ′0. The smaller the initial delay, the larger
the initial overlap between both pulses. Subsequently
we consider τ ′0 = 5 ps and perform a parameter sweep
by varying the initial phase ϕ of the right KH SWs.
The results of our numerical simulations are summarized
in Fig. 3. In Fig. 3(a), the propagation dynamics at
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ϕ/π = 0.533 is shown, demonstrating an inelastic col-
lision process in which energy is transferred to the right
pulse [Fig. 3(d)]. During an initial propagation stage,
i.e. for z < 10 km, there exists an attractive interaction
between both pulses. However, owing to the transfer of
energy which is enabled by their initial phase difference,
a wavenumber mismatch between both pulses quickly
builds up, causing them to repel each other for z ⪆
10 km. The pulse phase φ(z, τ) = tan−1 (Im[ψ]/Re[ψ]),
shown in the zoom-in in Fig. 3(a), indicates that at the
point of closest proximity, both pulses are indeed ap-
proximately out of phase. When increasing the initial
phase difference [Figs. 3(b,c)], we find a narrow parame-
ter range centered about ϕ/π ≈ 0.796, in which collisions
are of “in-phase” type [see zoom-in in Fig. 3(c)], where
both pulses form a two-pulse bound state that decays af-
ter a finite number of collision events [22, 23]. Therein,
the number of collision events depends very sensibly on
the initial phase. For instance, at ϕ/π = 0.79577443, af-
ter a first collision at z ≈ 12 km, the resulting two-pulse
bound state persists for 5 more collision events until it
finally decays [Fig. 3(c)]. Let us note that the oscillation
period of the bound state, i.e. the z-separation between
two successive collision events, decreases with increasing
propagation distance. This is in contrast to the two-
soliton bound states studied in terms of a quasi-particle
approach in the standard NSE [64, 65], or the weakly
perturbed NSE [22], which where found to oscillate with
a fixed period. Further, for ϕ/π ⪆ 0.796, the collision dy-
namics is similar to Figs. 3(a-c), only with a transfer of
energy to the left pulse. While “in-phase” type collisions
are obtained for initial conditions at ϕ/π ≈ 0.796, “out-
of-phase” type collisions are obtained at ϕ/π ≈ 1.80. As
evident from the resulting energies [Fig. 3(d)] and mo-
menta [Fig. 3(e)] at z = 80 km, none of the resulting
pulses exhibit energy and momentum of a KH SW for
any of the phase-values considered in our numerical ex-
periments. Similar to previous studies of soliton collisions
in the weakly perturbed NSE [18, 22, 23], we find that
energy loss to free radiation is small. Only in the range of
in-phase collisions, i.e. when two-soliton bound states are
formed, an energy fraction of up to ≈ 6% is converted to
free radiation. Such a correlation between relative phase
and radiation losses in SW collisions has earlier been ob-
served for the saturable NSE [19]. We further observe
that summary measures, such as energy or momentum,
exhibit self-similar features if viewed on different scales.
Compare, e.g., the energy in range ϕ/π ∈ (0.779, 0.798),
shown in the inset in Fig. 3(d), to the energy in range
ϕ/π ∈ (0.3, 0.8). A similar behavior has been observed
for the postcollision properties of solitons in symmetric
collisions in Refs. [21, 23].

Collision at large relative velocities. In the sector of
nonzero velocity mismatch, we expect complex interac-
tion processes to occur for κ′ ≈ κ. Below we report our
results for v′−1 = 0 ps/km and κ′ = κ = 0.618 km−1, for
which the SRM yields a localized solution that can be pa-
rameterized as ψ′(τ) = A0 sech

ν(τ/τ0) e
−ibτ with A0 =

FIG. 4. Collision of a KH solitary wave and a stationary
SW with matching wavenumbers, depending on their relative
phase ϕ at z = 0. (a) Time-domain propagation dynamics
showing I(z, t) = |ψ(z, t)|2/max(|ψ(0, t)|2) for ϕ/π = 0.505.
The zoom-in shows a close up view of the pulse phase φ(z, τ)
in the vicinity of their collision. Dashed lines indicate ref-
erence trajectories with inverse velocity 0 ps/km and v−1 ≈
−0.458 ps/km. (b) Same as (a) for ϕ/π = 0.168, using a
dB-scale. (c) Same as (a) for ϕ/π = 1.61804225. (d) Energy,
and, (e) momentum of the left (L) and right (R) localized
pulses at z = 250 km. In (d-e) the zoom-in shows the range
ϕ/π ∈ (1.61790, 1.81815).

1.087 W1/2, τ0 = 1.388 ps, ν = 1.728, b = 0.07 ps−1, and
initial energy and momentum given by E = 2.378 Wps
and M = −0.166 W. Our results for the initial separa-
tion τ ′0 = 50 ps and initial relative phases in the range
ϕ ∈ (0, 2π) in ψKH [see Eq. (3)] are summarized in Fig. 4.
We find that at ϕ/π ≈ 0.505 [Fig. 4(a)], the SWs engange
in an out-of-phase type elastic collision after which the
amplitude, shape, and velocity of both pulses are fully
restored. As can be seen from the pulse phase φ(z, τ)
[zoom-in in Fig. 4(a)], at the point of closest proxim-
ity, both pulses are indeed out ouf phase, and the effect
of their mutual interaction is simply a shift of their re-
spective loci relative to their free propagation. Let us
point out that the post-collision energy and momentum
of the left pulse at z = 250 km matches the energy and
momentum of the KH SW, indicated by the circles at
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ϕ/π = 0.505 in Figs. 4(d,e), with a negligible fraction
on the order of 10−5 of the total energy converted to
free radiation. Thus, at this value of ϕ, the collision is
elastic. Further, centered around ϕ/π ≈ 1.6 we find a
narrow window within which two-pulse bound states are
formed. As above, their z-lifetime is sensitive to their ini-
tial phase, and the z-oscillation period decreases between
successive collision events. Specifically, Fig. 4(b) shows
such a bound state for ϕ/π = 0.168, which, after the
first collision at z ≈ 100 km, persists for one more colli-
sion event, and Fig. 4(c) shows the propagation dynam-
ics at ϕ/π = 0.161804225, exhibiting a two-pulse bound
state that decays after 6 collision events. Bound-state
formation with quite similar features have been observed
during inelastic in-phase collisions of dipolar solitons at
intermediate dipole-dipole interaction strengths [28]. Let
us point out that the time-domain intensity in Fig. 4(b)
is shown on a dB-scale to demonstrate the intensity level
on which free radiation is produced (< −20 dB). In
this case, the fraction of energy transferred to free ra-
diation amounts to ≈ 0.04. In Fig. 4(c), a fraction of
≈ 0.08 of the total energy is converted to free radiation
[see Fig. 5(c); v′−1 = 0]. In particular, in the zoom-in in
Fig. 4(b) it can be seen that the free radiation, trapped
in between the two pulses beyond their first collision at
z ≈ 100 km, is in-phase with the trailing edge of the left
pulse as well as the leading edge of the right pulse. This
imparts a net attraction between both pulses, causing
them to collide again at z ≈ 150 km. While the consid-
ered propagation dynamics unfolds entirely at anomalous
dispersion, a quite similar effect, involving two solitons
cross-trapping a weak dispersive wave in a domain of nor-
mal dispersion, has been described in theory [67], and ob-
served in experiment [68, 69]. Here, after the two-pulse
bound states decay, none of the resulting pulses shares
the properties of the KH SW for any of the parameters
considered in our numerical experiments.

We assess the post-collision properties of the “fast”
SW, i.e. the left SW after the collision events, in the
energy-momentum plane in Figs. 5(a,b)]. At large rela-
tive velocities [dashed line in Fig. 5(a); v′−1 = |v|−1 ≈
0.46 ps/km], possible energies are met for two distinct
momenta. However, at no point in ϕ does the fast SW
exhibit the exact properties of the KH SW [Fig. 5(b)]. In
addition, SWs at such a large initial velocity mismatch
are immediately able to overcome their mutual binding at
in-phase collisions, inhibiting any bound-state formation.
At intermediate relative velocities [solid line in Fig. 5(a);
v′−1 = 0], and for initial phase differences enabling two-
soliton bound systems, an energy gap at small negative
momenta opens up wherein a unique relation between
energy and momenta is given. Further, in the range of
intermediate relative velocities, a unique value of the ini-
tial phase exist at which the KH SW continues to exist
after the collision [Fig. 5(a)]. Finally, at small relative ve-
locities [short dashed line in Fig. 5(a); v′−1 ≈ 0.74 v−1], a
second parameter range enabling two-soliton bound sys-
tems appears, leading to a total energy gap wherein no

FIG. 5. Post-collision properties of the fast SW in the
energy-momentum plane. (a) Different scenarios observed
for three selected inverse velocities 1/v′. (b) Zoom-in on a
narrow energy-momentum range enclosing the values EKH =
2.536 Wps and MKH = −1.268 W, characterizing the KH
SW. (c) Fraction of total energy Erad lost to radiation as
function of initial phase ϕ for the collision scenarios in (a).

post-collision SW is found. Since the energy gap includes
the energy EKH = 2.536 Wps, in this case, the KH SW
persists at no value of the initial phase. Examples of
the amount of radiative losses observed subsequent to
the mutual interaction of both pulses for three different
values of the group-velocity v′ are shown in Fig. 5(c).

C. Decay of the KH SW under absorption

In an effort to go beyond the predictions of perturba-
tion theory, obtained in Ref. [36] to estimate the variation
of the pulse properties under gain and loss for short prop-
agation distances, we here perform pulse propagation
simulations for the KH SW in terms of Eq. (1) for nonzero
µ > 0. Specifically, the considered example assumes an
absorption coefficient µ = 0.01m−1, yielding |µϵ|/α2 =
0.00167 ≪ 1, in agreement with the conditions that en-
able comparison to the results reported in Ref. [36]. The
propagation dynamics of the perturbed KH SW is shown
in Figs. 6(a,b). As evident from Fig. 6(a), pulse inten-
sity decreases and pulse duration increases for increas-
ing propagation distance. Correspondingly, the extend
of the pulse in the spectral domain decreases [Fig. 6(b)].
In order to analyze the shape of the perturbed KH SW
upon propagation, we employ a four-parameter model
of the form Afit(τ) = A0 sech

ν [(τ − τc)/τ0] and retrieve
the pulse peak amplitude (A0), peak position (τc), du-
ration (τ0), and shape parameter (ν) through parame-
ter fitting to A(z, τ) = |ψ(z, τ)| at fixed z. The varia-
tion of the resulting parameters as function of the scaled
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propagation coordinate 2|µ|z is shown in Figs. 6(c-e) (la-
beled SIM). In the range 2|µ|z ≪ 1, the predictions of
the perturbation theory reported by Ref. [36], yielding

amplitude u′ = u e−µz and duration w′−1
= w−1 eµz

[dashed lines in Fig. 6(c-e)], can be seen to agree very
well with the simulation results. Let us note that while
the perturbative treatment yields an approximate solu-
tion with fixed ν = 2, our numerical results indicate
that the shape parameter initially decreases ∝ 1 + e−µz

[Fig. 6(e)]. Moreover, based on the observation that
the pulse acquires a rather narrow spectrum for increas-
ing propagation distance, we can even formulate an ap-
proximate relation between pulse peak intensity A0 and
pulse duration τ0 [Fig. 6(f)], valid in the limit of large
z. Assuming that the pulse has a narrow spectrum, we
might hypothesize that its dynamics are governed by the
value of group-velocity dispersion at the frequency off-
set δ, i.e. β′

2 = −0.875 ps2/km, and that higher orders
of dispersion have only a marginal impact on the over-
all dynamics. Resorting to a standard NSE then im-
plies A0 =

√
|β′

2|/(γτ20 ). As evident from Fig. 6(f) this
naive model (labeled NSE) is in excellent agreement with
the observed data (labeled SIM) for small 1/τ0, i.e. for
large propagation distances z. This naive model finds
further support from the pulse shape parameter, which
approaches a value of ν = 1 at large z [Fig. 6(e)], in-
dicative of the hyperbolic-secant shape of the fundamen-
tal soliton of the NSE. Moreover, the empirical relation
Eq. (8) for pulse amplitude and pulse duration, obtained
from the SRM results in Sect. IIIA, fits the parameters
of the decaying SW very well [Fig. 6(f), curve labeled
SRM]. Finally, by inverting the amplitude-wavelength
relation Eq. (9), we confirmed that the wavenumber of
the decaying pulse shown in Fig. 6(a) extrapolates to
κ = 0.113 km−1 ≈ κ0 in the limit z → ∞.

IV. CONCLUSIONS

In conclusion, we have performed a numerical study of
SWs in the NSE perturbed by 3OD and negative 4OD.
For a fixed set of parameters, satisfying the bounds of
existence of the KH SW solution found by Ref. [36], we
studied the asymptotic decay of solutions in terms of
a linear auxiliary model and contrasted the considered
setting with the case of vanishing 3OD, which admits
the earlier Karlsson-Höök SW solution [35, 44]. We fur-
ther employed the SRM to retrieve a sequence of nu-
merically exact SWs at fixed group-velocity for various
wavenumbers κ, exceeding a wavenumber threshold κ0
below which no nontrivial solutions exist. In our nu-
merical experiments we reproduced the KH SW solution
[36], discussed the limiting case of κ → κ0 in which the
soliton solution of the standard (unperturbed) NSE is
approached, and obtained a quantitative relationship be-
tween amplitude and wavenumber of the SWs.

We then performed pulse propagation simulations to
determine the interaction dynamics of two KH SW solu-

FIG. 6. Decay of the KH solitary wave in presence of ab-
sorption (µ = 0.01 km−1). (a) Time-domain propagation dy-
namics showing I(z, t) = |ψ(z, t)|2/max(|ψ(0, t)|2). White
dashed line indicates a trajectory with reference velocity
v = −2.182 km/ps. (b) Corresponding spectrum IΩ(z) =
|ψΩ(z)|2/max(|ψΩ(0)|2). White dashed line indicates fre-
quency offset δ = 0.5 rad/ps. (c-e) Comparison of simulation
results (SIM) and predictions based on perturbation theory
(PT) [36]. Variation of (c) amplitude, (d) duration, and, (e)
pulse shape. (f) Dependence of pulse amplitude on inverse
temporal width. Comparison of simulation results (SIM) to a
fit-model based on SRM results (SRM), and limiting case of
a standard NSE (NSE). Details are provided in the text.

tions at fixed initial delay as function of the initial phase
difference of both pulses, finding that none of the post-
collision pulses carries the identity of the KH SW. For
collisions between a KH SW and an independent SW
at large group-velocity mismatches but with both pulses
having similar wavenumbers, a single value of the initial
phase difference was found to exist for which one of the
postcollision pulses has the identity of the KH SW. In
either case, we found that in the parameter range where
the collisions are of out-of-phase type, losses to radiation
are negligible. In the range where in-phase type colli-
sions occur, radiative losses can a make up for ≈ 10%
of the total energy. These findings are consistent with
results obtained for SW collisions in different types of
perturbed NSEs [18, 19]. In this latter range of param-
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eters, two-pulse bound states are formed that persist for
a finite number of collision events before they decay into
separate pulses. While such quasiparticles have been dis-
cussed earlier for the discrete NSE [22, 23], the progres-
sion from bound state formation to decay differs in the
present case: the z-separation between between two suc-
cessive collisions decreases. Similar findings where re-
ported for bright matter-wave solitons of dipolar Bose-
Einstein condensates [28].

Finally, we performed pulse propagation simulations
including absorption to complement the predictions of
the perturbation theory presented in Ref. [36]. In the
range of applicability of the perturbation theory, i.e. for
short propagation distances, we verified the predicted
trend of the pulse amplitude and pulse duration of a
decaying KH SW. Further, in the limit of large propa-
gation distances, a naive model suggested the decaying

pulse to approach the fundamental soliton solution of the
standard NSE. Upon propagation, the decaying pulse re-
mains within the family of solutions characterized by the
velocity given in Eq. (4c).
Our results shed further light on the properties and

interaction dynamics of a family of localized wave solu-
tions encompassing the exact Kruglov-Harvey solitary-
wave solution.
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