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BILINEAR OSCILLATORY FOURIER MULTIPLIERS

TOMOYA KATO, AKIHIKO MIYACHI, NAOTO SHIDA, AND NAOHITO TOMITA

Abstract. For bilinear Fourier multipliers that contain some oscillatory factors, bounded-
ness of the operators between Lebesgue spaces is given including endpoint cases. Sharpness
of the result is also considered.

1. Introduction

Throughout this paper, the letter n denotes a positive integer.
For a bounded function σ = σ(ξ) on R

n, the linear Fourier multiplier operator σ(D) is
defined by

σ(D)f(x) =
1

(2π)n

∫

Rn

eix·ξσ(ξ)f̂(ξ) dξ, x ∈ R
n,

for f ∈ S(Rn), where f̂ denotes the Fourier transform of f . If X is a function space on R
n

equipped with the quasi-norm ‖ · ‖X and there exists c > 0 such that

‖σ(D)f‖X ≤ c‖f‖X for all f ∈ S ∩X,

then we say that σ(D) is bounded on X .
We recall the result for the multiplier of the form

ei|ξ|
s

ζ(ξ)|ξ|m, 0 < s < 1 or 1 < s <∞, m ∈ R,

where ζ is C∞ function on R
n such that ζ(ξ) = 0 for |ξ| ≤ 1 and ζ(ξ) = 1 for |ξ| ≥ 2 (see

also Notation 1.5).

Theorem A ([16, 11]). Let m ∈ R, and let 0 < s < 1 or 1 < s < ∞, and let 1 ≤ p ≤ ∞.

Then the Fourier multiplier operator ei|D|sζ(D)|D|m is bounded on Hp when p < ∞ and on

BMO when p = ∞ if and only if m ≤ −ns|1/p− 1/2|.

Here, Hp, 0 < p ≤ ∞, denotes the Hardy space and the space BMO denotes the space
of bounded mean oscillation. It is known that Hp = Lp if 1 < p ≤ ∞ and H1 →֒ L1. For
details on these function spaces, see, e.g., [17, Chapters III and IV].

Next, we shall consider the bilinear case. For a bounded function σ = σ(ξ, η) on R
2n, the

bilinear Fourier multiplier operator Tσ is defined by

Tσ(f, g)(x) =
1

(2π)2n

∫∫

Rn×Rn

eix·(ξ+η) σ(ξ, η) f̂(ξ) ĝ(η) dξdη, x ∈ R
n,

Date: April 17, 2024.
2020 Mathematics Subject Classification. 42B15, 42B20.
Key words and phrases. Bilinear Fourier multipliers, bilinear oscillatory integral operators.
This work was supported by JSPS KAKENHI, Grant Numbers 23K12995 (Kato), 20H01815 (Miyachi),

23KJ1053 (Shida), and 20K03700 (Tomita).
1

http://arxiv.org/abs/2404.10488v1


2 T. KATO, A. MIYACHI, N. SHIDA, AND N. TOMITA

for f, g ∈ S(Rn). For function spaces on R
n, X , Y and Z equipped with the quasi-norms

‖ · ‖X , ‖ · ‖Y and ‖ · ‖Z , respectively, we say that Tσ is bounded from X × Y to Z, or Tσ is
bounded in X × Y → Z if there exists C > 0 such that

‖Tσ(f, g)‖Z ≤ C‖f‖X‖g‖Y for all f ∈ S ∩X and all g ∈ S ∩ Y.

We define the operator norm ‖Tσ‖X×Y→Z to be the smallest constant C in the above in-
equality.

In this paper, we especially consider the bilinear Fourier multiplier operator T s
σ , 0 < s <∞,

of the following form:

T s
σ(f, g)(x) =

1

(2π)2n

∫∫

Rn×Rn

eix·(ξ+η) ei(|ξ|
s+|η|s) σ(ξ, η) f̂(ξ) ĝ(η) dξdη, x ∈ R

n,

for f, g ∈ S(Rn).
In order to describe the results on the bilinear operators of this type, we define the class

Sm
1,0(R

2n) as follows.

Definition 1.1. For m ∈ R, the class Sm
1,0(R

2n) is defined to be the set of all C∞ functions
σ = σ(ξ, η) on R

2n that satisfy the estimate
∣∣∂αξ ∂βη σ(ξ, η)

∣∣ ≤ Cα,β

(
1 + |ξ|+ |η|

)m−|α|−|β|

for all multi-indices α, β ∈ (N0)
n = ({0, 1, 2, . . . })n.

For the case s = 1, Grafakos–Peloso [6] first gave the boundedness results for such kind
of operators, which were developed in the series of the papers [13, 14, 15] by the authors
S. Rodŕıguez-Lopéz, D. Rule, and W. Staubach. Quite recently, the first, the second and the
last authors of the present paper improve these results in [9]. Although the present paper
is inspired by [9], since our subject concerns with the case s 6= 1, we omit to mention the
details on the results of [13, 14, 15, 9].

For the case s 6= 1, Bergfeldt–Rodŕıguez-Lopéz–Rule–Staubach [1] recently considered the
bilinear operator T s

σ , and proved the following theorem.

Theorem 1.2 ([1, Theorem 1.4 and Remark 1.5]). Let 0 < s < 1 or 1 < s < ∞ and let

1 ≤ p, q ≤ ∞ and 1/r = 1/p+1/q. Suppose that σ ∈ Sm
1,0(R

2n) with m = −ns
(
|1/p− 1/2|+

|1/q−1/2|
)
. Then, T s

σ is bounded from Hp×Hq to Lr, where Lr should be replaced by BMO
when r = ∞.

Here we give a remark on Theorem 1.2. The verbatim statement of [1, Theorem 1.4 and
Remark 1.5] contains the restriction r > n

n+min{1,s}
. However, if we carefully read the paper,

we see that this restriction can be removed. For the reader’s convenience, we shall give an
independent proof of Theorem 1.2 in Section 2.

Now, the purpose of this paper is to give an improvement of Theorem 1.2. To state our
main result, we prepare some notations. We divide the set {1 ≤ p, q ≤ ∞} ⊂ R

2 into the
following six subsets:

I = {2 ≤ p, q ≤ ∞},

II = {1 ≤ p, q ≤ 2},

III = {1 ≤ p ≤ 2 ≤ q ≤ ∞ and 1/p+ 1/q ≤ 1},

IV = {1 ≤ p ≤ 2 ≤ q ≤ ∞ and 1/p+ 1/q ≥ 1},
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V = {1 ≤ q ≤ 2 ≤ p ≤ ∞ and 1/p+ 1/q ≤ 1},

VI = {1 ≤ q ≤ 2 ≤ p ≤ ∞ and 1/p+ 1/q ≥ 1},

which satisfy I ∪ II ∪ III ∪ IV ∪ V ∪ VI = {1 ≤ p, q ≤ ∞} and are assigned into the picture
below.

1/p

1/q

0
1/2

1/2

1

1

I

II

IV

V

VI

III

Using these sets, we define ms(p, q) by

ms(p, q) =





−ns
(
|1
p
− 1

2
|+ |1

q
− 1

2
|
)

for (p, q) ∈ I ∪ II,

−ns(1 − s)
∣∣1
p
− 1

2

∣∣− ns
∣∣1
q
− 1

2

∣∣ for (p, q) ∈ III ∪ VI,

−ns|1
p
− 1

2
| − ns(1− s)|1

q
− 1

2
| for (p, q) ∈ IV ∪V,

when 0 < s < 1,

and

ms(p, q) =





−ns
(
|1
p
− 1

2
|+ |1

q
− 1

2
|
)

for (p, q) ∈ I ∪ II,

−ns
∣∣ 1
q
− 1

2

∣∣ for (p, q) ∈ III ∪ VI,

−ns
∣∣ 1
p
− 1

2

∣∣ for (p, q) ∈ IV ∪V,

when 1 < s <∞.

The main result of this paper reads as follows.

Theorem 1.3. Let 0 < s < 1 or 1 < s < ∞ and let 1 ≤ p, q ≤ ∞ and 1/r = 1/p + 1/q.
Suppose that σ ∈ Sm

1,0(R
2n) with m = ms(p, q). Then T s

σ is bounded from Hp × Hq to Lr,

where Lr should be replaced by BMO when r = ∞.

For 0 < s < 1 or 1 < s < ∞, the number ms(p, q) is always bigger than or equal
to the number −ns(|1/p − 1/2| + |1/q − 1/2|) for all 1 ≤ p, q ≤ ∞. In particular, if
(p, q) ∈ III ∪ IV ∪ V ∪ VI, then ms(p, q) > −ns(|1/p − 1/2| + |1/q − 1/2|) except for p = 2
or q = 2. In this sense, Theorem 1.3 improves Theorem 1.2. Moreover, the number ms(p, q)
defined above is optimal for some cases. More precisely, the following theorem holds true.

Theorem 1.4. Let 0 < s < 1 or 1 < s < ∞, and let m ∈ R, (p, q) ∈ I ∪ II ∪ IV ∪ VI, and
1/r = 1/p + 1/q. Suppose that all T s

σ with σ ∈ Sm
1,0(R

2n) are bounded from Hp × Hq to Lr

with Lr replaced by BMO when r = ∞. Then m ≤ ms(p, q).

It should be emphasized that the optimality for the case (p, q) ∈ I∪ II is already proved in
[1, Section 3.2]. However, we shall also give the proofs of these cases, which will be slightly
different from the one in [1, Section 3.2].
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The rest of this paper is organized as follows. In Section 2, we give a proof of Theorem
1.2. In Section 3, we consider the asymptotic behavior of the Fourier transform of functions
including an oscillator ei|ξ|

s

, which will play important roles in the proofs of Theorems 1.3
and 1.4. In Section 4, we prepare some lemmas which will be used in Section 5. In Section
5, we prove the assertion of Theorem 1.3 in the end point case (p, q) = (1,∞), which implies
Theorem 1.3 with the aid complex interpolation. In Section 6, we prove Theorem 1.4.

We end this section by preparing some notations.

Notation 1.5. We denote by N and N0 the sets of positive integers and nonnegative integers,
respectively.

The Fourier transform and the inverse Fourier transform on R
n are defined by

f̂(ξ) =

∫

Rn

e−iξ·xf(x) dx and (g)∨(x) =
1

(2π)n

∫

Rn

eiξ·xg(ξ) dξ.

We take ϕ, ψ ∈ S(Rn) such that ϕ = 1 on {|ξ| ≤ 1}, suppϕ ⊂ {|ξ| ≤ 2}, suppψ ⊂ {1/2 ≤
|ξ| ≤ 2}, and ϕ+

∑
j∈N ψ(2

−j·) = 1. In what follows, we will write ψ0 = ϕ, ψj = ψ(2−j·) for

j ∈ N, and ϕj = ϕ(2−j·) for j ∈ N0. Then, we see that ϕ0 = ψ0 = ϕ and

k∑

j=0

ψj = ϕk, k ∈ N0.

We define the C∞ function ζ = 1−ϕ. Then we have ∂αζ ∈ C∞
0 (Rn) for |α| ≥ 1, ζ =

∑
j∈N ψj ,

and

ζ = 0 on {|ξ| ≤ 1}, ζ = 1 on {|ξ| ≥ 2}.

For a smooth function θ on R
n and for N ∈ N0, we write ‖θ‖CN = max|α|≤N supξ

∣∣∂αξ θ(ξ)
∣∣.

Lastly, we recall the local Hardy space h1 (for the definition of the local Hardy space h1,
see Goldberg [8]). It is known that H1 →֒ h1 →֒ L1. As proved in [8], all functions in h1 can
be decomposed by so-called atoms, which satisfy that

(1.1) supp f ⊂ {y ∈ R
n | |y − ȳ| ≤ r}, ‖f‖L∞ ≤ r−n,

and, in addition, if r < 1,
∫
f(y) dy = 0.(1.2)

It is easily proved that, if f satisfies only (1.1) with r ≥ 1, then f can be written as a linear
combination of the atoms that satisfy (1.1) with r = 1 (see, e.g., Miyachi–Tomita [12]). In
this paper, a function f on R

n is called an h1-atom of first kind if f satisfies (1.1)-(1.2) for
r < 1, and is called an h1-atom of second kind if f satisfies (1.1) for r = 1. Atoms of both
kinds are simply called h1-atoms.

2. Proof of Theorem 1.2

In this section, we shall give a proof of Theorem 1.2. The ideas of the proof come from [9,
Proof of Theorem 1.3].

For d ∈ N and m ∈ R, the class Ṡm
1,0(R

d) consists of all C∞ functions σ on R
d \ {0} such

that

|∂αξ σ(ξ)| ≤ Cα|ξ|
m−|α|, ξ ∈ R

d \ {0}
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for all multi-indices α ∈ (N0)
d. We use the notation Xr given by

Xr =

{
Lr if 0 < r <∞,

BMO if r = ∞.
(2.1)

Now, we recall the boundedness result for the bilinear Fourier multiplier operator Tσ with
σ ∈ Ṡ0

1,0(R
2n). The following theorem is due to Coifman-Meyer [3, 4], Kenig-Stein [10],

Grafakos-Kalton [5], and Grafakos-Torres [7].

Theorem 2.1. Let 0 < p, q ≤ ∞ and 1/r = 1/p + 1/q. If σ ∈ Ṡ0
1,0(R

2n), then the bilinear

Fourier multiplier operator Tσ is bounded from Hp ×Hq to Xr.

We will use the following two propositions, whose proofs can be found in [9, Section 6].

Proposition 2.2 ([9, Proposition 2.3]). Let m1, m2 ≤ 0, m = m1 + m2, a0 ∈ Ṡm
1,0(R

2n),

a1 ∈ Ṡ−m1
1,0 (Rn), a2 ∈ Ṡ−m2

1,0 (Rn), and σ(ξ, η) = a0(ξ, η)a1(ξ)a2(η). Then the bilinear Fourier

multiplier operator Tσ is bounded in




Hp ×Hq → Lr, 0 < p, q <∞, 1/r = 1/p+ 1/q,

BMO ×Hq → Lq, 0 < q <∞, if m1 < 0,

Hp ×BMO → Lp, 0 < p <∞, if m2 < 0,

BMO ×BMO → BMO if m1, m2 < 0.

Proposition 2.3 ([9, Proposition 2.4]). Let m1 ≤ 0, a0 ∈ Ṡm1
1,0 (R

2n), a1 ∈ Ṡ−m1
1,0 (Rn), and

let σ(ξ, η) = a0(ξ, η)a1(ξ). Then the bilinear Fourier multiplier operator Tσ is bounded in
{
Hp × L∞ → Lp, 0 < p <∞,

BMO × L∞ → BMO if m1 < 0.

Proof of Theorem 1.2. Let 0 < s < 1 or s > 1, and let σ ∈ Sm
1,0(R

2n), m = −ns(|1/p −
1/2| + |1/q − 1/2|). We write m1 = −ns|1/p − 1/2| and m2 = −ns|1/q − 1/2|. Using the
functions ζ and ϕ given in Notation 1.5, we decompose the bilinear multiplier τ defined by
τ(ξ, η) = ei|ξ|

s

ei|η|
s

σ(ξ, η) as

τ(ξ, η) = τ1(ξ, η) + τ2(ξ, η) + τ3(ξ, η) + τ4(ξ, η),

τ1(ξ, η) = ei|ξ|
s

ϕ(ξ)ei|η|
s

ϕ(η)σ(ξ, η), τ2(ξ, η) = ei|ξ|
s

ζ(ξ)ei|η|
s

ϕ(η)σ(ξ, η),

τ3(ξ, η) = ei|ξ|
s

ϕ(ξ)ei|η|
s

ζ(η)σ(ξ, η), τ4(ξ, η) = ei|ξ|
s

ζ(ξ)ei|η|
s

ζ(η)σ(ξ, η).

We show that each Tτi , i = 1, 2, 3, 4, is bounded from Hp × Hq to Xr, 1 ≤ p, q ≤ ∞,
1/r = 1/p+ 1/q.

We begin with the estimate of Tτ1 . Since (ei|ξ|
s

ϕ(ξ))∨ ∈ L1(Rn) (see (4.1) and (4.8)), the
Fourier multiplier operator ei|D|sϕ(D) is bounded on Hp, 1 ≤ p ≤ ∞. Since m ≤ 0, we

have σ ∈ Sm
1,0(R

2n) ⊂ S0
1,0(R

2n) ⊂ Ṡ0
1,0(R

2n), and hence by Theorem 2.1, Tσ is bounded from
Hp ×Hq to Xr. Thus, the desired boundedness of Tτ1 is given.

Next, we consider the estimate of Tτ2 . We write

τ2(ξ, η) = ei|ξ|
s

ζ(ξ)|ξ|m1 × ei|η|
s

ϕ(η)× |ξ|−m1σ(ξ, η).

By Theorem A, the Fourier multiplier operator ei|D|sζ(D)|D|m1 is bounded on Hp if 1 ≤
p < ∞, and on BMO if p = ∞. As we showed above, ei|D|sϕ(D) is bounded on Hq, 1 ≤
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q ≤ ∞. On the other hand, since |ξ|−m1 ∈ Ṡ−m1
1,0 (Rn) and σ ∈ Sm

1,0(R
2n) ⊂ Ṡm1

1,0 (R
2n), from

Propositions 2.2 and 2.3, it follows that the bilinear Fourier multiplier operator corresponding
to |ξ|−m1σ(ξ, η) is bounded in Hp ×Hq → Xr, with H

p replaced by BMO if p = ∞ (notice
that m1 < 0 if p = ∞). Thus, combining these boundedness, we obtain the Hp ×Hq → Xr

boundedness of Tτ2 .
In the same way as above, we see that Tτ3 is bounded from Hp ×Hq to Xr.
We finally prove that Tτ4 is bounded from Hp×Hq to Xr. The multiplier τ4 can be written

as

τ4(ξ, η) = ei|ξ|
s

ζ(ξ)|ξ|m1 × ei|η|
s

ζ(η)|η|m2 × |ξ|−m1|η|−m2σ(ξ, η).

Since σ ∈ Sm
1,0(R

2n) ⊂ Ṡm
1,0(R

2n), |ξ|−m1 ∈ Ṡ−m1
1,0 and |η|−m2 ∈ Ṡ−m2

1,0 , it follows from Propo-
sition 2.2 that the bilinear Fourier multiplier |ξ|−m1|η|−m2σ(ξ, η) gives rise to a bounded
operator in Hp × Hq → Xr with Hp or Hq replaced by BMO if p = ∞ or q = ∞, respec-
tively. Here, we notice that m1 < 0 if p = ∞, and m2 < 0 if q = ∞, respectively. Hence,
combining this with Theorem A, we obtain the Hp × Hq → Xr boundedness of Tτ4 . This
completes the proof of Theorem 1.2. �

3. Fourier transform of ei|ξ|
s

ψ(2−jξ)

In this section, we investigate the asymptotic behavior of the Fourier transform of the
oscillator ei|ξ|

s

multiplied by Littlewood-Paley’s dyadic decompositions. This property is one
of the keys to proving our main theorem.

Proposition 3.1. Let 0 < s < 1 or 1 < s <∞. Suppose that ψ ∈ S(Rn) satisfies suppψ ⊂
{1/2 ≤ |ξ| ≤ 2}. Then, for any N1, N2, N3 ≥ 0, there exist c = c(n, s,N1, N2, N3) > 0 and

M =M(n, s,N1, N2, N3) ∈ N such that

(3.1)
∣∣∣
(
ei|ξ|

s

ψ(2−jξ)
)∨

(x)
∣∣∣ ≤ c ‖ψ‖CM





2−jN1, if 2j(1−s)|x| < a,

2j(n−
ns
2
), if a ≤ 2j(1−s)|x| ≤ b,

2−jN2|x|−N3 , if 2j(1−s)|x| > b,

for j ∈ N0, where a = s4−|1−s| and b = s4|1−s|. If in addition ψ(ξ) 6= 0 for 2/3 ≤ |ξ| ≤ 3/2,
then there exist c′ = c′(n, s, ψ) > 0 and j0 = j0(n, s, ψ) ∈ N such that

1

c′
2j(n−

ns
2
) ≤

∣∣∣
(
ei|ξ|

s

ψ(2−jξ)
)∨

(x)
∣∣∣ ≤ c′2j(n−

ns
2
)

if a′ ≤ 2j(1−s)|x| ≤ b′ and j > j0,
(3.2)

where a′ = s(3/2)−|1−s| and b′ = s(3/2)|1−s|.

To prove this proposition, we first observe that the determinant and the signature (=(the
number of positive eigenvalues) −(the number of negative eigenvalues)) of the matrix

Hess
(
|ξ|s

)
=

(
∂ξi∂ξj |ξ|

s
)
1≤i,j≤n

are given by

(3.3) detHess
(
|ξ|s

)
= sn(s− 1)|ξ|(s−2)n

and

(3.4) signHess
(
|ξ|s

)
=

{
n− 2 if 0 < s < 1,

n if s > 1.
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In fact this is a simple computation. We have

∂ξi∂ξj |ξ|
s = s|ξ|s−2δi,j + s(s− 2)|ξ|s−2 ξi

|ξ|

ξj
|ξ|
.

Hence if we take an orthogonal matrix T = (ti,j) that satisfies

n∑

j=1

ti,j
ξj
|ξ|

=

{
1 for i = 1,

0 for i = 2, . . . , n,

then T (Hess(|ξ|s))T−1 is equal to the diagonal matrix with the diagonal entries

s(s− 1)|ξ|s−2, s|ξ|s−2, . . . , s|ξ|s−2.

From this we obtain (3.3) and (3.4).

Proof of Proposition 3.1. By a simple change of variables we can write

Hj(x) =
(
ei|ξ|

s

ψ(2−jξ)
)∨

(x) =
2jn

(2π)n

∫

Rn

ei2
jsφj(x,η)ψ(η) dη

with

φj(x, η) = 2j(1−s)x · η + |η|s.

The gradient of the phase function φj(x, η) is given by

gradη φj(x, η) = 2j(1−s)x+ s|η|s−1 η

|η|
.

For each x ∈ R
n\{0}, there exists a unique η0 = η0(x) ∈ R

n\{0} such that gradη φj(x, η)
∣∣
η=η0

=

0. In fact, η0 is determined by the equations

2j(1−s)|x| = s|η0|
s−1, −

x

|x|
=

η0
|η0|

.

If η0 is in a neighborhood of suppψ then we can use the stationary phase method to obtain
the asymptotic behavior of Hj(x). If η0 is outside a neighborhood of suppψ then we can
deduce the rapid decay of Hj(x) by integration by parts. To be precise, we divide the
argument into several cases.

We first consider the case 0 < s < 1.
Case I: 0 < s < 1 and 2j(1−s)|x| < s4s−1. Then |η0| > 4. In this case, for η ∈ suppψ ⊂

{1/2 ≤ |η| ≤ 2}, we have

∣∣gradηφj(x, η)
∣∣ =

∣∣∣∣2
j(1−s)x+ s|η|s−1 η

|η|

∣∣∣∣ ≥ −2j(1−s)|x|+ s2s−1 > s(2s−1 − 4s−1)

and

(3.5)
∣∣∂αη φj(x, η)

∣∣ =
∣∣∂αη |η|s

∣∣ ≤ c(n, s, α) for |α| ≥ 2.

Thus integration by parts gives
∣∣Hj(x)

∣∣ ≤ c(n, s,N)‖ψ‖CN2jn(2js)−N

for each N ∈ N. Since N can be taken arbitrarily large, the desired estimate of Hj(x) in this
case follows.
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Case II: 0 < s < 1 and 2j(1−s)|x| > s4−(s−1). In this case, |η0| < 1/4, and, for η ∈ suppψ ⊂
{1/2 ≤ |η| ≤ 2}, we have

∣∣gradηφj(x, η)
∣∣ =

∣∣∣∣2
j(1−s)x+ s|η|s−1 η

|η|

∣∣∣∣ ≥ 2j(1−s)|x| − s2−(s−1) > 2j(1−s)|x|(1− 2s−1)

and we also have (3.5). Thus integration by parts gives
∣∣Hj(x)

∣∣ ≤ c(n, s,N)‖ψ‖CN2jn(2j|x|)−N

for each N ∈ N. Since N can be taken arbitrarily large, the desired estimate of Hj(x) in this
case follows.

Case III: 0 < s < 1 and s4s−1 ≤ 2j(1−s)|x| ≤ s4−(s−1). In this case, 1/4 ≤ |η0| ≤ 4. By
(3.3) and (3.4), we have

(3.6) det Hessη
(
φj(x, η)

)
= sn(s− 1)|η|(s−2)n < 0

and

signHessη
(
φj(x, η)

)
= n− 2.

Also for each multi-index α there exists c(n, s, α) such that

(3.7)
∣∣∂αη φj(x, η)

∣∣ =
∣∣∂αη

(
2j(1−s)x · η + |η|s

)∣∣ ≤ c(n, s, α) for
1

10
< |η| < 10.

Notice that the constant c(n, s, α) can be taken independent of j and x so long as they are
in the range of Case III. Thus by using the stationary phase method (see, for example, [17,
Chapter VIII, Section 2.3]), we obtain

Hj(x) =(2π)−
n
2 exp

(
i|x|

s
s−1 s

−s
s−1 (1− s)

)(
sn(1− s)|η0|

(s−2)n
)− 1

2 e
πi
4
(n−2)

× ψ(η0)2
j(n−ns

2
) +O

(
2j(n−

ns
2
−s)

)
.

(3.8)

Here notice that the oscillating factor exp(· · · ) comes from

2jsφj(x, η0) = |x|
s

s−1 s
−s
s−1 (1− s).

Also notice that, by virtue of (3.6) and (3.7), the O-estimate in (3.8) holds uniformly for
(j, x) in the range of Case III and for ψ satisfying suppψ ⊂ {1/2 ≤ |ξ| ≤ 2} and ‖ψ‖CM ≤ 1
with a sufficiently large M = M(n). From (3.8) the estimate of Hj(x) in (3.1) for Case III
follows.

The estimate (3.2) also follows from (3.8) since 2/3 ≤ |η0| ≤ 3/2 if s(3/2)s−1 ≤ 2j(1−s)|x| ≤
s(2/3)s−1.

Next we consider the case s > 1. Since the argument needs only slight modification of the
case 0 < s < 1, we shall only indicate necessary modifications.

Case I′: s > 1 and 2j(1−s)|x| < s4−(s−1). In this case, |η0| < 1/4 and
∣∣gradηφj(x, η)

∣∣ > s(2−(s−1) − 4−(s−1)).

for η ∈ suppψ. Integration by parts yields the desired estimate.
Case II′: s > 1 and 2j(1−s)|x| > s4s−1. In this case, |η0| > 4 and

∣∣gradηφj(x, η)
∣∣ > 2j(1−s)|x|(1− 2−(s−1))

for η ∈ suppψ. Integration by parts yields the desired estimate.
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Case III′: s > 1 and s4−(s−1) ≤ 2j(1−s)|x| ≤ s4s−1. In this case, 1/4 ≤ |η0| ≤ 4. By (3.3)
and (3.4), we have

det Hessη
(
φj(x, η)

)
= sn(s− 1)|η|(s−2)n > 0

and

signHessη
(
φj(x, η)

)
= n.

The estimate (3.7) also holds. By the stationary phase method, we obtain

Hj(x) =(2π)−
n
2 exp

(
i|x|

s
s−1 s

−s
s−1 (1− s)

)(
sn(s− 1)|η0|

(s−2)n
)− 1

2 e
πi
4
n

× ψ(η0)2
j(n−ns

2
) +O

(
2j(n−

ns
2
−s)

)
,

from which the desired estimates follow. This completes the proof of Proposition 3.1. �

Corollary 3.2. Suppose that θ ∈ S(Rn) satisfies supp θ ⊂ {|ξ| ≤ 2} and the function ζ is

as in Notation 1.5. Then the following hold.

(1) Let 0 < s < 1 and N ≥ 0. Then, there exist c > 0 and M ∈ N such that

∣∣∣
(
ei|ξ|

s

ζ(ξ)θ(2−jξ)
)∨

(x)
∣∣∣ ≤ c ‖θ‖CM

{
|x|−

n
2
− n

2(1−s) , if |x| ≤ 1,

|x|−N , if |x| > 1,

for all j ∈ N0.

(2) Let 1 < s <∞and N ≥ 0. Then, there exist c > 0 and M ∈ N such that

∣∣∣
(
ei|ξ|

s

ζ(ξ)θ(2−jξ)
)∨

(x)
∣∣∣ ≤ c ‖θ‖CM

{(
1 + |x|

)−n
2
+ n

2(s−1) , if |x| ≤ s8s−1 2j(s−1),

|x|−N , if |x| > s8s−1 2j(s−1),

for all j ∈ N0.

Proof. We first put Kj = (ei|ξ|
s

ζ(ξ)θ(2−jξ))∨ and decompose Kj as

Kj(x) =

j+1∑

k=1

Kk,j(x) with Kk,j(x) =
(
ei|ξ|

s

ψ(2−kξ)θ(2−jξ)
)∨

(x).(3.9)

Here, we notice from (3.1) of Proposition 3.1 that

(3.10)
∣∣Kk,j(x)

∣∣ . ‖ψ(·) θ(2k−j·)‖CM





2−kN1 on Ω1
k := {2k(1−s)|x| ≤ a},

2k(n−
ns
2
) on Ω2

k := {a < 2k(1−s)|x| ≤ b},

2−kN2|x|−N3 on Ω3
k := {2k(1−s)|x| > b},

where a = s4−|1−s| and b = s4|1−s|. For 1 ≤ k ≤ j + 1, ‖ψ(·) θ(2k−j·)‖CM . ‖θ‖CM . Hence
Kj is estimated as

∣∣Kj(x)
∣∣ . ‖θ‖CM

( j+1∑

k=1

2−kN11Ω1
k
(x) +

j+1∑

k=1

2k(n−
ns
2
)1Ω2

k
(x) +

j+1∑

k=1

2−kN2|x|−N31Ω3
k
(x)

)
.

Hence, in the following argument, we shall estimate the above three sums.
(1) Let 0 < s < 1 and write L = n

2
+ n

2(1−s)
. To prove the estimate mentioned in (1), we

first prove that

|x|L
∣∣Kj(x)

∣∣ . ‖θ‖CM , |x| ≤ 1.
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We assume |x| ≤ 1. For the sum with 1Ω1
k
(x), we have for N1 > 0,

|x|L
j+1∑

k=1

2−kN11Ω1
k
(x) =

j+1∑

k=1

(
2k(1−s)|x|

)L
2−kL(1−s) 2−kN11Ω1

k
(x) . 1.

For the sum with 1Ω2
k
(x), since −L(1− s) + (n− ns

2
) = 0 and overlaps of Ω2

k are finite,

|x|L
j+1∑

k=1

2k(n−
ns
2
)1Ω2

k
(x) =

j+1∑

k=1

(
2k(1−s)|x|

)L
2−kL(1−s) 2k(n−

ns
2
)1Ω2

k
(x) ≈

j+1∑

k=1

1Ω2
k
(x) . 1.

For the sum with 1Ω3
k
(x), we have by choosing N3 > L and N2 > (1− s)(N3 − L),

|x|L
j+1∑

k=1

2−kN2|x|−N31Ω3
k
(x) =

j+1∑

k=1

(
2k(1−s)|x|

)L−N3 2k(N3−L)(1−s) 2−kN21Ω3
k
(x) . 1.

Combining the above inequalities, we obtain the assertion (1) for the case |x| ≤ 1.
We next prove that

|x|N
∣∣Kj(x)

∣∣ . ‖θ‖CM , |x| > 1,

which can be shown by a similar way. In this case, the sum with respect to 1Ω1
k
vanishes.

Replacing L by N in the above, and taking N2, N3 > 0 satisfying that N3 > N and N2 >
(1 − s)(N3 − N), we have the desired estimate for the sum with respect to 1Ω3

k
. For the

sum with respect to 1Ω2
k
, since |x| > 1 gives 2k(1−s) < b on Ω2

k, the cardinality of k is finite.

Furthermore, since 1 < |x| ≤ 2−(1−s)b if x ∈ Ω2
k ∩ {|x| > 1}, k ≥ 1, it follows that |x|N ≈ 1

on Ω2
k ∩ {|x| > 1}. Thus, we obtain the assertion (1) for |x| > 1.

(2) In the case 1 < s < ∞, we first observe that, if |x| ≤ s2−(s−1) = a2s−1 or |x| >
s8s−1 2j(s−1) = b2(j+1)(s−1), then |x| ≤ a2k(s−1) or |x| > b2k(s−1) holds for all 1 ≤ k ≤ j + 1,
that is, x ∈ Ω1

k or x ∈ Ω3
k. By (3.9) and (3.10), this implies that for any N1 > 0

∣∣Kj(x)
∣∣ . ‖θ‖CM

j+1∑

k=1

2−kN1 . ‖θ‖CM , |x| ≤ s2−(s−1),

and, for any N2 > 0 and N3 ≥ 0,

∣∣Kj(x)
∣∣ . ‖θ‖CM

j+1∑

k=1

2−kN2|x|−N3 . ‖θ‖CM |x|−N3, |x| > s8s−1 2j(s−1).

Hence, to obtain the desired result, it suffices to prove that

|x|L
∣∣Kj(x)

∣∣ . ‖θ‖CM on Ωj := {s2−(s−1) < |x| ≤ s8s−1 2j(s−1)},

where, we wrote L = n
2
− n

2(s−1)
. Here, we note that L ≤ 0 for 1 < s ≤ 2 and L ≥ 0 for

2 ≤ s < ∞ and write L+ = max{0, L}. Assume x ∈ Ωj . For the sum with 1Ω1
k
(x), we have

for N1 > L+(s− 1)

|x|L
j+1∑

k=1

2−kN11Ω1
k
(x) .

j+1∑

k=1

(
2k(1−s)|x|

)L+
2−kL+(1−s) 2−kN11Ω1

k
(x) . 1.
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For the sum with 1Ω2
k
(x), since −L(1− s) + (n− ns

2
) = 0 and overlaps of Ω2

k are finite,

|x|L
j+1∑

k=1

2k(n−
ns
2
)1Ω2

k
(x) =

j+1∑

k=1

(
2k(1−s)|x|

)L
2−kL(1−s) 2k(n−

ns
2
)1Ω2

k
(x) ≈

j+1∑

k=1

1Ω2
k
(x) . 1.

For the sum with 1Ω3
k
(x), we have by choosing N2 > 0 and N3 > L+

|x|L
j+1∑

k=1

2−kN2|x|−N31Ω3
k
(x) .

j+1∑

k=1

(
2k(1−s)|x|

)L+−N3
2k(N3−L+)(1−s) 2−kN21Ω3

k
(x) . 1.

Therefore we complete the proof of the assertion (2). �

4. Lemmas

In this section, we prepare some lemmas for our main theorems. Let θ ∈ S(Rn) satisfy
supp θ ⊂ {|ξ| ≤ 2} and ζ be as in Notation 1.5. Then, we define, for j ∈ N,

Sjf(x) =
(
ei|ξ|

s

ζ(ξ)θ(2−jξ) f̂(ξ)
)∨

(x),

T f(x) =
(
ei|ξ|

s

θ(ξ)f̂(ξ)
)∨

(x),

which can be represented as follows:

Sjf(x) = Kj ∗ f(x) with Kj(x) =
(
ei|ξ|

s

ζ(ξ)θ(2−jξ)
)∨

(x),

T f(x) = L ∗ f(x) with L(x) =
(
ei|ξ|

s

θ(ξ)
)∨

(x).
(4.1)

Notice that the kernel Kj already appeared in Corollary 3.2.
In the succeeding subsections, we will give several inequalities for the operators Sj and

T . Some of the inequalities are concerned with h1-atoms. Recall that, in our definition of
h1-atom, the radius r of the supporting ball of an h1-atom satisfies r ≤ 1 (see Notation 1.5).

4.1. Inequalities for s 6= 1. In this subsection, we show some inequalities which will be
used for proving the boundedness in both cases s < 1 and s > 1.

Lemma 4.1. Let 0 < s < 1 or 1 < s < ∞ and let 1 ≤ p ≤ ∞. Then, there exist c > 0 and

M ∈ N such that

‖Sjf‖Lp(Rn) ≤ c (2j)sn|
1
p
− 1

2
|‖θ‖CM‖f‖Lp(Rn)

for all j ∈ N0.

Proof. This lemma follows from the trivial L2-boundedness, the L1-boundedness and L∞-
boundedness with the aid of complex interpolation. The L1 and L∞-boundedness follow
from the kernel estimate below:

(4.2)
∥∥Kj

∥∥
L1(Rn)

. ‖θ‖CM (2j)
sn
2

for some constant M ∈ N. This inequality is derived from the following fact: for N ≥ 0 with
{
0 ≤ N < n

2(1−s)
, if 0 < s < 1,

0 ≤ N <∞, if 1 < s <∞,
(4.3)
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the kernel Kj of Sj satisfies that∥∥∥
(
1 + 2j(1−s)|x|

)N
Kj

∥∥∥
L2(Rn)

. ‖θ‖CM (2j)
n
2 .(4.4)

In fact, choosing N ≥ 0 that satisfies{
n
2
< N < n

2(1−s)
, if 0 < s < 1,

n
2
< N <∞, if 1 < s <∞,

(notice that n
2
< n

2(1−s)
if 0 < s < 1), and using Cauchy–Schwarz inequality and (4.4), we

obtain
∥∥Kj

∥∥
L1 ≤

∥∥∥
(
1 + 2j(1−s)|x|

)−N
∥∥∥
L2

∥∥∥
(
1 + 2j(1−s)|x|

)N
Kj

∥∥∥
L2

. ‖θ‖CM (2j)−
(1−s)n

2 (2j)
n
2 = ‖θ‖CM (2j)

sn
2 .

Although both (4.2) and (4.4) can be shown by the use of Corollary 3.2, here we shall give
an elementary proof of (4.4), which may be of independent interest. We will also use the
inequality (4.4) in the proof of the next lemma.

Hence, we move on proving that (4.4) holds for N ≥ 0 satisfying (4.3). To this end, it is
sufficient to show that∥∥(2j(1−s)|x|

)N
Kj

∥∥
L2(Rn)

. ‖θ‖CM (2j)
n
2 , if N ≥ 0 satisfies (4.3).(4.5)

The case N = 0 obviously follows from Plancherel’s theorem, and thus, we shall assume
that N > 0. We recall the decomposition (3.9):

Kj(x) =

j+1∑

k=1

Kk,j(x) with Kk,j(x) =
(
ei|ξ|

s

ψ(2−kξ)θ(2−jξ)
)∨

(x).

A simple calculation gives that for α ∈ (N0)
n and 1 ≤ k ≤ j + 1

∣∣∣∂αξ
(
ei|ξ|

s

ψ(2−kξ)θ(2−jξ)
)∣∣∣ . ‖θ‖C|α|(2k)(s−1)|α|1{2k−1≤|ξ|≤2k+1},

and thus, by Plancherel’s theorem,
∥∥xαKk,j(x)

∥∥
L2 . ‖θ‖C|α|(2k)(s−1)|α| (2k)

n
2 .

Here, take 0 < t < 1 and γ ∈ N satisfying N = tγ > 0. Then, by Hölder’s inequality
∥∥|x|NKk,j

∥∥
L2 =

∥∥∥
(
|x|γ|Kk,j|

)t ∣∣Kk,j

∣∣1−t
∥∥∥
L2

.
∑

|α|=γ

∥∥xαKk,j

∥∥t

L2

∥∥Kk,j

∥∥1−t

L2 . ‖θ‖Cγ (2k)(s−1)N (2k)
n
2 .

Therefore, since the condition (4.3) especially means n
2
+(s−1)N > 0 in the case 0 < s < 1,

∥∥|x|NKj

∥∥
L2 ≤

j+1∑

k=1

∥∥|x|NKk,j

∥∥
L2 . ‖θ‖Cγ

j+1∑

k=1

(2k)(s−1)N (2k)
n
2

≈ ‖θ‖Cγ (2j)(s−1)N (2j)
n
2 .

This implies (4.5), and thus the proof is completed. �

Lemma 4.2. Let 0 < s < 1 or 1 < s < ∞ and let 0 ≤ t ≤ 1. Suppose f is an h1-atom
supported on a ball of radius r centered at the origin in R

n. Then the following hold.
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(1) There exists c > 0 depending only on n such that
∥∥Sjf

∥∥
L2(Rn)

≤ c ‖θ‖C0 (2j)
n
2 min

{
(2jr)t, (2jr)−

nt
2

}

for all j ∈ N0.

(2) If A ≥ 2r and if N satisfies that
{
0 ≤ N < n

2(1−s)
, if 0 < s < 1,

0 ≤ N <∞, if 1 < s <∞,

then
∥∥Sjf(x)

∥∥
L2(A≤|x|≤2A)

≤ c ‖θ‖CM (2j)
n
2

(
2j(1−s)A

)−N(1−t)
min

{
(2jr)t, (2jr)−

nt
2

}

for all j ∈ N0, where the constants c > 0 and M ∈ N depend only on n, s, and N .

Proof. (1) We first observe that, by Plancherel’s theorem,

‖Sjf‖L2 = ‖Kj ∗ f‖L2 ≤ ‖Kj‖L2‖f‖L1 . (2j)
n
2 ‖θ‖C0.(4.6)

We next show that

‖Sjf‖L2 . (2j)
n
2 min

{
2jr, (2jr)−

n
2

}
‖θ‖C0(4.7)

holds for all h1-atoms f . If f is an h1-atom of second kind (i.e., r = 1), then, by Plancherel’s
theorem, ‖Sjf‖L2 . ‖θ‖C0 , which is identical with (4.7) for r = 1. We shall next consider
the case that f is an h1-atom of first kind (i.e., r < 1). By Plancherel’s theorem,

‖Sjf‖L2 ≤ ‖θ‖C0‖f‖L2(Rn) . ‖θ‖C0 r−
n
2 = ‖θ‖C0 (2j)

n
2 (2jr)−

n
2 .

Moreover, since f is an h1-atom of first kind and is supported on a ball centered at the
origin, Taylor’s theorem with the moment condition

∫
f = 0 yields that

∥∥Sjf
∥∥
L2 =

∥∥∥
∑

|α|=1

∫

|y|≤r
0<t<1

(
ei|ξ|

s

ξα ζ(ξ)θ(2−jξ)
)∨

(x− ty) yα f(y) dydt
∥∥∥
L2
x

≤
∑

|α|=1

∥∥∥
(
ei|ξ|

s

ξα ζ(ξ)θ(2−jξ)
)∨

(x)
∥∥∥
L2
x

∫

|y|≤r

|y| |f(y)| dy

. ‖θ‖C0 (2j)
n
2 (2jr),

where, in the last inequality, we used Plancherel’s theorem. These two estimates imply (4.7).
Finally, interpolating (4.6) and (4.7), we have for 0 ≤ t ≤ 1

‖Sjf‖L2 =
(
‖Sjf‖L2

)1−t(
‖Sjf‖L2

)t

.
(
(2j)

n
2 ‖θ‖C0

)1−t(
(2j)

n
2 min

{
2jr, (2jr)−

n
2

}
‖θ‖C0

)t

= (2j)
n
2 min

{
(2jr)t, (2jr)−

nt
2

}
‖θ‖C0,

which completes the proof of the assertion (1).
(2) We observe that, if A ≥ 2r, A ≤ |x| ≤ 2A, and |y| ≤ r ≤ A

2
, then |x− y| ≈ |x| ≈ A.

Since f is an h1-atom supported on a ball centered at the origin, this observation yields that
∥∥Sjf(x)

∥∥
L2(A≤|x|≤2A)

=
∥∥∥
(
2j(1−s)|x|

)−N(
2j(1−s)|x|

)N
Kj ∗ f(x)

∥∥∥
L2(A≤|x|≤2A)
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.
(
2j(1−s)A

)−N
∥∥∥
∫

|y|≤r

(
2j(1−s)|x− y|

)N ∣∣Kj(x− y)
∣∣ |f(y)| dy

∥∥∥
L2
x(R

n)

.
(
2j(1−s)A

)−N
∥∥∥
(
2j(1−s)|x|

)N
Kj(x)

∥∥∥
L2
.

Here, we recall (4.5). Since the assumption in this assertion is identical with (4.3), by
utilizing (4.5), we obtain

∥∥Sjf(x)
∥∥
L2(A≤|x|≤2A)

. ‖θ‖CM (2j)
n
2

(
2j(1−s)A

)−N

for some constant M ∈ N. Also, the inequality (4.7) obviously holds if L2(Rn) is replaced
by L2(A ≤ |x| ≤ 2A). Therefore, interpolating these two inequalities, we have for 0 ≤ t ≤ 1

∥∥Sjf(x)
∥∥
L2(A≤|x|≤2A)

=
(
‖Sjf(x)‖L2(A≤|x|≤2A)

)1−t(
‖Sjf(x)‖L2(A≤|x|≤2A)

)t

.
(
‖θ‖CM (2j)

n
2

(
2j(1−s)A

)−N
)1−t(

‖θ‖C0 (2j)
n
2 min

{
2jr, (2jr)−

n
2

})t

≤ ‖θ‖CM (2j)
n
2

(
2j(1−s)A

)−N(1−t)
min

{
(2jr)t, (2jr)−

nt
2

}
,

which completes the proof of the assertion (2). �

Lemma 4.3. Let 0 < s < ∞. Then there exist c > 0 and M ∈ N depending only on n and

s such that the following hold.

(1) If 1 ≤ p ≤ q ≤ ∞, then

‖Tf‖Lq(Rn) ≤ c ‖θ‖CM‖f‖Lp(Rn).

(2) If f is an h1-atom supported on a ball of radius r centered at the origin in R
n and if

A ≥ 2r, then

‖Tf‖L∞(A≤|x|≤2A) ≤ cA−(n+s)‖θ‖CM .

Proof. Before beginning with proofs of the assertions, we show that the kernel L defined in
(4.1) satisfies the following inequality: there exists M ∈ N such that

∣∣L(x)
∣∣ . ‖θ‖CM (1 + |x|)−(n+s).(4.8)

Although the inequality (4.8) is a well-known fact, for the sake of a self-contained proof, we
revisit a proof.

The case for |x| ≤ 1 is simple, and so we will consider the case |x| ≥ 1. Since ei|ξ|
s

− 1 =

i|ξ|s
∫ 1

0
eit|ξ|

s

dt, the kernel L can be expressed by

L(x) =

∫

|ξ|≤2
0<t<1

eix·ξeit|ξ|
s (
i|ξ|s

)
θ(ξ) dξdt+

∫

|ξ|≤2

eix·ξθ(ξ) dξ.

Integration by parts yields that the absolute value of the second integral is bounded by
‖θ‖CM (1 + |x|)−M for any M ∈ N0, and thus, in the following, we shall consider the first
integral. Using a Littlewood–Paley partition of unity on R

n, {ψ(2−k·)}k∈Z, since supp θ ⊂
{|ξ| ≤ 2}, we can decompose the first integral into

∑

k≤1

Ik(x) with Ik(x) :=

∫

2k−1≤|ξ|≤2k+1

0<t<1

eix·ξeit|ξ|
s (
i|ξ|s

)
ψ(2−kξ)θ(ξ) dξdt.
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Here, we have for α ∈ (N0)
n and k ≤ 1

∣∣∣∂αξ
(
eit|ξ|

s (
i|ξ|s

)
ψ(2−kξ)θ(ξ)

)∣∣∣ . ‖θ‖C|α|(2k)s−|α|1{2k−1≤|ξ|≤2k+1}, 0 ≤ t ≤ 1,

which gives that for M ∈ N0

∣∣Ik(x)
∣∣ . ‖θ‖CM ×

{
(2k)n+s = |x|−(n+s) (2k|x|)n+s,

|x|−M(2k)−M+n+s = |x|−(n+s) (2k|x|)−M+n+s.

Therefore, by choosing M > n + s,
∑

k≤1

|Ik(x)| . ‖θ‖CM |x|−(n+s)
∑

k≤1

min{(2k|x|)n+s, (2k|x|)−M+n+s} ≈ ‖θ‖CM |x|−(n+s),

which completes the proof of (4.8). Now, we actually prove the assertions (1) and (2).

(1) Take a function θ̃ ∈ S(Rn) satisfying that θ̃ = 1 on {|ξ| ≤ 2} and supp θ̃ ⊂ {|ξ| ≤ 3}.
Then, we observe that

Tf(x) = T (θ̃(D)f)(x)

and also from (4.8) that L, the kernel of T , is in L1(Rn) and ‖L‖L1 . ‖θ‖CM . Therefore, we
see that

‖Tf‖Lq . ‖θ‖CM‖θ̃(D)f‖Lq

. ‖θ‖CM‖θ̃(D)f‖Lp . ‖θ‖CM‖f‖Lp,

where, in the second inequality, we used Nikol’skij’s inequality (see, e.g., [18, Section 1.3.2,
Remark 1]). This completes the proof of the assertion (1).

(2) We first observe that, if A ≥ 2r, A ≤ |x| ≤ 2A, and |y| ≤ r ≤ A
2
, then |x−y| ≈ |x| ≈ A.

By (4.8), we have for A ≤ |x| ≤ 2A

∣∣Tf(x)
∣∣ ≤

∫

|y|≤r

∣∣L(x− y)
∣∣ |f(y)| dy . ‖θ‖CM

∫

|y|≤r

|x− y|−(n+s)|f(y)| dy

. A−(n+s)‖θ‖CM ,

which implies the assertion (2). �

4.2. Inequalities for s < 1. In this subsection, we show some inequalities which will be
used for proving the boundedness for s < 1.

Lemma 4.4. Let 0 < s < 1. Then there exist c > 0 and M ∈ N depending only on n and s
such that the following hold.

(1) If f is an h1-atom supported on a ball centered at the origin in R
n, then

∥∥Sjf(x)
∥∥
L1(|x|≥2)

≤ c ‖θ‖CM

for all j ∈ N0.

(2) If 0 < A ≤ 10, then
∥∥Sjf(x)

∥∥
L2(|x|≤A)

≤ cA
n(1−s)

2 ‖θ‖CM ‖f‖L∞(Rn)

for all j ∈ N0.
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Proof. (1) If |x| ≥ 2 and |y| ≤ r ≤ 1, then |x− y| ≥ |x|
2
≥ 1. Hence, by Corollary 3.2 (1), we

obtain for N > n

‖Sjf(x)‖L1(|x|≥2) . ‖θ‖CM

∫

|x|≥2

∫

|y|≤r

|x− y|−N |f(y)| dydx

. ‖θ‖CM

(∫

|x|≥2

|x|−N dx
)∫

|y|≤r

|f(y)|dy . ‖θ‖CM ,

which completes the proof of the assertion (1). (We don’t need the moment condition
∫
f = 0

here.)
(2) We decompose f by

f = f1{|y|≤CA1−s} + f1{|y|>CA1−s} =: f 1
A + f 2

A,

where C = 2 · 10s. For the estimate with respect to f 1
A, we see from Plancherel’s theorem

that

‖Sjf
1
A‖L2(|x|≤A) ≤ ‖Sjf

1
A‖L2(Rn) ≤ ‖θ‖C0‖f 1

A‖L2(Rn) . ‖θ‖C0 A
n(1−s)

2 ‖f‖L∞(Rn).

We next consider the estimate with respect to f 2
A. In the situation here, since A ≤ 10sA1−s

for 0 < A ≤ 10 and 0 < s < 1, we realize that, if |x| ≤ A and |y| ≥ CA1−s, then

|x− y| ≥
(
1−

10s

C

)
|y| =

|y|

2
.

Hence, by Corollary 3.2 (1),

‖Sjf
2
A‖L2(|x|≤A) . A

n
2

∥∥∥
∫

|y|>CA1−s

∣∣Kj(x− y)
∣∣ |f(y)| dy

∥∥∥
L∞
x (|x|≤A)

. A
n
2 ‖θ‖CM‖f‖L∞(Rn)

∫

|y|>CA1−s

|y|−
n
2
− n

2(1−s) dy ≈ A
n(1−s)

2 ‖θ‖CM‖f‖L∞(Rn),

where, in the last inequality, we used −n
2
− n

2(1−s)
< −n. This completes the proof. �

4.3. Inequalities for s > 1. In this subsection, we show some inequalities which will be
used for proving the boundedness in the case s > 1.

Lemma 4.5. Let 1 < s <∞. If j ∈ N0 and A ≥ 2j(s−1), then
∥∥Sjf(x)

∥∥
L2(|x|≤A)

≤ cA
n
2 ‖θ‖CM ‖f‖L∞(Rn),

where the constants c > 0 and M ∈ N depend only on n and s.

Proof. We decompose f as follows:

f = f1{|y|≤CA} + f1{|y|>CA} =: f 1
A + f 2

A,

where C = 2s8s−1. For the estimate involved in f 1
A, we have by Plancherel’s theorem

‖Sjf
1
A‖L2(|x|≤A) ≤ ‖Sjf

1
A‖L2(Rn) ≤ ‖θ‖C0‖f 1

A‖L2(Rn) . ‖θ‖C0 A
n
2 ‖f‖L∞(Rn),

Next, we consider the estimate involved in f 2
A. Observe that, for |x| ≤ A and |y| ≥ CA,

|x− y| ≥
(
1−

1

C

)
|y| ≥

|y|

2
≥
CA

2
≥ s8s−12j(s−1)
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holds, which is possible from the choice of the constant C ≥ 2. Hence, by utilizing Corollary
3.2 (2), we have for large N > n

‖Sjf
2
A‖L2(|x|≤A) . A

n
2

∥∥∥
∫

|y|>CA

∣∣Kj(x− y)
∣∣ |f(y)| dy

∥∥∥
L∞
x (|x|≤A)

. A
n
2 ‖θ‖CM‖f‖L∞(Rn)

∫

|y|>CA

|y|−N dy . A
n
2 ‖θ‖CM‖f‖L∞(Rn).

Combining the above estimates, we complete the proof of this lemma. �

5. Boundedness in H1 × L∞ → L1

In this section, we shall give a proof of Theorem 1.3. To this end, we will prove the
following theorem.

Theorem 5.1. Let 0 < s < 1 or 1 < s <∞. Suppose that σ ∈ Sm
1,0(R

2n) with

m =

{
−sn

2
− s(1−s)n

2
, if 0 < s < 1,

−sn
2
, if 1 < s <∞.

Then T s
σ is bounded from h1 × L∞ to L1.

We notice that Theorem 1.3 can be derived from Theorems 1.2 and 5.1 by virtue of complex
interpolation. Thus, it suffices to show Theorem 5.1.

Now, we begin with the proof of Theorem 5.1. We decompose the multiplier σ following
the idea of Coifman-Meyer [3, 4]. We write

σ(ξ, η) =
∞∑

j=0

∞∑

k=0

σ(ξ, η)ψj(ξ)ψk(η)

= σ(ξ, η)ϕ(ξ)ϕ(η) +
∞∑

j=1

j∑

k=0

σ(ξ, η)ψj(ξ)ψk(η) +
∞∑

k=1

k−1∑

j=0

σ(ξ, η)ψj(ξ)ψk(η)

= σ(ξ, η)ϕ(ξ)ϕ(η) +
∑

j∈N

σ(ξ, η)ψj(ξ)ϕj(η) +
∑

k∈N

σ(ξ, η)ϕk−1(ξ)ψk(η)

= σ0(ξ, η) + σI(ξ, η) + σII(ξ, η).

We first consider the multiplier σI. Taking functions ψ̃, ϕ̃ ∈ C∞
0 (Rn) such that

ψ̃ = 1 on {2−1 ≤ |ξ| ≤ 2}, supp ψ̃ ⊂ {3−1 ≤ |ξ| ≤ 3},

ϕ̃ = 1 on {|ξ| ≤ 2}, supp ϕ̃ ⊂ {|ξ| ≤ 3},

we can write σI as

σI(ξ, η) =
∑

j∈N

σ(ξ, η)ψ̃(2−jξ)ϕ̃(2−jη)ψj(ξ)ϕj(η),

since ψ̃(2−jξ)ϕ̃(2−jη) equals 1 on the support of ψj(ξ)ϕj(η). Since σ ∈ Sm
1,0(R

2n) and

supp σ(2jξ, 2jη)ψ̃(ξ)ϕ̃(η) ⊂ {3−1 ≤ |ξ| ≤ 3} × {|η| ≤ 3},

the following estimate holds:∣∣∣∂αξ ∂βη
(
σ(2jξ, 2jη)ψ̃(ξ)ϕ̃(η)

)∣∣∣ ≤ Cα,β 2
jm
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with Cα,β independent of j ∈ N0. Hence, by the Fourier series expansion with respect to the
variables ξ and η, we can write

σ(2jξ, 2jη)ψ̃(ξ)ϕ̃(η) =
∑

a,b∈Zn

c
(a,b)
I,j eia·ξeib·η, |ξ| < π, |η| < π,

with the coefficient satisfying that for L > 0

(5.1)
∣∣c(a,b)I,j

∣∣ . 2jm(1 + |a|)−L(1 + |b|)−L.

Changing variables ξ → 2−jξ and η → 2−jη and multiplying ψj(ξ)ϕj(η), we obtain

σ(ξ, η)ψj(ξ)ϕj(η) =
∑

a,b∈Zn

c
(a,b)
I,j eia·2

−jξeib·2
−jηψj(ξ)ϕj(η).

Hence, by the definitions of ψj and ϕj in Notation 1.5, the multiplier σI is written as

σI(ξ, η) =
∑

a,b∈Zn

∑

j∈N

c
(a,b)
I,j eia·2

−jξeib·2
−jηψ(2−jξ)ϕ(2−jη)

=
∑

a,b∈Zn

∑

j∈N

c
(a,b)
I,j ψ(a)(2−jξ)ϕ(b)(2−jη),

where we wrote as

ψ(ν)(ξ) = eiν·ξψ(ξ), ϕ(ν)(η) = eiν·ηϕ(η), ν ∈ Z
n.

By similar arguments, the multipliers σ0 and σII can be written as

σ0(ξ, η) =
∑

a,b∈Zn

c
(a,b)
0 ϕ(a)(ξ)ϕ(b)(η),

σII(ξ, η) =
∑

a,b∈Zn

∑

j∈N

c
(a,b)
II,j ϕ(a)(2−(j−1)ξ)ψ(b)(2−jη),

where the coefficient c
(a,b)
0 satisfies the same condition as in (5.1) with j = 0, and the

coefficient c
(a,b)
II,j satisfies the same condition as in (5.1).

Hereafter we shall consider slightly general multipliers σ̃0 and σ̃ defined by

σ̃0(ξ, η) = c0 θ1(ξ) θ2(η),(5.2)

σ̃(ξ, η) =
∑

j∈N

cj θ1(2
−jξ) θ2(2

−jη),(5.3)

where (cj)j∈N0 is a sequence of complex numbers satisfying

(5.4) |cj | ≤ 2jmA, j ∈ N0,

with some A ∈ (0,∞), and θ1, θ2 ∈ S(Rn) satisfy that

(5.5) supp θ1, supp θ2 ⊂ {|ξ| ≤ 2}.

For such σ̃0 and σ̃, we shall prove that there exist c > 0 and M ∈ N such that

(5.6) ‖T s
σ̃0
‖h1×L∞→L1, ‖T s

σ̃‖h1×L∞→L1 ≤ cA‖θ1‖CM‖θ2‖CM .

If this is proved, by applying (5.6) for σ̃ to cj = c
(a,b)
I,j , θ1 = ψ(a), and θ2 = ϕ(b), we have

‖T s
σI
‖h1×L∞→L1 .

∑

a,b∈Zn

(1 + |a|)−L(1 + |b|)−L‖eia·ξψ(ξ)‖CM
ξ
‖eib·ηϕ(η)‖CM

η
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.
∑

a,b∈Zn

(1 + |a|)−L+M(1 + |b|)−L+M ,

and, thus, taking L sufficiently large, we see that T s
σI

is bounded from h1 × L∞ to L1. In
the same way, we see that T s

σ0
and T s

σII
are bounded from h1 × L∞ to L1. The above three

estimates complete the proof of the h1 × L∞ → L1 boundedness of T s
σ .

Thus the proof is reduced to showing (5.6) for σ̃0 and σ̃ given by (5.2)–(5.5). However,
the estimate for σ̃0 is simple. In fact, from Lemma 4.3 (1),

‖T s
σ̃0
(f, g)‖L1 =

∥∥∥c0 ei|D|sθ1(D)f(x) ei|D|sθ2(D)g(x)
∥∥∥
L1

≤ A
∥∥ei|D|sθ1(D)f

∥∥
L1

∥∥ei|D|sθ2(D)g
∥∥
L∞ . A‖θ1‖CM‖θ2‖CM‖f‖L1‖g‖L∞.

Hence, in what follows, we concentrate on proving (5.6) for σ̃ given by (5.3)–(5.5).
We shall make further reductions. Using ϕ and ζ defined in Notation 1.5, we decompose

the function 1 on R
n × R

n into

1 = ϕ(ξ)ϕ(η) + ϕ(ξ)ζ(η) + ζ(ξ)ϕ(η) + ζ(ξ)ζ(η).

Then, T s
σ̃ can be expressed by the following four parts:

T s
σ̃(f, g)(x) =

∑

j∈N

cj

{
T 1
j f(x) T

2
j g(x) + T 1

j f(x)S
2
j g(x)

+ S1
j f(x) T

2
j g(x) + S1

j f(x)S
2
j g(x)

}
,

(5.7)

where, for ℓ = 1, 2, we wrote

Sℓ
jf(x) =

(
ei|ξ|

s

ζ(ξ)θℓ(2
−jξ) f̂(ξ)

)∨

(x),

T ℓ
j f(x) =

(
ei|ξ|

s

ϕ(ξ)θℓ(2
−jξ) f̂(ξ)

)∨

(x).

Considering the L1-norm of (5.7) and using the assumption (5.4), we see that
∥∥T s

σ̃(f, g)
∥∥
L1 ≤ A

∑

U,V ∈{S,T}

∑

j∈N

2jm
∥∥U1

j f V
2
j g

∥∥
L1 ,

and thus, in the following argument, it is sufficient to prove that
∑

j∈N

2jm
∥∥U1

j f V
2
j g

∥∥
L1 . ‖θ1‖CM‖θ2‖CM‖f‖h1‖g‖L∞, U, V ∈ {S, T}.

To prove this, by virtue of the atomic decomposition of h1, stated in Notation 1.5, and by
translation invariance, it suffices to obtain the uniform estimates for h1-atoms f supported
on balls centered at the origin. Furthermore, we may assume that ‖g‖L∞ = 1. Therefore, in
order to obtain the desired boundedness result in Theorem 5.1, we shall prove that

(5.8)
∑

j∈N

2jm
∥∥U1

j f V
2
j g

∥∥
L1 . ‖θ1‖CM‖θ2‖CM , U, V ∈ {S, T},

holds for such f and g and for some M ∈ N. In the rest of this section, the letter r always
denotes the radius of a ball including the support of f ; f is assumed to be an h1-atom
supported on a ball in R

n of radius r centered at the origin.
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5.1. Case 0 < s < 1. We recall that the critical order for 0 < s < 1 is

m = −
sn

2
−
s(1− s)n

2
,

and notice that m < −sn
2
. We also remark that this m can be written as

m = −
n

2
+

(1− s)2n

2
.

5.1.1. Estimate for T 1
j f T

2
j g. By Lemma 4.3 (1), it holds that

∥∥T 1
j f T

2
j g

∥∥
L1 ≤

∥∥T 1
j f

∥∥
L1

∥∥T 2
j g

∥∥
L∞

. ‖ϕ(·) θ1(2
−j·)‖CM‖ϕ(·) θ2(2

−j·)‖CM‖f‖L1‖g‖L∞

. ‖θ1‖CM‖θ2‖CM .

Since m < 0, we obtain (5.8) with (U, V ) = (T, T ) from this estimate.

5.1.2. Estimate for T 1
j f S

2
j g. It follows from Lemmas 4.3 (1) and 4.1 that

∥∥T 1
j f S

2
j g
∥∥
L1 ≤

∥∥T 1
j f

∥∥
L1

∥∥S2
j g
∥∥
L∞

. (2j)
sn
2 ‖ϕ(·) θ1(2

−j·)‖CM‖θ2‖CM‖f‖L1‖g‖L∞

. (2j)
sn
2 ‖θ1‖CM‖θ2‖CM ,

which gives (5.8) with (U, V ) = (T, S) because m < −sn
2
.

5.1.3. Estimate for S1
j f T

2
j g. We use Lemmas 4.1 and 4.3 (1) to obtain

∥∥S1
j f T

2
j g

∥∥
L1 ≤

∥∥S1
j f

∥∥
L1

∥∥T 2
j g

∥∥
L∞

. (2j)
sn
2 ‖θ1‖CM‖ϕ(·) θ2(2

−j·)‖CM‖f‖L1‖g‖L∞

. (2j)
sn
2 ‖θ1‖CM‖θ2‖CM .

Since m < −sn
2
, this yields that (5.8) holds with (U, V ) = (S, T ).

5.1.4. Estimate for S1
j f S

2
j g. We divide the L1 norm in (5.8) into the following three parts;

∥∥S1
j f S

2
j g
∥∥
L1(Rn)

=
∥∥S1

j f S
2
j g
∥∥
L1(|x|≤2r)

+
∥∥S1

j f S
2
j g
∥∥
L1(2r<|x|≤4)

+
∥∥S1

j f S
2
j g
∥∥
L1(|x|>4)

.(5.9)

We first consider the norm L1(|x| ≤ 2r). By the Cauchy-Schwarz inequality, we obtain
∥∥S1

j f
∥∥
L1(|x|≤2r)

. rn/2
∥∥S1

j f
∥∥
L2(Rn)

. rn/2‖θ1‖C0‖f‖L2 . ‖θ1‖C0 .

Hence, by this inequality and Lemma 4.1, we have
∥∥S1

j f S
2
j g
∥∥
L1(|x|≤2r)

≤
∥∥S1

j f
∥∥
L1(|x|≤2r)

∥∥S2
j g
∥∥
L∞(Rn)

. (2j)
sn
2 ‖θ1‖C0‖θ2‖CM(5.10)

for some M ∈ N. For the norm L1(|x| > 4), we also have by Lemmas 4.4 (1) and 4.1
∥∥S1

j f S
2
j g
∥∥
L1(|x|>4)

≤ ‖S1
j f‖L1(|x|>4)‖S

2
j g‖L∞(Rn) . (2j)

sn
2 ‖θ1‖CM‖θ2‖CM .(5.11)
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Thus, we shall consider the estimate of the second term in the right hand side of (5.9). We
decompose it as follows;

∥∥S1
j f S

2
j g
∥∥
L1(2r<|x|≤4)

≤
∑

k∈N, 2kr≤4

∥∥S1
j f S

2
j g
∥∥
L1(2kr≤|x|≤2k+1r)

=
( ∑

k∈N, 2kr<2−j(1−s)

+
∑

k∈N, 2−j(1−s)≤2kr≤4

)∥∥S1
j f S

2
j g
∥∥
L1(2kr≤|x|≤2k+1r)

.
(5.12)

Here, we remark that the first sum in the second line vanishes if 2−j(1−s) ≤ 2r.
We show that the following estimate holds; for 0 ≤ t ≤ 1 and 0 ≤ N < n

2(1−s)
,

∥∥S1
j f S

2
j g
∥∥
L1(2kr≤|x|≤2k+1r)

. 2−jm
(
2j(1−s)2kr

)−N(1−t)+ (1−s)n
2 min

{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖CM‖θ2‖CM

(5.13)

for k ∈ N satisfying that 2kr ≤ 4. In fact, it follows from Lemmas 4.2 (2) and 4.4 (2) that
∥∥S1

j f S
2
j g
∥∥
L1(2kr≤|x|≤2k+1r)

≤
∥∥S1

j f
∥∥
L2(2kr≤|x|≤2k+1r)

∥∥S2
j g
∥∥
L2(2kr≤|x|≤2k+1r)

. (2j)
n
2

(
2j(1−s)2kr

)−N(1−t)
min

{
(2jr)t, (2jr)−

nt
2

}
(2kr)

(1−s)n
2 ‖θ1‖CM‖θ2‖CM‖g‖L∞

= (2j)
n
2
−

(1−s)2n
2

(
2j(1−s)2kr

)−N(1−t)+ (1−s)n
2 min

{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖CM‖θ2‖CM

= 2−jm
(
2j(1−s)2kr

)−N(1−t)+
(1−s)n

2 min
{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖CM‖θ2‖CM ,

where we remark that Lemmas 4.2 (2) and 4.4 (2) are applicable to the factor involved in
f and g, respectively, since k ∈ N implies that 2kr ≥ 2r and also 2kr ≤ 4 implies that
|x| ≤ 2k+1r ≤ 8.

The former sum in the second line of (5.12) is estimated as follows. Since 0 < s < 1, it
follows from (5.13) with 0 ≤ t ≤ 1 and N = 0 that

∑

k∈N,2kr<2−j(1−s)

∥∥S1
j f S

2
j g
∥∥
L1(2kr≤|x|≤2k+1r)

. 2−jmmin
{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖CM‖θ2‖CM

∑

k : 2j(1−s)2kr<1

(
2j(1−s)2kr

) (1−s)n
2

. 2−jmmin
{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖CM‖θ2‖CM .

(5.14)

On the other hand, the latter sum in the second line of (5.12) is estimated as follows.

Since 0 < s < 1, we have (1−s)n
2

< n
2(1−s)

, and consequently we can choose 0 < t < 1 and

N > 0 satisfying (1−s)n
2(1−t)

< N < n
2(1−s)

. Therefore, by (5.13) with such t and N , it follows

that
∑

k∈N, 2−j(1−s)≤2kr≤4

∥∥S1
j f S

2
j g
∥∥
L1(2kr≤|x|≤2k+1r)

. 2−jmmin
{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖CM‖θ2‖CM

∑

k : 2j(1−s)2kr≥1

(
2j(1−s)2kr

)−N(1−t)+
(1−s)n

2

. 2−jmmin
{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖CM‖θ2‖CM .

(5.15)
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Thus, taking the same 0 < t < 1 for (5.14) and (5.15) and then combining them with
(5.12), we obtain

∥∥S1
j f S

2
j g
∥∥
L1(2r≤|x|≤4)

. 2−jmmin
{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖CM‖θ2‖CM .

Hence, combining this with (5.10) and (5.11), we conclude that (5.8) holds with (U, V ) =
(S, S). This completes the proof for the case 0 < s < 1.

5.2. Case s > 1. Before beginning with the proof, let us recall the critical order for s > 1:

m = −
ns

2
.

For this m, in what follows, we will prove that (5.8) holds. In this subsection, we take a
j0 ∈ N such that 2j0(s−1) ≥ 2. For such j0 ∈ N, we have by Lemma 4.3 (1) or 4.1

∑

1≤j≤j0

2jm
∥∥U1

j f V
2
j g

∥∥
L1 .

∑

1≤j≤j0

(2j)m+ns ‖θ1‖CM‖θ2‖CM‖f‖L1‖g‖L∞

. ‖θ1‖CM‖θ2‖CM

for U, V ∈ {S, T}. Therefore, in order to achieve (5.8), it is sufficient to show that

(5.16)
∑

j>j0

2jm
∥∥U1

j f V
2
j g

∥∥
L1 . ‖θ1‖CM‖θ2‖CM , U, V ∈ {S, T}.

To this end, except for the case (U, V ) = (T, T ), we split the norm of L1(Rn) as follows:
∥∥U1

j f V
2
j g

∥∥
L1(Rn)

=
∥∥U1

j f V
2
j g

∥∥
L1(|x|≤2j(s−1)+1)

+
∥∥U1

j f V
2
j g

∥∥
L1(|x|≥2j(s−1)+1)

≤
∥∥U1

j f V
2
j g

∥∥
L1(|x|≤2j(s−1)+1)

+
∑

k∈N, 2k≥2j(s−1)

∥∥U1
j f V

2
j g

∥∥
L1(2k≤|x|≤2k+1)

,(5.17)

where, the sum over 2k ≥ 2j(s−1) should be read as the sum over k ≥ k0 with a positive
integer k0 = k0(j) satisfying that 2k0−1 < 2j(s−1) ≤ 2k0. Here, we are able to choose such
k0 ∈ N, since 2j(s−1) ≥ 2 for j > j0. Now, we shall prove (5.16).

5.2.1. Estimate for T 1
j f T

2
j g. By Lemma 4.3 (1),

∥∥T 1
j f T

2
j g

∥∥
L1 ≤ ‖T 1

j f‖L1‖T 2
j g‖L∞

. ‖ϕ(·) θ1(2
−j·)‖CM‖ϕ(·) θ2(2

−j·)‖CM‖f‖L1‖g‖L∞

. ‖θ1‖CM‖θ2‖CM ,

and thus, since m = −ns
2
< 0, (5.16) holds for (U, V ) = (T, T ).

5.2.2. Estimate for T 1
j f S

2
j g. We use the decomposition (5.17). For the first term in (5.17),

using Lemma 4.3 (1) with (p, q) = (1, 2) and Lemma 4.5 with A = 2j(s−1)+1 to the factors
for f and g respectively, we have

∥∥T 1
j f S

2
j g
∥∥
L1(|x|≤2j(s−1)+1)

≤ ‖T 1
j f‖L2(Rn)‖S

2
j g‖L2(|x|≤2j(s−1)+1)

. ‖ϕ(·) θ1(2
−j·)‖CM‖f‖L1 (2j(s−1))

n
2 ‖θ2‖CM‖g‖L∞

. (2j)
n(s−1)

2 ‖θ1‖CM‖θ2‖CM .

(5.18)
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Next, for the summand in the sum of (5.17), we have by Hölder’s inequality, Lemma 4.3 (2)
with A = 2k, and Lemma 4.5 with A = 2k+1

∥∥T 1
j f S

2
j g
∥∥
L1(2k≤|x|≤2k+1)

. (2k)
n
2

∥∥T 1
j f

∥∥
L∞(2k≤|x|≤2k+1)

∥∥S2
j g
∥∥
L2(2k≤|x|≤2k+1)

. (2k)
n
2 · (2k)−(n+s)‖ϕ(·) θ1(2

−j ·)‖CM · (2k)
n
2 ‖θ2‖CM‖g‖L∞

. 2−ks ‖θ1‖CM‖θ2‖CM ,

where, it should be remarked that Lemma 4.5 is applicable to the factor involved in g, since
2k+1 ≥ 2j(s−1) in the sum of (5.17). This yields from s > 1 that

∑

k∈N, 2k≥2j(s−1)

∥∥T 1
j f S

2
j g
∥∥
L1(2k≤|x|≤2k+1)

. ‖θ1‖CM‖θ2‖CM

∑

k∈N

2−ks ≈ ‖θ1‖CM‖θ2‖CM .(5.19)

Therefore, combining (5.18) and (5.19) with (5.17) we obtain
∥∥T 1

j f S
2
j g
∥∥
L1 . (2j)

n(s−1)
2 ‖θ1‖CM‖θ2‖CM ,

which implies that (5.16) holds for (U, V ) = (T, S) since m < −n(s−1)
2

.

5.2.3. Estimate for S1
j f T

2
j g. For the first term in (5.17), Lemmas 4.2 (1) and 4.3 (1) yield

that, for 0 ≤ t ≤ 1,

‖S1
j f T

2
j g‖L1(|x|≤2j(s−1)+1) . (2j)

n(s−1)
2 ‖S1

j f‖L2(Rn)‖T
2
j g‖L∞(Rn)

. (2j)
ns
2 min

{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖C0‖θ2‖CM .

(5.20)

We shall next consider the sum of (5.17). By Hölder’s inequality and Lemmas 4.2 (2) and
4.3 (1), the summand in (5.17) is estimated by

‖S1
j f T

2
j g‖L1(2k≤|x|≤2k+1) . (2k)

n
2 ‖S1

j f‖L2(2k≤|x|≤2k+1)‖T
2
j g‖L∞(Rn)

. (2k)
n
2 · (2j)

n
2

(
2j(1−s)2k

)−N(1−t)
min

{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖CM‖θ2‖CM

= (2j)
ns
2

(
2j(1−s)2k

)−N(1−t)+n
2 min

{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖CM‖θ2‖CM ,

where we notice that 2k ≥ 2r holds in the sum of (5.17), since k is restricted to N and r ≤ 1:
this allows us to apply Lemma 4.2 (2) with A = 2k to the factor with respect to f . Then,
choosing 0 < t < 1 and N > 0 such that −N(1 − t) + n

2
< 0, we have

∑

k∈N, 2k≥2j(s−1)

‖S1
j f T

2
j g‖L1(2k≤|x|≤2k+1)

. (2j)
ns
2 min

{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖CM‖θ2‖CM

∑

k : 2j(1−s)2k≥1

(
2j(1−s)2k

)−N(1−t)+n
2

≈ (2j)
ns
2 min

{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖CM‖θ2‖CM .

(5.21)

Thus, by choosing the same 0 < t < 1 for (5.20) and (5.21), and by combining them with
(5.17), we obtain for such 0 < t < 1

∥∥S1
j f T

2
j g

∥∥
L1 . (2j)

ns
2 min

{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖CM‖θ2‖CM ,

which implies that (5.16) holds for (U, V ) = (S, T ).
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5.2.4. Estimate for S1
j f S

2
j g. For the first term in (5.17), by Lemmas 4.2 (1) and 4.5, we

have for 0 ≤ t ≤ 1

‖S1
j f S

2
j g‖L1(|x|≤2j(s−1)+1) . ‖S1

j f‖L2(Rn)‖S
2
j g‖L2(|x|≤2j(s−1)+1)

. (2j)
n
2 min

{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖CM · (2j)

n(s−1)
2 ‖θ2‖CM

= (2j)
ns
2 min

{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖CM‖θ2‖CM .

(5.22)

For the summand of (5.17), we have by Lemmas 4.2 (2) and 4.5

‖S1
j f S

2
j g‖L1(2k≤|x|≤2k+1) ≤ ‖S1

j f‖L2(2k≤|x|≤2k+1)‖S
2
j g‖L2(2k≤|x|≤2k+1)

. (2j)
n
2

(
2j(1−s)2k

)−N(1−t)
min

{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖CM · (2k)

n
2 ‖θ2‖CM

= (2j)
ns
2

(
2j(1−s)2k

)−N(1−t)+n
2 min

{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖CM‖θ2‖CM ,

which yields that, since there exist N > 0 and 0 < t < 1 such that −N(1 − t) + n
2
< 0,

∑

k∈N, 2k≥2j(s−1)

‖S1
j f S

2
j g‖L1(2k≤|x|≤2k+1) . (2j)

ns
2 min

{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖CM‖θ2‖CM .(5.23)

Therefore, choosing the same 0 < t < 1 for (5.22) and (5.23) and then combining them with
(5.17), we obtain for such 0 < t < 1 that

‖S1
j f S

2
j g‖L1 . (2j)

ns
2 min

{
(2jr)t, (2jr)−

nt
2

}
‖θ1‖CM‖θ2‖CM .

This gives (5.16) for (U, V ) = (S, S), and we complete the proof for s > 1.

6. Necessary conditions on m

In this section, we shall give a proof of Theorem 1.4. In this section, we use the notation
Xr given in (2.1).

Proof of Theorem 1.4 . Let 0 < s < 1 or 1 < s <∞, and let m ∈ R, (p, q) ∈ I∪ II∪ IV∪VI,
and 1/r = 1/p+ 1/q. If all bilinear operators T s

σ , σ ∈ Sm
1,0(R

2n), are bounded from Hp ×Hq

to Xr, then, by virtue of the closed graph theorem, there exist c > 0 and N ∈ N such that
∥∥T s

σ

∥∥
Hp×Hq→Xr

≤ c max
|α|,|β|≤N

∥∥(1 + |ξ|+ |η|)−m+|α|+|β|∂αξ ∂
β
η σ(ξ, η)

∥∥
L∞(R2n)

(6.1)

holds for all σ ∈ Sm
1,0(R

n) (see Bényi–Bernicot–Maldonado–Naibo–Torres [2, Lemma 2.6] for
the argument using the closed graph theorem).

Now, we take two functions θ and φ such that

θ ∈ C∞
0 (Rn), supp θ ⊂ {3−1 ≤ |ξ| ≤ 3}, θ(ξ) = 1 on {2−1 ≤ |ξ| ≤ 2},

φ ∈ C∞
0 (Rn), supp φ ⊂ {|ξ| ≤ 3}, φ(ξ) = 1 on {|ξ| ≤ 2}.

For j ∈ N, we set

σj(ξ, η) = 2jmθ(2−jξ)φ(2−jη).

Then we have
∣∣∂αξ ∂βη σj(ξ, η)

∣∣ ≤ Cα,β(1 + |ξ|+ |η|)m−|α|−|β|, α, β ∈ N
n
0 ,

uniformly in j ∈ N. Hence, by (6.1), we see that there exists C > 0 such that
∥∥T s

σj

∥∥
Hp×Hq→Xr

≤ C, j ∈ N.(6.2)
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We shall prove that (6.2) holds only if m ≤ ms(p, q).
Take a function ψ ∈ C∞

0 (Rn) such that suppψ ⊂ {2−1 ≤ |ξ| ≤ 2} and ψ(ξ) 6= 0 on
{2/3 ≤ |ξ| ≤ 3/2}, and set

f+
j (x) =

(
ei|ξ|

s

ψ(2−jξ)
)∨

(x),

f−
j (x) =

(
e−i|ξ|sψ(2−jξ)

)∨

(x),

fj(x) =
(
ψ(2−jξ)

)∨

(x) = 2jn(ψ)∨(2jx).

Then we have the following estimates;

‖f±
j ‖Hp ≈ ‖f±

j ‖Lp ≈ 2j(n−
sn
2
)2−j(1−s)n

p for 1 ≤ p ≤ ∞,(6.3)

‖fj‖Hp ≈ ‖fj‖Lp ≈ 2j(n−
n
p
) for 1 ≤ p ≤ ∞,(6.4)

‖(fj)
2‖BMO ≈ 22jn.(6.5)

In fact, since the Fourier transform of f±
j are supported in the annulus {2j−1 ≤ |ξ| ≤ 2j+1},

we have the first inequality in (6.3), and the second ≈ in (6.3) follows from Proposition 3.1.
On the other hand, by a straightforward calculation, we see that (6.4) and (6.5) hold.

Proof of the case (p, q) ∈ I. In this case we use the function f−
j . Since ψ(2−jξ)θ(2−jξ) =

ψ(2−jξ) and ψ(2−jη)φ(2−jη) = ψ(2−jη), we have

T s
σj
(f−

j , f
−
j )(x) = 2jm

(
fj(x)

)2
,

and hence, we obtain
∥∥T s

σj
(f−

j , f
−
j )

∥∥
Xr

= 2jm
∥∥(fj)2

∥∥
Xr

≈ 2j(m+2n−n
r
), j ∈ N,

where, in the last inequality, we used (6.4) combined with the identity ‖(fj)
2‖Lr = ‖fj‖

2
L2r

if r <∞, and used (6.5) if r = ∞. Combining this with (6.2) and (6.3), we obtain

2j(m+2n−n
r
) . 2j(n−

sn
2
)2−j(1−s)n

p 2j(n−
sn
2
)2−j(1−s)n

q , j ∈ N.

This is possible only when m ≤ −sn(1
2
− 1

p
+ 1

2
− 1

q
). This completes the proof of the case

(p, q) ∈ I.

Proof of the case (p, q) ∈ II. By the same reasons as above, we have

T s
σj
(fj, fj)(x) = 2jm(f+

j (x))
2,

and thus (6.3) implies that, since 2r ≥ 1 for (p, q) ∈ II,

‖T s
σj
(fj , fj)‖Lr = 2jm

∥∥(f+
j )

2
∥∥
Lr = 2jm

∥∥f+
j

∥∥2

L2r ≈ 2jm
(
2j(n−

sn
2
)
)2
2−j(1−s)n

r .

Hence, if (6.2) holds, then this estimate and (6.4) imply that

2jm
(
2j(n−

sn
2
)
)2

2−j(1−s)n
r . 2j(n−

n
p
)2j(n−

n
q
), j ∈ N,

which holds only if m ≤ −sn(1
p
− 1

2
+ 1

q
− 1

2
). This completes the proof of the case (p, q) ∈ II.
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Proof of the case (p, q) ∈ IV. In addition to the functions f±
j and fj, we use the following

functions;

gj(x) =
(
e−i|η|sψ(2−j(1−s)η)

)∨

(x),

hj(x) =
(
e−i2|η|sψ(2−jη)

)∨

(x),

where the function ψ is the same given in the definition of f±
j and fj. Since the support of

ĝj is included in the annulus {2j(1−s)−1 ≤ |η| ≤ 2j(1−s)+1}, if 0 < s < 1, then we have by
Proposition 3.1

‖gj‖Hq ≈ ‖gj‖Lq ≈ 2j(1−s)(n− sn
2
)2−j(1−s)2 n

q for 1 ≤ q ≤ ∞(6.6)

(we notice that this holds when s < 1, since Proposition 3.1 treats the function whose Fourier
support locates far from the origin; the support of ĝj locates near the origin when s > 1).
On the other hand, in the same way as for the functions f±

j , we also have

‖hj‖Hq ≈ ‖hj‖Lq ≈ 2j(n−
sn
2
)2−j(1−s)n

q for 1 ≤ q ≤ ∞.(6.7)

Now, we first consider the case 0 < s < 1. Observe that θ(2−jξ)ψ(2−jξ) = ψ(2−jξ) and
ψ(2−j(1−s)η)φ(2−jη) = ψ(2−j(1−s)η). Hence we have

T s
σj
(fj , gj)(x) = 2jm2j(1−s)nf+

j (x)(ψ)
∨(2j(1−s)x).

Then, from (3.2), it holds that
∣∣T s

σj
(fj, gj)(x)

∣∣1{a′<2j(1−s)|x|≤b′} ≈ 2jm2j(1−s)n2j(n−
ns
2
)|(ψ)∨(2j(1−s)x)|1{a′<2j(1−s) |x|≤b′}

for all j > j0, where a
′, b′ and j0 are the same given in Proposition 3.1 (see (3.2)). Thus, we

obtain
∥∥T s

σj
(fj, gj)

∥∥
Lr & 2jm2j(n−

ns
2
)2j(1−s)n

∥∥(ψ)∨(2j(1−s)x)1{a′<2j(1−s)|x|≤b′}

∥∥
Lr
x

= c 2jm2j(n−
ns
2
)2j(1−s)n2−j(1−s)n

r , j > j0,

with c = ‖(ψ)∨1{a′<|x|≤b′}‖Lr > 0. Hence it follows from (6.2), (6.4) and (6.6) that

2jm2j(n−
ns
2
)2j(1−s)n2−j(1−s)n

r . 2j(n−
n
p
)2j(1−s)(n− sn

2
)2−j(1−s)2 n

q , j > j0,

which is possible only when m ≤ −sn(1
p
− 1

2
)− s(1− s)n(1

2
− 1

q
).

Finally, we shall consider the case s > 1. Since

T s
σj
(fj, hj)(x) = 2jmf+

j (x)f
−
j (x),

it follows from (3.2) that
∣∣T s

σj
(fj , hj)(x)

∣∣1{a′<2j(1−s)|x|≤b′} ≈ 2jm2j(n−
ns
2
)2j(n−

ns
2
)1{a′<2j(1−s)|x|≤b′}

for all j > j0. Hence, we obtain
∥∥T s

σj
(fj , hj)

∥∥
Lr & 2jm2j(n−

ns
2
)2j(n−

ns
2
)2−j(1−s)n

r , j > j0.

Combining this with (6.2), (6.4) and (6.7), we have

2jm2j(n−
sn
2
)2j(n−

sn
2
)2−j(1−s)n

r . 2j(n−
n
p
)2j(n−

sn
2
)2−j(1−s)n

q , j > j0,

which is possible only whenm ≤ −sn(1
p
− 1

2
). This completes the proof of the case (p, q) ∈ IV.
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Proof of the case (p, q) ∈ VI. Since the situation is symmetrical, we obtain the desired
conclusion in the same way as for the case (p, q) ∈ IV. Thus Theorem 1.4 is proved. �
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