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BILINEAR OSCILLATORY FOURIER MULTIPLIERS
TOMOYA KATO, AKIHIKO MIYACHI, NAOTO SHIDA, AND NAOHITO TOMITA

ABSTRACT. For bilinear Fourier multipliers that contain some oscillatory factors, bounded-
ness of the operators between Lebesgue spaces is given including endpoint cases. Sharpness
of the result is also considered.

1. INTRODUCTION

Throughout this paper, the letter n denotes a positive integer.
For a bounded function o = ¢(§) on R”, the linear Fourier multiplier operator o (D) is
defined by

1 ) ~
o(D)f(z) = /e“vfo—g £)d¢é, reR",
(D)) = 5z [ e4a(O7(©
for f € S(R™), where J?denotes the Fourier transform of f. If X is a function space on R"”
equipped with the quasi-norm || - || x and there exists ¢ > 0 such that

lo(D)fllx < cllflx forall feSNX,

then we say that o(D) is bounded on X.
We recall the result for the multiplier of the form

elEPCE)Em™, 0<s<lorl<s<oo, mER,

where ¢ is C'*° function on R" such that {(£) = 0 for [{] < 1 and (&) = 1 for || > 2 (see
also Notation [[H]).

Theorem A ([I6, 11]). Let m € R, and let 0 < s <1 or1 < s < oo, and let 1 < p < oo.
Then the Fourier multiplier operator €!PI°C(D)|D|™ is bounded on HP when p < oo and on
BMO when p = oo if and only if m < —ns|1/p —1/2|.

Here, HP, 0 < p < oo, denotes the Hardy space and the space BMO denotes the space
of bounded mean oscillation. It is known that H? = LP if 1 < p < oo and H' — L!. For
details on these function spaces, see, e.g., [17, Chapters III and IV].

Next, we shall consider the bilinear case. For a bounded function o = (£, ) on R*", the
bilinear Fourier multiplier operator T, is defined by

~

1)) = o [ o6 iyt dedn, o < B,
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for f,g € S(R™). For function spaces on R, X | Y and Z equipped with the quasi-norms
| llx, |l - ||y and || - || z, respectively, we say that T, is bounded from X X Y to Z, or T, is
bounded in X x Y — Z if there exists C' > 0 such that

\To(f, Dz < Clfllxllglly forall feSNX andall ge SNY.

We define the operator norm |[|7,||xxy_z to be the smallest constant C' in the above in-
equality.

In this paper, we especially consider the bilinear Fourier multiplier operator 777, 0 < s < oo,
of the following form:

~

T3.0)@) = g [ e D (e ) Fle) ) dsdn, @ € R,

for f,g € S(R™).
In order to describe the results on the bilinear operators of this type, we define the class
STH(R*") as follows.

Definition 1.1. For m € R, the class S{%(R*") is defined to be the set of all C* functions
o =o(&,m) on R?" that satisfy the estimate

807 (€ m)] < Cop(1+16]+ 1n)™ "
for all multi-indices «, 5 € (Ng)” = ({0,1,2,... })™

For the case s = 1, Grafakos—Peloso [6] first gave the boundedness results for such kind
of operators, which were developed in the series of the papers [I3] 14, [I5] by the authors
S. Rodriguez-Lopéz, D. Rule, and W. Staubach. Quite recently, the first, the second and the
last authors of the present paper improve these results in [9]. Although the present paper
is inspired by [9], since our subject concerns with the case s # 1, we omit to mention the
details on the results of [13], [14] [15] 9.

For the case s # 1, Bergfeldt-Rodriguez-Lopéz—Rule-Staubach [1] recently considered the
bilinear operator 777, and proved the following theorem.

Theorem 1.2 ([I, Theorem 1.4 and Remark 1.5]). Let 0 < s < 1 or 1 < s < oo and let
1<p,g<ocoandl/r=1/p+1/q. Suppose that o € ST (R*") with m = —ns(|1/p—1/2|+
11/q—1/2|). Then, T¢ is bounded from HP x H? to L", where L" should be replaced by BMO
when r = oo.

Here we give a remark on Theorem [[L2I The verbatim statement of [I, Theorem 1.4 and
Remark 1.5] contains the restriction r > n++n{ls} However, if we carefully read the paper,
we see that this restriction can be removed. For the reader’s convenience, we shall give an
independent proof of Theorem in Section

Now, the purpose of this paper is to give an improvement of Theorem [[L2. To state our
main result, we prepare some notations. We divide the set {1 < p,q < oo} C R? into the

following six subsets:
I={2<p,q< o0},
I={1<pq<2},
M={l1<p<2<g<ooand 1/p+1/¢<1},
IV={1<p<2<g<oco and 1/p+1/q>1},
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V={1<¢<2<p<oo and 1/p+1/q <1},
VI={1<¢<2<p<oo and 1/p+1/q>1},

which satisfy [UTTUITUIVUV U VI = {1 < p,q < oo} and are assigned into the picture
below.

1/q
1
VI 1
\Y%
1/2
v
I
III
0
1/2 1 1/p
Using these sets, we define m,(p, q) by
_n$(|%—%|+|%—%|) for (p,q) € TUTI,
ms(p,q) = < —ns(l —s) % — % — ns}% — %‘ for (p,q) e MTUVI, when 0 < s <1,
—ns|; — gl —ns(l—s)|; — 5| for (p,q) €EIVUV,
and
—ns(|1—1) -1+ |% —3|) for (p,q) €1UIL,
ms(p, q) = —ns‘% — %‘ for (p,q) e MIUVI, when 1< s < 0.
—ns|3 — 3] for (p,q) €IVUYV,

The main result of this paper reads as follows.

Theorem 1.3. Let 0 < s < lorl<s<ooandletl <p,g<ooandl/r=1/p+1/q.
Suppose that o € S{’?O(Rzn) with m = mg(p,q). Then T? is bounded from H? x H? to L",
where L" should be replaced by BMO when r = o0o.

For 0 < s < 1orl < s < oo, the number m(p,q) is always bigger than or equal
to the number —ns(|1/p — 1/2| 4+ |1/q — 1/2|) for all 1 < p,q¢ < oo. In particular, if
(p,q) € MTUIV UV U VI, then my(p,q) > —ns(|1/p — 1/2| +|1/q — 1/2|) except for p = 2
or ¢ = 2. In this sense, Theorem [L.3 improves Theorem Moreover, the number my(p, q)
defined above is optimal for some cases. More precisely, the following theorem holds true.

Theorem 1.4. Let 0 < s <1 orl<s<oo, andletm e R, (p,q) e TUTUIVUVI, and
1/r =1/p+1/q. Suppose that all TS with o € ST\ (R*") are bounded from HP x HY to L"
with L™ replaced by BMO when r = oco. Then m < my(p,q).

It should be emphasized that the optimality for the case (p,q) € TUII is already proved in
[1, Section 3.2]. However, we shall also give the proofs of these cases, which will be slightly
different from the one in [1, Section 3.2].
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The rest of this paper is organized as follows. In Section 2, we give a proof of Theorem
L2l In Section Bl we consider the asymptotic behavior of the Fourier transform of functions
including an oscillator e¢°, which will play important roles in the proofs of Theorems 3]
and [[.4l In Section (] we prepare some lemmas which will be used in Section Bl In Section
[Bl, we prove the assertion of Theorem in the end point case (p, q) = (1, 00), which implies
Theorem with the aid complex interpolation. In Section [6] we prove Theorem [L.4l

We end this section by preparing some notations.

Notation 1.5. We denote by N and Nj the sets of positive integers and nonnegative integers,
respectively.
The Fourier transform and the inverse Fourier transform on R™ are defined by

fio)= [ @ a9 = g [ el de

We take ¢, 1) € S(R") such that ¢ =1 on {|¢| < 1}, suppy C {|¢] < 2}, suppy C {1/2 <
€| <2}, and p + Zjer(Q_j-) = 1. In what follows, we will write 1y = ¢, ¥; = ¥(277-) for
J €N, and ¢; = p(277:) for j € Ny. Then, we see that pg = 1)y = ¢ and

k
> Wi=¢r keN,.
=0
We define the C* function ¢ = 1—¢. Then we have 9*C € Cg°(R") for [a| > 1, (= >y ¥;,
and

¢=0on {[{|<1}, ¢=1 on {[¢[=2}.

For a smooth function # on R" and for N € Ny, we write ||0||cv = maxq<y sup; ‘8?9(5)}.

Lastly, we recall the local Hardy space h! (for the definition of the local Hardy space h!,
see Goldberg [8]). It is known that H' < h' < L'. As proved in [§], all functions in h' can
be decomposed by so-called atoms, which satisfy that

(1.1) supp f C{y € R" [y =gl <7}, [[flle <0777,
and, in addition, if r < 1,

(12) [ twag=o

It is easily proved that, if f satisfies only (1) with » > 1, then f can be written as a linear
combination of the atoms that satisfy (LIl) with » = 1 (see, e.g., Miyachi-Tomita [12]). In
this paper, a function f on R" is called an hl-atom of first kind if f satisfies (ILT))-(T2) for
r < 1, and is called an h'-atom of second kind if f satisfies (IT)) for » = 1. Atoms of both
kinds are simply called h'-atoms.

2. PROOF OF THEOREM

In this section, we shall give a proof of Theorem [[.2l The ideas of the proof come from [9,
Proof of Theorem 1.3].

For d € N and m € R, the class ST} (R?) consists of all C* functions ¢ on R\ {0} such
that

080 (&)] < Calé™ 1, ¢ e RT\ {0}
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for all multi-indices a € (Np)¢. We use the notation X, given by

_{L” if 0<r< oo,

(2.1) )
BMO if r=oc.

Now, we recall the boundedness result for the bilinear Fourier multiplier operator 7, with
o € S57y(R*). The following theorem is due to Coifman-Meyer [3, 4], Kenig-Stein [10],
Grafakos-Kalton [5], and Grafakos-Torres [7].

Theorem 2.1. Let 0 < p,q < oo and 1/r = 1/p+1/q. If o € SY(R*"), then the bilinear
Fourier multiplier operator T, is bounded from HP x H? to X,.

We will use the following two propositions, whose proofs can be found in [9, Section 6].

Proposition 2.2 ([9, Proposition 2.3]). Let my,my < 0, m = my + mq, ay € 5{70(]1%2”),
a; € S;gnl (R™), ag € S;g” (R™), and o(&,n) = ag(&,n)a1(§)az(n). Then the bilinear Fourier
multiplier operator T, is bounded in

HP x HT — L', 0<pg<oo, 1/r=1/p+1/q,
BMO x H? — L1, 0<qg<oo, if m <0,
H? x BMO — LP, 0<p<oo, if mo <O,

BMO x BMO — BMO i my,my <0.

Proposition 2.3 ([9, Proposition 2.4]). Let m; <0, ay € S%l (R*), a; € S;Snl (R™), and
let o(&,m) = ao(&,m)ai(§). Then the bilinear Fourier multiplier operator T, is bounded in

HP x L™ — L7, 0<p< oo,
BMO x L® — BMO if m; < 0.

Proof of Theorem[L2. Let 0 < s < 1 or s > 1, and let 0 € STH(R*), m = —ns(|1/p —
1/2| +11/q — 1/2]). We write my = —ns|1/p — 1/2| and my = —ns|1/q — 1/2|. Using the
functions ¢ and ¢ given in Notation [L5 we decompose the bilinear multiplier 7 defined by
(&) = el g (€, n) as

’7'(5, 77) =T (67 77) + 7-2(67 77) + 7_3(§a 77) + 7-4(67 77)7

(&) = e o(€)e™ p(n)a(€,m),  Ta(&m) = M p(n)a(E,m),

73(&,m) = ()M C(n)o(€,m),  Ta(€,n) = 1) ((n)a (€, n).
We show that each T7,, i = 1,2,3,4, is bounded from H? x H? to X,, 1 < p,q < oo,
1/r=1/p+1/q.

We begin with the estimate of T},. Since (eéI"p(£))Y € LY(R") (see (&) and (&X)), the
Fourier multiplier operator e''PI°p(D) is bounded on H?, 1 < p < oo. Since m < 0, we
have o € S (R?") C SY(R?") C SP(R?™), and hence by Theorem 2], T, is bounded from
H? x H? to X,. Thus, the desired boundedness of T, is given.

Next, we consider the estimate of 7,. We write

7o(&,m) = )€™ x e p(n) x €] o (€, ).

By Theorem A, the Fourier multiplier operator e!P!"¢(D)|D|™ is bounded on HP if 1
p < 00, and on BMO if p = co. As we showed above, ¢!”I°p(D) is bounded on H¢, 1

VANIVAN
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q¢ < 0o. On the other hand, since |{|™™ € S;gnl (R") and o € ST,(R*") C S%l (R?"), from
Propositions 2.2]and 2.3, it follows that the bilinear Fourier multiplier operator corresponding
to [£]7™ (&, n) is bounded in H? x HY — X,., with H? replaced by BMO if p = co (notice
that m; < 0 if p = 00). Thus, combining these boundedness, we obtain the H? x H? — X,
boundedness of 7,.

In the same way as above, we see that 17, is bounded from H” x H? to X,.

We finally prove that 77, is bounded from H? x H? to X,.. The multiplier 74 can be written
as

7a(&,m) = eCO)1E™ x () [n|™ x [€]7™ In| ™20 (€, m).

Since o € ST} (R*") C STO(RQ"), |€|=™ € S;g”l and |n|~" € 51_76”2, it follows from Propo-
sition that the bilinear Fourier multiplier |£|~"|n|~"20(&,n) gives rise to a bounded
operator in HP x H? — X, with H? or H? replaced by BMO if p = oo or ¢ = 00, respec-
tively. Here, we notice that m; < 0 if p = oo, and my < 0 if ¢ = oo, respectively. Hence,
combining this with Theorem A, we obtain the H? x H? — X, boundedness of T,,. This
completes the proof of Theorem [1.2 O

3. FOURIER TRANSFORM OF e'lé°y(277¢)

In this section, we investigate the asymptotic behavior of the Fourier transform of the
oscillator e’ multiplied by Littlewood-Paley’s dyadic decompositions. This property is one
of the keys to proving our main theorem.

Proposition 3.1. Let 0 < s <1 or 1 < s < co. Suppose that 1p € S(R™) satisfies supp 1 C
{1/2 < €] < 2}. Then, for any Ny, Ny, N3 > 0, there exist ¢ = c¢(n, s, Ny, No, N3) > 0 and
M = M(n, s, N1, N, N3) € N such that

y 2=t if 2079z < a,
(1 p@796)) (@) < cllllon § 2O, if a < BODa| <0,

27Nz ||~ Ns - qf 209 |g| > b,

for j € Ny, where a = s4~1=% and b = s4'=5|. If in addition ¥ (€) # 0 for 2/3 < |€| < 3/2,
then there ezist ¢ = ' (n, s,v) > 0 and jo = jo(n,s,) € N such that

(3.1)

1 - ns : S > \/ - ns
—9iln—3) < ‘(a\ﬂ 97 ) T ‘ < 9i(n="3)
) L) < | (i) (@) <
if o <2079z <V and j > jo,
where a' = 5(3/2)7"5 and b = s5(3/2)1l.
To prove this proposition, we first observe that the determinant and the signature (=(the
number of positive eigenvalues) —(the number of negative eigenvalues)) of the matrix

Hess (|£|S) = (8&a€j|£|s)1§i,jﬁn
are given by
5 det Hess ([€]*) = s™(s — 1)]¢|¢=2n
and

(3.4) sign Hess (|¢[°) = {

n—2 if 0<s<1,
n if s> 1.
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In fact this is a simple computation. We have

Oc, O, 1§I” = SIE[P 26, + s(s — 2)\5‘3_2§ 15}

€1 1€l

Hence if we take an orthogonal matrix 7' = (¢; ;) that satisfies
Zt . 1 for i= 1,
Z]|€| 0 for i=2,....n
then T'(Hess(|€]*))T ! is equal to the diagonal matrix with the diagonal entries

s(s = DIELT, slel ™ .., slgP™
From this we obtain (3.3]) and (B.4).

Proof of Proposition[3.1. By a simple change of variables we can write

to) = (41 00299) 0 = o [ vty

with
¢;(z,m) = 220" 4 .
The gradient of the phase function ¢;(x,n) is given by

grad, 0,2, 1) = 20w + sl
n
For each z € R™\{0}, there exists a unique 1y = no(x) € R"\{0} such that grad, ¢;(, 17)‘77 o=
0. In fact, 1 is determined by the equations
20 Ia] = sl = T
[z ol

If ng is in a neighborhood of supp ¢/ then we can use the stationary phase method to obtain
the asymptotic behavior of H;(z). If ny is outside a neighborhood of supp then we can
deduce the rapid decay of H;(x) by integration by parts. To be precise, we divide the
argument into several cases.

We first consider the case 0 < s < 1.

Case I: 0 < s <1 and 22079|z| < s4°~1. Then || > 4. In this case, for € suppy C
{1/2 <|n| < 2}, we have

s—li

] > 2079 || 4 52571 > 5(2571 — 4571
Ul

|grad, ¢;(z,n)| = 210=9) 2 4 ||

and
(3.5) 0565 (e.m)| = |91nl°| < c(n.s,0) for o] >2.
Thus integration by parts gives

|[Hj(@)| < cln, s, N)[¢llon2(27°) 7Y

for each NV € N. Since N can be taken arbitrarily large, the desired estimate of H;(x) in this
case follows.
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Case II: 0 < s < 1 and 27179 |z| > s4=(~1_ In this case, |no| < 1/4, and, for € supp v C
{1/2 <|n| < 2}, we have

s—li
7]
and we also have ([B.35]). Thus integration by parts gives

| Hj()| < c(n, s, N)l|vllon 2™ (2|2]) =

|grad, ¢;(z,n)| = 2710=9g 1 s > 290=9) || — 52707 5 930=9)5)(1 — 2571

for each NV € N. Since N can be taken arbitrarily large, the desired estimate of H;(x) in this
case follows.
Case IIl: 0 < s < 1 and s4°7! < 27079)|z| < s4=~Y_ In this case, 1/4 < || < 4. By

B3) and ([B.4]), we have
(3.6) det Hess, (¢;(z, 1)) = s"(s — 1)|n|*™2" < 0
and
sign Hess, (¢;(x,n)) =n — 2.
Also for each multi-index « there exists ¢(n, s, «) such that

(3.7) 00¢;(x,n)| = [02(27 )z -+ nl°)| < c(n,s,a) for % < |n| < 10.

Notice that the constant ¢(n, s, «) can be taken independent of j and x so long as they are
in the range of Case IIl. Thus by using the stationary phase method (see, for example, [17,
Chapter VIII, Section 2.3]), we obtain

n s —s _1 s’
H;(x) =(2m) 2 exp (z|x s1gs-1(1 — s)) (s"(l — s)|n0\(5_2)") 27 (n72)
<) 1 0

(3.8)

Here notice that the oscillating factor exp(---) comes from

2y (x,m0) = |15 (1 - s).

Also notice that, by virtue of (3.6) and (B.7), the O-estimate in (3.8) holds uniformly for
(7, ) in the range of Case III and for ¢ satisfying supp ¢ C {1/2 < [¢| < 2} and [[¢]|gn <1
with a sufficiently large M = M (n). From (B8] the estimate of H;(x) in ([BI]) for Case III
follows.

The estimate ([3.2) also follows from (B.8) since 2/3 < |no| < 3/2if 5(3/2)*~! < 270-9)|z| <
s(2/3)571.

Next we consider the case s > 1. Since the argument needs only slight modification of the

case 0 < s <1, we shall only indicate necessary modifications.
Case I': s > 1 and 27179 |z| < 547~V In this case, |n| < 1/4 and

}gradn¢j(x>n)} > 5(2_(5_1) _ 4—(5—1))'

for n € supp . Integration by parts yields the desired estimate.
Case II': s > 1 and 27(=9)|z| > s4°~'. In this case, |n| > 4 and

|grad, ¢;(z,n)| > 2707 |2|(1 — 27¢1)

for n € supp ¢. Integration by parts yields the desired estimate.
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Case II': s > 1 and s4~6~1 < 270-9)|x| < 54571, In this case, 1/4 < || < 4. By (B3)
and (3.4)), we have
det Hess, (@-(m, n)) = s"(s — 1)/ >0
and
sign Hess,, ((;Sj(x, n)) =n.
The estimate (3.7) also holds. By the stationary phase method, we obtain
n s —s 1 5
Hj(z) =(2m)"2 exp (i|z|7Ts71(1 — 5)) (s"(s — 1)|770|(s_2)") 2™
X $(m0)2/ " F + 0 (20E ),

from which the desired estimates follow. This completes the proof of Proposition B.11 O

Corollary 3.2. Suppose that § € S(R") satisfies supp 0 C {|¢| < 2} and the function C is
as in Notation[L.A. Then the following hold.

(1) Let 0 < s <1 and N > 0. Then, there exist ¢ >0 and M € N such that

|z 72T if Ja| <1,
||, if |o| > 1,

(@0 7) ()] < clolen {

for all j € Ny.

(2) Let 1 < s < oocand N > 0. Then, there ezxist ¢ >0 and M € N such that
s RN 1+ |x‘)—%+—z(£1) if |z < s8¢12i6=
il¢] 9(2~7 ) ‘ <cllo ( ’ ’

e c ,
(9 c@0e70) @) < cllew ¢ 1 0 1ol > a1 21
for all j € Ny.

Proof. We first put K; = (el¥°¢(£)0(277¢))" and decompose K; as

j+1

(39)  K@)=Y Kile) with Kee) = (9 p20027) ()

Here, we notice from (B.I]) of Proposition B.I] that

2~ kN: on Qf = {2k0=9)|z| < a},
(3.10)  [Ki(@)] S 0() 027 [[enm § 2K on Qf := {a <279z < b},
27kN2| 1| =Ns on QF := {2F1=9)|x| > b},

where a = 4715l and b = s4'=5l. For 1 <k < j+ 1, |[9(-) 0(2¥ 7 )||em < ||6]|om. Hence
K is estimated as

1 j+1 j+1
|Kj(2)] S 0]l e (Z 27V gy () + ) 2 e () + 27 | Mgy (x)) :
k=1 k=1 k=1

Hence, in the following argument, we shall estimate the above three sums.
@ Let 0 < s < 1 and write L = § + 57— Lo prove the estimate mentioned in (1), we
first prove that

2| K ()] S W0llenr, ol < 1.
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We assume |z| < 1. For the sum with 1 (), we have for Ny > 0,

Jj+1 Jj+1
|l’|L Z 2~ kNll Z (2k(1_8)|l’|)L 2—kL(1—S) 2—kN1 ]_Q]lS (l’) ’S 1.
k=1

For the sum with 1g2(x), since —L(1 — s) 4+ (n — %) = 0 and overlaps of Q2 are finite,

J+1 Jj+1 Jj+1
mLsz Fllgp(r) = Y (26079 a]) " 27HE09) 26501 o (1) & Y 1 () S 1.
k=1 k=1

For the sum with 1o (x), we have by choosing N3 > L and N > (1 — s)(N; — L),

j+1 Jj+1
|$‘L Z 2—kN2‘x|—N3 1Qz (SL’) _ Z (Qk(l_s)‘x|)L_N3 9k(N3—L)(1-s) 2—IcN21Qz (I) 5 1.
k=1 k=1

Combining the above inequalities, we obtain the assertion () for the case |z| < 1.
We next prove that

2M K ()| S N0llows o] > 1,

which can be shown by a similar way. In this case, the sum with respect to 1o vanishes.
Replacing L by N in the above, and taking N,, N3 > 0 satisfying that N3 > N and N, >
(1 — s)(N3 — N), we have the desired estimate for the sum with respect to 1gs. For the
sum with respect to 1g2, since |z| > 1 gives 2¥(07%) < b on Q2 the cardinality of k is finite.
Furthermore, since 1 < |z| < 270=9bif 2 € Q2 N {|z| > 1}, k > 1, it follows that |z|V ~ 1
on Qf N{|z| > 1}. Thus, we obtain the assertion (I]) for |z| > 1.

@) In the case 1 < s < oo, we first observe that, if |z| < s27¢~1 = 257! or |z| >
§857127(s=1) = p2U+DE=D then |z| < a2F=Y or |z] > b2~ holds for all 1 < k < j + 1,
that is, z € Q} or z € Q3. By ([3.9) and (B3.I0), this implies that for any N; > 0

j+1
K (@)] S 0lloa Y- 278 < 0llew, o] < 52767,
k=1
and, for any Ny > 0 and N3 > 0,
j+1
[15(@)] S 18llom 3 272 S [Bllomlz| ™, la] > 5877 27070,
k=1

Hence, to obtain the desired result, it suffices to prove that
]| K ()] £ [0llow on 9 i= {52770 < [a] < 58t 276D,

where, we wrote L = § — ﬁ Here, we note that L < 0 for 1 < s < 2 and L > 0 for

2 < s < oo and write L = max{0, L}. Assume z € €2;. For the sum with 1o (x), we have
for Ny > Li(s—1)
j+1 j+1
|$‘L Zz—kNllﬂi(:Q < Z (2k (1-s |$‘)L+ 9—kL+(1=5) 2_kN119i(x) <1.

k=1 k=1
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For the sum with 1 (), since —L(1 — s) + (n — %) = 0 and overlaps of Q2 are finite,

j+1 j+1 Jj+1
|z |" Zz’f Flgp(a) = Y (26079 a]) " 27H09) 2k =501 o () & Y 1 () S 1.
k=1 k=1

For the sum with 13 (x), we have by choosing N> > 0 and N3 > L,

Jj+1 Jj+1

‘ZL’|L Z 2—kN2|x‘—N31Qz (SL’) 5 Z (Qk(l_s)‘l’DLJr_NS 9k(N3—L1)(1-s) 9—kN> 192 (SL’) 5 1.
k=1 k=1
Therefore we complete the proof of the assertion (2I). O

4. LEMMAS

In this section, we prepare some lemmas for our main theorems. Let 6§ € S(R™) satisfy
supp # C {|¢| < 2} and ¢ be as in Notation [[L5l Then, we define, for j € N,

Sf(@) = (€97 ¢©027) F19)) (a),
T = (¢4 0)7(€)) (@)
which can be represented as follows:
Sif(e) = Kyx fla) with K(a) = (€9 (€)0(2796)) (a),

TF(z) = L+ f(z) with L(:c):(eifSe(g))v(x).

Notice that the kernel K; already appeared in Corollary

In the succeeding subsections, we will give several inequalities for the operators S; and
T. Some of the inequalities are concerned with h'-atoms. Recall that, in our definition of
h'-atom, the radius r of the supporting ball of an h!-atom satisfies r < 1 (see Notation [L5]).

(4.1)

4.1. Inequalities for s # 1. In this subsection, we show some inequalities which will be
used for proving the boundedness in both cases s < 1 and s > 1.

Lemma 4.1. Let 0 <s<1lorl<s<ooandletl <p<oo. Then, there exist c > 0 and
M € N such that
18 Fllzoeey < € @)™ 2|0 oo | £1] oeny
for all j € Ny.
Proof. This lemma follows from the trivial L2-boundedness, the L'-boundedness and L-

boundedness with the aid of complex interpolation. The L' and L*-boundedness follow
from the kernel estimate below:

(42) 1K sy N6l (29)

for some constant M € N. This inequality is derived from the following fact: for N > 0 with

0<N< if 0<s<1
(4.3) M) ’
0 <N < o0, if 1<s< o0,
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the kernel K of S; satisfies that

4.4 H 142009V K < [16]car (27)5 .
(4.4) 1+ 2N KL S Bllow ()
In fact, choosing N > 0 that satisfies

g<N<2(ls), if 0<s<1,

5 <N < oo, if 1<s<oo,

(notice that § <

obtain

s H0<s< 1), and using Cauchy—Schwarz inequality and (£4]), we

1K, < H 1+2j(1_s>|z|)—NH H(1+2j(1_8)|x|)N

I, )

S 10llen (27)~ 55 (20)% = (18]l om (2) %

Although both ([£2]) and ([@4]) can be shown by the use of Corollary [3.2] here we shall give
an elementary proof of (£4]), which may be of independent interest. We will also use the
inequality (4.4]) in the proof of the next lemma.

Hence, we move on proving that (4.4]) holds for N > 0 satisfying (4.3]). To this end, it is
sufficient to show that

(4.5) H(2j<1_5)|x|)NKj“L2(Rn) < 0llear(29)2, if N > 0 satisfies (@3).

The case N = 0 obviously follows from Plancherel’s theorem, and thus, we shall assume
that N > 0. We recall the decomposition (3.9):

j+1

s NV
1) =Y Kiglo) with K@) = (¢ w27 0)027%)) (@),
k=1
A simple calculation gives that for « € (Ng)” and 1 <k < j+1

o (6”5‘8 ?ﬂ(?_kf)e(?_jf))’ S 100l crar (29 V1N s gy <oy,
and thus, by Plancherel’s theorem,

o Ky (2) || o S (16l e (25) 67010 (29) 2.
Here, take 0 <t < 1 and v € N satisfying N =ty > 0. Then, by Holder’s inequality

et B o = || 1) B
S e K| Kl 2" S 1Bllen (25070 (292,
o] =
Therefore, since the condition (4.3)) especially means § + (s —1)N > 0 in the case 0 < s < 1,
j+1 Jj+1
YKo < D 121V K 2 S 10l D (25670 (295
k=1 k=1
o [ (29) 6D (29)5
This implies (43]), and thus the proof is completed. O

Lemma 4.2. Let 0 < s <1 orl < s <ooandlet0<t<1. Suppose f is an h'-atom
supported on a ball of radius r centered at the origin in R™. Then the following hold.
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(1) There exists ¢ > 0 depending only on n such that
5 fHLQ(Rn < c||f]lco (29)2 min {(2/r)", (27r) "> }
for all 7 € Ny.
(2) If A>2r and if N satisfies that
O§N<ﬁ, if 0<s<1,
0< N < o0, if 1<s< oo,

then

~N(1-t)

195 F @] 2 (acpagnny < clfflem(27) (27072 A) min { (297", (277)~ % )

for all j € Ny, where the constants ¢ > 0 and M € N depend only on n, s, and N.
Proof. (Il) We first observe that, by Plancherel’s theorem,

(4.6) 15 fllzz = 1K % fllre < 1Kl flle S (27) 2116 co.
We next show that
(4.7) 155 f11z2 < (27)2 min {27r, (27r) "2 } |6)] co

holds for all h'-atoms f. If f is an h'-atom of second kind (i.e., r = 1), then, by Plancherel’s
theorem, ||S;fllz2 S [|€]|co, which is identical with (£7) for » = 1. We shall next consider
the case that f is an h'-atom of first kind (i.e., 7 < 1). By Plancherel’s theorem,

1S fllze < 0llcoll fllzz@ny S 10llco ™% = [10llco (27)% (2r)7%

Moreover, since f is an h'-atom of first kind and is supported on a ball centered at the
origin, Taylor’s theorem with the moment condition [ f = 0 yields that

I8l = 32 [ (17 € ©0279)) 0 — )y s o]

o<t<1 e
[yl 1.f(y)| dy
Lz /y|3r

< 3 [ emceroe) ()]

lal=1
< 0lleo (27)% (27r),

where, in the last inequality, we used Plancherel’s theorem. These two estimates imply (£.7]).
Finally, interpolating (4.6]) and (A7), we have for 0 <t <1

I5i 1z = (185£122) (13712
< ((2j)’5||9||co)l_t((2j)’§ min {277, (27r) "% } ||9||co)t

= (27)% min {(27r)", (27r) % }[|0]|co,

which completes the proof of the assertion ().
() We observe that, if A > 2r, A < |z| < 24, and |y| <r < 4, then |z — y| ~ |z| ~
Since f is an h'-atom supported on a ball centered at the origin, this observation yields that

= | @0 @O al) 0 1(0)|

}}ij(z)}}Lz(A§|x|§2A) L2(A<|z|<2A)
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<@ [l e - 0l

< (2j(1—s)A —NH 2] (1-s |I|> (:)3)’

L2(R™)

L2
Here, we recall (4H]). Since the assumption in this assertion is identical with (£3]), by
utilizing (4.0), we obtain

HS fx HL2 (A<|z|<24) ~ S 10l e (2j)% (2j(1_s)A)_N

for some constant M € N. Also, the inequality ([#1) obviously holds if L?(R™) is replaced
by L*(A < |z| < 2A). Therefore, interpolating these two inequalities, we have for 0 < ¢ <1

1—t t
5, f(x HLZ (A<|z|<24) (||5 f(z )||L2(A§|x|S2A)) (||5jf(93)||L2(A§|x|§2A)>

L o 1- - . o\t
< (Iellew (292 (270=24) ™) 7 (8llco (2)% min {277, (29r)72})
< 0]l (20)% (2202 4) N min {(200)Y, (277) "% ),
which completes the proof of the assertion (). O

Lemma 4.3. Let 0 < s < co. Then there exist c > 0 and M € N depending only on n and
s such that the following hold.

(1) If 1 <p < q < oo, then
1T fllpaeny < cll@lloa [ 1l o@n-
(2) If f is an h*-atom supported on a ball of radius v centered at the origin in R™ and if
A > 2r, then
1T fllzasio<any < ¢ A7)0 o

Proof. Before beginning with proofs of the assertions, we show that the kernel L defined in
(4.1)) satisfies the following inequality: there exists M € N such that

(4.8) | L(2)] S [16llenr (1 + [a]) =+,

Although the inequality (L)) is a well-known fact, for the sake of a self-contained proof, we
revisit a proof. '
The case for |z| < 1 is simple, and so we will consider the case || > 1. Since eI — 1 =

il€]® fol e€l° dt, the kernel L can be expressed by

L(x) = / el (7]¢1°)0(¢) dédt + / (&) dé.
€]<2 l€]<2
0<i<1 =
Integration by parts yields that the absolute value of the second integral is bounded by
10]|ca (1 + |2|)™ for any M € Ny, and thus, in the following, we shall consider the first
integral. Using a Littlewood—Paley partition of unity on R, {1(27%.)}cz, since supp @ C
{|€] < 2}, we can decompose the first integral into

Zlk(:c) with  Ix(z) := Lk1<£<2k+1 e itle]* (ile]") (@ *e)o(e) dedt.

k<1 0<t<1
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Here, we have for a € (Ny)” and k <1

o (eﬁlﬁls (i\g\S)w(z—kg)e(g))) SN0l rer (25 1 g1 g copiny, 0 <E <1,

which gives that for M € Ny

1(@)| S [0l x { B0 =l (@2Flal),
T
B e o e N R

Therefore, by choosing M > n + s,
D @) S N0lloalal =Yy min{ (28|, (28] ]) MY & (0] our ||,
k<1 k<1

which completes the proof of (L8). Now, we actually prove the assertions () and (2).

(@) Take a function § € S(R™) satisfying that # = 1 on {|¢| < 2} and supp 8 C {|¢| < 3}.
Then, we observe that

Tf(x) = T(O(D)f)(x)

and also from (8] that L, the kernel of T, is in L*(R™) and ||L||z1 < ||0||ca. Therefore, we
see that

T fllze < 10]cn |0(D) f] o
< N0llem 10D flle S 10l £l e,

where, in the second inequality, we used Nikol’skij’s inequality (see, e.g., [18, Section 1.3.2,
Remark 1]). This completes the proof of the assertion ().

() We first observe that, if A > 2r, A < |z| <24, and |y| < r < 4, then [z—y| =~ |z| ~
By (A8]), we have for A < |z| <24

T I ey oy e R T

ly|<r
S A0 o,

which implies the assertion (2]). O

4.2. Inequalities for s < 1. In this subsection, we show some inequalities which will be
used for proving the boundedness for s < 1.

Lemma 4.4. Let 0 < s < 1. Then there exist ¢ > 0 and M € N depending only on n and s
such that the following hold.

(1) If f is an h'-atom supported on a ball centered at the origin in R™, then

HSf HLl (|z|>2) = CHQH(JM

for all j € Ny.
(2) If 0 < A <10, then

n(l—s)
155F @] 2 qageny S €A™ 7 N0l || 1l o)
for all j € Ny.
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Proof. ) If |z| > 2 and |y| < r < 1, then |z —y| > %' > 1. Hence, by Corollary B2 (1)), we
obtain for N > n

15,7 (2) 2 gapozy < 6llos / el )] du
y_T

|lz|>2

SHllew ([ Jal™Nde) [ 1)y S 6o,
|z|>2 lyl<r

which completes the proof of the assertion (). (We don’t need the moment condition [ f =0
here.)
([2) We decompose f by

f= Flyy<carsy + flyysca-«y = fi+ f3,

where C' = 2 - 10°. For the estimate with respect to f}, we see from Plancherel’s theorem
that

n(l—s)

195 fall2ei<ay < 1S5 fallzey < 10]lcoll Fallz@ny S [1€]lco A

We next consider the estimate with respect to f3. In the situation here, since A < 10°A1~*
for 0 < A <10 and 0 < s < 1, we realize that, if |z| < A and |y| > CA'™%, then

100yl
—yl > (1- )l =12
2=yl > (1)l =5

| f |l oo my.-

Hence, by Corollary B.2] (),

19; Fallz2(aj<ay S A2

[ sl
ly|>CAl=s

Lge(lx[<A)
n _n_ n n(l—s)
S A HHCMHfHLOO(Rn)/ ly| 72720 dy = A7 [0l o || | oo ey,
ly|>CAl—s
where, in the last inequality, we used —5 — ﬁ < —n. This completes the proof. O

4.3. Inequalities for s > 1. In this subsection, we show some inequalities which will be
used for proving the boundedness in the case s > 1.

Lemma 4.5. Let 1 < s < oo. Ifj € Ny and A > 276=D then
Hij(x)HLZ(\x\gA) < CA% ||9||C'M ||f||L°°(R")a
where the constants ¢ > 0 and M € N depend only on n and s.

Proof. We decompose f as follows:
f=flgy<oay + Flggscay =t fa+ fi,
where C' = 2s8°~!. For the estimate involved in f}, we have by Plancherel’s theorem
155 £ illz2qai<a) < 1S5 Fallc2ny < N0llcoll fallz@ny S 161l A% [|F]] oo gny,
Next, we consider the estimate involved in f%. Observe that, for |z| < A and |y| > CA,

ly| . CA

oyl > (1= 5)l > 2 >

CA | gs—19is-1)
5 =5 =58
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holds, which is possible from the choice of the constant C' > 2. Hence, by utilizing Corollary
(@), we have for large N > n
[ 1K=l
ly[>CA

1S5 f3ll 212y S A%
< A% 0| || 1] e / |~ dy < A% 6| | £l oo qen)-
ly|>CA

L (jz[<A)

Combining the above estimates, we complete the proof of this lemma. O

5. BOUNDEDNESS IN H' x L™ — L!

In this section, we shall give a proof of Theorem [[L3. To this end, we will prove the
following theorem.

Theorem 5.1. Let 0 < s <1 orl < s < oo. Suppose that o € STO(RQ") with

- {—% g <s < 1,

=, if 1<s<o0.

Then T¢ is bounded from h' x L™ to L'.

We notice that Theorem [L.3can be derived from Theorems[I.2]and 5.1l by virtue of complex
interpolation. Thus, it suffices to show Theorem [5.1

Now, we begin with the proof of Theorem 5. We decompose the multiplier ¢ following
the idea of Coifman-Meyer [3, 4]. We write

o(&,n) = o (&,m)v;(&)ve(n)
j=0 k=0
oo k—1
= (& +ZZ (&M () e(n) + > o€ i (§)vu(n)
j=1 k=0 k=1 j=0
= o (&) + Y (& mi()e;(n Zaf,n o1 (E)vi(n)
jEN eN

= 00(&n) + o1(&, ) + ou(&,n).
We first consider the multiplier oy. Taking functions v, ¢ € CS°(R™) such that
v=1on {271 <[¢| <2}, suppd C {37 < ¢ <3},
p =1 on {[¢] <2}, supp ¢ C {|¢] < 3},

we can write oy as

o1(&n) =Y o(&mMU27OF2 ) v(&)p;(n),

jeN
since 1¥(279€)3(279n) equals 1 on the support of ¥;(€)p;j(n). Since o € ST (R*") and

supp o/(27¢, 2n)i(§)@(n) € {371 < [¢] < 3} x {|n| <3},
the following estimate holds:

008 (D€ 2 FM)) | < Cap 2™
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with C, s independent of j € Ny. Hence, by the Fourier series expansion with respect to the
variables £ and 7, we can write

o(2€,2'n) = D et jgl<m, Il <,
a,bezZn
with the coefficient satisfying that for L > 0
(5.1) 1| < 27 (1 Jal) (1 )
Changing variables & — 277¢ and n — 2777 and multiplying v;(£)¢;(n), we obtain
o(&m;(§)e Z Cab a2 g2 anj(g)@y( ).
a,bezZn™

Hence, by the definitions of ¢); and ¢; in Notation [[.5] the multiplier oy is written as
ab) Jia-279¢ ib-277 —j —j
or&n) = Y > s ety (27Ie) p(277n)

a,beZn jEN
= Y D duP @ (a7ig) B2y,
a,beZ™ jeN
where we wrote as
P(E) = eMEp(e), P (n) = e Mp(n), v e
By similar arguments, the multipliers oy and oy can be written as

ab a
0o 6 77 Z C( (b)(ﬁ)>

a,bezZm
a,b) —j
milEn) = 30 3 e O 200g) g0 2),
a,beZ™ jeN
where the coefficient c(()ab satisfies the same condition as in (B with j = 0, and the

coefficient 01(1 ?) satisfies the same condition as in EID.

Hereafter we shall consider slightly general multipliers oy and ¢ defined by

(5-2) 50(5 77) = Co 91(5) 92( )
(5.3) =2 6027 6(27),

where (¢;) en, is a sequence of complex numbers satisfying

(5.4) lcj] <2MA,  jeN,,
with some A € (0,00), and 0y, 0, € S(R") satisfy that
(5.5) supp 61, supp 0, C {[¢] < 2}.

For such oy and &, we shall prove that there exist ¢ > 0 and M € N such that
(5.6) 115l xcpoes ity (1 T3] hxroomsrr < cAll61 | oa||02][onr

If this is proved, by applying (5.6]) for o to ¢; = cg’b), 6, =@ and 6, = o we have

1T lnxrsomns S ) (L la) ™5 (L4 o) 1€ () car o () |y

a,beZ™
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S D (U al) M+ o),
a,beZ™

and, thus, taking L sufficiently large, we see that 77 is bounded from h' x L™ to L'. In
the same way, we see that 775 and T7 are bounded from h' x L* to L'. The above three
estimates complete the proof of the h! x L — L! boundedness of T%.

Thus the proof is reduced to showing (5.6]) for 7y and & given by (B.2)-(5.5). However,
the estimate for o is simple. In fact, from Lemma [.3] (),

I75,(£,9)lles = ||eo "2 01(D) (@) €12 0x(D)g @) | |
< AP (D) P 0 D)g | S Allrllen 62l Fll g -

Hence, in what follows, we concentrate on proving (5.0) for o given by (B.3)—(E.5).
We shall make further reductions. Using ¢ and ¢ defined in Notation [[L3 we decompose
the function 1 on R™ x R" into

1= p(&)e(n) + 0(§)Cn) + C(E)p(n) + C(E)C(n).
Then, T% can be expressed by the following four parts:
T3(£.9)(@) = Y o { T}/ (@) Tig(a) + T f(x) S2g(x)
(5.7) jeN
+ S} f(2) T2g() + S} f(w) S2g(x) }.

where, for £ = 1,2, we wrote
. s s ~~ V
S f(@) = (" C(©)0:277) F1&)) (@),
s L~V
T{f(2) = (¢4 20,277 F(9)) ().
Considering the L'-norm of (5.7)) and using the assumption (5.4)), we see that
I la=A > > 2705 Vigl,
UVe{S,T} jeN
and thus, in the following argument, it is sufficient to prove that
> 2MU Vgl S G lleallBalled| Fllnllgllie, UV € {S, T}
jEN
To prove this, by virtue of the atomic decomposition of h!, stated in Notation [[5], and by
translation invariance, it suffices to obtain the uniform estimates for h'-atoms f supported

on balls centered at the origin. Furthermore, we may assume that ||g||,~ = 1. Therefore, in
order to obtain the desired boundedness result in Theorem [5.1], we shall prove that

(5.8) > 205 Vgl S M0llewlOallor, UV € {S,T},
jeN
holds for such f and g and for some M € N. In the rest of this section, the letter r always

denotes the radius of a ball including the support of f; f is assumed to be an h'-atom
supported on a ball in R™ of radius r centered at the origin.
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5.1. Case 0 < s < 1. We recall that the critical order for 0 < s < 1 is

1—
m:—ﬂ—s( s)n7

2 2

and notice that m < —5. We also remark that this m can be written as

1_ 2
m:_m%,

5.1.1. Estimate for T} f T?g. By Lemma , it holds that
J J

1757 Tl < 175 41 1750 |
S () 0127 llenlle() 6277 )lew [ f s lgllaee
< 116 llearl|Ballar

Since m < 0, we obtain (5.8)) with (U, V) = (T, T') from this estimate.

5.1.2. Estimate for T, f S7g. It follows from Lemmas Z3| (1)) and &1 that

171553900 < 17370130
S @) () 027 ) lenmllalloa | £l i llgl e
S @) F |0 flew16allen,

which gives (5.8) with (U, V) = (T, S) because m < —.

5.1.3. Estimate for S} fT?g. We use Lemmas BT and B3] (@) to obtain
155 £ gl o < 1S5 £ 11 179
S (2) = [|ullemlleo() B2(277 ) [lom [ fll el g oo
S (2) 7 (|01l 16s ]l o

Since m < —2t, this yields that (5.8) holds with (U, V) = (S,T).

2

5.1.4. Estimate for Sjf S7g. We divide the L' norm in (5.8) into the following three parts;
1p @2 ol @2 1p @2 1 @2
(5.9) HijSngLl(R") = HijSngLl(\x\gzr) + HijSngLl(2r<|m|§4) + HijSngLl(|m|>4)'
We first consider the norm L!(|z| < 2r). By the Cauchy-Schwarz inequality, we obtain
15} £l orzany S TS5 2oy S 72001 ol fll 2 S 1164 co-

Hence, by this inequality and Lemma [£.1] we have

1 @2 1 2 i\
(5.10) 1577 S50 2 ar<ony < 135N o arcon 1559 e ey S (2)2
for some M € N. For the norm L!(|x| > 4), we also have by Lemmas 4] () and [4.1]

(5.11) HS;fSJZgHLl(|x|>4) < 1S} fllpr a0 1S3 9] pony S (27) %

|01 co || 0] ¢

|01l o] B2
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Thus, we shall consider the estimate of the second term in the right hand side of (5.9). We
decompose it as follows;

HS}fSJZ-gHLl(2r<\x\§4) = Z HsjlfszgHLl(2krg\x\§2k+1r)

kEN, 2kr<4

_ < 3 + > ) 155 £ S50 1 g comsry

keEN, 2kr<2—i(l=s)  keN, 2-i(1=s)<2kp<4

(5.12)

Here, we remark that the first sum in the second line vanishes if 27719 < 2.

We show that the following estimate holds; for 0 <t <1land 0 < N < ﬁ,

1 2
( ) HijSngL1(2kr§\x\§2k+1r)
. . . _ _ (1—s)n . . nt
< 270m (270098 ) TV i L(200)E (277) % H16u | e[|l o

for k € N satisfying that 2% < 4. In fact, it follows from Lemmas 12 ([2)) and 4] () that

HS;fszgHLl(2kr§\x\§2k+1r) < HS;fHL2(2kr§|m|§2k+1r)HSJZQHLQ(2kr§|m|§2k+1r)
(1—s)n

< (29)% (220-020) TV min {(200)1, (277) % }(28r)

(173)2”
2

Orllca B2l crrll gl oo
(1—s)n

(290-92%) TN i {(270)Y, (297) 7 F 101 [l o [0l
: . CN(1—t)s @=sn . .
— 9—im (2j(1—s)2kr> NO-9+57 in {(27r), (2JT)—§}H91H0M||92||CM’
where we remark that Lemmas @) and 4] ([2) are applicable to the factor involved in
f and g, respectively, since k& € N implies that 2¥r > 2r and also 2Fr < 4 implies that
|z| < 2FFlr < 8.

The former sum in the second line of (5.12) is estimated as follows. Since 0 < s < 1, it
follows from (B.I3) with 0 <¢ <1 and N = 0 that

— (Qj)%—

Z HS;fszgHLl(?ch\x\S?chlr)
kEN, 2kr<2—i(1=s)
619 ommin {0, @) olevlballon 3 (I02)

k:2i(0=s)2kpr<]
< 279" min {(2'r)!, (27r)" % H |6 o |falov.

On the other hand, the latter sum in the second line of (5.12]) is estimated as follows.

Since 0 < s < 1, we have (1_25)" < 2(1"_5), and consequently we can choose 0 < ¢t < 1 and
N > 0 satisfying (21&2’; < N < 5545 Therefore, by (513) with such ¢ and N, it follows
that
1, Q2
Z HijSngL1(2kr§\:v\§2k+1r)

keN,2-i(1=s) <2kr<4q
. . . nt . _ _ (1—s)n
(5.15) < 279 min {(2]T>t7 (2JT)—7}H91HCM||‘92||CM Z (23(1—s)2kr) NQ—t)+5520
k:2i(1=s)9kpr>1
< 279 min { (297", (27r) 7% 1|01 || [|Bal o
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Thus, taking the same 0 < ¢t < 1 for (5.14) and (5.I5]) and then combining them with
(5.12), we obtain

1557 529l 11 repopeay S 277 min {(277)", (277) 7% } Bl e 16 o

Hence, combining this with (5.10) and (5.I1J), we conclude that (5.8 holds with (U, V) =
(S,5). This completes the proof for the case 0 < s < 1.

5.2. Case s > 1. Before beginning with the proof, let us recall the critical order for s > 1:

ns
m=———.

2

For this m, in what follows, we will prove that (5.8) holds. In this subsection, we take a
jo € N such that 2790¢=1) > 2 For such j, € N, we have by Lemma E3] (I) or BTl

N2t VEgl,, S ST @) 0l carll6z o L £l sl gl
1<5<j0 1<5<50

S 0illon [0l one

for U,V € {S,T}. Therefore, in order to achieve (5.8), it is sufficient to show that
(5.16) S 2| US VRl S I0llealfellon, UV € {S.T}.

J>jo
To this end, except for the case (U,V) = (T,T), we split the norm of L'(R") as follows:

1172 1172 1172

105 V29l 21 ey = 1105 VG 11 oy <asieniny + 105 VG s gy
5.17 1py,2 1p1/2
(5.17) < HUJ’ IV gHL1(|x|§2j($*1)+1) + Z HUj IV gHL1(2k§|x|§2k+1)’
keEN, 2k >2i(s—1)

where, the sum over 2¢ > 21(s=1) ghould be‘read as the sum over £ > kg with a positive
integer ko = ko(j) satisfying that 2k0—1 < 27(s=1) < 2%k Here, we are able to choose such
ko € N, since 27671 > 2 for j > j;. Now, we shall prove (5.16).

5.2.1. Estimate for T} f T7g. By Lemma .3 (I),
T} T 9| 0 < 1T el Tl e
S () 01(2774) [l earllo() B2(27 [ one [ fll 1l gl oo
S 101l e (|62 o
and thus, since m = —% < 0, (5.I6) holds for (U,V) = (T, T).
5.2.2. Estimate for lef szg. We use the decomposition (5.17). For the first term in (5.17),

using Lemma A3 (I) with (p,q) = (1,2) and Lemma A5 with A = 27¢=D+1 o the factors
for f and g respectively, we have

1T £ S39)| 11 oy < T3 il 1791l 2ol <oy
(5.18) < () 0127 lear | £l (27C7D)E (10| o | gl oo

n(s—1)

S @) |l0ulleal|Oa]l o
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Next, for the summand in the sum of (5.I7), we have by Hélder’s inequality, Lemma ()
with A = 2*, and Lemma F.5] with A = 2k+!
1p Q2 kN2 [l 2
HTy ijgHL1(2kg|m|g2k+1) S (29)7 HTy fHLoo(zkg|m|g2k+1)HSJ‘9HL2(2kg\x\g2k+1)
S (297 (257 )0(-) 02277 ) [low - (2% 16allone gl e
S 277 |6l e [|02 ]l o,

where, it should be remarked that Lemma is applicable to the factor involved in g, since
2k+1 > 2i(s=1 in the sum of (5.I7). This yields from s > 1 that

1) 2 NSl g S 10illenlallon D27 ~ rflonllballow.
keN, 2k>2i(s—1) keN

Therefore, combining (5.18) and (5.19) with (5.17) we obtain

n(s—1)

T fS7gll 0 S (2) 7 [16ullon )16l

. . . . n(s—1
which implies that (5.16) holds for (U, V) = (T, S) since m < —%.

5.2.3. Estimate for SjfT;g. For the first term in (5.I7), Lemmas (@) and (@) yield
that, for 0 <t <1,

. n(s—1)
185 f T3 9l 11 aj<icsn+1y S (27) = 1S fllz@n) | T gll e )

S (2)% min {(27r)", ()% |61 oo | e
We shall next consider the sum of (5.17)). By Hélder’s inequality and Lemmas @) and
(@), the summand in (5.17)) is estimated by

(5.20)

HS;f T129||L1(2k§|r|§2k+1) < (2k)%||S}f||L2(2kg\x\g2k+1)||T]-29||L00(Rn)

<293 @8 (2070257 min {(2r)!, (20r) 7 } 00 oo
= (2)% (2707925 7N min {(27r), (27) 7} 00 oo o,
where we notice that 28 > 2r holds in the sum of (5.17), since k is restricted to N and r < 1:

this allows us to apply Lemma @) with A = 2* to the factor with respect to f. Then,
choosing 0 <t < 1 and N > 0 such that —N(1 —#) + 4 < 0, we have

Z 18] £ T7 9l 2 20 <jaf<ovn)
keN, 2k >2i(s—1)
(621 @)% min{@r), @) F O onlballon D (202N
k:2i(1=s)2k>1
A (27)F min {(277)", (271) 7% }01 [l o 10| o

Thus, by choosing the same 0 < ¢ < 1 for (5.20) and (5.21)), and by combining them with
(5.I7), we obtain for such 0 < ¢ < 1

nt

197£ Tgll0 5 ()% min {7, (27r)7% 101 flea 6]l
which implies that (5.16]) holds for (U, V) = (S,T).
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5.2.4. Estimate for Sjf S7g. For the first term in (5.I7), by Lemmas (@) and £33, we
have for 0 <t <1

||S}f szg||L1(|m|§2j(S*1)+1) S ||S]1f||L2(R")||szg||L2(\w\§2j(S*1)+1)
(5.22) < (2)% min {(277)", (27r) "% } [allow - (20) 77 (|02
= (2)% min {(277)!, (2r)" %} ||ely|cMy|e2||CM
For the summand of (5.17), we have by Lemmas 4.2] (2) and 4.5
HS;f5929HL1(2’“S\96\S2’“+1) < HS;JCHL2(2’€<|m|<2k+1 HSZQHB (2k<|z|<2k+1)
< (29)% (220728 "V i {(27r) (2] )5 M6l onr - (25)3 (16| one
, Sk —N(1—t o
= (29)% (27072)2%) TN min {(270)", (207) 7 } 01l (102 o
which yields that, since there exist NV > 0 and 0 < ¢ < 1 such that —N(1 —t) + % < 0,
2
(5.23) Z 1S} f S7gll L1 @e<pop<arny S (/)% min {(27r)", (277) 2 } |61]|cae]|6a]| oar
kEN, 2~k >2i(s—1)

Therefore, choosing the same 0 < ¢ < 1 for (5.22) and (5.:23) and then combining them with
(5.17), we obtain for such 0 < ¢ < 1 that

ns

1S} f S7gllr < (27)% min {(27r) 2jr)_%t} 1161]| o |02 || e -
This gives (5.16) for (U, V) = (S,S), and we complete the proof for s > 1.

6. NECESSARY CONDITIONS ON m

In this section, we shall give a proof of Theorem [L.4l In this section, we use the notation
X, given in (2.1]).

Proof of Theorem[T.7]. Let 0 < s <lorl<s<oo,andlet meR, (p,q) € IUITUIVUVI,
and 1/r = 1/p+ 1/q. If all bilinear operators T3, o € S7(R*"), are bounded from H? x H*
to X,., then, by virtue of the closed graph theorem, there exist ¢ > 0 and N € N such that

(61) HTUSHHPXHQ—U(T S ¢ | \II\168|J><{N H 1 + ‘g‘ + |77|) m+|a\+|ﬁ\aaaﬁ 5 n HLoo (R27)

holds for all o € ST(R™) (see Bényi-Bernicot-Maldonado-Naibo-Torres [2, Lemma 2.6] for
the argument using the closed graph theorem).
Now, we take two functions 6 and ¢ such that

0 € C*(R"), suppf C {371 <[¢[ <3}, 6(6)=1 on {27! <[¢] <2},

¢ € C°(R"), suppo C {I§| <3}, ¢(§) =1 on {[¢] <2}
For j € N, we set

aj(&n) =2""0(277€)p(27n).
Then we have
|08 0,0;(€.m)] < Cap(L+[€]+ )"V o, g€ N,

uniformly in j € N. Hence, by (6.1]), we see that there exists C' > 0 such that
(6.2) <C, jeN

175,
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We shall prove that (€2]) holds only if m < mg(p, q).
Take a function ¢ € C§°(R™) such that suppy C {27! < |¢] < 2} and ¥(€) # 0 on
{2/3 < |¢] < 3/2}, and set
f @) = (0270 (@),
i) = (80 (270)) (@),
i) = (9(2799)) (@) = 27()" (2).

Then we have the following estimates;

(6.3) ||fi||HP ~ ||fi||LP ~ 9i(n=F)9=i(=s)y o <p< oo,
(6.4) 1fille 2 11 flle 22 270750 for 1<p < oo,
(6.5) 1(fi)? | Baro = 2%,

In fact, since the Fourier transform of f;~ are supported in the annulus {27! < [¢| < 20F1}
we have the first inequality in (63]), and the second ~ in (6.3]) follows from Proposition B.Il
On the other hand, by a straightforward calculation, we see that (6.4) and (6.5) hold.

Proof of the case (p,q) € 1. In this case we use the function f;. Since P(277€)0(279¢) =
¥(279€) and P(277)¢(277n) = $(277n), we have
T3 (7 7)) = 27 (),
and hence, we obtain
175, (57 F) L, = 2 1)l

where, in the last inequality, we used (G.4) combined with the identity ||(f;)2|l- = || f5]/32-
if r < 0o, and used (6.5)) if r = co. Combining this with (6.2)) and (6.3]), we obtain

9d(m+2n—1) < 9i(n—=5)9=i(1=s)7 9j(n— )2—3‘(1—5)%’ j €N.

o 20(mAI=3) 5 e N,

T'

This is possible only when m < —sn(s —
(p,q) € 1.

+ % — é) This completes the proof of the case

N[
SR L

Proof of the case (p,q) € II. By the same reasons as above, we have
T, (f5 [)() = 27 (ff (@),
and thus (6.3]) implies that, since 2r > 1 for (p,q) € II,

1T (i f)llee = 27|52 = 27 £

Hence, if ([62)) holds, then this estimate and (6.4]) imply that

~ 9Im (2](”—-))22—j(1—8)% )

2jm(2j(n—%)) 9—i(1=s)7 <21(”——)21(” )’ jeN,

which holds only if m < —sn( + 1 — 1), This completes the proof of the case (p, q) € II.
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Proof of the case (p,q) € IV. In addition to the functions fjjE and f;, we use the following
functions;

gi() = (M9 (210-)) (@),
hi(e) = (e p(2n)) (a),

where the function 1 is the same given in the definition of fjjE and f;. Since the support of
g; is included in the annulus {27079)~1 < |n| < 270=9+1} "if 0 < s < 1, then we have by
Proposition [3.1]

(6.6) 9l e = [|gjlLa = 2/ (1=9)(n=5)9710=1*% for 1< g < o0

(we notice that this holds when s < 1, since Proposition 3.l treats the function whose Fourier
support locates far from the origin; the support of g; locates near the origin when s > 1).
On the other hand, in the same way as for the functions ff, we also have

(6.7) 1hjll e = ||yl pe &= 277302770795 for 1< ¢ < 0.

Now, we first consider the case 0 < s < 1. Observe that 0(277&)1(277€) = ¢(2779¢) and
Y (277070 p(277n) = (2771 ~*)p). Hence we have

T3, (f509)(w) = MO () ()Y (270).
Then, from (B3.2)), it holds that
} 5:95) I)‘l{a/<2j(1fs)|m|§b'} r 2/mI (= ngi =) (w)V(Qj(l_s)I”1{a/<2j(175)\w\éb1}

for all j > jo, where @', V' and j, are the same given in Proposition B (see (3.2])). Thus, we
obtain

ns

) ZQJ'mQj(n——)QJ (1-s) H 2](1 s) )

T2 (f5, 99|,

1{a’<2j(175) |:E|§b’

— 9im9i(n —7)21(1—s)n2—y(1—8)%’ J > jo,

with ¢ = ||(¥)" 1{o<|z|<pry |- > 0. Hence it follows from (6.2)), (6.4) and (6.6]) that

)2 n

L) .j>j07

ns sn

9imoj(n—"3)9j(1—s)ng—j(l—s): < 9J(n=3)9i(1=s)(n—3)9—i(l=s

which is possible only when m < —sn(% —3)—s(1—s)n(3 — %)

Finally, we shall consider the case s > 1. Since
T, (fjhy) (@) = 27" [ (2) £ (@),
it follows from (3.2)) that
T3 (f5,hi) () [ cosa-ju <py & 2/ 5210 -0 oy <y
for all 5 > j9. Hence, we obtain
H f], } o2 > 9imgi(n— )Qj(n—%)g—j(l—S)%’ 7> jo.
Combining this with (@), ([6.4) and (€7), we have

S’!L)

0imoin=3)9i(n=5)9=i(1=a)7 < 9l (n=3)oiln=59 11795 - 5 > 4y,

which is possible only when m < —sn(% — %) This completes the proof of the case (p, q) € IV.



BILINEAR OSCILLATORY FOURIER MULTIPLIERS 27

Proof of the case (p,q) € VI. Since the situation is symmetrical, we obtain the desired
conclusion in the same way as for the case (p,q) € IV. Thus Theorem [[4]is proved. O
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