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Abstract

We report an improved implementation for evaluating the analytical gradients of

the random phase approximation (RPA) electron-correlation energy based on atomic

orbitals and the localized resolution of identity scheme. The more efficient RPA force

calculations allow us to relax structures of medium-size water clusters. Particular

attention is paid to the structures and energy orderings of the low-energy isomers of

(H2O)n clusters with n = 21, 22, and 25. It is found that the energy ordering of the low-

energy isomers of these water clusters are rather sensitive to how their structures are

determined. For the five low-energy isomers of (H2O)25, the RPA energy ordering based

on the RPA geometries is quite different from that based on the geometries relaxed by

lower-level theories, in contrast with the situation of small water clusters like the water

hexamer. The standard RPA underbinds the water clusters, and this underbinding

behavior gets more pronounced as the complete basis set (CBS) limit is approached.

The renormalized single excitation (rSE) correction remedies this underbinding, giving

rise to a noticeable overbinding behavior at finite basis sets. However, as the CBS

limit is approached, RPA+rSE yields an accuracy for the binding energies that is

comparable to the best available double hybrid functionals, as demonstrated for the

WATER27 testset.

1 Introduction

Water clusters (H2O)n are the building blocks of bulk water – the most important substance

for life on earth. Studying the structures and properties of water clusters is a crucial step to-

wards a molecular-level understanding of water in its condensed phases, including both liquid

water and ice.1,2 Moreover, water clusters themselves are important components of biological

systems and are abundant in atmosphere, and hence studying the properties of water clusters

is of high scientific interest by its own. Experimental and computational studies of water

clusters have been continued for decades, yet numerous questions remain to be addressed,
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in particular regarding the energy rankings of low-lying isomers at each cluster size.3 The

commonly used computational approaches for these studies range from classical force fields

to density functional approximations (DFAs) and ab initio quantum chemistry methods.

Due to the rapid increase in the numbers of local minimum structures of (H2O)n as the size

n grows, global structure search has mainly been carried out based on classical force fields,

generated either empirically4 or fitted to ab initio data.5,6 The initially determined struc-

tures and their energies can then be refined using more accurate first-principles methods.3

In the quest for fully understanding the properties of water clusters (and ultimately bulk

water), it is crucial to have inexpensive yet sufficiently accurate quantum chemical methods

that can treat electrostatics, hydrogen bonding and van der Walls (vdW) interactions on an

equal footing. In this regard, the second-order Møller-Plesset perturbation theory (MP2),7

simplest post-Hartree-Fock quantum-chemistry method, plays a pivotal role in the study of

water clusters as it often delivers highly reliable results, and is often used to benchmark the

accuracy of DFAs.8,9

In recent years, the random phase approximation (RPA),10–14 formulated as an orbital-

dependent fifth-rung functional of density functional theory (DFT),15–17 has emerged as a

powerful first-principles approach to evaluate the electronic ground-state energies of molecules

and extended materials. Compared to lower-rung functionals, one prominent advantage of

RPA is that it captures seamlessly the long-range van der Waals (vdW) interactions.18,19

Benchmark calculations showed that RPA-based methods can accurately describe the in-

teractions within weakly bonded molecular complexes20–25 and are capable of capturing the

delicate energy differences between different structural configurations26,27 and crystalline

polymorphs.28–32 Furthermore, compared to MP2, RPA can describe the polarization effects

beyond the second order33 and is applicable to small-gap and metallic systems. As such,

there is a strong interest in applying RPA-based methods to water systems. Preliminary

results on water clusters,34,35 liquid water,36,37 and ices38 show the great promise of RPA-

based methods in characterizing small energy differences in water systems. Given such initial
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successes, it is natural to think of determining the structures of water clusters based on the

PRA methods. Previously, MP2 is often employed as the high-level benchmark ab-initio

approach to determine the structures of water clusters.3,9 In this regard, one expects that

RPA may provide a competitive alternative.

To determine the molecular structures at the RPA level, the analytical gradients of the

RPA energy with respect to the atomic displacements need to be evaluated. Within the

last decade, much effort has been devoted to implementing the analytical gradients of RPA,

mostly for molecular geometries. Among these, Rekkedal et al.39 were the first to develop an

O(N6)-scaling algorithm for evaluating the analytical gradient of RPA on top of the Hartree-

Fock (HF) reference, utilizing the ring-coupled-cluster-doubles (rCCD) formulation of RPA.

Shortly after, a similar rCCD-based analytical gradient formalism for RPA was developed by

Mussard et al.40 within the range-separation framework. Based on the resolution of identity

(RI) technique and Lagrangian formalism, Burow et al.41 reduced the scaling behavior of

RPA gradient calculations to O(N4log(N)), taking the size dependence of the imaginary

frequency grid into account. Further development was carried out by Ramberger et al.42 who

achieved anO(N3)-scaling RPA gradient algorithm for periodic systems based on the Green’s

function formalism and plane-wave basis set. The O(N3) scaling was enabled by the space-

time algorithm for evaluating the GW self-energy,43,44 which is needed in this particular RPA

gradient formalism.42 This algorithm was further reduced to O(N2) by Beuerle et al.45 in

terms of an atomic-orbital (AO) formulation whereby the sparsity of the AO-based integrals

can be exploited. Recently, the present authors also developed a RPA gradient approach35

for molecular calculations within the localized RI (LRI) scheme,46 which works for both

Gaussian-type orbital (GTO) and numerical atomic orbital (NAO) basis sets. In the present

work, we further improve our algorithm and code, achieving a de facto O(N3)-scaling for

RPA gradient calculations. This enables the structure relaxation of molecules of much bigger

size at the RPA level, especially for water clusters of medium size (n > 20).

RPA has been previously used to study small water clusters. An earlier study of water
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clusters using RPA in a dual hybrid form ( the so-called dRPA75 functional47) was carried

out by Mezei et al.48 Using the standard RPA, Chedid et al. performed a systematic study of

the WATER2749 testset, benchmarking the performance of RPA for the structural, energetic,

and vibrational properties of this testset. They particularly studied the basis set dependence

of the RPA binding energies. In consistent with previous experience, they found a substantial

underbinding and pronounced basis set dependence of RPA for water clusters. However,

despite its overall underbinding behavior, RPA does yield the correct energy ordering for

the low-lying isomers of water hexamers.34,50 Previously, it was found that the underbinding

behavior of RPA can be largely cured by adding the renormalized single excitation (rSE)

corrections,25,51 and the efficacy of rSE was also observed in water-cluster systems.35,52 Thus,

we expect that adding rSE corrections to RPA is essential for the RPA-based methods to

describe the water systems quantitatively.

In this work, after recapitulating the basic algorithm of our implementation, we present

a performance study of our RPA gradient implementation, thereby checking its scaling be-

havior, parallel efficiency, and numerical accuracy. Then we look at the energy hierarchy

of the low-lying isomers of water clusters of larger size, with n = 21, 22, and 25. In par-

ticular, we check how the energy ordering of different water isomers change with the level

of theories employed to relax their structures. We found that, unlike the water hexamers

where going from PBE to RPA geometries the energy ordering is preserved, for larger clus-

ters like (H2O)25, this is not the case any more. If one trusts that RPA-based methods yield

reliable energy hierarchy of water clusters, it seems that, in general, it is also important to

determine the geometries consistently at the RPA level. We then also checked the basis set

convergence for both RPA and RPA+rSE. It is found that as one increases the basis size

towards the complete basis set (CBS) limit, the RPA becomes even more underbinding for

water clusters, in consistent with Ref. 34, whereas the RPA+rSE evolves from an overbinding

behavior towards an excellent agreement with the most accurate results yielded by double

hybrid functionals, reported in the literature. Hopefully the present study will shed new
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light on the application of RPA-based methods to the study of water systems.

2 Theory and Algorithm

2.1 RPA total energy within the LRI approximation

We start with the RPA total-energy expression and then consider its derivatives with respect

to the atomic displacements, highlighting the reduction of the computational cost brought

about by the localized RI (LRI). The RPA total energy is given by

ERPA = EHF + ERPA
c (1)

where EHF is the Hartree-Fock total energy evaluated using orbitals generated from a pre-

ceding calculation based on density functional approximations (DFAs). The Perdew-Burke-

Ernzerhof (PBE) generalized gradient approximation (GGA) is often used to generate the

orbitals and orbital energies for RPA calculations. The key component in Eq. (1), the RPA

correlation energy, is formally given by

ERPA
c =

1

2π

∫ ∞

0

dωTr
[
ln
(
1− χ0(iω)v

)
+ χ0(iω)v

]
(2)

where χ0 is non-interacting Kohn-Sham (KS) response function, which has an explicit “sum-

over-states” expression,

χ0(r, r′, iω) =
∑
m

∑
n

(fm − fn)ψm(r)ψn(r)ψn(r
′)ψm(r

′)

ϵm − ϵn − iω
, (3)

with ψn, ϵn, and 0 ≤ fn ≤ 2 being the KS orbitals, their energies and occupation numbers.

Computationally, χ0 and v in Eq. (2) can be interpreted as the matrix form of the non-

interacting density response function and the bare Coulomb interaction, represented in terms

of a set of suitable basis functions. For simplicity, here closed-shell systems (hence fn = 0
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or 2) and real orbitals are assumed. Extensions to spin-collinear cases and complex orbitals

are straightforward.

Within an atomic-orbital (AO) basis set framework, the KS molecular orbitals (MOs)

are expanded in terms of a set of atom-centered basis functions {φi,I(r)},

ψn(r) =
∑
i,I

cni(I)φi,I(r−RI) (4)

with cni(I) being the KS eigenvectors and RI the position of the atom I, on which the basis

function i is centering. For clarity, here we explicitly indicate the atom on which each atomic

basis function belongs to, and the summation over i goes over only those AOs centering on the

atom I. Furthermore, the exact-exchange (EX) and RPA correlation energies are computed

based on the RI approximation. Within this approximation, a set of auxiliary basis functions

(ABFs) {Pµ(r)} are employed to expand the products of two AOs,

φi,I(r−RI)φj,J (r−RJ ) =
∑
µ,U

C
µ(U)
i(I),j(J )Pµ(r−RU) (5)

where RU is the position of the atom on which the ABF µ is centered, and C
µ(U)
i(I),j(J ) are

the expansion coefficients, with the atoms to which the AOs and ABFs belong explicitly

indicated in parenthesis.

In the global RI approximation,53–56 the atom U could be a third atom other than the

atoms I and J ; however, in the LRI approximation46,57,58 adopted in the present work, U

has to be either I or J , i.e.,

φi,I(r−RI)φj,J (r−RJ ) =
∑
µ∈I

C
µ(I)
i(I),j(J )Pµ(r−RI) +

∑
µ∈J

C
µ(J )
i(I),j(J )Pµ(r−RJ ) (6)

where µ ∈ I means the summation over ABFs {µ} are restricted to those centering on the

atom I. In the RI (LRI) formalism, another key quantity is the Coulomb matrix, which is
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the representation of the Coulomb operator in terms of ABFs,

Vµ(U),ν(V) =

∫
drdr′

Pµ(r−RU)Pν(r
′ −RV)

|r− r′|
. (7)

Introducing

Oµ(U)
mn =

∑
i,I

∑
j,J

∑
ν,V

cmi(I)C
ν(V)
i(I),j(J )c

n
j(J )

[
V

1
2

]
ν(V),µ(U)

(8)

where V 1/2 is the square root of the global Coulomb matrix, then it is straightforward to

show that the exact-exchange energy is given by

EEX
x = −

occ∑
m

occ∑
n

∑
µ,U

Oµ(U)
mn Oµ(U)

nm . (9)

Further denoting

Πµ(U),ν(V)(iω) = 2
occ∑
m

unocc∑
n

2(ϵm − ϵn)Oµ(U)
mn O

ν(V)
nm

(ϵm − ϵn)2 + ω2
(10)

(assuming integer occupations), the RPA correlation energy is then given by

ERPA
c =

1

2π

∫ ∞

0

dωTr [ln (1−Π(iω)) +Π(iω)] . (11)

More detailed derivations of Eqs. (9) and (11), on which our RPA force implementation is

based, are given in Refs.12,56

From the above presentation, one can see that a key step in the RPA energy (and sub-

sequently the RPA force) calculations is to evaluate the O
µ(U)
mn tensor, defined in Eq. (8).

Previously, this was done rather straightforwardly in terms of matrix multiplications, with-

out sufficiently exploiting the sparsity in C
ν(V)
i(I),j(J ). To facilitate a better parallelization

efficiency and reduce the memory cost, we now change the strategy to calculate O
µ(U)
mn by

taking into account the sparsity of C
ν(V)
i(I),j(J ). Specifically, using the property that C

ν(V)
i(I),j(J ) is

nonzero only if V = I or V = J within the LRI, we first calculate an intermediate quantity,
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given by local multiplication of C
ν(V)
i(I),j(J ) with the KS eigenvectors, i.e.,

S
ν(I)
i(I),m =

∑
j∈J

C
ν(I)
i(I),j(J )c

m
j(J )

S
ν(I)
j(J ),m =

∑
i∈I

C
ν(I)
j(J ),i(I)c

m
i(I)

(12)

for each pair of atoms ⟨I,J ⟩ with I ≥ J and V = I. Similarly, we can calculate S
ν(J )
i(I),m and

S
ν(J )
j(J ),m for V = J .

With the intermediate quantity obtained, the target O-tensor can be calculated as

Oµ(U)
nm =

∑
JV

∑
j∈J ,ν∈V

cnj(J )S
ν(V)
j(J ),m

[
V

1
2

]
ν(V),µ(U)

(13)

This step helps a lot to deal with the storage of the three-index C tensor and its transfor-

mation to MO representations.

2.2 RPA Forces within the LRI Framework

The force that an atom feels due to the RPA correlation energy is the negative of the gradient

of RPA correlation energy, i.e.,

FRPA
c,A = −dE

RPA
c

dRA

= −
〈dERPA

c

dC

dC

dRA

〉
−
〈dERPA

c

dV

dV

dRA

〉
−
〈dERPA

c

dc

dc

dRA

〉
−

〈dERPA
c

dϵ

dϵ

dRA

〉
=

〈
Γ(1) dC

dRA

〉
+
〈
Γ(2) dV

dRA

〉
+
〈
Γ(3) dc

dRA

〉
+
〈
Γ(4) dϵ

dRA

〉
, (14)

where the first two terms depend on the atomic positions explicitly, while the last two

terms, consisting of the analytical gradients of KS eigenvectors and eigenenergies, depend on

the atomic positions implicitly and are obtained via density-functional perturbation theory

(DFPT).59 In practical calculations, we introduce two frequency-integrated intermediate
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quantities,

Υµ(U)
mn =

∫ ∞

0

dω

2π
×

(∑
ν,V

fm − fn
ϵm − ϵn − iω

Oν(V)
mn Wc

ν(V),µ(U)(iω)
)

(15)

and

Υ̃µ(U)
mn =

∫ ∞

0

dω

2π
(fm − fn)×

(∑
ν,V

2 [ω2 − (ϵm − ϵn)2]
[(ϵm − ϵn)2 + ω2]2

Oν(V)
mn Wc

ν(V),µ(U)(iω)
)

(16)

where

Wc(iω) =

[
Π(iω)

1−Π(iω)

]
, (17)

with Π defined in Eq. (10). Then, for the case of integer occupations, the Γ(n) tensors

introduced in Eq. (14) can be evaluated as

Γ
(1)
i(I)j(J ),µ(U) = −

dERPA
c

dC
µ(U)
i(I),j(J )

=
∑
ν,V

V
1
2

µ(U),ν(V)

∑
m,n

cmi,IΥ
ν(V)
mn c

n
j,J

=
∑
ν,V

V
1
2

µ(U),ν(V)

occ∑
m

unocc∑
n

[
cmi,IΥ

ν(V)
mn c

n
j,J + cni,IΥ

ν(V)
nm cmj,J

] (18)

Γ
(2)
µ(U),ν(V) = −

dERPA
c

dVµ(U),ν(V)
=

∑
µ′,U ′

∑
ν′,V ′

V
− 1

2

µ(U),µ′(U ′)

( occ∑
m

unocc∑
n

Oµ′(U ′)
mn Υν′(V ′)

nm

)
V

− 1
2

ν′(V ′),ν(V) , (19)

Γ
(3)
i(I),m = −dE

RPA
c

dcmi(I)
= 2

∑
n

∑
j,J

∑
ν,V

Q
ν(V)
i(I),j(J )c

n
j(J )Υ

ν(V)
nm , (20)

with

Q
ν(V)
i(I),j(J ) =

∑
µ,U

C
µ(U)
i(I),j(J )

[
V

1
2

]
µ(U),ν(V)

(21)
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and

Γ(4)
m = −dE

RPA
c

dϵm
=

∑
n

∑
ν,V

Oν(V)
mn Υ̃ν(V)

mn . (22)

Further details of the derivation of these equations can be found in Ref. 35, although we

have used slightly different notations here by explicitly specifying the atomic positions of

the AOs and ABFs. For Nat total atoms, there should be Nat(Nat − 1)/2 atom pairs which

constitute the upper/lower triangular part of a matrix. For onsite atom pairs, the derivatives

are zero and so does the force.

Next, we briefly explain how the traces in Eq. (14) is performed. First, we note that the

global trace operation can be separated into a summation over atomic pairs,

〈
AB⟩ = 2

∑
I>J

〈
AB

〉
⟨I,J ⟩ (23)

and for each pair, we perform local multiplications over the orbital indices. In fact, this

separation is most convenient for the first two terms in Eq. 14, involving the derivatives of

expansion coefficients C and the Coulomb matrix V with respect to the atomic positions.

Taking the first term for example, for each atomic pair ⟨I,J ⟩, the following local operations

are performed, utilizing the sparse property of C
µ(U)
i(I),j(J ),

〈
Γ(1) dC

dRA

〉
⟨I,J ⟩ =

∑
µ∈I

∑
i∈I,j∈J

Γ
(1)
i(I)j(J ),µ(I)

dC
µ(I)
j(J ),i(I)

dRA

+
∑
µ∈J

∑
i∈I,j∈J

Γ
(1)
i(I)j(J ),µ(J )

dC
µ(J )
j(J ),i(I)

dRA

,

(24)

which amounts to two separate contractions over small rank-3 tensors.

11



Similarly, for the second term, we have

〈
Γ(2) dV

dRA

〉
⟨I,J ⟩ =

∑
µ∈I

∑
ν∈J

Γ
(2)
µ(I),ν(J )

dVν(J ),µ(I)

dRA

(25)

Briefly, by exploiting the sparsity and symmetry properties of the intermediate quantities,

the RPA force calculations can be substantially sped up, and the storage requirement is

considerably reduced. The key operations discussed above are summarized in the algorithm

presented in Algorithm. 1.
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Algorithm 1 Flowchart for efficient evaluation of the Oµ
nm tensor and ⟨Γ(1)dC

dR
⟩. Here Nat,

Nb, Nocc, Nunocc, Naux, µ(I), and i(I) are the numbers of atoms, the AO basis functions, the
occupied states, the unoccupied states, the total ABFs, and an ABF and AO belonging to the
atom I, respectively. In practical calculations, Naux > Nb = Nocc +Nunocc > Nunocc > Nocc.
For calculation of Oµ

ij, only N−pairs = Nat(Nat + 1)/2 atomic pairs are needed, under the
restriction of I ≥ J .
1: O

µ(U)
nm = 0; FRPA

c,A = 0

2: for K ← 1 to N−pairs do

3: I: first atom in pair, J : second atom in pair, I ≥ J

4: Compute C
ν(I)
i(I),j(J ) & C

ν(J )
i(I),j(J )

5: S
ν(I)
i(I),m ←

∑
j,J C

ν(I)
i(I),j(J )c

m
j(J ) (cf. Eq. 12)

6: S
ν(I)
j(J ),m ←

∑
i,I C

ν(I)
i(I),j(J )c

m
i(I) (cf. Eq. 12)

7: S
ν(J )
i(I),m ←

∑
j,J C

ν(J )
i(I),j(J )c

m
j(J )

8: S
ν(J )
j(J ),m ←

∑
i,I C

ν(J )
i(I),j(J )c

m
i(I)

9: end for

10: O
µ(U)
nm ←

∑
j,J

∑
ν,V cnj(J ) S

ν(V)
j(J ),m

[
V

1
2

]
ν(V)µ(U)

(cf. Eq. 13)

11: Γ
(1)
i(I),m,µ(U) =

∑
ν,V

∑unocc
n V

1
2

µ(U),ν(V)Υ
ν(V)
mn cni(I) (cf. Eq. 18)

12: for K ← 1 to N−pairs do

13: I: first atom in pair, J : second atom in pair, I > J

14: Compute
dC

µ(I)
i(I),j(J )

dRIJ
&

dC
µ(J )
i(I),j(J )

dRIJ

15: Γ
(1)
i(I),j(J ),µ(I) ←

∑occ
m cmi(I)Γ

(1)
j(J ),m,µ(I) (cf. Eq. 18)

16: Γ
(1)
i(I),j(J ),µ(I) ← Γ

(1)
i(I),j(J ),µ(I) +

∑occ
m Γ

(1)
i(I),m,µ(I)c

m
j(J ) (cf. Eq. 18)

17: FRPA
c,I ← FRPA

c,I − 2
∑

i,I, j,J , µ,I
dC

µ(I)
i(I),j(J )

dRIJ
Γ
(1)
i(I),j(J ),µ(I)

18: FRPA
c,J ← FRPA

c,J + 2
∑

i,I, j,J , µ,I
dC

µ(I)
i(I),j(J )

dRIJ
Γ
(1)
i(I),j(J ),µ(I)

19: Γ
(1)
i(I),j(J ),µ(J ) ←

∑occ
m cmi(I)Γ

(1)
j(J ),m,µ(J ) (cf. Eq. 18)

20: Γ
(1)
i(I),j(J ),µ(J ) ← Γ

(1)
i(I),j(J ),µ(J ) +

∑occ
m Γ

(1)
i(I),m,µ(J )c

m
j(J ) (cf. Eq. 18)

21: FRPA
c,I ← FRPA

c,I − 2
∑

i,I, j,J , µ,J
dC

µ(J )
i(I),j(J )

dRIJ
Γ
(1)
i(I),j(J ),µ(J )

22: FRPA
c,J ← FRPA

c,J + 2
∑

i,I, j,J , µ,J
dC

µ(J )
i(I),j(J )

dRIJ
Γ
(1)
i(I),j(J ),µ(J )

23: end for
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2.3 Computational details

The improved algorithm for RPA gradient calculations as discussed above has been imple-

mented in the FHI-aims code package.56,60,61 In our calculations, we consider water clusters

of size n =21, 22, 25 for determining the energy ordering of low-lying isomers. A modified

Gauss-Legendre frequency grid with sufficient mesh points is used for frequency integration

in RPA force and single-point energy calculations. Frozen-core approximation is used for

RPA, RPA+rSE and MP2 calculations unless otherwise stated. The convergence criterion

for geometry relaxation is set to 10−2 eV/Å. In FHI-aims both NAO and GTO basis sets

can be used. In the present work, to facilitate the comparison with quantum chemistry

literature, the GTO basis sets cc-pVTZ short (TZ), aug-cc-pVTZ (aTZ), cc-pVQZ (QZ) are

used in the calculations. Furthermore, for RPA single-point energy calculations, an addi-

tional 5g hydrogen-like functions (with effective charge Z = 6) is used to generate extra

ABFs (the “for aux” tag in FHI-aims)46,62 to improve the accuracy of local RI. The gas-

phase equilibrium geometry of H2O monomer with TTM2-F has (RO−H) 0.9578 Å, and (θ)

104.51◦.63

3 Results and Discussions

The inter-molecular interaction between water molecules is of great interest in many fields of

science. As mentioned above, the RPA is an appealing approach for describing the energetic

and structural properties of water clusters. Developing efficient algorithms for RPA gradient

calculations is hence a key step towards turning the RPA into a powerful tool for simulating

properties of water systems. In this section, we present the major results of the present work,

including a benchmark comparison with literature results, the scaling behavior of our RPA

gradient implementation with respect to system size, and the energy ordering and structural

parameters of a sequence of water clusters.
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3.1 Benchmark results for the (H2O)20 clusters

To start with, we examine the numerical precision of our RPA calculations for medium-sized

water clusters by comparing our RPA results for the low-lying isomers of (H2O)20 clusters

with those of Chedid et al.,34 obtained using Gaussian cc-pVTZ and cc-pVQZ basis sets.

In Table 1, we present the RPA@PBE total energies for four isomers of (H2O)20 clusters

calculated in the present work, in comparison with those reported in Ref. 34. In our calcula-

tions, two sets of geometries are used, i.e., the geometries provided along with the WATER27

testset, obtained at the hybrid functional B3LYP level, and the geometries fully relaxed at

the level of RPA@PBE. The former set of results are in excellent agreement with those re-

ported in Ref. 34. The total energies can differ up to 1-2 mH, but the energy differences

between the different isomers are significantly below 0.1 mH, indicating that the original

WATER27 geometries were also used in the calculations of Ref. 34. Naturally, the energy

orderings among the four isomers predicted by the two implementations are consistent with

each other, ending up with a sequence of “Edge-sharing” < “Face-sharing” < “Face-cubes”

< “Dodecahedron”,34,48 if the cc-pVQZ basis set is used. However, as shown in Table 1, the

energy ordering of the “Face-sharing” and “Face-cubes” isomers will be swapped when using

the smaller cc-pVTZ basis set. Again, both implementations consistently predicted such a

basis set dependence of the RPA energy ordering, which signifies that high-quality basis sets

are needed to obtain even qualitatively reliable RPA results. For comparison, in Table 1

we also present the RPA@PBE results obtained using the RPA geometries. Now the energy

differences (shown in parenthesis) obtained using the WATER27 and RPA geometries differ

by 0.3 - 2 mH, but the energy ordering does not change. Finally, as a side remark, one may

notice that the RPA energies obtained using RPA geometries are slightly higher than RPA

energies with WATER27 geometries, in contrast with one would expect. This is because the

RPA geometries are relaxed in the all-electron manner, while the RPA energies are obtained

using the frozen-core approximation.
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Table 1: Comparison of the RPA@PBE energies (in Hartree) for the four (H2O)20 isomers
with the literature values reported by Chedid et al.,34 using both cc-pVTZ and cc-pVQZ
basis sets. The energy differences from the lowest-energy (Edge-sharing) isomer are given in
parenthesis. In the present work, both the original WATER27 geometries (indicated by the
superscript b) and the fully-relaxed all-electron RPA geometries (indicated by c) are used.

basis set Edge-sharing Face-sharing Face-cubes Dodecahedron

cc-pVTZa −1529.399108 −1529.397262 (0.001846) −1529.397983 (0.001125) −1529.378167 (0.020941)
cc-pVQZa −1530.258903 −1530.256714 (0.002189) −1530.256446 (0.002457) −1530.241595 (0.017308)

cc-pVTZb −1529.401778 −1529.399957 (0.001821) −1529.400688 (0.001090) −1529.380768 (0.021010)
cc-pVQZb −1530.260364 −1530.258183 (0.002181) −1530.257954 (0.002410) −1530.243048 (0.017316)

cc-pVTZc −1529.401790 −1529.399549 (0.002241) −1529.399979 (0.001811) −1529.381531 (0.020259)
cc-pVQZc −1530.258408 −1530.255937 (0.002471) −1530.255528 (0.002880) −1530.243154 (0.015254)
aRef 34 bThis work (WATER27 geometries) ) cThis work (RPA geometries)

3.2 Scaling behavior of the computational cost

The computational efficiency of our RPA gradient implementation has been significantly

improved since its first publication in Ref. 35. To check the scaling behavior of our improved

implementation, we have considered water clusters (H2O)n of increasing size ranging from

n = 20 to 139. In Fig. 1, we plot the computational timings for one iteration of RPA geometry

relaxation as a function of n. A polynomial fit of the data points shows that the scaling

behavior of the computational time is well described by t(n) = bnα with α = 2.6. Such

a sub-cubic scaling is a significant improvement over the original O(N4)-scaling algorithm,

achieved by further exploiting the sparsity of the integrals offered by the atomic-orbital basis

sets and LRI scheme, as described in Sec. 2.1 and 2.2.

3.3 Basis set convergence

The basis set convergence of the RPA for water clusters has been thoroughly examined in

Ref. 34 based on the benchmark results on the WATER2764 testset, which contains neutral,

protonated, and deprotonated water clusters up to n = 20. There, it is found that the

RPA underbinds the water clusters substantially at finite basis sets, and this underbinding

behavior becomes even more severe as one approaches the complete basis set (CBS) limit.
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Figure 1: Wall-clock timings (in minutes) of one RPA relaxation step as a function of the
water cluster size n. The Gaussian cc-pVTZ basis sets are used. The calculations were
performed on 320 CPU cores. A polynomial fit of the scaling behavior of the computational
times is also added to the graph.

The RPA binding strength for water clusters, if not corrected for the basis set superposition

errors (BSSEs), becomes gradually weaker as the basis size increases. On the contrary, if

the BSSEs are corrected, the RPA binding energies converge from the opposite direction.

Such behaviors for the binding energies are illustrated in Fig. 2 for the water dimer case.

The final extrapolated CBS(5,6) results with and without counterpoise corrections are fairly

close, differing only by approximately 0.1 kcal/mol for the water dimer (cf. Fig. 2).

Our interest here is to investigate what happens for the RPA+rSE method which has

been shown to largely remedy the underbinding problem of the RPA for weakly bonded

molecules.25 In Table 2, we present the deviations of both the RPA and RPA+rSE (BSSE-

uncorrected) binding energies, obtained using both def2-QZVPP and cc-pV5Z/cc-pV6Z basis
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Figure 2: Convergence of the RPA@PBE and (RPA+rSE)@PBE binding energies for the
water dimer with respect to the basis size. The Dunning’s cc-pVnZ basis sets are used in
the tests. Binding energies with and without counterpoise corrections are both shown.

sets, from the reference values for WATER27 testset. The reference values are obtained

using the coupled cluster theory with single, double, and perturbative triple excitations

(CCSD(T)), with dedicated efforts to achieve convergence with respect to basis size. We

note that, in this work, the binding energies of water clusters are defined as

Eb = − [E((H2O)n)− nE(H2O)] (26)

and hence a larger positive number means stronger binding and lower total energy of an

isomer. As shown in Table 2, our RPA results are in excellent agreement with those re-

ported in Ref.34 The RPA+rSE results, first calculated in the present work, show interesting

features. At finite basis sets, the RPA+rSE, without correcting BSSEs, exhibits opposite

behavior as RPA, i.e., it overbinds the water clusters. However, the amount of overbinding

gets smaller as the basis size increases, and the extrapolated CBS(5Z,6Z) results on average

only deviate by about 1.4 kcal/mol from the reference values. Such an accuracy is on a paar
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with the performance of the state-of-the-art double hybrid functional DSD-BLYP65 with

additional dispersion corrections. Unfortunately, it should be noted that the performance

of RPA+rSE, similar to RPA, has a strong basis set dependence, and such an accuracy can

only be achieved at the CBS limit.

Table 2: Mean deviations (MDs), mean absolute deviations (MADs), and maximum absolute
deviations (Max) in kcal/mol of the reference energies provides by Manna et al.66 for the WA-
TER27 benchmark set structures64 with (optimized geometries B3LYP/6-311++G(2d,2p)
for various methods using def2-QZVPP(QZVPP) basis set. The negative error means the
binding energies are underestimated.

Method MD MAD MAX

RPA@PBE [QZVPP]a −2.90 4.90 16.400
RPA@PBE [QZVPP]b −2.74 5.02 16.339
(RPA+rSE)@PBE [QZVPP]b 7.89 7.89 18.190
RPA@PBE [5Z]b -3.78 5.31 18.766
RPA@PBE [6Z]b -5.52 5.74 21.540
(RPA+rSE)@PBE [5Z]b 6.76 6.76 15.351
(RPA+rSE)@PBE [6Z]b 4.40 4.40 10.864
RPA@PBE [CBS(5Z,6Z)]a -7.40 7.40 25.900
RPA@PBE [CBS(5Z,6Z)]b -7.64 7.64 25.820
(RPA+rSE)@PBE [CBS(5Z,6Z)]b 1.40 1.41 4.221
M06-2X-D3(0) 3.40 3.70 10.000
ωB97X-D3(0) 2.20 2.30 7.400
DSD-BLYP-D3(0) 1.20 1.30 5.500
aRef 34 bThis work (results obtained using FHI-aims)

3.4 Energy hierarchy for low-lying isomers of (H2O)n clusters

with n=21, 22, 25

The energy landscapes of putative and low-lying minima of water clusters of n = 3-25 have

been thoroughly studied in Ref. 67 using the TTM2.1-F force field (Thole Type Model

version 2.1 for Flexible monomers).68 Our concern here is if and how the energy ordering

of the low-lying isomers determined by the force field will change when the RPA method is

applied. As an illustration, here we only consider a collection of 9 isomers of water clusters

of size n =21, 22, and 25, taken from the Database of Water Cluster Minima.67 These
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include two low-lying isomers of n = 21 and 22, and five low-lying ones of n = 25. For

these isomers, we have fully relaxed the structures using PBE, PBE0, and RPA with cc-

pVQZ basis set. The (RPA+rSE)@PBE energy calculations are performed using the relaxed

RPA@PBE structures. The energy calculations for these methods are performed using the

same cc-pVQZ basis set. The obtained PBE, PBE0, RPA@PBE, and (RPA+rSE)@PBE

results are presented in Table 3 and 4, together with those of TTM2.1-F and MP2 methods

reported in the literature.67 Here, the MP2 results, taken from Ref.,67 are obtained using

the aug-cc-pVTZ basis set.

Table 3 presents the computed binding energies for water clusters n = 21 and 22, with

two isomers (denoted as a and b) for each size. These two isomers are chosen since they

are energetically the lowest ones within 1 KJ/mol as determined by the TTM2.1-F force

field. In Table 3, the lower-energy isomer of the two clusters is highlighted in bold for

each method and the energy difference between the two isomers is given in parenthesis. For

the cluster size n = 21, one can see that TTM2.1-F, PBE, and PBE0 predict that a is

lowest-energy isomer, whereas MP2, RPA, and RPA+rSE instead favors the isomer b. This

highlights the importance of including non-local electron correlations in the calculations for

water clusters. To check the influence of the underlying geometries on the energy ordering,

we carried out a crosscheck by performing RPA energy calculations on top of the TTM2.1-F

force-field geometry, and by performing MP2 calculations on top of the TTM2.1-F and RPA

geometries. Interestingly, as indicated in Table 3, if RPA or MP2 calculations were not

performed on their own geometries, the isomer a is again favored. This signifies the high

sensitivity of the water cluster structures to the employed computational methods, which

in turn influences the energy hierarchy for the energetically very close isomers (within 1

KJ/mol).

For n = 22, all methods consistently predict that the isomer a is the putative minimum,

although the actual energy differences scatter a lot, depending on the computational methods

and/or the employed geometries. Quantitatively, however, it seems that the energy differ-
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ences based on RPA@PBE geometries (∼ 1.1 - 1.5 kcal/mol) are noticeably larger than other

cases (0.07 - 0.23 kcal/mol). Considering the magnitude of binding energies themselves, the

results yielded by different methods vary a lot. This is partly because the binding energies

obtained using cc-pVQZ basis set are not yet converged. In particular, it can be noticed that

RPA generally tends to underbind the water clusters, yielding a relatively smaller binding

energies compared to other methods, e.g., MP2. Upon including the rSE correction, the

magnitude of the binding energies is increased as much as 40 kcal/mol for this size of water

clusters. This is similar to the case of water hexamers, where adding the rSE correction to

RPA increases the binding energy by more than 1 kcal/mol per H2O molecule.35

Table 3: Binding energies Eb (in kcal/mol) obtained by TTM2.1-F (force field), PBE, PBE0,
MP2, RPA and RPA+rSE. The results of the lower-energy isomer are highlighted in bold
for each method, and the binding energy differences between the two isomers are given in
parenthesis. The geometries used in the energy calculations are explicitly indicated. The cc-
pVQZ (QZ) basis set is used for all these calculations, except for PBE and MP2 calculations
where the aug-cc-pVTZ (aTZ) basis set is also used.

method
n = 21 n = 22

a b a b
Own Geometries

TTM2.1-Fa 227.785 227.565 (0.220) 239.167 239.099 (0.068)
MP2/aTZa 232.618 (0.126) 232.744 242.833 242.701 (0.132)
PBE/aTZ 228.217 228.139 (0.078) 235.183 234.976 (0.207)
PBE 259.651 259.564 (0.087) 268.978 268.749 (0.229)
PBE/light 251.457 251.415 (0.042) 259.657 259.262 (0.395)
PBE/tight 227.940 227.867 (0.073) 234.940 234.694 (0.246)
PBE0 239.762 239.652 (0.110) 248.541 248.423 (0.118)

Geometry optimization RPA@PBE
RPA@PBE 210.818 (0.058) 210.876 219.609 218.209 (1.400)
MP2 241.947 241.795 (0.152) 252.101 250.991 (1.110)
(RPA+rSE)@PBE 250.938 (0.049) 250.987 263.539 262.208 (1.459)

Geometry optimization TTM2.1-Fa

RPA@PBE 207.612 207.323 (0.289) 216.724 216.578 (0.146)
MP2 236.485 236.183 (0.302) 246.829 246.768 (0.061)
aRef67
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In Table 4, we further present the binding energy results for water clusters of n = 25,

obtained using various methods. In this case, there are five low-lying isomers, for which the

energy ordering is also of great interest, in analogy to the water hexamer case.9,35 Again, in

Table 4, the lowest-energy isomer is highlighted in bold, and the energy differences between

other isomers and the lowest-energy one are given in parenthesis. For RPA@PBE energies,

the binding energies are calculated under three sets of geometries: the TTM2.1-F force-

field geometry, the PBE geometry, and RPA@PBE geometry. Although the isomer b is

always the lowest-energy one for all three sets of geometries, the actual energy orderings are

different. For example, using its own geometries, the RPA@PBE predicts an energy ordering

of b < e < a < c < d, whereas a different energy ordering of b < a < e < c < d is obtained

if the PBE geometry is used. The energy ordering is again different under the TTM2.1-

F geometry. The situation here is different from what happens for the water hexamer,

where using PBE or RPA@PBE geometries won’t lead to a qualitatively different energy

ordering.35 A similar effect is also observed for MP2, where using RPA@PBE or TTM2.1-F

geometries for MP2 calculations also leads to a different energy ordering, as can be seen

from Table 4. Compared to the water hexamer and dodecamer, here we are dealing with

five isomers with the same structural motif (the O skeleton) and having even smaller energy

differences (per water molecule). Hence the structural sensitivity of the energy ordering is

much more pronounced here.

In Fig. 3, we plot the variation in the binding energies of the five isomers where the

isomer b is taken as the reference (whose binding energy is set to zero for all methods). Here,

the calculations of all methods are performed under their own geometries, except for MP2

and RPA+rSE for which the calculations are done under the RPA@PBE geometries. The

isomers on the x-axis are ordered decreasingly (b→ e→ a→ c→ d) according to the RPA

binding energies evaluated on the RPA geometries. Figure 3 indicates that these isomers are

very close in energy at the level of the TTM2.1-F force-field method, but show much larger

variations when one goes to first-principles methods. Furthermore, PBE and PBE0 show

22



similar variation patterns across the five isomers, which are however quite different from the

behaviors of MP2 and RPA-based methods. Among MP2, RPA, and RPA+rSE, the former

two essentially yield the same results, whereas RPA+rSE shows noticeable differences. In

particular, compared to RPA and MP2, the order of isomers a and e is swapped in RPA+rSE.

It is still not clear if this ordering change upon including rSE correction agrees with more

accurate quantum chemistry approach such as CCST(T) or not. More investigations along

this line are needed.

Table 4: Binding energies Eb (in kcal/mol) of the five low-lying isomers of (H2O)25 clusters
obtained by TTM2.1-F (force field), PBE, PBE0, MP2, RPA and RPA+rSE. The binding
energies of the lowest-energy isomer are highlighted in bold for each method, and the differ-
ences between other isomers and lowest-energy one are given in parenthesis. The geometries
used in the energy calculations are explicitly indicated. The cc-pVQZ basis set is used for
all these calculations.

method
n = 25

a b c d e
TTM2.1-Fa 277.472 277.451 (0.021) 277.421 (0.051) 277.346 (0.126) 277.329 (0.143)
PBE0 290.637 (0.790) 291.427 289.814 (1.613) 289.711 (1.716) 289.981 (1.446)

Geometry optimization PBE
PBE 314.258 (0.907) 315.165 313.310 (1.855) 313.256 (1.909) 313.522 (1.643)
RPA@PBE 251.480 (0.614) 252.094 252.035 (0.059) 251.813 (0.281) 252.031 (0.063)
MP2 289.988 (0.687) 290.675 290.368 (0.307) 290.108 (0.567) 290.458 (0.217)

Geometry optimization RPA@PBE
RPA@PBE 255.243 (0.765) 256.008 255.095 (0.913) 254.795 (1.213) 255.328 (0.680)
MP2 292.923 (0.771) 293.694 292.847 (0.847) 292.486 (1.208) 293.112 (0.582)
(RPA+rSE)@PBE 304.317 (0.890) 305.207 304.513 (0.694) 304.202 (1.005) 304.843 (0.364)

Geometry optimization TTM2.1-Fa

RPA@PBE 252.065 (0.752) 252.817 252.437 (0.380) 252.264 (0.553) 252.513 (0.304)
MP2 286.984 (0.772) 287.756 287.197 (0.559) 287.024 (0.732) 287.308 (0.448)
aRef67

4 Conclusion

We present an efficient sub-cubic implementation for RPA force calculations within the

framework of AO basis sets and the LRI approximation. Such implementation allows us to
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Figure 3: The relative binding energies (Kcal/mol) of the isomers of (H2O)25 with respect
to isomer b, following the descending ordering of b→ e→ a→ c→ d, as given by RPA. For
these calculations, the cc-pVQZ basis sets are used and the structure relaxation is performed
for given methods, except for MP2 and (RPA+rSE)@PBE where RPA@PBE structures are
used.

relax the structures of water clusters containing a few tens of water molecules using RPA

at the level quadruple-ζ basis sets. Looking into the energy hierarchy of low-lying isomers

of (H2O)21, (H2O)22, and (H2O)25 clusters using RPA and other methods reveals that the

energy ordering pattern predicted by RPA is quite different from those yielded by the force

field and GGA-PBE level of theories. In particular, in contrast with the water hexamer case,

the energy hierarchy given by RPA with force-field, PBE or RPA geometries are also different

for these larger water clusters. In general, the RPA energy ordering is much closer to the

MP2 one compared to the force-field or GGA-PBE results, highlighting the importance of

including non-local electron correlations in water cluster calculations. However, the RPA

itself significantly underbinds the water clusters, and such underbinding becomes even more
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pronounced at the CBS limit. This underbinding is well fixed by the rSE corrections, and in

fact RPA+rSE yields binding energies that is on a par with the most accurate double hybrid

functionals, at the CBS limit. The energy ordering of the low-lying isomers can be slightly

different from RPA to RPA+rSE. In brief, RPA and its extensions provide a competitive

class of approaches to study the structural and energetic properties of water clusters, as

an alternative to traditional quantum chemistry approaches as MP2. However, their strong

basis-set dependence needs to be addressed to make them computationally economic and

practical.

Supporting Information Available

The following file is available free of charge.

• supporting info.pdf: The file contains the following items:
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2. RPA@PBE, (RPA+rSE)@PBE, MP2, PBE, and PBE0 single point energies of

the water monomer.

Acknowledgement

We acknowledge the funding support by the Strategic Priority Research Program of Chinese

Academy of Sciences under Grant No. XDB0500201 and by the National Key Research and

Development Program of China (Grant Nos. 2022YFA1403800 and 2023YFA1507004). This

work was also supported by the Chinese National Science Foundation Grant Nos 12134012,

12374067, 12188101, 12274254, and T2222026. The numerical calculations in this study were

partly carried out on the ORISE Supercomputer.

25



26



5 Supporting Information for

“Efficient structural relaxation based on the ran-

dom phase approximation: Applications to the water

clusters ”

5.1 Structures of the lowest-energy isomers of water clusters (H2O)21

relaxed using RPA@PBE with the cc-pVQZ basis set. The

frozen-core approximation is used.

• a

0.30330010 −3.43960684 −4.13185228 O

1.22225508 −3.13289613 −3.99754878 H

−0.03162000 −3.57525289 −3.23335265 H

2.82912379 −5.29402016 1.04512867 O

2.45009851 −6.17233661 0.87374763 H

3.65047143 −5.28721399 0.51056961 H

−0.36878557 −3.94711550 −1.37155932 O

−1.24845807 −3.81536373 −1.00516285 H

0.25530550 −3.56353046 −0.71524376 H

1.56286253 −3.14213957 0.33484260 O

2.01256300 −3.98974291 0.62303442 H

1.38490627 −2.66407453 1.15147586 H

3.56226997 −8.97897038 −1.33714848 O

4.46317747 −8.58872834 −1.37113943 H

3.29215230 −9.10782219 −2.25990642 H

0.87752183 −6.34068734 −1.91859211 O

0.33596991 −5.57479678 −1.66077015 H

1.05242097 −6.85616653 −1.10655616 H

5.99398644 −7.77819749 −1.29825387 O

5.74102018 −6.90156184 −0.95659820 H
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6.41828236 −7.56099626 −2.14181146 H

6.85550779 −6.71526543 −3.81812614 O

6.73331315 −5.73403237 −3.75984876 H

7.68810864 −6.84137090 −4.28247120 H

4.32018865 −7.11110623 −4.67315797 O

3.94128758 −7.99874581 −4.53947481 H

5.27011470 −7.14815620 −4.45266043 H

4.68759686 −3.19452770 −5.76722906 O

4.19714486 −3.97539427 −6.14225615 H

4.98484052 −2.67746709 −6.52120699 H

2.94680863 −2.93281449 −3.66063871 O

3.51322762 −2.78790653 −4.43741958 H

3.11451885 −3.87012874 −3.41148458 H

0.65952368 −5.40976051 −5.85941371 O

0.00887590 −5.28782862 −6.55807222 H

0.46429116 −4.69713844 −5.19784287 H

2.76447894 −9.23681254 −4.05188983 O

1.92637763 −8.72261088 −4.19888206 H

2.62167599 −10.10122827 −4.44788997 H

5.94295352 −2.81647432 −1.30872808 O

6.59829034 −2.23462947 −0.91344809 H

5.06865437 −2.35455987 −1.21510484 H

1.82505107 −7.76884230 0.16400706 O

1.42022446 −8.44853284 0.71055365 H

2.51480417 −8.24389142 −0.38434145 H

6.43881396 −4.10815299 −3.76351101 O

6.25429635 −3.59828378 −2.95767600 H
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5.86285168 −3.74669461 −4.45763465 H

3.27158234 −5.45338382 −2.82675717 O

2.41337865 −5.80702408 −2.51614383 H

3.61785795 −6.09188329 −3.48548852 H

3.38563102 −5.32994885 −6.55280008 O

2.43110588 −5.30925583 −6.36538419 H

3.72725360 −6.03960380 −5.97904855 H

3.52774362 −1.76887844 −1.25466171 O

2.88497139 −2.19837778 −0.66758492 H

3.26738598 −2.06613279 −2.14868050 H

4.91324149 −5.30040138 −0.69614123 O

5.41075805 −4.46904281 −0.77519343 H

4.35495903 −5.33255325 −1.50393100 H

0.62428815 −7.73536134 −4.27795593 O

0.58013199 −7.27500067 −3.42030563 H

0.62692279 −7.00931027 −4.92531991 H
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• b

0.34993576 −6.27070293 1.49782220 O

−0.05873985 −6.50224046 0.64564284 H

−0.03222052 −5.40025962 1.70732970 H

−1.41606633 −0.20862155 −1.90690594 O

−0.54594755 0.15290533 −2.14738370 H

−1.35555767 −1.14088903 −2.19886890 H

1.23578574 0.38588841 −2.59906298 O

1.54904125 1.13619610 −3.11270457 H

1.57987899 −0.42579256 −3.07408045 H

2.24529422 −1.72115237 −3.70820962 O

2.99020190 −2.06649595 −3.16985309 H

1.71731409 −2.49470867 −3.96272909 H

3.32082224 −3.05068877 2.22544724 O

2.52051825 −2.72004714 2.66407755 H

3.15650905 −3.98851208 2.02667212 H

4.25853514 −2.68524540 −2.14863961 O

4.43725646 −2.18222046 −1.34008727 H

3.86664250 −3.50855251 −1.80502470 H

0.82129156 −2.91846892 −0.41318180 O

1.20214120 −2.02445708 −0.28267427 H

0.36805872 −3.14983757 0.42206024 H

−0.99842724 −2.84725089 −2.38933595 O

−0.27798275 −2.89721433 −1.72239533 H

−0.59591775 −3.17544386 −3.21327202 H

2.72416913 −4.72436752 −1.06661552 O
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2.98067469 −5.18920974 −0.25329331 H

2.05531857 −4.07138282 −0.76727690 H

0.23731616 0.07214340 1.99675016 O

−0.64192722 0.00583756 1.58846239 H

0.85106783 0.01803250 1.23857213 H

2.92294903 −5.73256277 1.50666608 O

3.41771305 −6.43169700 1.94363211 H

1.97237886 −6.02137586 1.51641801 H

4.34854715 −1.40529678 0.42913437 O

4.00552504 −2.05520400 1.09330512 H

5.10253542 −0.98295738 0.85114508 H

−2.63919908 −4.54475729 −1.02118282 O

−2.14105728 −3.93155352 −1.59859530 H

−2.85812939 −4.00689675 −0.24687990 H

−2.20527616 −0.20665553 0.56424781 O

−2.81908817 0.53334232 0.61868882 H

−1.87411879 −0.18770532 −0.38218033 H

−0.99019687 −6.62275577 −0.95388677 O

−1.52172546 −7.41271820 −1.09475320 H

−1.64094077 −5.87696596 −0.92603644 H

−2.97386483 −2.72274767 1.21930679 O

−3.76897946 −2.70835114 1.76075412 H

−2.80186140 −1.78720675 0.97124032 H

0.97670490 −1.98796654 3.43212131 O

0.99781354 −1.77254403 4.36903195 H

0.68513639 −1.16019576 2.96153551 H

0.56704787 −3.91188103 −4.36122133 O
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0.74622757 −4.74746576 −3.85098923 H

0.46553373 −4.17666897 −5.27978586 H

1.87748663 −0.44423553 −0.11542272 O

2.82945600 −0.60973770 0.02224892 H

1.77454926 −0.01932973 −0.98923713 H

−0.47366364 −3.65606243 1.86412181 O

−1.39350400 −3.34874231 1.77881238 H

−0.07102303 −3.13063256 2.58024923 H

1.04795904 −5.99049080 −2.83214040 O

1.71850380 −5.65260057 −2.20651579 H

0.30622418 −6.24833925 −2.25967842 H
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5.2 Structures of the lowest-energy isomers of water clusters (H2O)22

relaxed using RPA@PBE with the cc-pVQZ basis set. The

frozen-core approximation is used.

• a

−0.70068807 2.38062258 −1.42309541 O

−0.55020091 2.94707208 −0.64724220 H

−2.39495380 0.07236942 3.90276973 H

3.76140342 2.28346572 2.68853460 O

0.06636984 1.77600306 −1.41096498 H

−2.25131829 0.80562113 2.55215216 H

1.40655769 1.55687541 1.59417549 O

4.06459735 2.96284120 2.05906016 H

−0.39684418 −0.22068607 3.21774153 H

−2.86422877 1.02708671 −0.80930951 O

4.21264622 1.45958960 2.42157821 H

0.54225190 0.52459815 4.16154068 H

−2.62263698 2.25269454 1.64831314 O

1.07834167 0.90792978 2.26015025 H

5.27523325 −0.64187751 1.72828962 H

1.45940017 0.70328096 −0.94341644 O

2.26206304 1.86927474 1.95405450 H

3.72229501 −0.65963074 1.67547445 H

−1.85486591 −1.28475681 0.45871043 O

−3.53030305 1.09020487 −1.50011992 H

1.95574136 2.66106451 5.32461509 H
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1.69579840 5.33150376 1.23718862 O

−2.06936550 1.52368000 −1.14485452 H

3.11660740 2.79960286 4.31140479 H

4.05551554 3.92180072 0.50946051 O

−1.84013952 2.79000382 1.43197858 H

−2.43957812 3.72227077 4.23008532 H

0.63591022 −1.86069768 −0.25157749 O

−2.91840179 1.90478647 0.78753227 H

−3.35595120 2.93186019 3.32491934 H

−0.63380421 4.04419951 3.81213271 O

1.23445348 −0.24232386 −0.94360835 H

−2.87328380 1.82050102 5.16692197 H

−2.09863929 −0.06019410 2.98712119 O

1.44740613 0.93706230 0.01037687 H

−3.09363493 0.77230101 6.29492775 H

0.55759821 −0.12476428 3.42711493 O

−2.03509724 −1.07058546 1.38715255 H

−0.12835481 2.62320403 4.68589362 H

4.51786922 −0.07521177 1.55256886 O

−2.25563590 −0.55344244 −0.04190137 H

−0.61967306 1.53863180 5.65415499 H

2.69005880 3.23944856 5.06738651 O

1.83048200 5.48090358 2.18777174 H

4.34105643 0.93995579 −0.04002415 H

−3.25588781 3.19465225 4.25369354 O

2.50765940 4.89345303 0.93111738 H

3.20398032 1.26109049 −1.00632609 H
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−2.50513663 0.99358538 5.56674838 O

4.77504975 4.45469835 0.15669941 H

0.35914210 2.77297227 1.31656155 H

0.18782402 1.86900191 5.22934010 O

4.04280854 3.09638699 −0.04387112 H

0.38675755 4.28867342 1.06795362 H

4.07725310 1.58444619 −0.71781107 O

0.58631567 −2.70818394 −0.70448673 H

1.80204358 −1.19787393 2.59245748 H

−0.24718034 3.53381805 1.13773062 O

−0.29386868 −1.66372881 0.02737669 H

1.83079331 −1.75594592 1.16697233 H

2.40161961 −1.59374711 1.93792175 O

−0.53420656 3.87232996 2.85465258 H

2.12750709 4.69836743 4.50026460 H

1.69934903 5.48756761 4.07847915 O

0.04326704 4.71905810 3.99729077 H

1.94570433 6.24353721 4.61974265 H
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• b

−3.43475339 1.01487758 0.65012457 O

−4.01884491 1.62825679 0.19466910 H

−1.75065503 −6.00283767 −1.53895892 H

−2.45900997 0.15169806 6.04960907 O

−3.86208525 0.12285209 0.57800131 H

−1.38872105 −5.60105189 −0.07440169 H

−0.22331526 −0.36405295 2.80510715 O

−2.64541626 0.49605072 5.16078214 H

−0.54649594 −6.02972714 1.93807146 H

−2.76914825 0.43207726 3.26954714 O

−1.51970297 −0.09022743 6.00746433 H

−1.94098043 −5.39481946 2.02295064 H

2.49182483 −2.20757833 5.11522919 O

−0.11511962 −0.61925678 3.74900763 H

2.32197834 −2.20717453 2.01772269 H

−3.80493459 −2.15079470 6.21193154 O

−0.39975552 −1.20565323 2.32422214 H

1.68840452 −0.89055510 2.50530732 H

−0.03983333 −1.12188163 5.36026843 O

−1.84493758 0.19270901 3.04330067 H

−1.11530057 −2.64190409 0.63688088 H

1.05858623 −4.64284212 5.07522288 O

−3.10231224 0.88260800 2.47629450 H

0.25680485 −3.05402402 1.32822665 H

−4.14405038 −1.90790665 3.40242969 O
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2.58549479 −1.91972612 4.17068712 H

−3.04638768 −3.20756517 3.03405102 H

−0.67049761 0.67355711 0.21501087 O

3.34693218 −2.05034601 5.52639689 H

−1.64268811 −3.37727264 2.40854192 H

1.11100487 −5.85105927 2.72884953 O

−3.35695124 −1.26901752 6.24524736 H

1.70549898 −4.57463173 1.60415043 H

−1.39704320 −5.27699229 −1.01635858 O

−4.38692362 −2.17667050 6.97741916 H

1.65507050 −3.83993869 0.20080810 H

−1.41220008 −6.01783982 1.49406708 O

−0.52359224 −1.97858215 5.38673072 H

0.61448379 −2.85698205 −1.50110169 H

2.48875503 −1.43218822 2.58442584 O

0.89248813 −1.36274967 5.49525401 H

0.19988299 −4.33675288 −1.40094051 H

−0.57557535 −2.54615031 1.44768866 O

1.62347438 −3.85325138 5.13133212 H

−0.12341862 −0.70275024 −2.44944499 H

−2.31660192 −3.85516541 2.94064074 O

0.18664717 −4.34842156 5.38479329 H

−0.38428624 −0.51040292 −0.93497555 H

1.78342966 −3.70846861 1.16595695 O

−3.64378899 −1.06257433 3.38878561 H

−2.14526883 −3.68112889 −0.87733347 H

0.97479959 −3.75146186 −1.38561734 O
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−4.32969613 −2.05591919 4.34323209 H

−1.77948634 −2.20695777 −1.22619928 H

−0.31969448 −1.19564541 −1.64664258 O

−0.36307158 0.51100965 1.11862677 H

−2.24644435 −3.19149337 5.91395559 H

−2.27572201 −2.75594700 −0.59288308 O

−1.62119140 0.85976875 0.30844587 H

−1.74270616 −3.64155727 4.52919211 H

−1.43304157 −3.43189167 5.44033864 O

1.07540130 −5.40679738 3.61611632 H

−3.73294881 −2.01533666 0.20918536 H

−4.41389514 −1.44501626 0.60668968 O

1.58244577 −6.67584686 2.88366347 H

−4.53287077 −1.76594450 1.51328853 H
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5.3 Structures of the lowest-energy isomers of water clusters (H2O)25

relaxed using RPA@PBE with the cc-pVQZ basis set. The

frozen-core approximation is used.

• a

10.40603729 10.50814590 −11.06728442 O

9.58139714 10.44801855 −10.57546758 H

11.08742465 10.79333906 −10.40549403 H

14.75502692 10.48409184 −12.78323102 O

14.48391170 9.70124746 −12.25338033 H

15.67459675 10.71926659 −12.52603249 H

17.14332144 13.25734889 −13.95020001 O

16.30435185 13.68485487 −14.18012014 H

17.40442686 12.78937782 −14.76132496 H

15.91800664 7.05328070 −12.87002876 O

15.77809381 7.09203071 −13.83043498 H

16.68356617 7.63198772 −12.72083906 H

11.00626268 12.06499279 −13.26054163 O

10.64916381 11.62529900 −12.46838517 H

11.90361099 12.37313862 −13.00169070 H

12.34412207 14.99685959 −16.22855824 O

12.08417210 15.90706430 −16.39855216 H

11.53327528 14.54647182 −15.87782397 H

14.95816247 11.89332138 −16.62514823 O

15.92781259 11.81616403 −16.67198344 H

14.65745102 11.08222713 −16.15730282 H
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14.43998670 9.51332838 −9.27655457 O

14.54305256 8.88877237 −8.55205770 H

14.26466454 8.96448495 −10.07623070 H

13.51019105 12.80551360 −12.65752705 O

13.86897616 13.24310316 −13.46429984 H

13.93802843 11.91778394 −12.65696220 H

14.09085762 9.77304891 −15.23469916 O

14.39996512 10.03909579 −14.33760829 H

13.11046705 9.85959766 −15.18503044 H

18.06131826 8.93054391 −12.65668567 O

17.80697157 9.84153645 −12.37947013 H

18.90525085 8.75647021 −12.22882035 H

12.26211696 11.27559883 −9.35220192 O

12.98818893 10.63755253 −9.24276396 H

12.70649790 12.11935814 −9.53877985 H

10.64611337 11.46866026 −17.27797446 O

10.13311293 11.21017968 −18.04931293 H

11.45454676 11.92106994 −17.63167881 H

14.50149402 13.90127112 −14.87507013 O

13.81742618 14.45701003 −15.28779918 H

14.64043717 13.17227406 −15.51986719 H

17.67713889 11.66246016 −16.24092153 O

17.77648621 10.71851959 −15.95331882 H

18.39162795 11.81562065 −16.86668045 H

13.81961982 13.49264317 −10.12461212 O

13.72223822 13.39884052 −11.10210579 H

13.70834378 14.42748799 −9.92924557 H
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17.88598701 9.15285873 −15.44492856 O

18.03540175 9.05246377 −14.48896679 H

17.13136559 8.57095664 −15.63507921 H

16.06983340 11.82384876 −9.68725608 O

15.36941940 12.49393104 −9.74944003 H

15.59174644 11.00253592 −9.48694949 H

11.45085923 10.06731113 −15.02539989 O

11.09822896 10.38575297 −15.87475021 H

11.29232424 10.81280477 −14.40441856 H

15.54244057 7.59974472 −15.62663577 O

14.88365911 8.33214501 −15.56845587 H

15.23774179 7.01565108 −16.32697864 H

12.78450433 12.83619696 −18.04971691 O

12.68924010 13.68804835 −17.59348849 H

13.61767156 12.47431751 −17.69849816 H

11.50919851 8.43283713 −12.66473048 O

11.04057133 9.07576121 −12.10602714 H

11.42146059 8.78739987 −13.56255729 H

17.15503337 11.34230402 −12.07397859 O

16.85364021 11.63537240 −11.18353537 H

17.18414824 12.12106823 −12.67404248 H

10.23386876 13.60553492 −15.42244068 O

10.16740327 12.89002648 −16.07551067 H

10.38144838 13.14042492 −14.57960727 H

13.94750426 8.28127286 −11.56049727 O

14.58422771 7.70597935 −12.04344566 H

13.06756066 8.22014347 −11.99565773 H
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• b

16.48813723 9.97857548 −15.02009849 O

17.29457224 9.41238436 −15.03162479 H

15.74584600 9.41821795 −15.34753980 H

14.81995857 7.33481810 −9.23963843 O

14.98276256 6.74452220 −8.49845169 H

15.19905444 8.21819828 −8.98103934 H

17.02625312 12.54166449 −15.32139621 O

16.95464994 12.84940679 −16.22959082 H

16.77785398 11.58735162 −15.33541663 H

12.43661267 8.47626339 −10.25611071 O

13.15220846 7.94576691 −9.86958896 H

12.69550130 9.39615277 −10.07377778 H

14.41950136 8.48234425 −15.71943579 O

14.68179853 7.93301128 −16.47916679 H

14.26541427 7.83647835 −14.99457939 H

18.65783175 8.45662114 −14.88786955 O

19.40582953 9.00501180 −14.58623292 H

18.44548613 7.86647427 −14.12886729 H

20.51754786 10.08254678 −13.70642456 O

20.09142885 10.97889943 −13.70023031 H

21.43068992 10.23271027 −13.96892703 H

18.07594512 6.73527958 −12.90949342 O

17.97270565 5.90253222 −13.40354206 H

17.20973784 6.88319298 −12.47480825 H

11.67892799 8.02962239 −12.74998343 O

42



11.95553575 8.19075211 −11.81206091 H

10.76623384 7.72980107 −12.69618742 H

15.63613519 13.43742875 −13.02738759 O

16.05907892 13.24810967 −13.88106945 H

16.34936968 13.30674507 −12.38056427 H

12.55544848 10.20806343 −14.36056003 O

13.12387478 9.75065505 −14.99909076 H

12.15178627 9.48584271 −13.84999352 H

13.77719685 11.62443758 −12.43136491 O

13.30016530 11.24653841 −13.20284289 H

14.36308903 12.35716435 −12.73200118 H

13.42313453 11.07461635 −9.87788437 O

13.50164829 11.36391639 −10.81730553 H

12.91173726 11.76084766 −9.43853089 H

17.60968249 4.64369705 −14.68221349 O

16.63883490 4.63824297 −14.88427955 H

17.86025169 3.71932790 −14.59225138 H

15.66662687 7.29130822 −11.83574764 O

15.62285926 8.26263035 −11.99572213 H

15.43552812 7.16804937 −10.89681581 H

18.05204939 6.51862769 −16.78356630 O

18.07191581 5.77962397 −16.15334461 H

18.38346123 7.26916471 −16.25993530 H

17.87397212 12.86606480 −11.33924770 O

18.15176788 13.41447843 −10.59940646 H

17.84944093 11.93896619 −10.99545232 H

15.49958237 6.65887115 −17.49805712 O
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16.47121433 6.66194886 −17.30177999 H

15.42547428 6.55407920 −18.45115622 H

15.74084827 9.83737064 −12.47564792 O

16.05217293 9.91373942 −13.40587872 H

14.98464713 10.46134869 −12.40899667 H

19.32783805 12.43844438 −13.69688555 O

18.61112339 12.53255521 −14.34656900 H

18.91185610 12.66499822 −12.84710755 H

17.63375347 10.30951785 −10.67624120 O

16.97845419 10.12768784 −11.38650742 H

18.37949413 9.69823028 −10.87094606 H

13.87830520 6.70405207 −13.74975692 O

14.49320953 6.85168972 −12.99886519 H

13.01252131 7.00854271 −13.42294098 H

19.61568964 8.63105576 −11.42408494 O

19.23597271 7.83886866 −11.83586478 H

20.05667064 9.09551115 −12.15421489 H

15.69603871 9.76415803 −8.78518552 O

16.46541002 9.95947751 −9.35420673 H

14.98874032 10.34523289 −9.11002237 H

15.05116506 4.79667362 −15.37544579 O

15.06446450 5.30793494 −16.20067951 H

14.52457582 5.34606185 −14.76783907 H
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• c

−7.84140253 −2.13833377 6.07704888 O

−6.93153680 −1.83820632 6.23802889 H

−8.42831064 −1.42271275 6.37063302 H

−10.26801852 −2.41923132 2.37942217 O

−9.63842094 −2.99514610 2.83964750 H

−10.38244148 −1.68724071 3.01245620 H

−8.20984207 −3.64779813 3.94180857 O

−8.11676787 −3.08214176 4.74956874 H

−8.19359367 −4.55379117 4.26418975 H

−5.52297367 0.66705417 0.32717203 O

−5.82036399 −0.20423908 0.01055106 H

−6.33745352 1.08020585 0.68765270 H

−6.39165797 1.08755997 5.66884120 O

−6.76801415 0.63515886 4.87823174 H

−5.88820858 0.39014255 6.12279120 H

−5.15951761 5.10965726 1.00445353 O

−5.23579392 5.85600524 0.40251079 H

−4.86328540 4.34559010 0.44632124 H

−10.13966271 1.58238516 0.49995265 O

−10.65519001 2.03123724 −0.17574917 H

−10.55237468 1.81629139 1.37729934 H

−9.72645789 −0.14611092 6.76674329 O

−10.29699339 −0.23349878 7.53559440 H

−9.42972647 0.79970129 6.74765297 H

−4.15485580 −1.50638747 3.96145735 O
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−3.92535455 −0.68140061 3.49842381 H

−4.86810906 −1.87826311 3.41237907 H

−4.19804636 3.03099796 −0.34030993 O

−3.34494555 2.85880562 0.09007329 H

−4.67113657 2.18250698 −0.28466578 H

−10.07511676 −0.21674397 4.04062692 O

−9.10677318 −0.17829176 3.87801515 H

−10.15405972 −0.26984444 5.00795266 H

−6.77219247 −1.74224170 −0.14140135 O

−6.73602730 −2.32170710 −0.90820607 H

−7.73078010 −1.47180490 −0.05150937 H

−3.87753490 0.81526216 2.44905474 O

−4.45739095 0.67749418 1.66759341 H

−3.09372630 1.27775839 2.10598890 H

−7.45615599 0.02868439 3.47198015 O

−7.07673800 −0.79757065 3.10583397 H

−7.54180095 0.64319841 2.71353921 H

−5.18336270 −1.25944908 6.35638930 O

−4.72667465 −1.36172289 5.47709693 H

−4.57459651 −1.60441908 7.01556225 H

−2.03982546 2.64647231 1.46303288 O

−1.07994241 2.69286166 1.43477380 H

−2.33612221 3.37884511 2.05891950 H

−9.19386157 3.93355691 4.22790270 O

−9.46863763 4.81710656 4.49384642 H

46



−8.36594712 4.06685706 3.71985687 H

−10.95714191 2.10529553 2.92113036 O

−10.70905294 1.28146654 3.38996164 H

−10.41154587 2.79065888 3.33901006 H

−6.38413371 −2.25080930 2.51681354 O

−6.99305244 −2.91824828 2.88539959 H

−6.49012062 −2.25408943 1.54791623 H

−9.25663082 −1.11723776 0.23166429 O

−9.63855094 −1.60553470 0.99487590 H

−9.61330730 −0.21788412 0.28870937 H

−8.69294618 2.27277857 6.54712575 O

−8.92767462 2.83039515 5.78873499 H

−7.80107544 1.94005147 6.32988751 H

−3.16693800 4.51898755 2.99119271 O

−3.79823816 4.93443541 2.38211883 H

−3.73125910 4.00666473 3.59533428 H

−4.98171833 2.68631866 4.04572542 O

−5.40364777 2.17576386 4.76828004 H

−4.62244433 1.99212778 3.44954234 H

−7.65002602 1.77855785 1.47357284 O

−7.45909348 2.64740760 1.88872014 H

−8.51473390 1.83650838 1.02495085 H

−6.91073647 3.97214175 2.77970279 O

−6.19020458 3.51145856 3.28100093 H

−6.43433146 4.52962255 2.13784168 H
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• d

10.47809957 12.71846274 −11.97899901 O

10.22658342 11.89488486 −11.52970077 H

10.63625709 12.49532394 −12.91029371 H

14.09311777 9.12486699 −17.83882468 O

14.26174373 8.51196398 −18.56013848 H

13.10630803 9.20798153 −17.77040535 H

11.69453872 9.05046944 −12.03404201 O

12.36811207 9.70239422 −11.73499234 H

10.88336492 9.32340836 −11.57297533 H

14.62855857 9.10960050 −15.14736265 O

15.04774856 9.99768970 −15.03923400 H

14.56493375 8.97001955 −16.11036183 H

13.32650857 12.38957845 −9.32295825 O

12.90076051 13.20379791 −9.65514210 H

14.19725408 12.62292269 −8.95504684 H

14.43476965 11.93385919 −17.40490086 O

14.94282447 11.94997045 −16.57508141 H

14.49004863 11.01159577 −17.70012802 H

11.93221506 9.46054541 −14.67181434 O

12.89870640 9.36433235 −14.77818760 H

11.75816995 9.22359852 −13.73655079 H

13.68652459 8.31293402 −8.87335154 O

13.67033485 7.85216735 −9.75079694 H

13.67255193 7.60370134 −8.22239526 H

13.63683144 10.74820678 −11.40476492 O
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14.56221812 10.44172678 −11.49171232 H

13.60096143 11.34194525 −10.62443672 H

11.70118834 10.28785052 −8.59490226 O

12.32392522 9.54731504 −8.70030405 H

12.25965659 11.07677455 −8.71232606 H

16.61741640 13.54203067 −11.14983835 O

15.81349085 14.04490669 −11.40797636 H

16.43050485 13.18561540 −10.26683097 H

9.87985870 10.38924823 −10.48691704 O

9.00248313 10.24051141 −10.12259110 H

10.50869353 10.34382583 −9.71743547 H

13.62492826 12.52626433 −13.39178907 O

12.76367580 12.44578183 −13.85300840 H

13.57364288 11.88608854 −12.64794357 H

16.13883173 9.81173163 −11.73868728 O

16.73224890 10.43103936 −12.20556120 H

16.08795271 8.99566520 −12.26703525 H

15.52426847 7.56884827 −13.18783620 O

15.20780246 8.02398796 −14.00378175 H

16.10322154 6.86075037 −13.48563599 H

14.39098362 14.78594157 −12.05049633 O

14.08762084 14.06646642 −12.63558853 H

13.62496120 14.91209799 −11.47230151 H

13.47332430 7.11773242 −11.22943415 O

12.73455972 7.64766434 −11.58197315 H
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14.16968424 7.19162291 −11.90028752 H

17.49712477 11.85293197 −12.90949885 O

17.17398081 12.53221290 −12.24768878 H

18.44525267 11.99645319 −12.98317492 H

11.27167404 12.06655647 −14.59614680 O

11.30210752 12.37717355 −15.51650851 H

11.46875076 11.10520456 −14.66550762 H

15.94176198 12.44968401 −8.62262091 O

16.41565701 12.70294167 −7.82525818 H

15.99909733 11.45857710 −8.67591215 H

15.57146298 11.57615800 −14.88087092 O

16.37366583 11.72493833 −14.35151506 H

14.84687749 11.96299904 −14.32863771 H

11.80450214 12.38394407 −17.30332256 O

11.57520664 13.07195211 −17.93516066 H

12.79058342 12.31404328 −17.33189525 H

16.02843534 9.85364647 −8.98165862 O

16.20377252 9.75353651 −9.93403619 H

15.21200427 9.34110670 −8.84457852 H

11.97249104 14.37757249 −10.55777948 O

11.42184672 13.78744725 −11.13159879 H

11.34642591 14.97802443 −10.14219663 H

11.51355405 9.54533398 −17.41872688 O

11.42251862 10.50999168 −17.49156768 H

11.42433060 9.37419908 −16.46557003 H
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• e

−0.86725915 3.70975315 2.59411208 O

−0.40769972 2.93270089 2.96642655 H

−1.61634808 3.38449245 2.06079563 H

−2.80406051 5.79337884 −0.23995074 O

−1.92617019 5.80859896 −0.67984184 H

−2.74068262 6.47681739 0.45221079 H

4.26880190 6.67983351 0.63834423 O

5.00097865 7.27966323 0.46753456 H

3.85124988 6.51942855 −0.24285212 H

1.92201346 7.10472250 1.92433925 O

1.93151953 6.96883271 2.89113413 H

2.84415981 7.06371237 1.60796604 H

−0.38476086 5.60254337 −1.35791339 O

0.09173621 5.39813668 −0.51435600 H

−0.04099486 6.46239781 −1.66166820 H

2.62346955 3.17463001 −0.06723413 O

1.95861397 3.82852465 0.23798401 H

2.66995149 3.29121485 −1.02892376 H

0.78828302 4.91242216 0.86879847 O

0.20578115 4.46848620 1.52297577 H

1.20062830 5.67839359 1.32203236 H

−2.19956215 7.65150579 1.70672297 O

−1.80058942 7.13880137 2.46082298 H

−2.83780010 8.24390471 2.11673630 H

−0.94169003 1.77560140 −0.68117308 O
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−0.58130708 2.31872433 −1.40917991 H

−1.52366250 2.38580977 −0.18452714 H

−1.17515246 6.21541086 3.64938347 O

−1.14091107 5.28069774 3.37441308 H

−0.29109810 6.37434169 4.02004746 H

−2.73546883 3.29211573 0.72653963 O

−3.57112994 2.87099158 0.46142005 H

−2.79845616 4.22141569 0.41013648 H

0.16002687 8.71450774 0.58503968 O

0.80230731 8.22544192 1.13368873 H

−0.70641938 8.42600994 0.92002094 H

1.21719477 1.00040500 0.87932802 O

1.83785519 1.65933366 0.51437079 H

0.40948010 1.16691730 0.35696529 H

−0.18838950 3.40145867 −2.79664881 O

−0.99431735 3.30092220 −3.33463186 H

−0.30547420 4.25795899 −2.32498647 H

0.76270178 8.00662289 −1.84659875 O

0.50780643 8.36671577 −0.95161071 H

0.58583428 8.70406355 −2.48391302 H

−3.15221354 0.85428930 −2.13654606 O

−3.03645373 1.44228223 −2.89980232 H

−2.32538662 0.98256979 −1.63322665 H

2.49580315 3.96667598 3.92605449 O

3.16925107 4.00701627 3.21309511 H
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1.96179260 3.17696430 3.74399693 H

−4.29546743 4.46569054 −2.20249181 O

−4.69744863 3.77405343 −1.65213944 H

−3.87935213 5.06928359 −1.56392304 H

−2.71904527 3.10777008 −3.86936421 O

−3.28834527 3.67601034 −3.29153023 H

−3.01401926 3.28133968 −4.76847355 H

0.82519551 1.76005575 3.33676137 O

0.78615069 1.00215427 3.92693861 H

0.99380525 1.39423363 2.42115044 H

2.45505046 3.80091129 −2.80686555 O

1.52397300 3.56251471 −3.00386658 H

2.98199227 3.43177351 −3.52177597 H

1.51561874 6.30403677 4.45701685 O

1.85826197 5.37703866 4.30463279 H

1.85913931 6.57108215 5.31444017 H

4.32773512 4.11098255 1.91270714 O

4.47824235 5.00599992 1.57371018 H

3.89114039 3.67311373 1.16091911 H

−4.87224006 2.17896092 −0.61515456 O

−5.64563646 1.66633852 −0.36345059 H

−4.31487890 1.58455404 −1.18118414 H

3.03740748 6.36084721 −1.69058605 O

2.80026455 5.52007563 −2.11157256 H

2.28056829 6.95489723 −1.82084674 H
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Table 5: The MP2, RPA@PBE, (RPA+rSE)@PBE, PBE0, and PBE single point energies
for H2O molecule. The structures are optimized for different levels of theory and basis set.
For RPA@PBE and (RPA+rSE)@PBE the frozen-core approximation is used for structure
relaxation and single point energy calculations.

H2O E (Hartree)

Own Geometries
MP2[aTZ]a −76.328992
PBE[aTZ]b −76.380357
PBE[QZ]b −76.383283
PBE[light]b −76.383342
PBE[tight]b −76.388204
PBE0[QZ]b −76.383553

Geometry optimization RPA@PBE[QZ]
RPA@PBE[QZ]b −76.497036
MP2[QZ]b −76.347596
(RPA+rSE)@PBE[QZ]b −76.505122

Geometry optimization PBE[QZ]
RPA@PBE[QZ]b −76.496966
MP2[QZ]b −76.347420

Geometry used for TTM2.1-F with (RO−H) 0.9578 Å, (θ) 104.51◦

RPA@PBE[QZ]b −76.496984
MP2[QZ]b −76.347643
aRef 67 bThis work (results obtained using FHI-aims)
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