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Abstract. Accurate segmentation of vascular networks is essential for computer-aided tools
designed to address cardiovascular diseases. Despite more than thirty years of research, it
remains a challenge to obtain vascular segmentation results that preserve the connectivity of
the underlying vascular network. Yet connectivity is one of the key feature of these tools. In
this work, we propose a post-processing algorithm aiming to reconnect vascular structures that
have been disconnected by a segmentation algorithm. Connectivity being a complex property
to model explicity, we propose to learn this geometric feature either through synthetic data
or annotations of the application of interest. The resulting post-processing model can be used
on the output of any supervised or unsupervised vascular segmentation algorithm. We show
that this post-processing effectively restores the connectivity of vascular networks both in 2D
and 3D images, leading to improved overall segmentation results.
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1 Introduction

Blood vessel segmentation is a crucial step for various tasks such as blood flow simulation or 3D
modeling, and enhancing our understanding of vascular networks physiology, pathologies. However,
segmenting blood vessels is challenging due to their thin and tortuous nature, making them easily
altered by noise and artefacts. This often results in fragmented blood vessel segmentations which
is a major problem for most downstream tasks.

For over thirty years, methods have been introduced to enhance both the quality and the connec-
tivity of blood vessels segmentation. Several unsupervised filtering approaches were first proposed.
Vesselness filters [16] aim at enhancing the signal from blood vessels and decrease the one from
other non-tubular structures. These filters are designed to detect blood vessels at different scales,
employing either a Gaussian-scale paradigm and Hessian-based features extraction [8, 30], or a
mathematical morphology approach using paths as structuring elements [21]. These filters are
usually the first step of more complex segmentation pipelines [5, 20,22].

However, determining hyperparameters for these filters can be challenging and there is no guar-
antee on the connectivity of the vascular tree. Alternative unsupervised methods, such as tracking [3]
or minimal path methods [18] can ensure the structure connectivity. Nevertheless, these methods
require a time-consuming user interaction to define seed points. All these approaches are further
limited by having to explicitly model blood vessels.

Supervised methods, and in particular deep learning-based ones, offer the power to represent
complex phenomena by learning implicit functions, provided there are sufficient annotations on the
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3 Iterative application of Greco
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Fig. 1: Pipeline of our method. (1) a dataset is generated containing pairs of connected and discon-
nected vascular structures. (2) this dataset is used to train a model Greco with a residual U-Net
architecture. (3) finally, the trained model is iteratively applied on a vascular segmentations with
disconnections.

target application. Several approaches dedicated to vascular segmentation were proposed [24,29,34].
More recently, approaches were developed to improve vascular connectivity of the segmentation
results. Classic vesselness filters were used to help the network model tubular shapes [25, 31]. Al-
ternative approaches focused on adapting the segmentation architecture to facilitate the learning
of a function that preserves connectivity. Attention modules [36] were incorporated into architec-
tures such as U-Net [24], and a topology-aware feature synthesis network was proposed to correct
the prediction topology based on the Euler characteristic [17]. Proxy tasks were also introduced to
help the model focus on the structure topology such as the centerline extraction or distance-map
computation [15]. Many works proposed dedicated loss functions to improve the result connectivity
[6, 9, 11, 19, 26, 27, 32]. All these connectivity-preserving strategies assume that a large annotated
dataset is available, which is rarely the case in vascular imaging applications.

Another research direction was explored consisting in the design of post-processing techniques
dedicated to the reconnection of vascular segmentations results. Various algorithms have been sug-
gested, relying on centerlines [7], graphs [12, 23], and contour completion processes [37]. These
approaches are complex to use due to their high dependence on parameter selection, and none of
them provide the code necessary to reproduce or compare their results.

In our previous work [2], we proposed a strategy to train the reconnecting model and used it
to develop an unsupervised plug-and-play segmentation approach. We recognized the potential for
the reconnecting term to be applied more broadly as a post-processing step for any type of vascular
segmentation result. In the present article, we thoroughly investigate this idea. In particular, we
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analyse the properties of the reconnecting term, including the influence of the disconnection size
parameter, and its convergence. Additionally, we demonstrate the usefulness and versatility of this
novel post-processing strategy by applying it to outputs from various segmentation approaches and
datasets.

2 Proposed method

In our previous work [2], we developed a model, Greco, based on a residual U-Net [14], that learns
to reconnect disconnected vessel-like structures from a binary segmentation result. This model is
trained on pairs of images containing connected and disconnected vessel-like structures (see top of
Fig. 1).

We proposed an algorithm capable of generating random and realistic disconnections from any
binary vascular structure. This algorithm is described in details in Appendix B. We demonstrated
that our reconnecting term can be learned either based on manual annotations from the dataset
of interest, or solely from synthetic images. This bypasses the need for an annotated dataset while
still yielding satisfying results. To control the reconnection power of our model, we generated dis-
connections with sizes drawn from a Gaussian distribution with mean s and standard deviation
σ. In this work, we propose to use this reconnecting model as a post-processing step by applying
it iteratively until most disconnections have been filed (see bottom of Fig. 1). The code of our
approach is available at https://github.com/creatis-myriad/plug-and-play-reco-regularization.

3 Experiments

In this section, we first present the experimental set up used in the following experiments. Next,
we analyse the impact of various key elements of the method through an ablation study. Finally,
we demonstrate its pertinence on segmentations resulting from different methods.

3.1 Experimental set up

To analyse and demonstrate the effectiveness of our method, we tested our framework in both 2D
and 3D and used synthetic and real datasets. In 2D, we used the DRIVE [33] dataset composed of 40
retinophotographies and their manual vascular annotations, and the STARE [10] dataset composed
of 20 manual annotations of retinophotographies. STARE was used to train our reconnecting model
and DRIVE was used as a test dataset to apply Greco. We also generated a synthetic dataset
composed of 20 synthetic vascular trees with OpenCCO [13] that was also used as a training
dataset for Greco. In 3D, we used the Bullitt [1] and IXI3 [35] datasets composed of 33 and 22 brain
magnetic resonance angiography (MRA) respectively and their manual vascular annotations. IXI
was used to train our reconnecting model while Bullitt was used as a test dataset to apply Greco.

Our disconnection algorithm was used on the DRIVE, STARE and IXI to generate disconnected
vascular trees with several mean disconnection size of s (s ∈ 6, 8, 10, 12). We experimentally set the
standard deviation σ = 4 for DRIVE and STARE and to σ = 2 for IXI.

The backbone architecture for Greco is a residual U-Net model [14] trained for 1000 epochs in 2D
and 3000 epochs in 3D. We used an Adam optimizer with a learning rate of 10−3. We employed a

3 https://brain-development.org/ixi-dataset/

https://github.com/creatis-myriad/plug-and-play-reco-regularization
https://brain-development.org/ixi-dataset/
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weighted Dice loss function as presented in [2] and a batch size of 4. In 2D, the models were trained
with an 80% split for training and 20% for validation, while in 3D, the split was 90% for training
and 10% for validation. The final model was selected based on the best validation loss achieved
during the training.

There is no single metric that can reflect the quality of vascular segmentations. Depending on
the specifics of the clinical questions, different properties of the vascular segmentation may be prior-
itized. Because we focus on connectivity we chose the three following differents metrics: the classic
Dice coefficient (DSC) evaluates the global quality of the segmentation, the Average Symmetric
Surface Distance (ASSD) evaluates the segmentation without volumetric bias, and the error ratio
of the number of connected components ϵβ0

evaluates the segmentation connectivity. This error ratio

is defined as ϵβ0
=

∣∣∣β0−β0gt

β0gt

∣∣∣, with β0 the number of connected components of the segmentation and

β0gt the number of connected component of the annotation. The error ratio was preferred over the
value of β0 as β0 is usually larger than 1 in the DRIVE and Bullitt annotations. We finally included
the Area Under the Curve (AUC), another metric evaluating the global segmentation quality, for
the 2D experiment, as it is a metric traditionally used in DRIVE benchmarks.

3.2 Ablation study

Influence of the size of the disconnections The training dataset is a key element of our
framework as it defines the concept of what should be connected. The main parameter of this
training dataset is the mean size of disconnections, denoted as s, which has been added to the
segmentations. The model Greco is designed to reconnect these disconnections. Intuitively, the size
of the disconnections s should be tuned to reflect the size of the disconnections present in the
segmentations. A small value may not be sufficient to reconnect a vessel with a large gap, while a
large value increases the probability of connecting vessels that should not be connected. However,
we aim at designing a post-processing that works on a large range of disconnection sizes and
so our approach should not be too sensitive to this value. To assess this sensitivity, we trained
four different models, denoted Greco,s=X (with X ∈ 6, 8, 10, 12), on the OpenCCO dataset which
have been disconnected with a mean disconnection size X. We then tested these 4 models on the
annotations of the DRIVE dataset that have also been disconnected with increasing values of s
(s = 6, s = 8, s = 10 or s = 12). Hence each model will be tested on disconnections sizes it has not
been trained for. In this experiment, Greco has only been applied once to the segmentation results.
The results are presented in Table 1.

Overall, all models perform well and there is no significant drop in metrics when applied to data
exhibiting disconnection sizes significantly different from those in the training dataset. As expected,
the Dice coefficient do not show a significant improvement after applying our post-processing as
the reconnexion fragments only represent a small portion of the overall vessels. However, ϵβ0

and
the ASSD significantly decreases, indicating that our post-processing successfully reconnected frag-
ments of vessels. We also observe that the size of the disconnections in the training dataset seems to
correlate well with the reconnections that occur. As expected, models trained on larger disconnec-
tions tend to perform better on large disconnections (see Appendix A), while still facing challenges
in reconnecting smaller disconnections. The model trained with disconnections with a size of s = 8,
seems a good compromise between efficacy in reconnecting and avoiding excessive false connections.

In this experiment, we chose to evaluate our models after applying them only once, to better
understand their behavior. However, our goal is to use Greco iteratively to reconnect disconnections
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s = 6 s = 8 s = 10 s = 12
Training

Test
DSC ↑ ASSD ↓ ϵβ0 ↓ DSC ↑ ASSD ↓ ϵβ0 ↓ DSC ↑ ASSD ↓ ϵβ0 ↓ DSC ↑ ASSD ↓ ϵβ0 ↓
0.979 0.202 96.811 0.974 0.22 107.367 0.97 0.232 122.198 0.963 0.243 132.617

Before Greco ± 0.004 ± 0.06 ± 67.065 ± 0.004 ± 0.071 ± 71.883 ± 0.005 ± 0.057 ± 83.665 ± 0.007 ± 0.054 ± 86.553

0.983 0.074 11.429 0.98 0.085 14.095 0.978 0.101 15.485 0.974 0.116 17.619
Greco,s=6 ± 0.003 ± 0.012 ± 8.783 ± 0.003 ± 0.015 ± 10.92 ± 0.004 ± 0.019 ± 10.758 ± 0.004 ± 0.022 ± 13.8

0.985 0.067 15.461 0.983 0.077 17.301 0.981 0.09 19.365 0.977 0.103 23.039
Greco,s=8 ± 0.002 ± 0.013 ± 11.256 ± 0.003 ± 0.014 ± 12.69 ± 0.004 ± 0.019 ± 14.269 ± 0.004 ± 0.02 ± 18.927

0.984 0.078 14.61 0.981 0.089 16.829 0.979 0.101 18.82 0.975 0.117 22.056
Greco,s=10 ± 0.003 ± 0.015 ± 11.223 ± 0.003 ± 0.016 ± 13.051 ± 0.004 ± 0.023 ± 14.516 ± 0.004 ± 0.017 ± 17.864

0.982 0.089 16.232 0.98 0.102 18.561 0.977 0.118 19.776 0.974 0.126 20.612
Greco,s=12 ± 0.003 ± 0.015 ± 12.213 ± 0.003 ± 0.017 ± 13.75 ± 0.004 ± 0.024 ± 14.034 ± 0.004 ± 0.019 ± 16.189

Table 1: Quantitative results of applying Greco trained on the OpenCCO dataset with several values
of s and applied on the Drive dataset with several values of s.

that could not necessarily be addressed in a single iteration. We analysed the interest of this iterative
approach and evaluate its convergence in the next experiment.

Convergence of the proposed approach We propose to apply Greco iteratively to reconnect
vessels gradually instead of attempting to reconnect across a long range all at once. Our intuition
suggests that this approach should limit the creation of false reconnections. In this experiment, we
aim first at validating this hypothesis. Secondly, considering the limited number of disconnections
in an image, we anticipate that applying Greco iteratively will converge to a fixed-point image where
all disconnections are filled. In this section we thus explore the experimental convergence of our
framework.

We used the same 4 reconnection models Greco,s=X (X ∈ 6, 8, 10, 12) and applied each one on the
Drive dataset which have been disconnected with several mean disconnection sizes (s ∈ 6, 8, 10, 12).
The results are presented in Figure 2.

We observe that applying Greco iteratively converges as shown by Figure 2(a). Interestingly this
convergence occurs even though Greco was applied to images with disconnection sizes different from
those it was trained on. This highlights the robustness of our approach.

Figures 2 (b-d) show that the size of the disconnections in the training dataset have an impact
on the quality of the reconnections made on the segmentation results. The model trained on the
dataset created with the parameter s = 8 appeared to be a good compromise between significant
reconnections (small ϵβ0

) and limiting false reconnections (small ASSD and high DSC values).
Moreover applying iteratively Greco on the segmentations improve the connectivity of the vascu-
lar network and converges to a fixed-point image, regardless of the trained disconnections sizes.
Qualitative results are discussed in Appendix A.

Applying our method on artificially disconnected images let us analyse precisely the behavior
of our reconnecting term but this introduced a bias since we used the same algorithm to generate
disconnections in both the training and test datasets. The next section will explore the behavior of
our reconnecting approach in a more realistic scenario.

3.3 Applications

In this experiment, we applied our post-processing to real 2D and 3D segmentation results ob-
tained from both an unsupervised variational approach and a supervised deep learning approach.
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Fig. 2: Results of applying Greco, trained on OpenCCO, on the DRIVE annotations artificially
disconnected with sizes s ∈ {6, 8, 10, 12}. (a) convergence curves displaying the ℓ2 norm of the
difference of the last two consecutive results. (b-d) quantitative results of our models applied with
an increasing number of iterations.

Specifically, we used the variational segmentation method proposed by Chan et al. [4] with a total
variation [28] regularization. A state-of-the-art U-Net architecture was used as the supervised ap-
proach as detailed in [2]. The variational segmentation yields disconnected and noisy results whereas
the supervised one produces more complete and connected segmentations. We chose to evaluate our
framework on these two different types of results to highlight the versatility of our post-processing
method. We conducted experiments both on 2D and 3D images. In 2D, we trained our reconnect-
ing model Greco either on the synthetic OpenCCO dataset, denoted as Greco,CCO, or the STARE
dataset, denoted as Greco,STARE , that have both been disconnected with a mean disconnection size
set to s = 8. We ran both segmentation strategies (variational and deep-learning) on the DRIVE
dataset and applied our post-processing.

In 3D, we trained our reconnecting model on the IXI dataset, denoted as Greco,IXI, that have
been disconnected with a mean disconnection size set to s = 8. We ran both segmentation strategies
on the Bullitt dataset and applied our post-processing. Results are summarized in Table 2, Figure 3
and in Appendix A.

We observe that, in general, our post-processing either slightly increases the DSC and ASSD
values of the segmentations or does not significantly change them (p-value < 0.05). The slight
decrease in the ASSD of the 3D variational approach and the DSC of the 3D deep learning approach
can be attributed to some false reconnection of aligned artifacts. The overall stability of the DSC
and ASSD metrics is expected, because our post-processing primarily involves adding a few pixels
to reconnect vessels. These additional pixels represent only a small fraction of the total number
of true positive pixels in the image, thus minimally impacting the DSC or ASSD. By contrast, we
anticipate a drastic decrease in the connectivity metric ϵβ0

, since our post-processing affects the
connectivity of the segmentations. This is indeed observed. Specifically, we note a decrease of > 90%
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Variational approach Deep Learning
Training

Test
DSC ASSD ϵβ0 AUC DSC ASSD ϵβ0 AUC

0.758 2.017 98.54 0.838 0.811 1.155 34.04 0.901
Segmentation ± 0.025 ± 0.452 ± 91.88 ± 0.025 ± 0.015 ± 0.181 ± 26.86 ± 0.023

0.767 2.423 9.003 0.850 0.809 1.192 9.111 0.903
GrecoCCO ± 0.023 ± 0.582 ± 11.39 ± 0.025 ± 0.016 ± 0.19 ± 7.606 ± 0.022

0.768 2.332 6.609 0.851 0.810 1.198 11.37 0.903

2D

GrecoSTARE ± 0.023 ± 0.533 ± 5.817 ± 0.025 ± 0.015 ± 0.183 ± 9.095 ± 0.022

p-values ∼ 10−6 0.057 ∼ 10−6 ∼ 10−6 0.832 0.466 ∼ 10−6 0.811

0.476 3.587 26.56 - 0.756 1.488 3.203 -
Segmentation ± 0.02 ± 0.42 ± 10.26 - ± 0.015 ± 0.211 ± 1.689 -

0.495 4.154 5.618 - 0.740 1.552 1.697 -
3D

GrecoIXI ± 0.019 ± 0.427 ± 2.411 - ± 0.014 ± 0.21 ± 1.029 -

p-values ∼ 10−4 ∼ 10−6 ∼ 10−17 - ∼ 10−5 0.226 ∼ 10−10 -

Table 2: Quantitative results obtained with our 2D and 3D reconnecting models on variational and
deep learning segmentations. The p-values (from the t-test for normal distributions, or Wilcoxon
test otherwise) are shown between the segmentation and GrecoSTARE in 2D and the segmentation
and GrecoIXI in 3D.

in 2D, and > 80% in 3D for the variational approach, and > 67% in 2D, and > 47% in 3D for the
deep learning approach.

It is interesting to note that the model trained on the synthetic OpenCCO dataset yields slightly
less inferior results, often due to the creation of false connections. Our reconnecting terms learns to
reconnect only based on geometric features. Therefore, the closer the geometry of the vessels in the
training dataset to that of the test dataset, the better the performance tends to be. Nonetheless,
the drop of performance is quite small which makes our term very useful in a purely unsupervised
context in 2D when no vascular annotation is available. In 3D, to the best of our knowledge, there
is no synthetic vascular network generation software that yields vascular trees geometrically close
enough to a real brain vascular network. In particular, the tortuosities of brain vascular network is
much higher than what is possible to generate with softwares like VascuSynth4 or OpenCCO.

4 Conclusion

In this article, we introduced a novel vascular segmentation post-processing to favor vascular net-
work connectivity. This post-processing can be used in an unsupervised or supervised context de-
pending on the availability of vascular annotations on the dataset of interest. We conducted an
extensive validation of our approach both in 2D and 3D and showed that our post-processing is
robust to the size of disconnections, converges to a reconnected result when used iteratively and
significantly improve the connectivity of segmentation results. This approach is purely based on
geometric properties of the vessels in binary segmentations and thus some false reconnections may
appear. Future work include taking into account the intensities of the underlying image to avoid
these false reconnections.

4 https://vascusynth.cs.sfu.ca/Welcome.html
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(a) Annotation (b) Segmentation (c) Greco,CCO (d) Greco,STARE

(e) Annotation (f) Segmentation (g) Greco,CCO (h) Greco,STARE

Fig. 3: Results of our post-processing applied to a DRIVE segmentation result from the variational
(top row) and deep learning approach (bottom row). (b) and (f) depict segmentation results from
variational and deep learning approaches respectively, before post-processing with Greco. Greco is
trained on either the synthetic OpenCCO dataset (c) and (g) or the real STARE dataset (d) and
(h).
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A Qualitative results

Figure A.1 compares the results of applying our post-processing model trained with several values
of s, on a Drive image that has been disconnected with a specific disconnection size.

Figure. A.2 shows the evolution of the applying our post-processing several times on a discon-
nected image from the DRIVE dataset. In the blue and red box of , we can observe that some
disconnections that were not successfully reconnected with a single iteration, are gradually recon-
nected with additional iterations. However, it is worth noting that some false reconnections may
still occur, as shown in the green box. Interestingly, these false reconnections often occur when noise
fragments are present near a vessel, and Greco use them to create realistic vessels.

(a) Annotation (b) Disconnected annotation
with s = 12

(c) Greco,s=6

(d) Greco,s=8 (e) Greco,s=10 (f) Greco,s=12

Fig.A.1: Qualitative results of the influence of the disconnection size experiment. Greco was trained
with a disconnection size X (with X ∈ 6, 8, 10, 12), denoted Greco,s=X , on the OpenCCO dataset.
A drive dataset annotation (a) was disconnected with s = 12 to obtain (b), followed by a single
application of Greco,s=X on (b), resulting in (c-f). Blue arrows indicate successful reconnections,
pink arrows highlight incorrect reconnections, and green arrows denote differences between the
results.



Restoring Connectivity in Vascular Segmentation using a Learned Post-Processing Model 12

Figure A.3 shows the result of our post-processing applied on an image of the Bullitt dataset.
The blue arrows point to correct reconnections while the green arrow show a false reconnexion due
to noise.

Inference 1 Inference 2 Inference 3Disconnected binary vascular structure Groundtruth

Fig.A.2: Evolution of a DRIVE disconnected manual annotation (with s = 12) through successive
application of Greco,s=8.

(a) Annotation (b) Segmentation (c) Greco,IXI

(d) Annotation (e) Segmentation (f) Greco,IXI

Fig.A.3: Results of our post-processing in 3D. (a) the annotation of a Bullit dataset image, (b)
a segmentation result from a 3D UNet (c) the post-processing result with our reconnecting term
trained on the IXI dataset with s = 8.
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B Disconnection generation algorithm

In this section, we provide a more detailed description of the algorithm we have proposed for
generating realistic disconnections in vascular segmentations. The code for this algorithm is available
at https://github.com/creatis-myriad/plug-and-play-reco-regularization.

– We compute the segmentation centerline and distance map. The distance map is defined such
that each pixel of the segmentation has a value representing the minimum distance to the
background. The value of each centerline pixel corresponds to the local radius of the vessel.

– We compute the segmentation centerline and distance map. The distance map is defined such
that each pixel of the segmentation has the value of the minimum distance to the background.
The value of each centerline pixel correspond to the local radius of the vessel.

– For each disconnection
• We draw a value i ∈ [1, p] from the distribution defined by the probability P(i) = 2p−i

2p−1 ,
where p is the maximum radius value in the image. Here i corresponds to the radius of a
vessel in which the disconnection will occur.

• Randomly select a centerline pixel x with a radius of i
• The disconnection size d is drawn in a Normal distribution N ( s

i+1 , 0), where s is the mean
disconnection size parameter of our post-processing. The thiner the vessel the longer the
disconnection will be.

• We generate the disconnection by randomly removing n pixels from the segmentation within
a disk of radius d centered on x. Here n is draw from a Normal distribution N (N2 ,

N
4 ) with

N the number of pixels in the disk.
– For each artefact

• The center c of the artefact is randomly selected outside of the segmentation mask.
• A disk of radius r (where r is drawn from N (3, 1)) is centered on c.
• n′ pixels are randomly selected inside the disk and added (n′ ↪→ N (N2 ,

N
4 )) to the segmen-

tation.

https://github.com/creatis-myriad/plug-and-play-reco-regularization

	Restoring Connectivity in Vascular Segmentation using a Learned Post-Processing Model

