
Dependability in Embedded Systems: A Survey of Fault
Tolerance Methods and So�ware-Based Mitigation
Techniques
MOHAMMADREZA AMEL SOLOUKI, Politecnico di Torino, Italy
SHAAHIN ANGIZI∗, New Jersey Institute of Technology, USA
MASSIMO VIOLANTE, Politecnico di Torino, Italy

Fault tolerance is a critical aspect of modern computing systems, ensuring correct functionality in the
presence of faults. This paper presents a comprehensive survey of fault tolerance methods and software-
based mitigation techniques in embedded systems. The focus is on real-time embedded systems, considering
their resource constraints and the increasing interconnectivity of computing systems in commercial and
industrial applications. The survey covers various fault-tolerance methods, including hardware, software, and
hybrid redundancy. Particular emphasis is given to software faults, acknowledging their signi�cance as a
leading cause of system failures. Moreover, the paper explores the challenges posed by soft errors in modern
computing systems. The survey concludes by emphasizing the need for continued research and development
in fault-tolerance methods, speci�cally in the context of real-time embedded systems, and highlights the
potential for extending fault-tolerance approaches to diverse computing environments.

CCS Concepts: • Computing methodologies! Fault-tolerance strategies; Real-time systems; Reliabil-
ity; • Hardware! Redundancy techniques; • Software and its engineering ! Fault-tolerance mechanisms;
Reliability analysis and design; • Applied computing ! Industrial applications; • Social and professional
topics! Dependability.

Additional Key Words and Phrases: embedded systems, Fault-tolerance, reliability, analytical redundancy,
dependability

ACM Reference Format:
Mohammadreza Amel Solouki, Shaahin Angizi, and Massimo Violante. 2024. Dependability in Embedded
Systems: A Survey of Fault Tolerance Methods and Software-Based Mitigation Techniques. J. ACM 1, 1
(April 2024), 35 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
A key facet of fault tolerance is to ensure the continued correct operation of modern computing
systems despite internal faults. The primary objective underlying fault tolerance endeavors is to
increase system dependability. In a fault-tolerant system, the aim is to facilitate seamless transitions
to alternativemodules and thereby sustain service provision in the face of faults, by either concealing
faults or detecting errors. To ful�ll this aim, fault-tolerant systems must uphold speci�ed service
delivery, even amidst component faults [37].
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Failures arise when the behavior of a running system diverges from the system’s expected
behavior. Failures are caused by errors, while faults are the underlying cause of errors. Yet, it is
noteworthy that not all faults necessarily lead to errors, and a single fault can precipitate multiple
errors. Similarly, a solitary error can culminate in multiple failures. Redundancy, in some form, is
an essential component across all fault tolerance approaches to ensure the system’s capacity to
withstand faults. Redundant devices, networks, data, or applications are leveraged based on the
fault class at hand.
As of now, novel technologies elevate various facets of our quality of life while concurrently

bolstering societal productivity and e�ciency. Illustrative instances include innovative environ-
mentally conscious transportation systems and advanced production methodologies, streamlining
human e�ort and optimizing the generation of appliances and services. In the realm of auto-
motive systems, the trajectory of emerging technological trends accentuates the introduction of
novel features, expanding the array of onboard embedded systems and processors [39]. Within
the automotive domain, these systems are engineered to optimize energy consumption, enrich
user experiences through infotainment support, and institute autonomous and semi-autonomous
control mechanisms encompassing methods like cruise control and autonomous piloting [101].
Furthermore, within the production sphere, burgeoning automation trends foster collaborative work
environments uniting human workers and autonomous robots, thus amplifying production. This
automation paradigm additionally seeks to mitigate human risk in scenarios involving hazardous
conditions.

Both automotive and industrial production domains represent paradigmatic instances of safety-
critical applications, wherein any functional malfunction of the supporting equipment, machinery,
or devices could trigger dire repercussions, spanning critical injuries, fatalities, substantial property
damage, or extensive environmental harm [58]. Consequently, the intricate electronic devices
now integrated within these systems must rigorously adhere to safety, reliability, and security
imperatives to ensure the seamless operation of the entire system.

Within the automotive domain, prominent corporations have invested, and are poised to continue
investing, substantial capital in new technologies to not only implement but also broaden their
applicability across various automotive functions. These applications encompass the development
of diverse levels of vehicular autonomy driven by the attendant bene�ts to user safety, security,
tra�c latency reduction, and energy e�ciency. Nevertheless, these technological advantages con-
currently present various challenges yet to be de�nitively resolved. In principle, well-established
methodologies for designing and developing secure and safe devices could be repurposed for use
in these novel applications. However, both the automotive and autonomous machinery domains
presently exploit a medley of innovative technologies, including Arti�cial Intelligence (AI) and
computer vision, furnishing a distinct advantage in e�ecting more streamlined procedures. It’s
worth noting, though, that this trend equally introduces the ability for contemporary devices
to integrate intricate algorithms, thereby augmenting application complexity and imposing sub-
stantial constraints concerning real-time operation, available power resources, and performance
thresholds [39, 57, 101].
In practice, the development of modern safety-critical applications hinges upon three core

elements: i) robust high-performance operation and power e�ciency, ii) cost-e�ectiveness, and
iii) unwavering safety and reliability [11]. In numerous instances, manufacturers and designers
confront these demands by harnessing the latest transistor technology and scaling methods, thereby
pushing the boundaries of Moore’s law to incorporate an elevated transistor count within the
same device. This endeavor yields appreciable enhancements in execution performance, power
consumption, and practical production expenses.
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However, various studies [7, 48, 50, 55, 79] have demonstrated that devices constructed using
these cutting-edge technologies are inherently susceptible to an array of faults manifesting during
initial operational stages and, with greater frequency, throughout their active lifespan. These faults
may arise from two primary sources: (i) inherent defects stemming from manufacturing processes
or component fatigue, and (ii) environmental or external in�uences [78]. In the former case, device
faults might emanate from manufacturing anomalies that evade detection during end-of-production
testing, thereby precipitating unforeseen behaviors during operational life-cycles. Furthermore,
components within a device are predisposed to degradation (e.g., electro-migration or gate-oxide
e�ects) following prolonged operation or even during periods of idleness (e.g., idle operational
mode) [54], thereby potentially generating intermittent or permanent faults. In such scenarios, the
faults arise due to aging or wear-and-tear e�ects [26, 42, 88]. Conversely, external in�uences also
exert sway over device operation. Environmental factors temporarily or permanently alter electrical
parameters, resulting in transient fault e�ects that impinge upon ongoing device applications. These
fault e�ects propagate across the device as soft errors, which solely emerge when applications are
executing on a�icted devices. Exposure to high-energy particles (triggering radiation e�ects) or
electromagnetic interference (EMI) increases device vulnerability to transient faults, disrupting the
electronic charge of one or more storage components within the device and toggling the state of
transistors employed for data storage. As this data courses through the circuitry, multiple errors
can arise within the application. In the most extreme instances, external interventions can lead to
permanent damage to the device.
The fault-tolerance methods focus on detecting and recovering from faults, regardless of their

types, to ensure the correct functioning of the system. To achieve a given reliability target, one
commonly used fault-tolerance technique is the utilization of redundancy, in terms of hardware,
software, information, and time, exceeding what is normally required for system operation. Hard-
ware redundancy techniques involve adding extra hardware components to detect or tolerate faults.
For example, multiple cores or processors can be utilized instead of a single one, with each appli-
cation being executed on a separate core/processor, enabling fault detection and even correction.
Another technique, time redundancy, allocates extra time to perform system functions and detect
faults, without violating the timing constraints of real-time systems. The re-execution technique is
an example of time redundancy, where a faulty task is repetitively executed on the same hardware
until the correct output is obtained. Information redundancy techniques, such as error detection and
correction coding, are commonly used in memory units, storage devices, and data communication
to ensure reliability. Redundant Arrays of Independent Disks (RAIDs) are another example of
information redundancy, where data is organized and stored in multiple con�gurations to enhance
reliability. Additionally, software redundancy involves adding extra software to detect and tolerate
faults. For example, N-version programming involves separate groups of programmers designing
and coding a software module multiple times, reducing the likelihood of the same mistake occurring
in all versions. Checkpointing, on the other hand, stores the last fault-free state of a process in
stable memory, allowing the system to roll back to that state and re-execute the application in case
of a fault. By employing these fault-tolerance methods, systems can ensure reliable functioning
despite the occurrence of faults.
In this survey, we focus on fault-tolerance methods speci�cally tailored for embedded systems,

considering their resource constraints, such as limited memory and low-end computation environ-
ments. However, our discussion covers techniques that can be adapted with minimal modi�cations
to any general embedded system. Moreover, we believe that exploring the distinctive hardware-
software constraints of resource-constrained embedded systems and leveraging real-time execution
characteristics can lead to the development of fault-tolerance approaches applicable not only to
embedded systems but also to real-time systems without resource limitations.
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Fig. 1. Structuring of the article

The organization of this paper,illustrated in Figure 1, ,is as follows. The background is reviewed in
Section2. Section3 explores various hardware and software approaches to designing fault-tolerant
systems. Section4 explores various fault mitigation methods. Section6 explores the evaluation of
dependability in fault-tolerant systems. Finally, the conclusion is provided in Section7.

2 BACKGROUND
This section provides an overview of the di�erent defects or upsets leading to permanent, intermit-
tent, or transient faults. Speci�cally, the single event e�ects (SEEs) are discussed with a focus on
Single Event Upsets (SEUs). Figure 2 visually represents the content discussed in this section.

Faults are the abstraction of a physical defect or upset at the logical level. In other words, faults
describe the changes in device logic function caused by a defect or upset. Therefore, faults are de�ned
here as any variation from the expected logical behavior of the underlying hardware. Faults can be
further categorized as transient, intermittent, or permanent. Transient faults occur and then soon
disappear. They manifest e�ects that can occur for a short period during the component’s lifetime.
Intermittent faults are characterized as a fault occurring, then vanishing, and then reoccurring,
and so on. Examples of intermittent faults are signal interference, such as cross-talk between
connections or communication lines. Permanent faults manifest and exist within the system until
the defective component is repaired or replaced. These faults commonly occur due to manufacturing
defects or physical damage to CMOS gates due to high charges. It is also possible that the device’s
electrical properties may mask some defects or upsets, causing no faults to appear.

Radiation e�ects can also lead to defects or upsets. Radiation exposure can result in both defects
(permanent �aws) and upsets (temporary disturbances) in a system. Radiation is one of the external
in�uences that can a�ect the behavior and reliability of electronic components and systems,
potentially causing various types of faults.

2.1 Introduction to Single Event E�ects
One of the most important radiation e�ects is Single-Event E�ects (SEEs), which are a result
of the interaction between an energetic particle and a semiconductor device, leading to various
manifestations. SEEs are typically caused by the deposition of charge by the particle or by the
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Fig. 2. Overview of the di�erent defects/upsets.

creation of a current pulse. The amount of charge or current required to cause a SEE depends on
the device’s type and the materials used in its construction [81].
When discussing SEEs, it is important to di�erentiate between permanent and transient ef-

fects [40]. Transient SEEs are temporary alterations in a device’s state brought about by particle
passage. These changes can stem from charge deposition or the creation of a current pulse. Tran-
sient e�ects refer to radiation-induced interference that ceases once the radiation dissipates. This
temporary interference can involve variations in electrical signals, electronic device hardening,
or system upsets that a�ect performance without causing permanent damage. Transient SEEs
typically vanish within a few milliseconds and have no lasting impact on the device. One of the
transient SEEs is the Single Event Transient (SET), which is a temporary change in the state of a
device caused by the passage of a single energetic particle. SETs typically disappear after a few
milliseconds, but they can cause errors in data processing.
On the other hand, permanent SEEs refer to changes in the device state that are caused by a

particle’s passage, resulting in irreversible damage that hampers proper functioning. Such e�ects en-
compass alterations in the semiconductor material’s physical properties or degradation of circuitry,
leading to long-lasting malfunctions or failures. Examples of permanent SEEs include Single-Event
Latch-up (SELs), Single-Event Burnouts (SEBs), Single-Event Upsets (SEUs), and Multi-Bit Upsets
(MBUs) [53].

SEL is a type of SEE where a high-current path is formed in the device, leading to permanent
damage. SEL occurs when a transistor turns on and stays on, even when the gate voltage is
removed. SEB is a type of SEE by a single energetic particle passage, like a high-energy ion or
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Fig. 3. Classification of Single-Event E�ects (SEEs)

neutron, resulting in irreversible damage. This phenomenon occurs when the particle deposits
excessive energy, leading to localized heating and damage within the device’s structure. This can
result in a sudden increase in current or voltage, causing permanent damage or burnout. SEU is
a permanent change in the state of a memory cell or register caused by the deposition of energy
in the semiconductor material by a single energetic particle. It can cause a single bit to be �ipped
from a 0 to a 1 or vice versa [20, 112]. MBU refers to the SEU of multiple memory cells in close
proximity caused by a single energetic particle. MBUs are less common than SEUs, but they can be
more serious.
To conclude, SEEs are signi�cant radiation-induced phenomena resulting from particle inter-

actions with semiconductor devices. They can be categorized into transient e�ects, which are
temporary disruptions with no lasting impact, and permanent e�ects, causing irreversible damage
to devices. Examples of permanent SEEs include SELs , SEBs , SEUs , and MBUs, each with speci�c
consequences for device functionality. Figure 3 shows the classi�cation chart, providing a visual
representation that enhances the comprehension of SEEs.

2.2 The Impact of Single Event Upsets on Embedded Systems
This subsection delves into the intricate details of SEUs, encompassing their diverse impacts on
various components of embedded systems. In the realm of fault tolerance, it’s crucial to distinguish
between Silent Data Corruption (SDC) and Single Event Functional Interrupt (SEFI). SDC encom-
passes errors in memory and the �nal application output, while SEFI, a severe issue causing system
hangs or crashes, directly impacts application execution and user experience. Most fault tolerance
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methods primarily target SDC, leaving SEFI, which can signi�cantly disrupt system operation,
relatively unaddressed [59, 109].
Figure 4 in the context of SEUs, it provides a visual representation of how these events a�ect

di�erent components.
However, it’s imperative to elaborate on SDC and SEFI for clarity. SDC occurs when memory

or �nal application output is corrupted, leading to inconsistencies in results. In contrast, SEFI,
resulting from errors in control �ow, leads to application crashes and processor hang. Only a few
techniques can e�ectively detect both SDC and SEFI, such as those employing the lockstep principle
based on redundancy to enhance processor dependability. SEUs can a�ect data �ow or control �ow
in processors, in�uencing data �ow errors or SEFIs [105].
Moving forward, this subsection primarily focuses on SEUs in detail. In the Register File, SEUs

can corrupt data and cause errors in the application outputs, leading to inconsistencies in the
results. If an SEU impacts a control register, it can result in errors in the execution �ow of the
program, and the system freezes. SEUs in the Integer Unit (IU) and Floating Point Unit (FPU) can
lead to incorrect computations due to the pipelining in these arithmetic units. In the Bus Unit, bit
�ips in the embedded registers responsible for latching addresses and data can cause incorrect read
or write operations. The Control Unit, which implements complex algorithms, may experience
SEUs that trigger exception generation or disrupt the sequence. SEUs can also a�ect the Debug
Unit, activating special execution modes and causing errors in the program’s execution �ow.
Moving on to the Instruction Cache, SEUs can result in corrupted outputs or processor freezes.

The instruction caches typically consist of an SRAM array for storing fetched instructions and a
tag array for validating or invalidating the fetched program. SEUs in the tag array can invalidate an
instruction to be executed, leading to a cache miss and introducing a delay in program execution
as the instruction needs to be fetched again. If an SEU validates an incorrect code, it can crash
the program’s �ow. Additionally, an SEU can corrupt an instruction in the SRAM array. If the tag
array validates this corrupted code, a wrong instruction will be executed, or an exception will be
generated if the corrupted instruction is no longer part of the processor instruction set. However,
if the tag array does not validate the corrupted instruction, the fault is masked, and no incorrect
behavior is observed. The Instruction Cache section in Figure 4 captures these dynamics. Similar
to instruction caches, Data Caches also consist of a tag array and a data array. Bit �ips in the tag
array can validate outdated data, resulting in incorrect outputs or invalidate data, causing delays
(cache miss) in the application. If an SEU a�ects the data array, it can corrupt the output. However,
if the data is outdated, the fault is masked, and no e�ects are observed [52].

2.3 �antifying the Radiation E�ects
To quantify the e�ects of radiation on electronic devices, various measurements have been de-
veloped. This article will discuss the most commonly used measures: Total Ionizing Dose (TID),
and Displacement Damage Dose (DDD) [50, 52]. Total Ionizing Dose (TID) is the total amount of
ionizing radiation absorbed by an electronic device over time. This radiation can lead to permanent
damage, such as changes in the electrical properties of the semiconductor material, degradation
of the circuitry, or an increase in leakage currents. TID is measured in units of rads (radiation
absorbed dose) or grays (Gy). The amount of TID that a device can withstand before failing de-
pends on the type of device and the materials used in its construction. TID can cause permanent
damage to a device by creating defects in the semiconductor material. These defects can reduce
the conductivity of the material or create hot spots that can lead to thermal breakdown. DDD
is the amount of non-ionizing radiation that causes permanent damage to the crystal lattice of
the semiconductor material. It can lead to changes in material properties, which can a�ect the
performance of electronic devices. DDD is measured in units of displacements per atom (dpa).
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Fig. 4. The impact of single error upsets on di�erent parts of a processor [77].

The amount of DDD that a device can withstand before failing depends on the type of device and
the materials used in its construction. DDD can cause permanent damage to a device by creating
defects in the semiconductor material. These defects can reduce the conductivity of the material or
create hot spots that can lead to thermal breakdown.

2.4 Fault Impact on Program Execution
Understanding the impacts of faults on program execution is crucial for designing fault-tolerant em-
bedded systems. Faults in such systems can lead to undesired outcomes, including program crashes,
incorrect outputs, and compromised system functionality. This subsection provides an overview of
the e�ects of faults on program execution, emphasizing the signi�cance of understanding these
e�ects in the context of fault mitigation methods.

• Program Crashes and Abnormal Terminations: One of the primary consequences of faults in
program execution is program crashes and abnormal terminations. Faults such as hardware
failures, memory corruption, or unhandled exceptions can cause the program to terminate
abruptly or enter an unde�ned state, resulting in system instability and potential data loss [37].
Researchers have proposed various techniques for detecting and recovering from program
crashes, including Control Flow Checking methods that verify the integrity of program
execution path

• Incorrect Outputs and Results: Faults can lead to incorrect outputs and results, a�ecting
the reliability and accuracy of embedded systems. Logic errors, data corruption, or faulty
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computations can result in incorrect data processing and decision-making, leading to unde-
sirable consequences [72]. To mitigate the impact of such faults, researchers have explored
techniques such as redundant computation, error-correcting codes, and diverse redundancy
approaches to ensure accurate and reliable output generation.

• Performance Degradation: Faults in embedded systems can also cause performance degra-
dation, resulting in decreased system e�ciency and responsiveness. Resource management
errors, such as memory leaks and ine�cient scheduling, can lead to performance bottle-
necks [41]. Researchers have investigated methods such as dynamic resource allocation,
optimized scheduling algorithms, and memory management techniques to mitigate perfor-
mance degradation caused by faults.

• Security Vulnerabilities: Faults in embedded systems can introduce security vulnerabilities,
jeopardizing the con�dentiality, integrity, and availability of sensitive data. Faults such as
input validation �aws, bu�er over�ows, or insecure communication protocols can be exploited
by attackers to gain unauthorized access or perform malicious activities [90]. Researchers
have proposed security-oriented fault mitigation methods, including secure coding practices,
encryption algorithms, and intrusion detection systems.

• Data Corruption: Faults in embedded systems can lead to data corruption, compromising the
reliability and integrity of stored data. Faults such as power failures, communication errors,
or hardware malfunctions can result in data inconsistencies or loss [60]. To mitigate data
corruption, researchers have explored techniques such as checksums, error detection and
correction codes, and redundant storage mechanisms.

In summary, understanding the e�ects of faults on program execution is essential for designing
fault-tolerant embedded systems. By considering the potential consequences of faults, researchers
can develop e�ective fault mitigation methods.

3 DESIGNING FAULT-TOLERANT SYSTEMS: HARDWARE AND SOFTWARE
APPROACHES

This section aims to investigate a range of hardware and software techniques for designing fault-
tolerant systems. subsection 3.1 concentrates on Hardware-based fault tolerance methods. sub-
section 3.2 extensively discusses Software-based Fault Tolerance methods, speci�cally the Single-
Design Software Fault Tolerance methods. Lastly, subsection 3.3 presents Hybrid methods that
incorporate a blend of hardware and software methods.

The choice of fault tolerance approach to be employed is contingent upon the speci�c application
in question. For instance, a system that requires high availability, such as a telecommunications
network, would typically opt for hardware-based fault tolerance methods. Conversely, a less critical
system like a word processing application may utilize software-based fault tolerance methods [37,
61].
The organization of this section, as depicted in Figure 5, is as follows, providing a visual repre-

sentation of each section.

3.1 Hardware based Fault Tolerance Methods
Hardware-based techniques in fault detection and correction can be categorized into two main
groups: hardware monitors and redundancy-based. Hardware monitor methods are employed to
detect faults, while redundancy-based methods are employed for fault mitigation.

3.1.1 Hardware Monitors. Hardware monitors are specialized components or circuits integrated
into a system to monitor the behavior of various components and signals continuously. These
monitors are designed to detect anomalies, errors, or deviations from expected behavior, which
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Fig. 5. Fault-tolerant system design methods

could indicate the presence of faults or defects in the system. By actively monitoring the system’s
operation in real-time, hardware monitors can provide early warnings and trigger appropriate
actions to prevent or mitigate the e�ects of faults before they lead to system failures.

There are several types of hardware monitors, each serving a speci�c purpose:
• Voltage Monitors: These monitors supervise the supply voltage levels of critical components.
If the voltage falls outside speci�ed limits, it might indicate a fault or power-related issue.

• Temperature Monitors: Monitoring the temperature of components is essential to prevent
overheating and thermal damage. Temperature sensors and monitoring circuits can trigger
alerts or take actions to cool down the system if temperatures become excessive.

• Clock Monitors: These monitors oversee clock signals to ensure proper timing and synchro-
nization between components. Deviations in clock frequencies or signal integrity can lead to
faults.

• Memory Monitors: Monitoring memory operations helps identify errors in data storage or
retrieval, which is crucial for maintaining data integrity.

• Error Correction Code (ECC) Monitors: ECC monitors detect and correct errors in memory
or data storage systems using error-correcting codes, thereby enhancing data reliability.

• Bus Monitors: These monitors supervise data and control buses for communication errors
between components. Detecting bus errors can prevent data corruption or incorrect commu-
nication.

• Parity and CRC Monitors: These monitors use parity or cyclic redundancy check (CRC) codes
to detect data corruption during transmission or storage.

• Watchdog Timers: Watchdog timers are hardware-based timers that must be periodically
reset by the system’s software. If the software fails to reset the timer within a speci�ed time
frame, the watchdog timer assumes a fault has occurred and initiates a system reset.

Hardware monitors work in conjunction with redundancy-based techniques to provide com-
prehensive fault detection and tolerance mechanisms. They contribute to creating fault-tolerant
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systems that can identify, isolate, and recover from faults, ultimately enhancing the overall reliability
and availability of critical electronic systems.

3.1.2 Hardware Redundancy. Redundancy-based techniques rely on hardware or time redundancy.
These techniques involve the addition of extra hardware components to detect or tolerate faults.
such as watchdog processors [68], checkers [14], or infrastructure intellectual properties (I-IP) [66].

Hardware redundancy can be implemented through passive, active, and hybrid methods.
Passive redundancy techniques use M-of-N systems where N components are present, and correct

system operation is achieved when at least M components work correctly. For instance, Triple
Modular Redundancy (TMR) is a 2-of-3 system, meaning it consists of three components performing
the same action, and the result is voted on to determine the correct output [37, 62].
Active redundancy techniques include duplication with comparison (DWC), standby-sparing

(SS), pair-and-a-spare, and watchdog timers. DWC involves parallel execution of two identical
hardware components, with the output being compared to detect faults. However, DWC can only
detect faults and not tolerate them. Standby-sparing utilizes one operational module and one or
more spare modules. If a fault is detected in the main component, it is omitted from operation, and
the spare component takes over. Pair-and-a-spare is a combination of DWC and SS techniques,
where two modules are executed in parallel, and their results are compared to detect faults [37, 62].

Hybrid redundancy techniques integrate features from both active and passive hardware re-
dundancies. Examples of hybrid redundancy include N modular redundancy with spare, sift-out
modular redundancy, self-purging redundancy, and triple duplex architecture. Self-purging redun-
dancy is based on NMR with spare techniques, where all modules actively participate in the system
function. Sift-out modular redundancy utilizes special circuits, such as comparators, detectors, and
collectors, to con�gure N identical modules in the system. Triple duplex architecture combines
DWC with TMR to detect faulty modules and remove them from the system. These hardware-based
techniques, although e�ective in fault detection and tolerance, come with a high cost, veri�cation
and testing time, area overhead, and increased power consumption [37, 62].
In summary, Hardware-based fault detection and correction techniques fall into two main

categories: hardware monitors and redundancy-based methods. Hardware monitors continuously
observe system components and signals, detecting anomalies to provide early warnings and prevent
faults. These monitors include voltage, temperature, clock, memory, ECC, bus, and parity/CRC
monitors, as well as watchdog timers. These work in tandem with redundancy-based techniques,
which involve adding extra hardware components to detect or tolerate faults. Redundancy methods
can be passive (M-of-N systems), active (DWC, SS, pair-and-a-spare), or hybrid, combining features
of both.While e�ective, these techniques comewith costs such as veri�cation, testing, area overhead,
and power consumption.

3.2 So�ware based Fault Tolerance Methods
Software based Fault Tolerance Methods can be divided into two categories: Design Diversity-
Based and single-design software fault tolerance. In Design Diversity-Based methods, multiple
diverse versions of a software module are created, often using di�erent algorithms or programming
languages. These versions run concurrently, and discrepancies are detected and resolved through
voting mechanisms, enhancing reliability. On the other hand, single-design software fault tolerance
focuses on enhancing the robustness of a single software design through techniques such as error
detection, error handling, and recovery mechanisms.

3.2.1 Design Diversity Based So�ware Fault Tolerances. Design Diversity-Based orMultiple-Version-
Based software fault tolerance involves using multiple versions or variants of software, either
executed sequentially or in parallel. These versions are used as alternatives, with separate means of
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error detection, and can be implemented in pairs or larger groups for replication checks or masking
through voting. The main idea is that components built di�erently should fail di�erently, so if one
version fails on a speci�c input, at least one alternate version should be able to produce the correct
output. This section explores various approaches to software reliability and safety through design
diversity. However, ensuring the independence of failure among multiple versions and developing
e�ective output selection algorithms are critical challenges in deploying multi-version software
fault tolerance techniques.
Design diversity serves as a means of protection against uncertainty, speci�cally, design faults

and their associated failure modes in software design. The objective of applying design diversity
techniques to software design is to build program versions that fail independently and with a
low probability of coincidental failures. Achieving this objective greatly reduces or eliminates
the probability of encountering incorrect outputs during program execution. However, due to the
complexity of software, the application of design diversity for software fault tolerance is currently
more of an art than a science.
The concept of multiple-version software design was pioneered by Algirdas Avizienis and his

team at UCLA in the 1970s, primarily focusing on software. Their research also explored the
application of design diversity concepts to other system aspects such as the operating system,
hardware, and user interfaces. Even with rigorous development and proper application of design
diversity, there is still the issue of identical input pro�les leading to common errors. Experiments
have shown that error manifestations are not equally distributed across the input space, and the
probability of coincident errors is in�uenced by the chosen inputs. Data diversity techniques can
potentially mitigate this issue, but quantifying their e�ectiveness remains a challenge.

An important consideration in using multi-version software is the cost involved. Replicating the
entire development e�ort, including testing, would be expensive. In some cases, where only certain
parts of the functionality are safety-critical, applying design diversity only to those critical parts
can reduce development and production costs. [95] highlights the need to address the problem of
identical input pro�les as a common source of errors, highlighting that experiments have indicated
unequal distribution of error manifestations across the input space. While data diversity techniques
may reduce the impact of this error source, quantifying their e�ectiveness remains a challenge.

In summary, Design Diversity-Based or Multiple-Version-Based software fault tolerance o�ers a
means of enhancing software reliability and safety by using multiple versions of software with
independent failure properties. However, challenges exist in ensuring independence from failure
and developing suitable output selection algorithms. The concept of design diversity has evolved
as an art in software fault tolerance, with applications extending beyond software to other system
aspects. The issue of identical input pro�les leading to common errors requires attention, and while
data diversity techniques may mitigate this, quantifying their e�ectiveness remains a challenge.
The cost of using multi-version software is an important consideration, and selectively applying
design diversity to critical parts can help reduce development and production costs.

In this study, we explore various fault-tolerance approaches in software that incorporate design
diversity, both with multiple versions and a single design. The approaches we focus on are as
follows:

• The Recovery Block Scheme: The Recovery Block Scheme (RBS) combines the checkpoint
and restart approach with multiple versions of a software component [89]. Before execution,
checkpoints are created to allow for recovery after detecting errors. This ensures a valid
operational starting point for the next version if an error is detected. Additionally, embedded
checks are used to enhance error detection. The primary version executes more frequently
compared to alternates, which are designed for degraded performance. Multiple versions
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can be executed sequentially or in parallel, depending on processing capability and desired
performance. In the event that all alternates fail, the component must raise an exception to
communicate its failure to the system.

• The N-Version Programming Scheme: The N-Version Programming Scheme (NVPS) is a
multiple-version technique where all versions ful�ll the same basic requirements, and the
correctness of output decisions relies on comparing all outputs [15]. A voter selects the correct
output, eliminating the need for an acceptance test based on the application. Developing
NVPS requires considerable e�ort as all versions must adhere to the same conditions, resulting
in complexity comparable to creating a single version. Designing the voter can be challenging
and may involve inexact voting. Di�erent voters, such as the Formalized Majority Voter,
Generalized Median Voter, Formalized Plurality Voter, and Weighted Averaging Techniques,
can be used, with weights based on the application and individual versions’ features.

• The N Self-Checking Programming Scheme: The N Self-Checking Programming Scheme
(NSCPS) combines various structural variations of Recovery Blocks and N-Version Pro-
gramming using multiple software versions [63]. Independent development of versions and
acceptance tests based on shared requirements are used in this technique. NSCPS utilizes
separate acceptance tests for each version, distinguishing it from the Recovery Blocks ap-
proach. The technique bene�ts from using an application-independent decision algorithm
for selecting the correct output.

• The Consensus Recovery Blocks Scheme: The Consensus Recovery Blocks Scheme (CRBS)
combines N-Version Programming and Recovery Blocks to achieve higher reliability compared
to either approach individually [97]. The acceptance test in Recovery Blocks techniques lacks
guidance and may have design faults, whereas voters in N-Version Programming can be
unsuitable in certain cases. CRBS incorporates the �rst layer of decision-making using a
similar algorithm to that of N-Version Programming. If the �rst layer declares a failure, the
second layer, which utilizes acceptance tests similar to Recovery Blocks, is invoked. Although
more complex than the individual techniques, CRBS has the potential to deliver a more
reliable result.

• The t/(n-1)-Variant Programming Scheme: The t/(n-1)-Variant Programming Scheme (VPS)
involves n variants and the t/(n-1) diagnosability measure to restrict faulty units to a subset
of size at most (n-1), assuming a maximum of t faulty units. This approach di�ers from the
previous methods in terms of the methodused to isolate faulty units [85].

In summary, the utilization of Design Diversity-Based or Multiple-Version-Based software fault
tolerance techniques o�ers promising avenues to enhance software reliability and safety. These
approaches leverage multiple versions of software, designed to fail independently, thereby reducing
the likelihood of encountering erroneous outputs during program execution. However, the practical
implementation of design diversity in software fault tolerance remains more of an art than a science
due to the complexity of software and the challenges in ensuring independence from failure. Addi-
tionally, addressing the issue of identical input pro�les leading to common errors and quantifying
the e�ectiveness of data diversity techniques remain signi�cant challenges. Furthermore, the cost
implications of employing multi-version software must be carefully considered, and selective appli-
cation of design diversity to critical components can help mitigate development and production
expenses. The various fault-tolerance approaches explored, such as the Recovery Block Scheme,
N-Version Programming Scheme, N Self-Checking Programming Scheme, Consensus Recovery
Blocks Scheme, and t/(n-1)-Variant Programming Scheme, provide diverse strategies to implement
design diversity e�ectively in software fault tolerance.
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3.2.2 Single-Design So�ware Fault Tolerance Approach. Single-design fault tolerance is a method
that involves introducing redundancy to a single version of the software in order to detect and
recover from faults. In the context of single-version software fault tolerance techniques, various
factors need to be considered, including program structure, error detection, exception handling,
checkpoint and restart, process pairs, and data diversity.
In terms of software engineering aspects, the use of modularizing techniques is crucial for

implementing fault tolerance e�ectively. Modular decomposition should include built-in protections
to prevent abnormal behavior from propagating to other modules. Control hierarchy issues, such as
visibility and connectivity, should also be taken into account to minimize the risk of uncontrolled
corruption of the system state. Partitioning can provide isolation between functionally independent
modules, leading to simpli�ed testing, easier maintenance, and lower propagation of side e�ects.
System closure, which states that no action is allowed unless explicitly authorized, is another
important principle of fault tolerance. Atomic actions, which are activities in which components
exclusively interact with each other without any interaction with the rest of the system, o�er
error con�nement and recovery capabilities. If an atomic action terminates normally, its results are
complete and committed. If a failure occurs during an atomic action, it only a�ects the participating
components [113].
To ensure the e�ective application of fault tolerance techniques in single version systems,

structural modules should possess two basic properties: self-protection and self-checking. Self-
protection means that a component can detect errors in the information passed to it by other
interacting components. Self-checking means that a component can detect internal errors and take
appropriate actions to prevent error propagation. The extent to which error detection mechanisms
are used in a design depends on the cost of additional redundancy and the run time overhead.
It’s important to note that fault tolerance redundancy is not intended to contribute to system
functionality but rather to the quality of the product. Similarly, detection mechanisms can a�ect
system performance. The utilization of fault tolerance in a design involves trade-o�s between
functionality, performance, complexity, and safety.

Assertions [92], which are logical statements inserted at di�erent points in a program re�ecting
relationships between program variables, can also be used for fault tolerance. However, their
e�ectiveness depends on the nature of the application and the programmer’s ability. Control
Flow Checking (CFC) involves partitioning the application program into basic blocks (BBs) and
computing deterministic signatures for each block. Faults can be detected by comparing the run
time signature with a precomputed one.
The authors [64] have proposed a classi�cation of error detection checks, some of which can

be selected for implementing the mentioned module properties. The checks can be located either
within the modules or at their outputs, depending on the requirements. The checks encompass
replication, timing, reversal, coding, reasonableness, and structural checks.

Replication checks involve matching components with error detection based on the comparison
of their outputs, making them suitable for multi-version software fault tolerance [100]. Timing
checks are applicable to systems and modules with timing constraints and can look for deviations
from acceptable module behavior [37]. Watchdog timers, a type of timing check, can be used to
monitor system behavior and detect "lost or locked out" components. Reversal checks use the output
of a module to compute the corresponding inputs and detect errors if the computed inputs do not
match the actual inputs. Coding checks utilize redundancy in the representation of information
and check relationships between actual and redundant information before and after operations.
Reasonableness checks rely on semantic properties of data, such as range, rate of change, and
sequence, to detect errors. Data structural checks involve inspecting known properties of data
structures, such as number of elements, links, and pointers. Augmenting data structures with
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redundant structural data can enhance the e�ectiveness of structural checks. Runtime checks are
standard error detection mechanisms in hardware systems and can be used as fault detection
tools [85]. Fault trees, top-down graphical representations of failures and triggering conditions
can aid in the development of fault detection methods by identifying failure classes and triggering
conditions.
Exception handling involves interrupting normal operations to handle abnormal responses.

Exceptions are signaled by error detection mechanisms, and the design of exception handlers
requires consideration of possible triggering events, their e�ects on the system, and appropriate
recovery actions [85].

Checkpoint and restart is a common recovery method for single-design software. Most software
faults that occur after development are unanticipated, state-dependent faults. Restarting a module
is usually su�cient to complete its execution successfully. Restart recovery can be static or dynamic.
Static restart returns the module to a predetermined state, while dynamic restart uses dynamically
created checkpoints [85].
Process pairs utilize two identical versions of software running on separate processors. The

recovery method is a checkpoint and restart. The primary processor actively processes input and
creates output while generating checkpoint information for the backup processor. Upon error
detection, the secondary processor loads the last checkpoint and takes over the primary processor’s
role. The faulty processor goes o�ine for diagnostic checks. This technique ensures uninterrupted
delivery of services after a failure [85].
Data diversity is an e�ective defense method against design faults, especially when combined

with checkpoint and restart methods. By implementing "input sequence workarounds" and using
di�erent input re-expressions on each retry, data diversity enhances the success rate of checkpoint
and restart procedures. The desired outcome of each retry is to generate output results that are
either exactly the same or semantically equivalent, although the de�nition of equivalence may
vary depending on the application. In [73], three fundamental data diversity models are presented:
(i) Input Data Re-Expression, which focuses on modifying the input; (ii) Input Re-Expression with
Post-Execution Adjustment, which involves processing the output to achieve the desired value or
format; and (iii) Re-Expression via Decomposition and Recombination, where the input is broken
down into smaller elements and then recombined after processing to obtain the desired output. It
is worth noting that data diversity works hand in hand with the Process Pairs technique, allowing
for di�erent re-expressions of the input in the primary and secondary.
In the context of operating systems, software fault tolerance is crucial to ensure the proper

functioning of any application-level software. While designing and building operating systems
can be complex, time-consuming, and costly, it may be necessary to develop custom operating
systems with highly structured design processes involving experienced programmers and advanced
veri�cation techniques for safety-critical applications. Another approach to achieving fault tolerance
in operating systems for mission-critical applications is to use wrappers on o�-the-shelf operating
systems to enhance their robustness against faults. However, utilizing o�-the-shelf software on
dependable systems poses the challenge of ensuring the reliability of the components for the
intended application. It is known that the development process for commercial o�-the-shelf software
lacks consideration for safety or mission-critical standards, resulting in weak documentation for
design and validation activities. On the other hand, commercial operating systems o�er advantages
such as incorporating the latest developments in operating system technology and potentially
having fewer bugs overall due to continuous bug-�xing e�orts driven by user complaints. In order
to minimize the risk of introducing design faults, it is preferable to adopt techniques that utilize
the operating system as is, without internal modi�cations. Wrappers serve as middleware between
the operating system and application software, monitoring the �ow of information to prevent
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undesirable values from propagating. By limiting the input and output spaces of a component,
wrappers provide application-transparent fault tolerance functionality. In [94], wrappers referred
to as "sentries" encapsulate operating system services and can modify the characteristics of these
services as perceived by the application layer. Through wrappers, fault-tolerance methods can
be dynamically assigned to speci�c applications based on their individual needs in terms of fault
tolerance, cost, and performance. Authors proposed using wrappers at the micro-kernel level for o�-
the-shelf operating systems, aiming to verify semantic consistency constraints using abstractions
or models of the expected component functionality.

In conclusion, Software based fault tolerance methods o�er several advantages, including the ab-
sence of additional auxiliary devices, no speci�c operating system requirements, good expansibility,
and support for continuous exploration and repeated experiments. However, these methods come
with signi�cant time and space overhead due to the inclusion of numerous redundant instructions,
which can signi�cantly impact program performance.

Table 1. Overview of the techniques classification. [77]

Technique
Classi�cation

Pros Cons

Hardware -High fault detection
-Fast detection
-No software modi�cation

-Most does not correct errors
-Mainly single fault model
-High area and power overhead
-Implemented only in physical level
-Can be expensive

Software -High fault detection
-High �exibility
-No hardware modi�cation
-Small area overhead
-Some can correct errors

-High performance overhead
-Mainly single fault model
-Focuses only on data or control
�ow, but not both

Hybrid -High fault detection
-High e�ciency
-Can achieve small area overhead
-Some can detect both SDC and
SEFI
-Some can correct errors

-Can also achieve high performance
or area overhead
-Software and hardware modi�ca-
tion

3.3 Hybrid Methods
Hybrid fault-tolerance methods typically involve the integration of a Software Implemented Hard-
ware Fault Tolerance (SIHFT) method with a hardware module designed to perform consistency
checks within the processor. In a study by [33], SIHFT techniques are combined with a Control
Flow Checking (CFC) module, which is responsible for monitoring the trace port of the processor.
Another hybrid approach, proposed by [17], is known as Hybrid Error-detection Technique using
Assertions (HETA). This method utilizes a watchdog module and assertions (or signatures) to
address control-�ow errors.
Lockstep is another hybrid fault-tolerance technique that utilizes both software and hardware

redundancy for error detection and correction [5],[110],[45],[83]. Lockstep involves executing the
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same application simultaneously and symmetrically in two identical processors. These processors
are initialized to the same state and receive identical inputs during system start-up. During normal
operation, the state of both processors should be identical at each clock cycle. By monitoring the
processor’s data, addressing, and controlling buses [27], a checker module periodically compares
the outputs of the processors to check for inconsistencies. To enforce veri�cation, speci�c points
are inserted in the program to indicate when the application execution should be locked and
the outputs compared. If any discrepancies are found, the lockstep system leverages a rollback
methodto restore the processors to a safe state. In the absence of errors, a checkpoint operation
is performed, which stores the context of the processor (including registers and main memory)
in a secure memory location. Memories can be protected using Error Correction Code (ECC) to
prevent data corruption. ECC is capable of detecting and correcting single-bit errors and detecting
double-bit errors. To recover from errors, the fault-free copy of the processor’s context is retrieved
from memory using the rollback method. The processor is then recovered to a state without errors
and restarts the application execution from this point.
In summary, hybrid fault-tolerance methods combine software and hardware approaches to

enhance error detection and correction. One approach integrates Software Implemented Hardware
Fault Tolerance (SIHFT) with Control Flow Checking (CFC) or Hybrid Error-detection Technique
using Assertions (HETA) to monitor and address control-�ow errors. Another hybrid method,
known as Lockstep, executes applications in parallel on identical processors, comparing outputs
and employing rollback and checkpoint mechanisms to ensure system reliability and error recovery.
These hybrid approaches provide robust fault tolerance in critical systems.

Table 1 provides a comprehensive classi�cation of techniques for addressing random hard-
ware failures (RHFs) in embedded systems. The techniques are categorized into three main types:
hardware-based, software-based, and hybrid-based approaches. In the hardware category, these
techniques o�er advantages such as high fault detection rates, fast detection capabilities, and the
absence of software modi�cations. However, they come with notable drawbacks, including the
inability to correct detected errors, a predominant focus on a single fault model, substantial area
and power overhead, implementation restricted to the physical level, and potentially high cost.
Software-based techniques, on the other hand, boast high fault detection rates, �exibility, and
minimal hardware modi�cations, with some capable of error correction. Nevertheless, they incur
drawbacks such as high-performance overhead, a predominant focus on a single fault model, and
concentration on either data or control �ow, but not both. Hybrid techniques aim to combine the
strengths of hardware and software approaches, achieving high fault detection e�ciency, small
area overhead, and the capability to detect and, in some cases, correct both SDC and SEFI. However,
hybrid techniques also have their challenges, including the potential for high performance or area
overhead and necessitating both software and hardware modi�cations. The insights provided by
Table 1 pave the way for a nuanced understanding of the strengths and limitations associated with
each category of techniques, facilitating informed decisions in selecting and implementing RHF
mitigation strategies in embedded systems [77].

4 FAULT MITIGATION METHODS
This section explores "most common" fault mitigation methods. Subsection A examines repetition
execution, subsection B discusses Lockstep, and subsection C goes into an in-depth examination
of CFC methods, including AUTOSAR, CFC for Permanent faults, CFC for transient faults, and
Control-�ow Integrity Techniques for Soft Errors-security. Additionally, data integrity is addressed
in this section.
The organization of this section is visually represented in Figure 6 providing an overview of

each section’s focus.
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Fig. 6. Fault mitigation methods.

4.1 In-Depth Examination of Control Flow Checking Methods
Various techniques have been proposed in the literature to address transient and permanent faults
in di�erent parts of a system, targeting both hardware and software components and relying on
di�erent forms of redundancy. Among these techniques, CFC stands out as it can cover faults a�ect-
ing memory components containing the executable program, as well as the hardware components
handling the program and its �ow [93]. CFC has been suggested to handle reliability issues for both
transient and permanent faults [21, 98], and more recently, it has been applied to address security
issues caused by the injection of malicious faults [6, 32]. Malicious faults, within the context of
fault tolerance, refer to deliberate and intentional actions taken by malicious actors to disrupt
or compromise the normal functioning of a computer system, network, or software application.
These actions are aimed at exploiting vulnerabilities in order to compromise the system’s integrity,
availability, or con�dentiality [16]. Unlike transient and permanent faults, which often arise from
natural hardware failures or environmental factors, malicious faults are caused by human intent
and typically involve actions such as hacking, malware deployment, or unauthorized access.

In a cost-e�ective method proposed in [115], transient faults are detected through coarse-grain
CFC, achieving e�ciency by simplifying signature calculations within BBs and conducting checks
at a coarse-grain level. To assess the e�ectiveness of this approach, a comprehensive fault injection
campaign was conducted, using single bit-�ips to model transient faults. Transient faults may not
cause permanent damage to the hardware, but they can silently corrupt an application’s correctness
during runtime or even lead to system crashes. For instance, HP [71] reported frequent failures in
their 2048-CPU system at the Los Alamos National Laboratory due to high-energy cosmic rays. A
study [30] revealed that the BlueGene/L machine installed in Lawrence Livermore National Labs
experienced soft errors approximately every four hours. Considering the estimated reliability drop
per bit with each generation of processors [25], it becomes essential to provide transient fault
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protection schemes for both current and future systems. Transient fault detection techniques rely
on di�erent forms of redundant checking, either in hardware or software. Hardware solutions
like DMR, TMR, and watchdog processors [69] are employed in systems like IBM Z-Series servers
[19], HP NonStop system [23], and Boeing 777 airplanes [114]. However, hardware-based solutions
introduce unavoidable area and energy costs, making them unsuitable for commodity-embedded
systems. Software-based redundant checking, on the other hand, is more appealing for transient
fault detection due to its lower production costs and higher �exibility. Securing control �ows
is crucial for transient fault protection, as CFEs are more likely to cause programs to behave
incorrectly. While traditional software methods [76, 106] provide high fault coverage, they inject
a signi�cant number of validating instructions into programs, resulting in moderate to large
performance overhead. Recent studies [56, 117] attempt to reduce this validation overhead by
injecting fewer instructions, but they may sacri�ce fault coverage due to their heuristic approaches.
Software-based transient fault detection techniques are categorized into data �ow protection and
control �ow protection. Although data �ow errors can be masked during program executions,
CFEs are more challenging to hide. This work focuses on detecting illegal control �ows since
they can lead to incorrect program behavior. Researchers from industry and academia have been
actively seeking solutions to counter the threat of transient faults in both hardware and software.
Hardware-only solutions, with su�cient resources, are more e�cient for a single, �xed reliability
policy, while software-only solutions o�er �exibility and lower costs. Software-only solutions can
be deployed immediately on existing hardware by recompiling the application. However, devising
correct software solutions for transient faults is a challenging task due to the numerous fault
scenarios. Various techniques are suggested in the literature for detecting transient faults, falling
into two general classes: hardware or software redundancy. Hardware-based methods provide
better fault coverage but impose higher costs and overhead on the system, making them less suitable
for some general-purpose applications. On the other hand, software-based techniques o�er less
fault coverage and larger delay but are more cost-e�ective, �exible, and applicable to di�erent types
of COTS systems.

4.1.1 CFC Methods: Mechanisms and Fundamentals. One common approach in CFC methods is
signature monitoring, where redundant instructions are inserted into the software unit’s source
code. This method proves advantageous as it doesn’t necessitate any special hardware or operating
system requirements, making it adaptable to Commercial o� the Shelf (COTS) micro-controllers,
even low-power units. Furthermore, CFC harmoniously complements hardware-based hardening
techniques, such as watchdogs, and can be expedited through external hardware support for
run-time signature execution and comparison.
In the context of CFC, the typical approach involves dividing the source code into BBs and

meticulously inspecting the code within these blocks, along with the branches connecting them.
To facilitate this process, a watchdog processor can be employed, enabling e�cient and e�ective
control �ow veri�cation.

The errors analyzed in these methods fall into three general categories: a) illegal jumps within a
BB, b) illegal jumps among BBs, and c) illegal jumps from a BB to the unused memory space. These
illegal jumps result in Control Flow Errors (CFEs). The following shows six situations that jumps
result in a CFE:

• an illegal jump from the end of one BB to the beginning of another BB.
• a legal but incorrect jump from the end of one BB to the beginning of another BB.
• a jump from the end of one BB to any point within another BB.
• a jump from any point within one BB to any point within another BB.
• a jump from any point within a BB to another point within the same block.
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G= (V,E)
V={BB0,BB1,BB2,BB3,BB4}

E={e0,e1,e2,e3,e4}

e0= {BB0, BB1}

e1= {BB1, BB2}

e2= {BB1, BB3}

e3= {BB2, BB4}

e4= {BB3, BB4}

BB4

BB1

BB3BB2

BB0

BB0 while (int i>10) {

BB1 If y==1

BB2 y ++;

BB3 Else 
y=y*2;

BB4 i++;
}

Fig. 7. Example of program CFG and sample code. The execution path from BB1 to BB2 or from BB1 to BB3
is valid, while a jump from BB1 to BB4 is invalid and referred to as CFE. [99]

• an illegal jump from a BB to the unused space of memory, which refers to the space between
BBs.

It is important to note that regardless of the approach used (software or hardware-based), in
industrial applications, the method should be capable of handling the aforementioned errors while
minimizing memory overhead and execution time increase.
CFC methods utilize Control Flow Graph (CFG) alongside signatures computed by redundant

instructions to detect illegal jumps. The basic idea behind signature-monitoring techniques is to
assign a static signature to each BB, along with a dynamic global signature. In all CFC detection
methods, each BB is associated with a unique static signature. CFC methods employ precise
detection approaches by generating the CFG from high-level language source code, de�ning the BB
signatures and their computation methods. During execution of the hardened software component,
the signature values computed at run-time are compared with the predetermined signatures. In case
of a mismatch, an error signal is activated to trigger the detection. The CFE detection methods can
be divided into hardware-based methods [80],[17], mixed software-hardware methods [9],[116], and
software-based methods. The hardware-based methods require additional hardware components
to detect CFEs. Figure 7 provides a graphical representation of the CFG for a sample source code
developed in the C language.

Some of the most commonly used CFC methods are based on comparing the run-time signature
computed value with the expected values assigned to each block at the design or compile time. We
will clarify them below to shed more light on the techniques.

In [10] authors proposed the Enhanced Control Flow Checking Using Assertions (ECCA) method.
It is an enhanced version of Control-Flow Checking Using Assertions (CCA) [70] that is targeted
for real-time distributed systems. ECCA overcomes the limitations of CCA by introducing a new
assertion methodthat allows for the detection of control-�ow errors that were previously unde-
tectable by CCA. In ECCA, each BB in a program should be given a special numerical identi�cation
number. Speci�c assertions that use the identi�ers of the involved BBs check the control �ow when
the processor executes a new BB. Extending the CCA technique, ECCA methods are able to identify
all CFEs between various BBs. Still, ECCA methods are unable to identify errors within a single BB
or faults that result in incorrect decisions being made on a conditional branch.

In Control Flow Checking by Software Signatures (CFCSS), which is covered in [76], all branches’
destinations are evaluated before they jump, not their sources. A global variable named G is
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initialized with a program’s �rst BB’s signature while it is being executed. In order to determine the
di�erence between the signatures of the source and target blocks, CFCSS uses the XOR function to
calculate the target block signature from the source block’s signature. By comparing the computed
signature with the anticipated one, control �ow will be examined. The technique outlined in [76]
manually inserts control �ow checking assertions. This will be accomplished by beginning each BB
with a few instructions. First, setting the outgoing signature variable after checking the incoming
signature variable. This makes it possible to con�rm the accuracy of the execution �ow. It does not
require specialized hardware, such as a CFC watchdog. It implies that CFCSS is applicable even in
the absence of multitasking support by the operating system. If several BBs merge into a single BB
at their ends, CFCSS cannot identify errors.

The authors of [106] proposed Control-�ow error detection using assertions (CEDA) by assigning
a signature veri�cation at the start and end of each BB, and detecting the "aliasing errors" by
maintaining unique signatures for each of the aliased blocks. Run-time signatures, which are
inserted during compilation, are used by CEDA to identify errors in the control �ow e�ectively. As
a result, CEDA can identify all errors that violate the program �ow graph, but it cannot identify
illegal but correct jumps (according to the program �ow graph). As a result, CEDA is unable to
detect all the faults.

According to [107], Assertions for Control Flow Checking (ACFC) is a classi�cation scheme for
control �ow faults and a CFC method that does not rely on predecessor-successor relationships
between BBs. The method uses fewer instructions than earlier techniques. Consequently, the
method has less memory overhead than the earlier techniques, but its detection performance su�ers
as a lot.
A CFC technique described in [44] is "Yet Another Control-Flow Checking using Assertions"

(YACCA). In this technique, each BB entry and exit point receives a special signature. The bene�t
of this approach is that it allows for the detection of CFEs that occurred when the program �ow
changed from one BB’s inside to that of one of its legitimate successors, even if the succeeding BB
returns control to the BB that was subjected to the incorrect jump. This is possible because the
signature is re-evaluated prior to each branch instruction to eliminate the CFE for the incorrect
successor. In comparison to CFCSS, the YACCA has higher performance overhead and fewer
undetected errors.
Reference [12] proposed Software-Based Control Flow Checking (SCFC). The method makes

use of two run-time variables: one that holds the run-time values ID of the BBs and another that
holds the run-time signature S. The compile-time signature is created using the same method as
SEDSR [13]. In the BB, a CFE can be found in either the run-time ID or the run-time signature S
that has the incorrect value. The compile-time value of the BB should be included in the ID, and the
predecessor BB’s signature should be included in the S. In the BB, ID and S are updated at various
locations. After con�rming it, the S is updated in the middle of the BB, and the ID is updated to the
compile-time id of the succeeding block.
Another approach is Hybrid Error-detection Technique using Assertions (HETA) [17]. HETA

can detect incorrect jumps during the program execution. HETA develops CEDA techniques and
associates them with hardware resources, a watchdog, for achieving complete fault detection. Using
HETA methods cannot detect 100% of the errors.

An alternative approach to detect CFEs in processors without hardware-implemented hardening
techniques is the Software-only Error-detection Technique using Assertions (SETA) [34]. This
method aims to reduce computation units’ costs by utilizing two previously described techniques:
Hardware-Enabled Timer-based Assertion (HETA) and Control-�ow Error Detection Analysis
(CEDA). Both techniques utilize run-time signatures to identify errors related to the control �ow.
Signatures are calculated in advance and compared with the signatures computed at run-time. To

J. ACM, Vol. 1, No. 1, Article . Publication date: April 2024.



22 Amel Solouki et al.

implement SETA, the application code is divided into BBs, and two types of BBs are de�ned: Type A
and Type X. Type A BBs have multiple predecessors, at least one of which has multiple successors.
BBs that do not meet these conditions are classi�ed as Type X. The de�ned BBs are then grouped
into networks, where BBs sharing a common predecessor belong to the same network. Each BB has
two signatures: the Node Ingress Signature (NIS) and the Node Exit Signature (NES). The NIS is
compared when entering the BB, while the NES is checked when exiting the BB. The NIS describes
the current BB, while the NES is used to identify the successor network and its subsequent legal
successor BBs.

Another technique proposed is the Relationship Signatures for Control FlowChecking (RSCFC) [65].
RSCFC encodes control �ow relations between di�erent BBs into specially formatted signatures
and inserts CFC instructions at the head and end of every BB. This technique detects inter-block
CFEs using three variables: a compile-time signature (si), the CFG locator (Li), and the cumulative
signature (mi). RSCFC has a higher fault detection rate compared to CFCSS, but it incurs a higher
performance overhead.
In summary, signature monitoring methods such as YACCA [44], CFCSS [76], CEDA [106],

RASM [102], SEDSR [13], and ECCA [10] focus on monitoring run-time signatures with compile-
time signatures at the BB level to address illegal inter-block jumps during application execution.
These methods di�er in how signatures are computed and checks are performed. To enhance the
existing methods that cover illegal intra-block jumps, instruction monitoring techniques have
been developed. These include RSCFC [65], Software implemented error detection (SIED) [74],
and Random Additive Control Flow Error Detection (RACFED) [104], which inspects the correct
execution order of instructions. Additionally, a behavior-based software technique [67] and the
Software Implemented Hardware Fault Tolerance (SIHFT) [43] approach have been presented for
detecting CFEs in multi-core architectures and low-cost embedded systems used in safety-critical
applications. SIHFT is especially suitable for applications where availability and execution speed
are not major concerns.

Table 2 compares the detection coverage and overheads of di�erent CFC methods. The measure-
ments were made by [104] and [103] on implementations at the assembly level. The authors used
their software-implemented fault injection (SWIFI) tool to validate the comparisons between the
techniques.

Table 2. Compare Control Flow Control techniques [99].

CFC
Method

Used
Variables

Signatures Intra-
block

Detection Per-
formance [%]

Code Size
Overhead [%]

Execution
Time Over-
head [%]

ECCA 4 prime-
numbers

j 73.5 36.0 244.8

CFCSS 2 randomized-
bit

j 75.8 15.2 76.6

YACCA 2 bit-�eld j 82.8 30.0 203.2
RSCFC 2 bit-�eld X 49.4 17.5 86.8
SEDSR 3 bit-�eld X 46.8 12.3 67.1
SCFC 3 bit-�eld X 60.4 22.9 115.7
SIED 2 random

numbers
X 52.4 14 115.7

RACFED 3 random
numbers

X N.A. N.A. 81.5
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4.1.2 cfc in automotive industry. A good example of applying CFCmethods in software architecture,
is in the automotive industry. To establish a standardized software architecture for automotive
products among manufacturers and suppliers, a framework as a set of speci�cations has been
developed. This framework is named as the AUTomotive Open System ARchitecture (AUTOSAR).
AUTOSAR adopts a modular software architecture with standardized interfaces and a runtime
environment, e�ectively segregating application-level software components from underlying soft-
ware modules and hardware. Such standardization ensures interoperability, reusability, portability,
and scalability in AUTOSAR-compliant products, which holds great signi�cance in the industry.
Moreover, AUTOSAR places a high priority on functional safety, aligning well with the upcoming
ISO 26262 standard. Within the AUTOSAR framework, a methodcalled Watchdog Manager (WdM)
incorporates logical monitoring to detect CFEs in program instructions. However, it is worth noting
that the speci�cation does not cover the concept of a Control Flow Graph, which limits its potential
for comprehensive implementation. Despite this limitation, the AUTOSAR platform has emerged as
a prevalent open industry standard for developing in-vehicular systems, particularly in response to
the increasing complexity of modern vehicular systems. By o�ering a modular software architecture
that adheres to standardized interfaces and a runtime environment, AUTOSAR e�ectively separates
application-level software components from the underlying basic software modules and physical
hardware. To maintain a well-structured framework, AUTOSAR system speci�cations are stored in
the standardized AUTOSAR XML (ARXML) format. However, while the AUTOSAR development
process facilitates the monitoring of control �ow and timing properties at a low abstraction level, it
lacks support for modeling complex monitoring functionality at the software component level. This
limitation warrants further consideration when implementing CFC in the context of AUTOSAR’s
architecture [2, 3].

4.2 Repetition Execution
Repetition execution is a widely employed fault mitigation methodin fault-tolerant embedded
systems. By executing critical tasks multiple times and comparing the results, repetition execution
aims to detect and tolerate faults that may occur during program execution. This subsection provides
an overview of repetition execution techniques and their e�ectiveness in mitigating faults.

• Redundant Execution: One approach to repetition execution involves redundant execution,
where critical tasks are executed multiple times in parallel. The results obtained from each
execution are compared, and a majority voting or a consensus-based decision methodis
used to determine the correct result [46]. Redundant execution techniques can mitigate both
permanent and transient faults, ensuring the system’s resilience to unexpected failures.

• Time Redundancy: In time-redundant execution, critical tasks are executed at di�erent time
instances, providing redundancy in the temporal domain. By repeating the execution of tasks
at periodic intervals, fault detection and recovery mechanisms can be incorporated [24].
Time redundancy is particularly e�ective in mitigating transient faults that may occur
intermittently.

• Rollback Recovery: Rollback recovery is a technique that combines repetition execution with
checkpointing. Periodically, checkpoints are taken to capture the system’s state. In the event
of a fault, the system can roll back to a previous checkpoint and re-execute the tasks from that
point to ensure correctness and consistency [84]. Rollback recovery provides fault tolerance
and can handle permanent faults that a�ect the system’s state.

• Diverse Redundancy: Diverse redundancy is a technique that combines repetition execution
with diversity in the implementation or design of critical tasks. Multiple versions of the same
task are executed in parallel, each using a di�erent algorithm, implementation, or platform.
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By incorporating diversity, the system can tolerate faults that a�ect only a subset of the
redundant tasks, ensuring higher reliability and fault tolerance.

• Feedback-Based Repetition: Feedback-based repetition execution involves continuously mon-
itoring the system’s behavior and adapting the repetition methodaccordingly. Fault detection
mechanisms analyze the system’s output and dynamically adjust the repetition execution
parameters, such as the number of repetitions or the timing of task execution, to optimize
fault tolerance [8]. This approach improves the system’s resilience by adapting to changing
fault conditions.

An example of leveraging repetition execution fault mitigation methods is in the automotive
domain, where ISO26262 acknowledges recovery through repetition as an accepted error-handling
method. This approach involves resetting the speci�c hardware components involved in a faulty
execution and re-executing the a�ected software components, as described in the AUTOSAR
standard for automotive software design. Furthermore, ISO26262-6:2011 clause 10.4.3 states that
when generating test cases for software resource usage testing, it is essential to determine the
maximum execution time of the program under analysis to demonstrate the schedulability of the
integrated system [1].
Taking a repetition execution approach can help enhance the CFC methods, in accurately and

e�ciently solving detection problems within BBs and across procedures, as well as addressing the
issues of control �ow error detection hysteresis and reducing time overhead. Existing control �ow
error detection methods based on signature analysis have limitations due to their reliance on a
single type of signature, struggling to balance program residual failure rate and time overhead. To
overcome these limitations, a proposed technique called basic block repetition is introduced [75],
which involves executing a program multiple times while monitoring the behavior of its BBs to
identify anomalies or deviations in control �ow, signaling the presence of errors. The process
includes instrumentation, execution, monitoring, and analysis of BBs. BB repetition can be detected
using various techniques, such as static analysis with hash tables or control �ow graphs and
dynamic analysis using tracing tools to track executed BBs. This approach o�ers valuable insights
into the control �ow dynamics of software systems, aiding in the identi�cation and debugging of
CFEs ultimately improving software reliability, security, and performance.
In summary, repetition execution is a prominent fault mitigation methodin fault-tolerant em-

bedded systems. By executing critical tasks multiple times and comparing the results, repetition
execution techniques can e�ectively detect and tolerate faults.

4.3 Lock step
Lockstep is a widely used fault mitigation methodin fault-tolerant embedded systems. It involves
redundant execution of critical tasks in parallel. The redundant executions are kept synchronized
to ensure consistency and fault tolerance. This subsection provides an overview of the lockstep
approach for fault mitigation [5, 45, 83, 110].

• Redundant Execution: In the lockstep approach, critical tasks are redundantly executed
in parallel with multiple identical copies or processors. These copies execute the same
instructions simultaneously, and the outputs are compared to detect discrepancies caused by
faults [47]. Lockstep execution is particularly e�ective in mitigating permanent faults that
a�ect the consistent behavior of a system.

• Fault Detection and Consensus: Lockstep execution relies on fault detection mechanisms to
identify inconsistencies among redundant copies. By comparing the outputs of redundant
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tasks, fault detection algorithms can detect faults and initiate recovery actions. Consensus-
based techniques, such as majority voting or Byzantine fault-tolerance algorithms, are com-
monly used to determine the correct output when discrepancies arise [108].

• Fault Masking and Recovery: The redundant nature of lockstep execution provides fault
masking capabilities. If a fault occurs in one copy, the correct output can still be obtained by
comparing the results of the other copies. This fault-masking property enhances the fault
tolerance of embedded systems. In case of a fault, recovery mechanisms can be triggered to
restore the system to a consistent state [18].

• Timing Synchronization: Synchronization of the redundant copies is crucial in lockstep
execution to maintain consistency. Precise timing synchronization is required to ensure
that the copies execute instructions at the same rate and in the same order. Time-triggered
protocols, clock synchronization techniques, or global time references are employed to achieve
timing synchronization among the redundant copies [91].

• Hardware Support: Hardware-level support plays a vital role in implementing the lockstep
approach e�ciently. Specialized hardware architectures and components, such as redundant
processors, comparators, and error detection circuits, are designed to facilitate lockstep
execution. These hardware features ensure synchronized execution, fault detection, and fault
recovery in a timely and e�cient manner [51, 82].

All in all, lockstep execution is a powerful fault mitigation method in fault-tolerant embedded
systems. By redundantly executing critical tasks in parallel and comparing the results, lockstep
ensures fault detection, fault tolerance, and system recovery.

5 A NOTE ON CONTROL-FLOW INTEGRITY TECHNIQUES FOR SOFT ERRORS -
SECURITY

Control-�ow integrity (CFI) techniques are employed to ensure that a program functions as intended
without being a�ected by soft errors, which can arise from external factors like radiation, power
surges, or electromagnetic disturbances. These errors have the potential to cause unintended
consequences, such as data loss, diminished system reliability, and even security breaches [35].
The primary purpose of CFI techniques is to mitigate the risk of security breaches resulting from
soft error-induced deviations by implementing a set of rules on the program’s control-�ow graph
(CFG). This graph represents the program’s control �ow and the relationships between its various
components. These rules dictate the permissible execution paths and prevent any unauthorized
or malicious alterations to the control �ow. One commonly used CFI technique is "strict control
�ow integrity" (SCFI), which enforces rules to maintain the integrity of the program’s control �ow
graph during execution. Any attempt to deviate from this graph is detected and prevented, thus
safeguarding the program’s integrity. Additional CFI techniques include shadow-stack-based CFI,
implicit CFI, and hybrid CFI. Soft errors can a�ect the direct as well as indirect branches, and hence
CFI, as is, is not directly applicable for soft errors. Though direct branches can also be protected
in a manner similar to dynamic branches, but the already high overhead (20%-60% for dynamic
branches only) would become prohibitive [4].

In summary, CFI techniques serve as a set of measures to protect software systems from security
breaches caused by soft errors. By enforcing strict rules on the program’s control-�ow graph,
these techniques can identify and prevent any unauthorized or malicious changes to the program’s
execution, thereby bolstering its security and reliability.
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5.1 Data Integrity
Data integrity refers to the concept of ensuring that data remains accurate, consistent, and reliable
throughout its entire life cycle. In the context of soft error security, data integrity becomes especially
crucial in protecting against potential vulnerabilities and risks posed by transient faults or soft
errors. These errors can be caused by various factors, such as cosmic radiation, electrical noise, or
electromagnetic interference, and can adversely impact the integrity of stored data. To mitigate
such risks, data integrity measures involve implementing error detection and correction techniques,
such as checksums and parity bits, to detect and correct any errors that may occur.
Maintaining data integrity is relatively straightforward in a standalone system with a single

database. This is achieved through the use of database constraints and transactions, typically
managed by a database management system (DBMS). Transactions should adhere to the ACID
principles (atomicity, consistency, isolation, and durability) to ensure data integrity. Most databases
support ACID transactions, which aids in preserving data integrity. However, data integrity in
cloud-based systems refers to the preservation of data accuracy. It is crucial to ensure that data
remains unchanged and is not lost due to unauthorized user actions. Data integrity forms the
foundation for cloud computing services like Software as a service (SaaS), Platform as a Service
(PaaS), and Infrastructure as a Service (IaaS) [31]. In addition to storing large volumes of data, cloud
environments typically o�er data processing services. methods such as RAID-like methods and
digital signatures can be employed to maintain data integrity in cloud systems.
Remote veri�cation of data integrity in the cloud is a prerequisite for deploying applications.

Bowers et al. introduced the "Proofs of Retrievability" theoretical framework, which combines
error correction codes and spot-checking to facilitate remote data integrity checks [29]. The High-
Availability and Integrity Layer (HAIL) system utilizes the Proofs of Retrievability (POR) method to
verify data storage across di�erent clouds, ensuring redundancy of copies and enabling availability
and integrity checks [28]. Schi�man et al. proposed the use of Trusted Platform Modules (TPM) for
remote data integrity checks [96].

Due to numerous entities and access points in a cloud environment, authorization plays a vital
role in ensuring that only authorized entities interact with data. By preventing unauthorized
access, organizations can have greater con�dence in data integrity. Monitoring mechanisms provide
increased visibility, enabling the identi�cation of any alterations made to data or system information
that may a�ect its integrity. While cloud computing providers are entrusted with maintaining data
integrity and accuracy, it is important to establish a third-party supervision method alongside users
and cloud service providers.
In summary, data integrity is paramount for safeguarding data accuracy and consistency, par-

ticularly in the context of transient faults or soft errors. Techniques like checksums and parity
bits are used to detect and correct errors. While standalone systems can ensure data integrity
through database constraints and ACID transactions, cloud-based systems require remote veri�-
cation methods, such as Proofs of Retrievability and Trusted Platform Modules, to maintain data
accuracy across various access points. Authorization and monitoring mechanisms also play crucial
roles in preserving data integrity in the cloud, requiring collaboration among users, providers, and
third-party oversight for e�ective security.

6 EVALUATE THE DEPENDABILITY
The evaluation of dependability in fault-tolerant systems is explored in this section. Figure 8
illustrates the organization of this section. It encompasses fault injection techniques, fault simulation
techniques, and fault diagnosis techniques. It has provided essential insights into the dependability
of numerous systems and has sparked extensive research in various areas. Several mature fault
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Fig. 8. Evaluate the dependability.

injection tools have been developed, some ofwhich have been successfully implemented in industrial
settings [22, 111]. However, there is a prevailing perception in other communities that fault injection
is a solved research problem, with the remaining challenges being primarily engineering-related.
Nevertheless, fault injection has been a subject of research for many years [86, 118].
Over time, numerous techniques have been proposed to assess di�erent types of fault e�ects

and analyze faulty behavior. Nonetheless, as technology has advanced, the demands for fault
injection have become increasingly rigorous. More complex devices necessitate higher performance
to conduct larger fault injection campaigns within an acceptable timeframe [118].

Fault injection, the deliberate introduction of faults into a Circuit Under Test (CUT), has proven to
be an e�ective method for evaluating susceptibility to soft errors. This approach enables researchers
to introduce faults, thus reducing experiment duration arti�cially. The goals of fault injection include
verifying circuit fault tolerance, predicting circuit behavior in the presence of faults, identifying
critical components that require mitigation, and validating mitigation approaches.
Various fault injection methods have been proposed, with physical fault injection utilizing

particle accelerators being the most widely accepted. However, this method is costly and suitable
only for certi�ed circuits. Other physical techniques involve the use of lasers or electromagnetic
interference. Alternatively, logical fault injection can be employed by altering register or memory
contents within the CUT and observing the e�ects. This method is simpler and more cost-e�ective
to implement, but it has limitations as it may not provide access to all circuit components. Additional
techniques are needed for e�ective guidance and validation of mitigation techniques during the
design phase. These techniques involve evaluating mitigation needs and e�ectiveness using logical
fault injection on a design model. For this purpose, simulation, emulation, or a combination of
both, along with appropriate fault models and design tools, can be utilized. The bit-�ip model is
commonly utilized for logical emulation of radiation-induced faults, allowing for the injection of
single and multiple faults. Table 3 provides a summary of how the bit-�ip model can be used to
model single and multiple e�ects.
Fault injection necessitates a suitable CUT model, and the level of detail depends on the type

of fault being considered. Performance is a critical factor in fault injection, as a su�cient number
of faults must be injected to achieve statistical signi�cance. Recent developments have focused
on enhancing the performance of fault injection to enable larger campaigns and support more
comprehensive fault analysis. [49]
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• Fault injection techniques
Fault injection is a testing and debugging technique that deliberately introduces faults into
memory and register circuits to observe and evaluate their behavior and response under
faulty conditions. The level of abstraction at which fault injection is performed, such as
hardware, software, or �rmware, depends on the type and complexity of the circuit. The
stage of fault injection, whether pre-silicon, post-silicon, or in-�eld, is determined by the
availability and accessibility of the circuit. The techniques for fault injection vary based on
the fault type, model, level, and stage. Common fault injection techniques for memory and
register circuits include physical, electrical, optical, thermal, magnetic, radiation, software,
or �rmware fault injection. [22]

• Fault simulation techniques: Fault simulation is a testing and debugging technique that utilizes
software models or emulators to simulate the behavior and e�ects of faults in memory and
register circuits without physically altering the hardware components. The level at which
fault simulation is conducted, such as functional, structural, or behavioral, depends on the
type and complexity of the circuit. The stage of fault simulation, whether pre-silicon, post-
silicon, or in-�eld, is determined by the availability and accessibility of the circuit. The
techniques for fault simulation vary based on the fault type, model, level, and stage. Common
fault simulation techniques for memory and register circuits include fault list, fault dictionary,
fault coverage, fault equivalence, fault collapsing, or fault grading [87].

• Fault diagnosis techniques: Fault diagnosis is a debugging technique that utilizes testing and
analysis methods to identify and locate faulty components or regions in memory and register
circuits. The level at which fault diagnosis is performed, such as gate, transistor, or layout,
depends on the type and complexity of the circuit. The stage of fault diagnosis, whether
pre-silicon, post-silicon, or in-�eld, is determined by the availability and accessibility of the
circuit. The techniques for fault diagnosis vary based on the fault type, model, level, and
stage. Common fault diagnosis techniques for memory and register circuits include signature
analysis, parity check, checksum, syndrome decoding, error correction code (ECC), error
detection and correction (EDAC), or fault localization [36].

Table 3. Models of so� errors for fault injection. Single-Event Upset (SEU), Multiple-Cell Upset (MCU),
Single-Event Multiple Transient (SEMT), Single-Event Transient (SET) [38].

Feature SEU/MCU SET/SEMT
E�ect Single/multiple bit-�ip Single/multiple bit-�ip
Where? Any �ip-�op Any gate
When? Any clock cycle Any time

For how long? 1 clock cycle (typically) Variable pulse width

7 CONCLUSION
In this paper, we explored and surveyed various fault-tolerance methods designed to mitigate
random hardware failures in embedded systems, focusing on real-time embedded systems. The
increasing use of embedded systems in safety or mission-critical applications necessitates advanced
and reliable fault tolerance methods to ensure seamless automation and operational e�ciency
in commercial and industrial contexts. The signi�cance of fault tolerance in modern computing
systems was discussed, and insights were given on how fault tolerance techniques enhance system
dependability by masking faults and detecting errors, allowing for uninterrupted service provision
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Table 4. Summary of Sections

Section/Subsection Content Key Points
Background

• Register File
• Integer Unit (IU) and Floating
Point Unit (FPU)

• Bus Unit
• Control Unit
• Debug Unit
• Instruction Cache
• Data Cache

• Impact of SEUs on di�erent
components of a system.

Designing Fault-
Tolerant Systems • Hardware-Based

• Software-Based
• Hybrid-Based

• Description of hardware and
software fault-tolerance tech-
niques.

Fault Mitigation
Methods • Fault Mitigation Methods

• Control Flow Checking Methods
• CFC Methods: Mechanisms and
Fundamentals

• CFC in Automotive Industry
• Repetition Execution
• Lockstep

• Overview of common fault
mitigation methods.

• Detailed exploration of con-
trol �ow checking methods
and their application in the
automotive industry.

• Overview of repetition execu-
tion and lockstep as fault mit-
igation methods.

Control-�ow
Integrity Tech-
niques

• Control-�ow Integrity Tech-
niques for Soft Errors - security

• Data Integrity

• Overview of control-�ow
integrity techniques for
preventing security breaches
caused by soft errors.

• Importance of data integrity
in protecting against vulnera-
bilities posed by soft errors,
especially in cloud environ-
ments.

Evaluate the De-
pendability • Evaluate the Dependability

• Fault injection techniques
• Fault simulation techniques
• Fault diagnosis techniques
• Models of soft errors for fault in-
jection

• Exploration of fault injec-
tion, simulation, and diag-
nosis techniques for evalu-
ating dependability in fault-
tolerant systems.

• Summary of models for soft
errors in fault injection.

J. ACM, Vol. 1, No. 1, Article . Publication date: April 2024.



30 Amel Solouki et al.

in the presence of internal faults. The paper has highlighted the di�erences in using hardware or
software redundancy to achieve fault tolerance goals, ensuring reliable system functioning.

Special attention has been given to software fault tolerance, as software faults are a leading cause
of system failures. While software engineering endeavors to remove most deterministic design
faults, it is practically impossible to guarantee that complex software designs are entirely free
of such faults. Hence, software fault tolerance techniques are employed as an additional layer of
protection to ensure continued service at an acceptable level of performance and safety. Moreover,
the increasing complexity and optimization of computer systems for price and performance have
introduced the challenge of soft errors or transient bit-errors. This challenge emphasizes the critical
role of fault tolerance in modern computing systems, as these errors can potentially lead to system
malfunctioning.
The survey has covered various fault tolerance techniques, including hardware, software, and

hybrid redundancy, providing valuable insights into their bene�ts and applicability in di�er-
ent contexts. Additionally, we have discussed fault-tolerance approaches tailored speci�cally for
resource-constrained embedded systems, acknowledging the importance of considering limited
memory and low-end computation environments in such systems. Nevertheless, more research and
development in fault-tolerance methods is needed, particularly in the realm of real-time embedded
systems, to ensure the reliable and resilient operation of interconnected computing systems.

Overall, this survey paper provides valuable insights into fault mitigation techniques and empha-
sizes the signi�cance of fault tolerance in ensuring the dependability and functionality of modern
computing systems. The presented methods, such as CFC, redundancy approaches, optimized
resource management, and security-oriented measures, pave the way for further advancements in
the �eld of fault tolerance and its application in critical computing systems.
The key insights from each section are succinctly summarized in Table 4, providing a quick

reference for readers to grasp the essential content discussed throughout this survey.
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