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The tetragonal heavy fermion compound CeRh2As2 has intriguing low temperature symmetry
breaking phase whose nature is unclear. The unconventional superconducting phase is complemented
by other normal state phases which presumably involve ordering of 4f electron multipoles supported
by the Kramers doublets split by the tetragonal CEF. The most striking aspect is the pronounced
anisotropic H-T phase boundary for in- and out-of plane field direction. Using a localised 4f CEF
model we demonstrate that its essential features can be understood as the result of competing
low field easy-plane magnetic order and field-induced quadrupolar order of xy- type. We present
calculations based on coupled multipole RPA response function approach as well as molecular field
treatment in the ordered regime. We use an analytical approach for a reduced quasi-quartet model
and numerical calculations for the complete CEF level scheme. We discuss the quantum critical
properties as function of multipolar control parameters and explain the origin of a pronounced a-c
anisotropy of the H-T phase diagram. Finally the field and temperature evolution of multipolar
order parameters is derived and the high field phase diagram is predicted.

I. INTRODUCTION

The tetragonal (C4v) compound CeRh2As2 has been
added to the list of heavy fermion systems with complex
symmetry breaking phases at low temperature and fields.
Primarily superconductivity (SC) was discovered [1] with
Tc = 0.3 K and proposed [2–4] to be of unconventional
nature, in particular for field along c-axis it was suggested
that a transition between even and odd parity state takes
place in an external field. This transition is claimed to be
connected to the lack of local inversion symmetry at the f-
electron sites. Furthermore the SC phase was found to be
surrounded by other phases which break the symmetry in
the normal state [4–7] with a zero-field T0 = 0.5K which
is a familiar scenario for heavy fermion compounds [8].
As for the SC phase what kind of order parameters are in-
volved is still unidentified but µSR experiments suggests
that spontaneous magnetic moments are formed below
T0 although their size is still unknown[9]. The magnetic
order has been excluded to be of FM type [4, 5] but the
ordering wave vector is so far not known, we may con-
jecture that it is of AF type. Furthermore NMR experi-
ments [10] indicate that magnetism should be of the easy-
plane type, judging from spin fluctuations in the disor-
dered phase. Like SC, this unidentified phase appearing
below T0 has, however, a striking a-c axis anisotropy of
the phase boundary that seems incompatible with con-
ventional antiferromagnetism. Therefore additional de-
grees of freedom of 4f electrons have to be involved, a
natural candidate are higher order multipoles supported
by the Ce3+ (J = 5/2) CEF states. The latter consist
of three Kramers doublets where the lower two may be
considered to form a quasi-quartet.

Since CeRh2As2 is a heavy fermion system hybridiza-
tion with conduction electrons is present. The estimated
Kondo temperature T ∗ (band width of heavy quasiparti-
cles) is of the same order as the splitting ∆ of the quasi-
quartet system [5, 11]. However when considering purely
the question of symmetry breaking and the stability of

multipolar phases the local 4f approach may be a reason-
able starting point despite the presence of hybridization.
This has been successfully demonstrated for the promi-
nent pure quartet multipole order in CeB6 [12, 13] and
also in the quasi-quartet compound YbRu2Ge2 [14, 15]
which show strong and moderate hybridization effects,
respectively. The localized approach will also be used
here for CeRh2As2 to investigate its most striking fea-
ture: the extreme anisotropy of the normal state phase
diagram. In any case it is necessary to investigate its
predictions as a reference point. Recent ARPES exper-
iments [16] have indeed proposed a predominantly lo-
calized character of 4f electrons in this compound and
support such starting point.

For the determination of the H-T phase diagrams we
use the reduced quasi-quartet model in an analytical ap-
proach as well as the full CEF level scheme with three
Kramers doublets in a numerical treatment. From sym-
metry arguments we identify in which configuration of
conjectured dipolar and quadrupolar order parameters
one may expect a strong a-c anisotropy of the H-T
phase diagram to appear. The most convenient technique
of its determination is the response function formalism.
Starting from the bare single-site CEF level susceptibili-
ties we derive the coupled collective RPA multipole sus-
ceptibilities in the external field that include the inter-
site multipole interactions and follow their singularities
from the disordered side which locates the phase bound-
aries. We show that the coupling of magnetic dipolar and
quadrupolar moments happens through mixed multipole
field-induced susceptibilities which appear only for the
in-plane field direction. The field-induced mixing of the
quasi-quartet doublets generates a quadrupolar ground
state moment which, through field induced coupling with
the dipolar moment stabilizes the ordered phase for the
in-plane field. This mechanism is absent for field along c-
axis and this distinction lies at the origin of the observed
anisotropy of the phase diagram which will be explained
in a semi-quantitative way both within the quasi-quartet
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model and the full CEF level scheme.

Furthermore we show that at small intersite quadrupo-
lar coupling the AF and field-induced quadrupolar (FIQ)
are separated, the former appearing at small the latter at
larger fields. As the quadrupole interaction increases at a
quantum critical point (QCP) the two phase boundaries
approach and rapidly merge into a single phase boundary.
We also calculated the field dependence of magnetic and
quadrupolar order parameters to illustrate the change of
character of the phase diagram as function of interaction
control parameters. In addition we comment on the in-
plane anisotropy of the QCP fields and their dependence
on control parameters. Finally we look at the very high
field behavior and show that for the in-plane field the
transition temperature of the mostly quadrupolar phase
increases up to very large values and then drops steeply
when the field strength becomes comparable to the quasi-
quartet splitting.

II. THE CEF MODEL FOR CeRh2As2 AND ITS
MULTIPOLE MOMENTS

The complete CEF Hamiltonian model comprising all
three doublets appropriate for J = 5/2 in C4v site sym-
metry has been discussed in Ref. 5. It is extended in
Appendix A to include the multipolar operators and the
dependence of their matrix elements on the CEF mix-
ing parameter θ. The latter has been determined from a
fit to the high-temperature susceptibility of CeRh2As2.
It turns out that the level sequence is (energies as tem-

peratures in parentheses) Γ
(1)
7 (0K, ground state); Γ6

(30K) and Γ
(2)
7 (180K) (we set kB ≡ 1). Therefore at

moderate temperatures one has to deal only with a quasi-
quartet system consisting of the lowest two doublets split
by ∆ = 30K; this restriction is convenient for analyt-
ical calculations but fully numerical results comprising
all three levels will also be presented. The wave func-

tions of the quasi-quartet are given by |Γ(1)
7σ ⟩ ≡ |1σ⟩ and

|Γ6σ⟩ ≡ |2σ⟩. Their explicit form in terms of free ion 4f
states {|JM⟩ : M = −J . . . J} are given in Appendix A
together with a discussion of the full model comprising
three Kramers doublets and its associated multipole op-
erators.

For compelling reasons discussed in Sec. IV we will
restrict our model for the order parameters and phase
diagrams in H0 ∥ c, a to two candidates: The magnetic
dipole Jy (choosing external field H0 along x-axis) and
the electric quadrupole Oxy = (JxJy+JyJx) which break
and preserve time reversal symmetry, respectively. This
model might also be described in a pseudospin language
[12, 13] using σ = ± for the Kramers degree of each
doublet and τ = 1, 2 for the orbital degree of the two
doublets. In order to avoid the various necessary state
and operator mappings we here remain in the original
basis of total angular momentum operators J.

For the intersite interactions responsible for the possi-

ble broken symmetry phases we use the most rudimen-
tary model containing magnetic out-of (c) and in-plane
(a) n.n. exchange as well as a n.n quadrupolar inter-
action. Since both ferromagnetic and ferro-quadrupolar
orders are ruled out by experimental evidence the ex-
change is assumed to be of antiferro-(AF) type for both
multipoles. Together with CEF potential and Zeeman
term the model is described by

H = HCEF − gJµBµ0H0 ·
∑
i

Ji

− 1

2

∑
⟨ij⟩

Jc
ijJ

z
i J

z
j − 1

2

∑
⟨ij⟩

Ja
ij

(
Jx
i J

x
j + Jy

i J
y
j

)
− 1

2

∑
⟨ij⟩

JQ
ijOxy(i)Oxy(j)

(1)

where we restricted to nearest-neighbor intersite inter-
actions for the multipoles. Here H0 with index ’0’ al-
ways refers to the external applied field whereas later on
fields with other indices or none at all (H) refer to the
internal molecular fields that contain the effect of po-
larization and spontaneous order. Since we restrict to
n.n. ⟨ij⟩ sites within the tetragonal plane and the c-axis
exchange is subdominant as seen from the susceptibil-
ity there are two interaction constants involved: i) the
dipolar exchange constant I0m = z|I0|; (I0m < 0) where
we suppress a possible a, c exchange anisotropy ii) the

quadrupolar effective coupling IQ = z|IQ0 |; (I0Q < 0) with
z denoting the n.n. coordination number. We also define
the reduced external field as h0 = gJµBµ0H0 and later
likewise for the reduced molecular field h.

III. THE COUPLED
DIPOLAR-QUADRUPOLAR RPA RESPONSE

FUNCTIONS

The H-T multipolar phase boundaries which we in-
tend to investigate are most conveniently determined by
following the line of singularities for the collective RPA
susceptibilities in the H-T plane that marks the onset of
long range order. It is also essential to obtain an under-
standing of the field and temperature dependence of the
coexisting magnetic and quadrupolar order parameters
inside the ordered region as may be obtained within the
molecular field approximation (MFA) discussed in Sec. V.

For nonzero molecular field H all CEF levels (Kramers
doublets) are split leaving only singlets. In this case the
static homogeneous single-site (non-interacting) response
function for multipole operators Xα acting on the CEF
states may be written as

χ0
αβ(T,h) =

∑
n ̸=m

⟨n|Xα|m⟩⟨m|Xβ |n⟩
pn − pm
Em − En

+ β

[∑
n

⟨n|Xα|n⟩⟨n|Xβ |n⟩pn − ⟨Xα⟩⟨Xβ⟩

]
(2)
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where the first and second terms are van Vleck and
Curie contributions and β = 1/(kBT ). The energies
En and states |n⟩ are nondegenerate CEF eigenvalues
and eigenstates in the molecular field h = h0 − Im⟨Jx,z⟩
and pn = Z−1 exp(−βEn) are their thermal occupations
with Z =

∑
n exp(−βEn) denoting the partition func-

tion. The notation ⟨Xα⟩ denotes the thermal expectation
value of the respective operator Xα. In the limit h → 0
this will also lead to the correct form of the susceptibili-
ties for the three degenerate Kramers doublets.

Now we include inter-site interactions of two different

multipoles on nearest-neighbor sites ⟨i, j⟩ as defined by
IA,B =

∑
⟨ij⟩ IA,B(ij). Then the coupled 2×2 multipolar

susceptibility matrix in Xα = (A,B) operator space is
given by the RPA expression[17]

χ = [1− Iχ0]−1χ0 (3)

where I has only the diagonal matrix elements IA, IB .
The diagonal susceptibility elements of the matrix χ are
then obtained as

χAA =
χ0
AA(1− IBχ

0
BB)− IAχ

0
ABχ

0
BA

1− IAχ0
AA − IBχ0

BB + IAIB(χ0
AAχ

0
BB − χ0

ABχ
0
BA)

χBB =
χ0
BB(1− IAχ

0
AA)− IBχ

0
BAχ

0
AB

1− IAχ0
AA − IBχ0

BB + IAIB(χ0
AAχ

0
BB − χ0

BAχ
0
AB)

(4)

where we use IA = z|Im0 | and IB = z|IQ0 |. Note that in
a non-vanishing field h the mixed multipole susceptibili-
ties χ0

BA = χ0
BA (A ̸= B) are generally nonzero, depend-

ing on the symmetry of multipole operators. For the
current model of three Kramers doublets in CeRh2As2
we consider the two following relevant cases of coupled
dipole (Jy) and quadrupole (Oxy) moments as incipient
in-plane order parameters. Table I lists the dipoles and
quadrupoles and their respective zero-field irreducible
representations for point group C4v which can be mu-
tually induced in a finite magnetic field along one of the
tetragonal axes. It shows that the most promising case
of strong in-/out-of-plane anisotropy is the combination
of a Γ4 quadrupole and an in-plane magnetic Γ5 dipolar
order parameter on which we will focus in the following:
i) out-of-plane field H0 = (0, 0, H0) and A = Jy (or
equivalently Jx) and B = Oxy;
ii) in-plane field H0 = (H0, 0, 0) and A = Jy and
B = Oxy.
In the first case i) we can read off from Table I that

the non-diagonal χ0
AB vanishes identically. Then Eq. (4)

decouples to

χαα = χ0
αα[1− Iαχ

0
αα]

−1, α = A,B (5)

for the diagonal components and the field dependences
for A, B are mutually independent. In the second case
ii) of in-plane field the product JxHy belongs to the same
C4v representation Γ4 as Oxy and therefore there will be
a non-vanishing non-diagonal field-induced susceptibility
component χ0

BA = χ0
AB , consequently the full expres-

sions in Eq. (4) have to be used for the diagonal dipo-
lar and quadrupolar RPA response functions χJy,Jy

and
χOxy,Oxy

.

IV. RESTRICTED PARAMAGNETIC
QUASI-QUARTET MODEL

For understanding the mechanism of dipolar and
quadrupolar coexisting order and associated anisotropic
phase diagram it is essential to investigate a simplified
model which may be treated analytically giving closed
solutions for transition temperatures and quantum crit-
ical fields. This is possible if we restrict to the lowest

two Kramers doublets Γ
(1)
7 ,Γ6 forming a quasi-quartet in

Eq. (A2). In fact if we set the tetragonal CEF parameters
like B0

2 → 0, B0
4 → −B4, and B

4
4 → −5B4 in Eq. (A1),

these two doublets would form the cubic Γ8 quartet for
J = 5/2. As argued above this interpretation is justified
by the small quasi-quartet splitting. It naturally implies
that we also restrict to fields and temperatures of the
order of the quasi-quartet splitting ∆ = 30 K where the
upper third quartet is not yet relevant.

A. Essentials of the quasi-quartet model in the field

To study the H-T phase diagram we need to know
the split CEF energies and corresponding eigenstates in
an applied field. As described in detail in Sec. V it is,
however, the molecular fields, generically called H con-
taining the applied field H0 and the effect of polarization
through intersite interactions that acts on each site. In
terms of this effective molecular field H the single site
Hamiltonian is given by

H =
∑
Γ

ϵΓ|Γ⟩⟨Γ| − gJµBµ0H · n̂ (6)

where ϵΓ = (−∆/2,∆/2) and |Γ⟩ refer to the (shifted)
CEF energies and eigenstates of the quasi-quartet con-
sisting of |1±⟩ and |2±⟩ (Eq. A1). The external field
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TABLE I. Dipoles and quadrupoles and their irreducible representations that can be mutually induced by each other in a field
along one of the tetragonal axes. The representations refer to zero-field C4v point-group symmetry [18]. Each double-line
corresponds to one combination of field direction and dipole component together with their symmetry-compatible quadrupole
operator components. See Table IV for a definition of the latter. We note that the fully symmetric O0

2 cannot be an order
parameter since it does not break any local symmetry and therefore is already contained in the CEF Hamiltonian Eq.(A1) of
the disordered phase.

(Hx, Hy) (Jx, Jy) O0
2 Ox2−y2 Oxy

Γ5 ⊗ Γ5 = Γ1 ⊕ Γ2 ⊕ Γ3 ⊕ Γ4

(Hx, Hy) Jz (Oyz, Ozx)

Γ5 ⊗ Γ2 = Γ5

Hz (Jx, Jy) (Oyz, Ozx)

Γ2 ⊗ Γ5 = Γ5

Hz Jz O0
2

Γ2 ⊗ Γ2 = Γ1

H0 may be oriented parallel (n̂ = x̂) or perpendicular
(n̂ = ẑ) to the tetragonal plane, respectively. In the
paramagnetic state it is aligned with the molecular field
h = h0 − Im⟨J⟩. where we defined h = gJµBµ0H previ-
ously as the reduced field in equivalent energy units; later
we will also use the dimensionless field strength h′ = h/∆
normalized to the quasi-quartet splitting.

Out-of-plane case h ∥ ẑ (c-axis). Due to the diago-
nal Jz matrix the eigenstates will be unchanged but the
Kramers doublet (i = 1, 2) energies split described by

E±
ci = (−1)i

∆

2
∓mcih; |Ec±

i ⟩ = |i±⟩. (7)

The matrix elementsm
(′)
a,c i used here and in the following

are tabulated in Table III.
In-plane case h ∥ x̂ (a-axis). Now the Jx matrix has

nondiagonal elements (Eq. A5), therefore the CEF states
will be mixed to new eigenstates. The corresponding
mapping onto the new basis may be done by first per-
forming a state rotation inside each doublet and then
between the two doublets. The result for the four split
level energies is (i = 1, 2):

Ẽ±
ai = cos2 α±E

±
ai + sin2 α±E

±
aı̂

± (−1)i sin(2α±)(m
′
ah)

(8)

where analogous to Eq. (7) E±
ai = (−1)i∆2 ∓ maih are

the doublets split by their intrinsic linear Zeeman effect.
We also used the notation ı̂ = 2, 1 for i = (1, 2). The
mixing of the two levels is characterized by the angles
α± according to

tan 2α± =
2m′

ah

∆± (ma2 −ma1)h
→ tan 2α =

2m′
ah

∆
(9)

where the approximation holds for h/∆ ≪ 1. The eigen-
states for the in-plane field are accordingly given by

|Ẽ±
a1⟩ = cosα±|E±

a1⟩ − sinα±|E±
a2⟩,

|Ẽ±
a2⟩ = sinα±|E±

a1⟩+ cosα±|E±
a2⟩

(10)

with |E±
ai⟩ = (|i+⟩ ∓ |i−⟩)/

√
2 denoting the individual

rotated Kramers doublet states in the transverse field.

For the calculation of the necessary response functions
for Jy, Oxy one must transform the zero-field multipole
operator matrices in Eqs.(A5) and (A7) (the 4×4 block)
to the eigenstates in the applied field: i) For c-direction
they are unchanged and Jy, Oxy are identical to those in
Eqs.(A5) and (A7). ii) For a-direction ( H ∥ x̂ chosen)
the transformation to the new basis in Eq. (10) leads to

Jx =


−M+

a1 0 −M ′
a+ 0

0 M−
a1 0 M ′

a−
−M ′

a+ 0 −M+
a2 0

0 M ′
a− 0 M−

a2

 , (11)

Jy = i


0 −M̃a1 0 M̃ ′

a+

M̃a1 0 −M̃ ′
a− 0

0 M̃ ′
a− 0 −M̃a2

−M̃ ′
a+ 0 M̃a2 0

 , (12)

Oxy = i


0 −M̃Q 0 −M̃ ′

Q

M̃Q 0 −M̃ ′
Q 0

0 M̃ ′
Q 0 −M̃Q

M̃ ′
Q 0 −M̃Q 0

 . (13)

Comparing this with the c-axis field H ∥ ẑ direction in
Eqs.(A5) and (A7) we notice that the essential difference

are field-induced quadrupolar matrix elements M̃Q in the

split ground state Kramers doublet Γ
(1)
7 which appear for

the a-axis field orientation but are absent in the c-axis
field direction (because the latter does not mix the CEF
eigenstates). Therefore for the latter there will be no
mutual dependence of dipole and quadrupole moments
in the field whereas for a-axis field direction such a de-
pendence is induced. This distinction is at the origin of
the strongly anisotropic behaviour of phase boundaries
in the two field directions as derived in detail below.
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The other matrix elements for a-axis field are simply
modified (or interchanged) as compared to the zero-field
case. Explicitly we have for the dipolar operators (with
ı̂ = (2, 1) for i = (1, 2)):

M±
ai = mai cos

2 α+maı̂ sin
2 α∓m′

a sin 2α,

M ′
a± = m′

a cos 2α± (1/2)(ma1 −ma2) sin 2α,

M̃ai = mai cos
2 α−maı̂ sin

2 α,

M̃ ′
a± = m′

a ± (1/2)(ma1 +ma2) sin(2α)

(14)

and likewise for the quadrupolar operator

M̃Q = m′
Q sin(2α),

M̃ ′
Q = m′

Q cos(2α).
(15)

Importantly the field induced Oxy quadrupolar matrix el-
ement appears between the same split ground state wave
functions as those of the dipolar Jy operator enabling
their coupling through mixed response functions. One
can see the origin of the induced matrix element directly
in the low-field approximation where α ≈ m′

ah/∆ ≪ π.

Then M̃Q ≈ 2m′
am

′
Qh/∆ which shows that it is linear

in h and proportional to both magnetic and quadrupo-
lar matrix elements between the two doublets. Thus the
transverse field mixes a Γ6 component into the ground
state with amplitude ≈ m′

ah/∆ that forms an induced
quadrupole ground state moment due to the m′

Q non-

diagonal original quadrupole matrix elementm′
Q between

Γ
(1)
7 lowest and Γ6 excited CEF Kramers doublet.

B. Response functions in the quasi-quartet system

With the above dipolar and quadrupolar matrices in
the molecular field eigenstates we can now compute the
bare multipolar response functions in Eq. (2) that en-
ter into the collective RPA susceptibilities in Eq. (4). In
this evaluation we assume that the effect of the split-
ting of upper levels and their thermal occupation may be
neglected due to h/∆, T/∆ ≪ 1 and the non-diagonal
matrix elements are replaced by their zero-field values,
independent of the field direction. However, the split
ground state energies, occupations and matrix elements
have to be treated exactly. Then we obtain

out-of-plane case h ∥ ẑ (c-axis):

χ̂0
yy = χ̂0

xx =
2m

′2
a

∆
+ 2m2

a1

tanh δ̂c
2T

δ̂c
(16)

where δ̂c = 2mc1h is the splitting of the Γ
(1)
7 ground state

doublet in the c-parallel field. As explained above for
c-parallel field no induced quadrupole moment appears
in the ground state and therefore the quadrupolar and
mixed dipolar-quadrupolar susceptibilities are very small
or vanish, respectively.

0 0.02 0.04 0.06 0.08 0.1
h0/6

0

20

40

60

80

r0 _
` 

[1
/6

] yy  h0 || c
yy  h0 || a
QQ h0 || a
yQ  h0 || a

T/6=0.01(a)

0 0.02 0.04 0.06 0.08 0.1
T/6

0

10

20

30

40

50

60

70

r0 _
` 

[1
/6

]

yy h0 || c
yy h0 || a
QQ h0 || a
yQ h0 || a
xx h0 || a

h0/6=0.02(b)

FIG. 1. Bare susceptibilities (Im = IQ = 0) as function of
applied external field h0 and temperature. (a) The diagonal
magnetic susceptibilities are suppressed in the field while the
quadrupolar and mixed dipolar/quadrupolar (χyQ ≡ χQy)
ones increase with field. The latter is field-induced, vanish-
ing for h0 = 0. The crossing of χyy and χyQ appears in the
region of the QCP in Fig. 2. (b) Susceptibilities dominated
by pseudo-Curie ground state contribution show strong tem-
perature dependence while the mostly van Vleck quadrupolar
one shows very little T-dependence at low fields.

in-plane case h ∥ x̂ (a-axis):

χ̂0
yy =

2m
′2
a

∆
+

2M̃2
a1

δ̂a
tanh

δ̂a
2T

,

χ̂0
QQ =

2m
′2
a

∆
+

2M̃2
Q

δ̂a
tanh

δ̂a
2T

,

χ̂0
yQ =

(
2M̃aM̃Q

δ̂a
+

2m′
am

′
Q

∆

)
tanh

δ̂a
2T

(17)

where δ̂a = 2(ma1 cos
2 α + ma2 sin

2 α)h is the ground
state doublet splitting in the a-parallel field. The domi-
nant terms in these susceptibilities are the pseudo-Curie
terms originating from the split ground state with a split-

ting energy δ̂a and the matrix elements given in Eqs. (14)
and (15). The field dependence of these bare response
functions is presented in Fig.1 which demonstrates the
induced nature of the mixed response χ̂0

yQ.
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(a)

(b)

FIG. 2. (a) Low-field phase boundary curves Tcr(h) = Tm

(left) or TQ (right) for magnetic exchange Im = 0.019 and
various quadrupolar coupling constants IQ. Note that for
IQ = 0 the critical field of AF order for a-direction would
be slightly below the value for c-direction. For IQ > 0, how-
ever, the former rapidly overtakes the latter while at the same
time a new phase boundary appears at higher field that signi-
fies the onset of field-induced quadrupolar (FIQ) order. The
two phase boundaries approach each other for increasing IQ
and touch at the QCP defined by Eq. (24). The red curves
are for IQ in the quantum critical region IQ ≃ 0.0116 where
(Im, IQ) correspond to the dimensionless control parameters
(ξm∆ , ξq∆) ≃ (0.0596, 0.633). For even larger IQ the two sep-
arate phase regions merge into one with coexisting AF and
FIQ order (see also Fig. 5) for all fields. (b) evolution of QCP
lines h±

0cr for AFM and FQI as function of quadrupolar inter-
action strength, merging at the QCP endpoint h0cr.

C. Phase boundaries in the quasi-quartet model

The transition to the competing multipolar phases
for H0 ∥ a appears when the RPA susceptibilities in
Eq.(4) diverge. This defines the phase boundary in the
H-T plane separating the para-phase form the ordered
phase with non-vanishing magnetic and quadrupolar or-
der parameters ⟨Jy⟩ and ⟨Oxy⟩ at each site (Sec.V). With
A = Jy and B = Oxy the singularity appears if the con-
dition

Det
(
1− Iχ0

)
= 1− Imχ

0
yy − IQχ

0
QQ

+ ImIQ
(
χ0
yyχ

0
QQ − χ0

yQχ
0
Qy

)
= 0

(18)

is met, where χ0
yQ = χ0

Qy. Using Eq. (17) for the approx-
imate bare susceptibilities this equation may be written
in a more transparent form suitable for a closed solution
for the critical temperature Tcr(h) where the molecular
field is given by h = h0 − Im⟨Jx⟩. For this purpose we
introduce a set of appropriate dimensionless control pa-
rameters for dipolar as well as quadrupolar interactions
characterized by the magnetic exchange Im ≡ IA and
quadrupolar IQ ≡ IB effective interaction constants, re-
spectively (see after Eqs. (1) and (4)). They are given
by

ξmh =
2M̃2

a1Im

δ̂a
, ξm∆ =

2m′2
aIm
∆

,

ξQh =
2M̃2

QIQ

δ̂a
, ξQ∆ =

2m′2
QIQ

∆
.

(19)

The ξm,Q
∆ are the control parameters for the non-diagonal

van Vleck contributions to the susceptibility while the

ξm,Q
h are those for the pseudo Curie contributions associ-
ated with the split ground state doublet. The latter are
the more important ones and strongly field dependent.
For small fields h/∆ ≪ 1 we have ξmh ∼ 1/h due to the

suppression caused by the splitting while ξQh ∼ h due to
the induced quadrupole moment in the split ground state
doublet. Hence for increasing field there is a tendency to
suppress magnetic order in favor of induced quadrupolar
order.
With these expressions the singularity condition

Eq. (18) may be expressed as a quadratic equation for

ζa = tanh(δ̂a/2T ):

ξ̄∆(ξ̄∆ + 2ξ̄h)ζ
2
a + (ρmξ

Q
h + ρQξ

m
h )ζa − ρmρQ :=

Aζ2a +Bζa − C = 0
(20)

where we used the abbreviations ρm = 1− ξm∆ and ρQ =

1 − ξQ∆. Furthermore we defined the geometric means

ξ̄∆ = (ξm∆ ξ
Q
∆)

1
2 and ξ̄h = (ξmh ξ

Q
h )

1
2 . Then the solutions

are ζ±a = [−B+
√
B2 + 4AC)]/(2A). Since ma1 < 0 also

δ̂ < 0 and the physical solution is ζ−a ≡ ζa. The critical
phase boundary is then finally given by

Tcr(h) =
δ̂a(h)

2 tanh−1 ζa(h)
(21)

The field dependence of the critical temperature is shown
in detail in Fig. 2(a). Thereby the magnetic exchange Im
has been fixed to reproduce the approximate experimen-
tal value Tm(0)/∆ = 0.017 and the curves are shown for
different quadrupolar interaction parameters. It shows
a separation into low field antiferromagnetic (AF) with
transition temperature Tcr ≡ Tm(h) and high-field field-
induced quadrupolar (FIQ) phase (also of staggered type)
with transition temperature Tcr ≡ TQ(h) . A detailed
discussion will be given in Sec. VII.
Here we want to further analyze the quantum criti-

cal point (QCP) and surrounding region where the two
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FIG. 3. (a) Contours of constant δh′
cr/2 in the plane of dimen-

sionless control parameters defined in Eq. (19). Along the full
red line δh′

cr/2 = 0 the QCP’s of AFM and FIQ phases merge
to the critical endpoint on the red line. The red and blue stars
correspond to the asymmetric interaction parameter case of
Fig. 2(a), realised in CeRh2As2 and to the present (hypothet-
ical) symmetric case in (b), respectively. The red dashed line
gives the evolution of the critical field h′

cr of the QCP end-
point (i.e.when moving on the red full line). Away from the
latter the difference δh′

cr of the two QCPm,Q critical fields
increases rapidly (dashed and dash-dotted black lines) in ac-
cordance with Fig. 2(b). In (a) h′

cr and δh′
cr denote molecular

fields as given in Eqs. (24) and (25). (b) Critical temperatures
as function of applied field for (hypothetical) symmetric case
ξm∆ = ξq∆ ≃ 0.22, cf. Fig. 2(a) for the asymmetrical case of
CeRh2As2.

phases meet and merge into one with coexisting order pa-
rameters of both types throughout the whole field range.
The zeroes of the transition temperature in Eq. (21) are
approached at the two quantum critical fields h±cr when
the denominator diverges, i.e. ζa(h

±
cr) → −1 (negative

because δ̂ < 0 due to ma1 < 0). Their precise values
may be read off from Fig. 2(a) obtained from Eqs. (20)
and (21) but we also may derive closed expressions for the
quantum critical fields. Setting ζa = −1 (corresponding
to vanishing Tcr in Eq. (20)) we arrive at the condition

2ξ̄2∆ − (ρmξ
Q
h + ρQξ

m
h ) + (ξm∆ + ξQ∆) = 1 (22)

In lowest order in h′ = h/∆ ≪ 1 we find ξmh = κξm∆/h
′

and ξQh = κ−1ξQ∆h
′, therefore ξ̄h = ξ̄∆ independent of

h′ to this order. Here we defined κ = ma1/(2m
′
a
2
) as

a measure of the relative strength of diagonal and non-

diagonal dipolar matrix elements (Eq. (A7)). The result-
ing quadratic equation delivers the critical fields of the
two QCP’s as

h′
±
cr = B̃ ± [B̃2 − C̃]

1
2

B̃ = |κ|
1
2 − (ξ̄2∆ + ξar∆ )

(1− ξm∆ )ξQ∆
, C̃ = κ2

(1− ξQ∆)ξm∆

(1− ξm∆ )ξQ∆

(23)

where in addition to the geometric mean ξ̄∆ = (ξm∆ ξ
Q
∆)

1
2

we also use the arithmetic mean ξar∆ = 1
2 (ξ

m
∆ +ξQ∆). From

this equation we conclude that two distinct h±cr (QCPQ

and QCPm in Fig. 2(b)) exist for D̃ = B̃2 − C̃ > 0 and

merge at a unique QCP endpoint for D̃ = 0. For D̃ < 0
the AF and FIQ phases coexist in the whole field range
and h±cr no longer appears. We define the relative critical
field difference of the two phases by the ratio δh′cr/2 =

(h′
+
cr−h′

−
cr)/(h

′+
cr+h

′−
cr). Then the endpoint is determined

by δh′cr/2 = 0 where explicitly

δh′cr/2 =
|κ|

(1− ξm∆ )ξQ∆
D̃(ξm∆ , ξ

Q
∆)

1
2 ,

D̃(ξm∆ , ξ
Q
∆) =

[
(ξ̄2∆ + ξav∆ )− 1

2

]2
− (1− ξm∆ )(1− ξQ∆)ξ̄2∆

(24)

The condition δh′cr/2 = 0 defines a quantum critical

path in the interaction control parameter plane (ξm∆ , ξ
Q
∆)

along which the two QCP’s have merged into a single h′cr.
Along this path its size is given by

h′cr = |κ|

(
ξm∆ (1− ξQ∆)

ξQ∆(1− ξm∆ )

) 1
2

(25)

Since all our discussion was limited to the small field re-
gion, i.e. also hcr ≪ 1 the above formula is only valid

when ξm∆ , 1 − ξQ∆ are moderately small. It is never-
theless useful to discuss the limiting cases qualitatively.

i) For (ξm∆ , ξ
Q
∆) → (0, 1) h′cr → 0 the magnetic phase

vanishes and is replaced by a self-induced quadrupolar
phase already at zero field. This is possible because

for ξQ∆ > 1 the nondiagonal m′
Q leads to a spontaneous

quadrupole order already without field assistance. ii) For

(ξm∆ , ξ
Q
∆) → (1, 0) the small quadrupolar control param-

eter demands a very large field h′cr to reach the merg-
ing point with the magnetic transition. This behavior is
shown in Fig 3(a) and discussed further in Sec. VII.
We now comment on what one should expect for the in-

plane anisotropy of the phase boundaries when the field
is rotated perpendicular to c-axis. For a general field di-
rection h0 = (h0x, h0y) new complications arise: Firstly,
two different quadrupoles (Oxy, Ox2−y2) can be induced
and secondly, together with the dipoles (Jx, Jy) all four
multipole operators Xα lead to a full bare susceptibility
matrix χ0

αβ
and likewise for the RPA susceptibility ma-

trix χ
αβ

. The resulting in-plane anisotropy will depend
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crucially on the matrix elements and inter-site coupling of
the two quadrupoles Oxy (m′

Q, IQ) and Ox2−y2 (m̃′
Q, IQ̃).

It is interesting to consider an extreme case of in-plane
anisotropy for H0 ∥ (1, 1) and IQ̃ = 0. Then Oxy and
Ox2−y2 interchange their roles, i.e. Oxy will not be in-
duced and since IQ̃ = 0, Ox2−y2 has no effect. Then the

lower critical field in Fig.2(a) will be the same as in the
a-case (for IQ = 0) and the upper one will not exist, i.e.,
we would recover the bare magnetic phase diagram for
this diagonal field direction.

Finally, in contrast to the in-plane case, the phase
boundary for the out-of-plane field H0 ∥ c is much sim-
pler to calculate because only the susceptibilities are de-
coupled according to Eq. (5). Then the singularity for
χαα (α = x, y) simply leads to the magnetic transition
temperature

T c
m(h) =

δ̂c(h)

2 tanh−1 1
ξ̂mh

(26)

with the ground state splitting now given by δ̂c(h) =

2mc1h and ξ̂mh = ξmh (1− ξm∆ )−1 and the c-parallel control

parameter is now ξmh = 2m′2
aIm/δ̂c. Furthermore the

molecular field is given by h = h0−Im⟨Jz⟩. The resulting
critical field is then h′cr = |mc1|Im formally the same as
in the in-plane case T a

m for IQ = 0. In fact the two T a,c
m

(for IQ = 0) are rather similar in Fig. 2(a).

V. DESCRIPTION OF THE ORDERED AF AND
FIQ PHASES

Now we turn to a discussion of the ordered phases as
characterized by the temperature and field dependence
of magnetic and quadrupolar moments using the MFA
for the Hamiltonian in Eq. (1). Thereby, in accordance
with the n.n. interaction model we assume AF multipole
order with sublattices λ = A,B. The effective single-
site Hamiltonian containing three molecular fields to be
determined selfconsistently is given by (with Emf

0 (T,H)
being a constant):

HMF =
∑
iλ

Hλ
MF(i) + Emf

0 (27)

For out-of-plane field direction (h0 ∥ c) there can be no
induced Oxy-type quadrupole and therefore only dipolar
molecular fields are present leading to

Hλ
mf(i) = HCEF(i)−

[
hzJz(i) + hλyJy(i)

]
(28)

with molecular fields associated with homogeneous polar-
ization ⟨Jz⟩ and staggered dipolar order parameter ⟨Jy⟩λ
given by (here λ = ±1 for AF sublattices λ = A,B):

hz = h0 − Im⟨Jz⟩
hλy = λhy; hy = −Im⟨Jy⟩ (29)

For in-plane field direction (h0 ∥ a) we have a more com-
plex situation with three molecular fields including that
of the induced quadrupole:

Hλ
mf(i) = HCEF(i) +H1(i)

H1(i) = −
[
hxJx(i) + hλyJy(i) + hλQOxy(i)

]
(30)

where the molecular fields corresponding to the in-plane
dipolar ⟨Jx,y⟩ and the induced quadrupolar ⟨Oxy⟩ are
now given by

hx = h0 − Im⟨Jx⟩
hλy = λhy; hy = −Im⟨Jy⟩
hλQ = λhQ; hQ = −IQ⟨Oxy⟩ (31)

We stress again that h0 is the external field and fields
with any other index or none at all (h) are molecular
fields. It is those that are determined from the self-
consistency equations. Then calculating the polariza-
tions ⟨Jz⟩ or ⟨Jx⟩ for the obtained molecular fields the
external field corresponding to the selfconsistent set of
molecular field may be obtained from the first of the
equations in Eqs. (29) and (31). From the eigenvalues
En and eigenstates |n, λ⟩ of this Hamiltionian that de-
pend on the three expectation values the latter have
to be determined selfconsistently according to ⟨A⟩λ =∑

n pn⟨nλ|A|nλ⟩. Now pn = Z−1 exp(−En/T ) are the
occupation of (fully split) CEF levels in the molecular
fields with Z =

∑
n exp(−En/T ) denoting their MF par-

tition function. Using the above equations the temper-
ature and field dependence of ⟨Jx⟩, ⟨Jy⟩λ = λ⟨Jy⟩ and
⟨Oxy⟩λ = λ⟨Oxy⟩ may be calculated numerically using
the full CEF level scheme. For the purpose of deeper
understanding of field induced polarization and mutual
competition of order parameters it is, however, useful to
investigate again the quasi quartet model within an an-
alytical approach for the ordered phases.

A. Order parameters, polarizations and effective
molecular fields, effective operator treatment

The staggered order parameters and homogeneous po-
larizations in Eqs. (29) and (31) may be obtained ana-
lytically by restricting to the quasi-quartet model in the
limit h, T ≪ ∆. We focus mainly on the most interesting
case where competing order parameters exist:
For out-of-plane field direction (h0 ∥ a) the calcula-

tion is rather involved due to the presence of the induced
quadrupolar order parameter ⟨Oxy⟩. In the quasi-quartet
space the MF Hamiltonian is given explicitly by a 4× 4
matrix that has now entries at all places:

Hλ
MF =


−∆

2 −ma1h
λ
− im′

Qh
λ
Q −m′

ah
λ
+

−ma1h
λ
+ −∆

2 −m′
ah

λ
− −im′

Qh
λ
Q

−imQh
λ
Q −m′

ah
λ
+

∆
2 −ma2h

λ
−

−m′
ah

λ
− im′

Qh
λ
Q −ma2h

λ
+

∆
2


(32)
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where we defined the complex MF expressions hλ± =
hx ± iλhy. Unlike for the paramagnetic case of Eq. (6)
the eigenvalues and -states of this MF Hamiltionian can
no longer be obtained analytically. Therefore we resort
to the effective operator technique [19] where, due to
h/∆ ≪ 1 the effect of the upper Γ6 doublet is eliminated
and incorporated in an effective ground state Hamiltio-
nian whose energies and eigenstates can be computed
analytically and likewise the dressed matrix elements of
multipole operators in the split ground state doublets
are obtained. This procedure, based on Brillouin-Wigner
perturbation theory, leads to

Hλ
eff =

(
−∆∗

2
δ̂λ
2

δ̂∗λ
2 −∆∗

2

)
, − δ̂λ

2
=

1

2
(δ̂1 + iλδ̂2),

δ̂1 = −2

(
ma1hx +

2

∆
m′

am
′
QhyhQ

)
,

δ̂2 = λ2

(
ma1hy +

2

∆
m′

am
′
QhxhQ

) (33)

The diagonal element −∆∗/2 is a renormalised level po-
sition that plays no role, The effective MF energy levels

En (n = ±), shifted by ∆∗

2 of the split Γ
(1)
7 ground state

are then given by

E± = ∓1

2
|δ̂| = ∓1

2
(δ̂21 + δ̂22)

1
2 (34)

independent of sublattice λ = A,B. The corresponding
eigenstates |ψnλ⟩ (n = ±) in the basis of the unperturbed
|1±⟩ doublet states are represented by the columns of the

unitary matrix

U†
λ =

1√
2

(
1 eiλϕ

−e−iλϕ 1

)
, tanϕ = δ̂2/δ̂1 (35)

For the calculation of order parameters we still need the
diagonal elements of multipole operators within these
eigenstates that contain the admixture effects with the
upper Γ6 levels. For an operator A = Jx, Jy,Oxy this
is achieved by defining the dressed operator Aeff (H1 is
defined in Eq.(30)):

⟨k|Aeff|l⟩ =

Akl −
1

∆

∑
µ

[⟨k|H1|µ⟩⟨µ|A|l⟩+ ⟨k|A|µ⟩⟨µ|H1|l⟩] (36)

where k, l runs over the unperturbed |1±⟩ ground state
doublet and µ over the unperturbed |2±⟩ excited doublet
states. The diagonal matrix elements in the split ground
state doublet of the MF effective Hamiltonian are then
given by

⟨ψnλ|A|ψnλ⟩ =
∑
kl

Uλ∗
nkU

λ
nl⟨k|Aeff|l⟩ = tr(Wλ

nAeff) (37)

where we defined the Hermitian matrix {Wλ∗
n }kl =

U∗
nkUnl = {Wλ

n }lk or explicitly (n = ±)

Wλ
n =

1

2

(
1 −neiλϕ

−ne−iλϕ 1

)
(38)

Using the above set of equations the MF expectation val-
ues in the case t, h≪ ∆ may finally be calculated as

⟨Jx⟩ =
[
−ma1 cosϕ+

2

∆
m′

am
′
QhQ sinϕ

]
tanh

|δ̂|
2T

+
2

∆
m′

a
2
hx,

⟨Jy⟩λ = −λ
[
−ma1 sinϕ+

2

∆
m′

am
′
QhQ cosϕ

]
tanh

|δ̂|
2T

+ λ
2

∆
m′

a
2
hy,

⟨Oxy⟩λ = λ

[
2

∆
m′

am
′
Q(hx sinϕ− hy cosϕ)

]
tanh

|δ̂|
2T

+ λ
2

∆
m′

Q
2
hQ.

(39)

With the molecular fields given in Eq.(31) this closed set
of equations for the homogeneous polarization and the
two staggered order parameters then has to be solved
numerically. They have been written in a form to make
their physical content transparent: i) In each operator
expectation value the last term is due to the direct ad-

mixture of the the excited Γ6 into the ground state Γ
(1)
7

by the molecular field connected with the same operator.
ii) For ⟨Jx⟩ and ⟨Jy⟩ the first terms in parentheses are

due to the direct contribution of the Γ
(1)
7 ground state

to the expectation value. There is no such term for the
quadrupolar ⟨Oxy⟩ order parameter since this operator

has no (bare) matrix elements in the Kramers doublet
ground state (Eq. (A7)). iii) For ⟨Jx⟩ and ⟨Jy⟩ the sec-
ond and for ⟨Oxy⟩ the only term in parentheses are due to

induced matrix elements in the Γ
(1)
7 ground state caused

by the complementary molecular field, i.e. quadrupolar
hQ for the former and dipolar hx, hy for the latter. This
term leads to the mutual influence and competition of
order parameters. It is also useful to check the purely



10

magnetic case setting IQ = hQ = 0. Then we obtain

⟨Jx⟩ = −ma1 cosϕ tanh
δ̂

2T
+

2

∆
m′

a
2
hx,

⟨Jy⟩λ = λma1 sinϕ tanh
δ̂

2T
+

2

∆
m′

a
2
hy,

(40)

where now we have the simplified |δ̂| = 2|ma1|(h2x+h2y)
1
2

and tanϕ = −(hy/hx) without the ∼ hQ contributions.
In the paramagnetic state with ϕ = 0 and ⟨Jy⟩λ = 0

only the homogeneous polarization survives and is given
by

h0 ∥ a : ⟨Jx⟩ = ma1 tanh
2ma1hx

2T
+

2

∆
m′2

ahx,

→ |ma1|+
2m′2

a

∆
ha,

h0 ∥ c : ⟨Jz⟩ = mc1 tanh
2mc1hz
2T

→ |mc1|,

(41)

and the corresponding molecular fields are given by
hx,z = h0 − Im⟨Jx,z⟩. Here the arrows imply the zero-
temperature limit.

VI. NUMERICAL TREATMENT OF CeRh2As2
WITH FULL CEF LEVEL SCHEME

The numerical evaluation of the RPA equations start-
ing from Eqs. (2) is in principle identical to the treat-
ment of the quasi-quartet in the preceding sections, how-
ever this time involving all six crystal-field states of the
J = 5/2 multiplet. This is important as soon as temper-
atures and/or applied magnetic fields cannot be regarded
as small compared to the CEF level splittings, in partic-
ular to ∆.

We start with Eq. (3) as before. The general form of
the bare susceptibility χ0

AB = χvV
AB + χC

AB we use is

χvV
AB = Tr [M(A,B) ·D] ,

χC
AB = β {Tr [M(A,B) · P ]

−Tr [N(A) · P ] Tr [N(B) · P ]} .
(42)

For the respective components we use indices m,n to
label the CEF states and define (2J+1 = 6)-dimensional
matrices

M(A,B) = (mmn(A,B)) ,

mmn(A,B) = ⟨m |A|n⟩ ⟨n |B|m⟩ ,
D = (dmn) ,

dmn =
pm − pn
En − Em

[1− δ(En − Em)] ,

N(A) = (nmn(A)) ,

nmn(A) = ⟨m |A|n⟩ ,
P = (pmn) ,

pmn := pmδ(En − Em),

pm :=
1

Z
e−βEm , Z :=

∑
n

e−βEn

(43)
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FIG. 4. Phase boundary plot for H0 ∥ a as obtained from nu-
merical calculations for the full J = 5/2 CEF level scheme
with three Kramers doublets at 0, 30, 180 K. (a) low field
regime (cf. Fig. 2(a). (b) full field range in log-log plot. The
maximum corresponds to Tcr ≃ 0.3∆ at h0/∆ ≃ 1. The CEF
parameters (Appendix A) are taken from experiment.[5]

where the expression ⟨m|A|n⟩ denotes a matrix element
of an operator A between states |m⟩ and n⟩ for finite
molecular field h. Here we replace the notion of “diago-
nality” with “energy equality” to avoid numerical issues
not only at zero field (Kramers doublets) but rather also
at large applied fields when the Zeeman splitting is of the
order of the crystal-field splitting.

To determine the RPA phase boundary Tcr(h) we use
the secular equation equivalent to Eq. (18). Coming from
the paramagnetic side, h is the total molecular field in
either the x direction or the z direction, respectively.
Therefore, as a second step, we have to determine the
applied field through h0 = h + Im ⟨Jα⟩ where α = x
or z depending on the field direction, see also Eqs. (31).
Here the angular brackets denote the thermal expecta-
tion value calculated as the average over the statistical
operator of the mean-field Hamiltonian. Fig. 4 shows the
two phase boundaries for h0 parallel to x (solid line) and
z (dashed line) determined in this way for one particu-
lar choice of parameters closely resembling the low-field
results of the quasiquartet model in Fig. 2(a) and the
experimental situation in CeRh2As2 [4, 5]. A further
discussion is given below.
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VII. DISCUSSION OF NUMERICAL RESULTS

We start our discussion with the field and temperature
behavior of the bare susceptibilities χ0

αβ without intersite
interactions shown in Fig. 1. The rapid reduction of dipo-
lar components in the field (a) is due to the ground state
splitting which suppresses their dominant Curie terms.
The reduction is stronger for a- than for c- direction be-
cause |ma1| > |mc1| (Table III). The quadrupolar suscep-
tibility which has no ground-state contribution for zero
field is almost constant due to the dominant van Vleck
term controlled by m′

Q. The most important aspect is

the rapid field-induced increase of mixed χ0
yQ suscepti-

bilities which are allowed by symmetry, in contrast to
χ0
xQ which remains zero. The decrease of dipolar com-

ponents and increase of the mixed χ0
yQ suppresses the

magnetic and favors quadrupolar the quadrupolar insta-
bility obtained from the interacting RPA susceptibilities
in Eqs. (3) and (4). The complementary temperature
dependence is shown in (b) with the expected decrease
caused by the reduction of thermal population difference
in the split ground state doublet. While yy, zz remain
finite the xx component is reduced to zero at low tem-
peratures; the latter plays no role in the ordering insta-
bilities.

The location of instabilities defines the H-T phase di-
agram of the model for CeRh2As2, i.e. the critical field
curves Tcr(H0, T ) which are presented in Fig. 2 based on
the analytical calculation (Eq. (21)) for the quasi-quartet
model. The magnetic exchange coupling Im is fixed such
that Tcr(0)/∆ = 0.017 corresponding to the experimen-
tal value [5].For absent quadrupolar coupling the mag-
netic Tcr(H0) = Tm(H0) transition temperature behaves
quite similar for both field directions. For c-direction it is
slightly larger than for a-direction because as explained
above the bare susceptibilities are also slightly larger for
the former case.

The near a-c isotropy of the magnetic phase diagram
for IQ = 0 means that the observed [4, 5] strong a-c
anisotropy in CeRh2As2 demands the inclusion of other
multipoles and their interaction beyond the purely mag-
netic dipoles. There are many examples in 4f com-
pounds where this has also been observed like, e.g. Rare-
Earth hexaborides [13], 4f-skutterudites [20] and Yb-
compounds [14, 15, 21]. As we have argued before the
field induced coupling to the Oxy quadrupole with its
strong non-diagonal matrix element and resulting large
bare and field-induced susceptibilities (Fig. 1) is a prime
candidate. The effect of this inclusion on the critical field
curves as function of the Oxy intersite coupling strength
is immediately seen in Fig. 2(a) as a strong increase of the
(lower, AF) critical field h−0cr with IQ and the concomi-
tant appearance of a second transition at higher critical
field h+0cr which decreases with increasing IQ and rep-
resents a phase with primary quadrupolar order. For
h−0cr < h < h−0cr one has again a sector with fully disor-
dered phase. Since the two values h±0cr characterizing the
QCPm,Q for the two order parameters move into opposite

directions with increasing IQ this means that at a criti-
cal value of IQ the two critical field curves will touch and
merge into one curve (the red curves in Fig. 2(a)) , i.e.,
the disordered sector vanishes at a QCP endpoint and
one has coexisting AF and quadrupolar order through-
out the field range h≪ ∆ where the quasi-quartet model
is applicable. Actually this does not change qualitatively
when performing the numerical calculations for the full
model comprising all CEF states as discussed below. The
opposite movement of the QCPm,Q fields with quadrupo-
lar coupling is presented separately in Fig. 2(b) and it
clearly demonstrates the merging in a quantum critical
endpoint at around IQ ≃ 0.0116. The real phase diagram
in CeRh2As2 is qualitatively well described by our theo-
retical results close to the QCP endpoint: An observed
phase line with almost constant Tcr = Tm, intercepted by
a perpendicular phase boundary and after this a strong,
almost linear increase of Tcr = TQ with field. The behav-
ior of the magnetic and quadrupolar order parameters in
the various sectors of the phase diagram will be discussed
below.

It is worthwhile to avert the discussion of CeRh2As2 for
a moment in favor of a more general perspective. It is
interesting to follow the structure of the phase diagram
and its segmentation as function of both interaction pa-
rameters, magnetic Im as well as quadrupolar IQ or bet-
ter in terms of their associated dimensionless control pa-

rameters ξm∆ and ξQ∆. This is presented in Fig. 3(a). It
shows the line of QCP endpoints in the plane of con-
trol parameters that separates the coexistence phase with
merged critical field lines from the region where two sep-
arate QCPm and QCPQ still exist. The contours cor-
respond to the magnitude of the critical field splitting
given in Eq. (24). On the (full) QCP endpoint line the

asymmetric values (ξm∆ , ξ
Q
∆) ≃ (0.059, 0.633) correspond

approximately to CeRh2As2. But the same qualitative
phase diagram with touching critical field curves would
be obtained with more symmetric control parameters

(ξm∆ , ξ
Q
∆) ≃ (0.219, 0.219) as shown in Fig. 3(b). In this

case, however, the size of Tcr(0) and h0cr with respect to
CEF splitting ∆ have increased by a significant factor as
compared to the asymmetric case of CeRh2As2(Fig.2(a)).
We now turn to the question to which extent the low-

field approximation for the quasi-quartet agrees with the
all-numerical calculation for the full level scheme includ-
ing three Kramers doublets, This calculation is valid for
any field strength and it is interesting to follow Tcr to
find out its possible maximum T a

max and corresponding
maximum field ha0max as well as the upper critical field
ha0cr′ which should occur when the Zeeman splitting be-
comes comparable to ∆ and homogeneous field polar-
ization overwhelms the staggered order. First we show
again the low field regime in Fig. 4(a). It agrees well
qualitatively with the quasi-quartet results in Fig. 2(a)
with only minor numerical differences of critical field
and quadrupolar interaction parameters. The extension
to high fields is shown in a double logarithmic plot in
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TABLE II. Summary of critical and maximum quantities (units: ∆ = 30 K ,T or K) obtained from the the theoretical results
in Fig. 4 together with two critical fields from experiments in CeRh2As2[4, 5]. The reduction factor (last column) is evidence
of the Kondo screening of moments and of similar size for both directions.

critical/extremal quantity CEF-RPA calculation experiment ratio

hc
0cr 0.0375 ≡ 1.95 T 6− 7 T 0.33

ha
0cr 0.071 ≡ 3.69 T 9 T 0.41

ha
0max 1 ≡ 52.11 T − −
T a
max 0.34 ≡ 10.2 K − −

ha
0cr′ 1.95 ≡ 96.40;T − −

Fig. 4(b). It demonstrates that the maximum occurs at
Tcr(h

a
0max) = T a

max ≃ 0.34∆ for ha0max ≃ ∆ which is in
the expected range. The very large increase of Tcr of the
induced quadrupolar phase compared to the zero field
value of the magnetic phase is due to the large ratio of
matrix elements m′

Q/ma1.

At this point it is appropriate to estimate the absolute
magnitude of critical fields, temperatures and magnetic
moment in view of partly known experimental quantities.
We have shown already that the anisotropy and other ba-
sic features of the calculated magnetic and quadrupolar
phase diagram reproduces the empirical findings in Refs.4
and 5 and others. It must be said from the outset, how-
ever, that one cannot expect a quantitative agreement
since we used a purely localized 4f electron approach. In
reality the Kondo screening will have a large influence on
the magnetic properties. This can be directly seen from
the ordered moment µ = gJµB⟨Jα⟩0; (α = x, z; gJ =
6/7) with the saturation order parameter (Eq. (41))
⟨Jα⟩0 = 0.97 we have µ = 0.83µB . There are no ex-
periments yet that have identified an ordered moment
but one should expect a strong reduction of the size of
the moment due to Kondo screening known also from
other magnetically ordered heavy fermion compounds.
This may be concluded from the fact that the Kondo
scale T ∗ has been reported [5] to be of the same order of
magnitude as the CEF splitting ∆. Using the scaling fac-
tor (gJµB)/∆ = 0.0192T−1 we obtain critical/maximum
field and temperature values that are compared to the
know experimental values in Table II. It shows that the
theoretical critical field values are lower than the exper-
imental ones which may again be attributed to the large
unscreened moments in the localized picture resulting in
a too large Zeeman effect. The Table II. shows that the
maximum quadrupolar ordering temperature reached at
Ha

0max = 52 T is Tmax
cr = 10.2 K and the upper criti-

cal field Ha
0cr′ = 96 T where induced quadrupole order

is finally destroyed. These exceptionally enhanced val-
ues have not yet been identified in CeRh2As2. We note,
however, that similar values are known from a related
compound with quadrupolar order, the cubic, genuine Γ8

quartet system CeB6[12, 13, 22] which shows quadrupo-
lar order already in zero field (and induced octupole at
finite field) due to the absence of splitting in cubic sym-
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FIG. 5. Dependence of homogeneous polarisation ⟨Jx⟩ and
order parameters ⟨Jy⟩, ⟨Oxy⟩ on the applied field. (a) For
Im = 0.019, IQ = 0.01157 in the region with separated
AFM/FIQ phases and intervening para-phase. On the upper
critical field h+

0cr the order parameters show a first-order type
jump to finite value. (b) For Im = 0.019, IQ = 0.0117 within
merged coexistence phase. In both cases T/∆ = 0.005. For
intermediate IQ corresponding to QCP endpoint see Fig. 6.

metry. It has maximum values observed in pulsed-field
experiments at (40 T, 10 K) and a upper critical field es-
timated to be 80 T [22, 23]. Thus the theoretical values
obtained here in the localized 4f-electron approach may
well give a realistic estimate in particular since the influ-
ence of Kondo screening is strongly reduced at such high
fields.

Now finally we want to discuss to the ordered regimes
below the critical field curves and investigate how the or-
der parameters evolve with the field and whether it agrees
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FIG. 6. Enlarged dependence of homogeneous polarization
⟨Jx⟩ and order parameters ⟨Jy⟩, ⟨Oxy⟩ on the applied field in
the critical QCP endpoint region. Here Im = 0.019 and pro-
ceeding from lower to upper curves: IQ = 0.01165− 0.01168.
Both curves are asymmetric in h0 exhibiting a first-order type
jump-like behavior at the upper critical field h+

0cr.

with previous conjectures made from the instabilities ap-
proached from the disordered regime. The order param-
eters together with the homogeneous polarization ⟨Jz⟩ as
obtained from the selfconsistent solution of Eq. (39) are
shown in Fig 5 for the two regions. (a) with separated
critical fields h±cr for AFM and FIQ QCP’s and (b) for
the coexistence case with nonzero order parameters for
the whole field range. In the left part of (a) the primary
AFM order parameter first induces the quadruple (red)
and then at the critical AFM field h−0cr forces it to drop to
zero again. Then a disordered sector prevails up to h+0cr
where now a primary quadrupolar (red) order parameter
reappears due to the large field- induced quadrupole ma-
trix element of the ground state doublet. It again induces
a secondary AFM order parameter. Therefore when pro-
gressing from h−0cr to h

+
0cr the magnetic and quadrupolar

order parameter interchange their roles. In the coexis-
tence case (b) the critical fields cease to exist and both
order parameters are finite in the whole field range. How-
ever, their pronounced dip on the previous critical field
positions is still prominent and should lead to rather sim-
ilar thermodynamic anomalies when crossing the dip re-
gion as compared to the case (a) when the critical fields
are still present. The transition region between (a) and
(b) where the upper and lower QCP’s merge into an end-
point is shown in Fig. 6 in an enlarged scale. The criti-
cal value for IQ where the two critical field curves touch
and merge is very close to the paramagnetic calculations
in Figs. 2) and (4 that corresponds to the situation in
CeRh2As2.

VIII. SUMMARY AND CONCLUSION

In this work we have investigated the possible origin of
the extremely anisotropic normal state phase diagram of
tetragonal CeRh2As2. We use a fully localized CEF- split
4f-electron model for the J = 5/2 multiplet of Ce3+. We

do not include the effect of Kondo screening leading to lo-
cal moment reduction and heavy conduction band forma-
tion. In fact recent ARPES experimentshave suggested
that CeRh2As2 is close to the localized 4f limit [16].
Furthermore similar examples of Ce-hexaboride and -
skutterudite compounds have demonstrated that neglect-
ing the Kondo screening may be an acceptable starting
point for understanding major qualitative features of the
H-T phase diagram although it may be too simple to
explain the quantitive aspects.

The starting point is the conjecture that the anisotropy
of this phase diagram is caused by a multipolar competi-
tion of low-field magnetic dipolar and high-field induced
electric quadrupolar order parameters. This competi-
tion has been investigated analytically within a simplified
quasi-quartet model valid for low fields and temperatures
and numerically for the complete level scheme in the full
range. We employ the RPA response function technique
from the disordered side and the coupled MFA for po-
larization and order parameters, using effective operator
technique in the ordered regime. The results of analytical
and numerical approach agree in the low field regime. In
the high field case the latter predicts the phase boundary
in a region not yet tested experimentally.

The normal state H-T phase diagram for H0 ∥ c has
a the appearance of an antiferromagnet (as suggested by
µSR experiments [9]) while for H0 ∥ a another high field
phase appears immediately after the low field phase re-
gion. Its critical temperature rises without limitation in
the field range so far probed. We have shown that such
behavior can be explained by the presence of easy-plane
antiferromagnetic order ⟨Jy⟩ (moments perpendicular to
H0 ∥ a) of Γ5 symmetry and a field-induced quadrupolar
order parameter ⟨Oxy⟩ belonging to Γ4 type irreducible
representation of C4v. The FIQ phase appears because

the mixing of Γ6 excited state into the ground state Γ
(1)
7

where a strong matrix element (m′
Q) creates a corre-

sponding field induced quadrupolar matrix element in
the ground state (absent for zero field) which increases
rapidly with applied field strength H0. In the paramag-
netic phase this means that a mixed dipolar-quadrupolar
susceptibility appears such that increasing H0 leads to a
divergence for the quadrupolar RPA susceptibility at the
induced ordering temperature. Likewise the coupled MF
equations of homogeneous polarization ⟨Jx⟩ and order
parameters ⟨Jy⟩ and ⟨Oxy⟩ in the ordered regime show
that in the low field case the primary magnetic order
induces the quadrupole and vice versa in the high field
phase. The two QCP’s where the respective order param-
eters vanish enclose a disordered regime. The full level
scheme calculation shows that the FIQ phase will extend
to high temperatures and fields similar as observed in
the true Γ8 quartet system CeB6 although in this com-
pound it is the coexistence of primary quadrupolar and
field-induced octupolar order that drives the strong in-
crease.

The dipolar exchange and quadrupolar effective in-
teraction determine the ordering temperatures and the
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critical fields. When the latter increases the disordered
regime shrinks and vanishes at a quantum critical end-
point. This situation corresponds closely to the one ob-
served in CeRh2As2. The interaction strengths may be
characterized by dimensionless control parameters which
are rather asymmetric (small for dipolar exchange and
sizable but subcritical (< 1) for quadrupolar interaction).
This points to the fact that the zero-field AF order is

driven by the Γ
(1)
7 ground state moments and FIQ order

by the field induced moments due to Γ
(1)
7 −Γ6 mixing. If

the quadrupolar control parameter would be above criti-
cal (> 1) the quadrupolar order would likewise appear as
self-induced order already at zero field as observed e.g.
in the J = 7

2 compound YbRu2Ge2. The near equality
of the two critical fields, i.e., the stability of the quantum
critical endpoint may be obtained along aline in a sizable
region of the control parameter plane. The experimental
verification of the proposed scenario of order parame-
ters requires a diagnosis of the ordered phases by various
means like neutron diffraction in external field, NMR ex-
periments as well as resonant x-ray scattering. To map
out the phase boundary in the high field regime with
increased Tcr ultrasonic and resistivity measurements in
pulsed fields may be suitable.

Appendix A: The C4v CEF model for J = 5/2 and its
multipoles

The Ce ions are located on a non-centrosymmetric lat-
tice in layered tetragonal planes with site symmetry C4v,
highest rotational axis is a fourfold one. The formal
charge is 3+ and Hund’s rules yield a 2F5/2 ground-state
configuration. The J = 5/2 CEF Hamiltonian, written in
Steven’s operator representation [20, 24, 25] is therefore

HCEF = B0
2O

0
2 +B0

4O
0
4 +B4

4O
4
4 (A1)

Its eigenvalues, the CEF level energies are obtained as

E
Γ
(1)
7

= 4
(
B0

2 − 15B0
4

)
− 6

√
(B0

2 + 20B0
4)

2
+
(
2
√
5B4

4

)2
,

EΓ6
= −8

(
B0

2 − 15B0
4

)
,

E
Γ
(2)
7

= 4
(
B0

2 − 15B0
4

)
+ 6

√
(B0

2 + 20B0
4)

2
+
(
2
√
5B4

4

)2
,

(A2)

and the corresponding eigenstates consisting of 3
Kramers doublets are given in the basis of free ion states

TABLE III. Matrix elements of dipolar and quadrupolar op-
erators, see Eqs. (A5) to (A7), in the basis of the crystal-field
doublets. The primes indicate matrix elements between dou-
blets of different symmetry, a and c label respective in-plane
and out-of-plane matrix elements, Q denotes the quadrupole
matrix elements. The CEF mixing angle for CeRh2As2 is
θ = 0.346π [5], the variation with θ is shown in Fig. 7.

matrix element CEF expression CeRh2As2

mc1 1/2 + 2 cos 2θ -0.63

mc2 1/2 0.5

ma1 −(
√
5/2) sin 2θ −0.92

ma2 3/2 1.5

m′
a −

√
2 sin θ −1.25

mc3 2 sin 2θ 1.65

ma3 (
√
5/2) cos 2θ −0.63

m′
a2

√
2 cos θ 0.66

m′
Q

√
2(
√
5 cos θ + 3 sin θ) 5.23

m′
Q2 −

√
2(
√
5 sin θ − 3 cos θ) −0.83

|M⟩ (|M | ≤ 5
2 ) as:∣∣∣Γ(1)
7

〉
= cos θ

∣∣∣∣±5

2

〉
− sin θ

∣∣∣∣∓3

2

〉
,

|Γ6⟩ =
∣∣∣∣±1

2

〉
,∣∣∣Γ(2)

7

〉
= sin θ

∣∣∣∣±5

2

〉
+ cos θ

∣∣∣∣∓3

2

〉
,

(A3)

where θ is the mixing angle of the two Γ
(1),(2)
7 doublets

that depends on all CEF parameters according to

θ =
1

2
tan−1

(
2
√
5B4

4

B0
2 + 20B0

4

)
. (A4)

where θ is the mixing angle of the two Γ
(1),(2)
7 doublets

that depends on all CEF parameters. Therefore the rele-
vant matrix elements of dipolar and quadrupolar opera-
tors also depend on this angle. (We note that our defini-
tion of θ differs to Hafner et al. [5] by setting θ → π/2−θ
and we assume B4

4 > 0.)
For CeRh2As2 the lowest energies are E

Γ
(2)
7

≡ 0;

EΓ6
= 30 K; E

Γ
(1)
7

= 180 K. Therefore the lowest

two doublets are well separated from the highest and
form a quasi quartet whose states will be abbreviated

as
∣∣∣Γ(1)

7

〉
≡ |1±⟩ and |Γ6⟩ ≡ |2±⟩.

These states are unchanged in an external fieldH0 par-
allel to the c-axis. However for H0||a as described by the
Zeeman term in Eq.(1) or in a molecular field consist-
ing of Zeeman term and internal polarization and order
parameters (Eq.(31)) the bare CEF states given above
are further mixed. Consequently the matrix elements of
multipole operators depend on θ as well on the applied or
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FIG. 7. Selected nonzero matrix elements between the com-
ponents |Γ(1)

7 ⟩ and Γ6⟩ of the quasi-quartet for the quadrupole
component Oxy and the dipole operators as a function of the
mixing angle θ. The quadrupole matrix element (solid line)
is normalized to its maximum value |mQ(θmax)|2 = 28 with

θmax = 2 tan−1
[
(1/3)

√
19− 2

√
70

]
≈ 0.296π. The thin ver-

tical line denotes θ = 0.346π taken from experiment [5].

TABLE IV. Quadrupole operators expressed in terms of an-
gular momentum operators

O0
2 = 3J2

z − J(J + 1),

Ox2−y2 = J2
x − J2

y = 1
2

(
J2
+ + J2

−
)
,

Oxy = JxJy + JyJx = 1
2i

(
J2
+ − J2

−
)
,

Oyz = JyJz + JzJy

= 1
2i
[(J+ − J−) Jz + Jz (J+ − J−)] ,

Ozx = JzJx + JxJz

= 1
2
[(J+ + J−) Jz + Jz (J+ + J−)] .

molecular fields which have to be determined selfconsis-
tently. This evaluation of matrix elements, expectation
values and susceptibilities of the multipolar operators can
be done either fully numerically or semi-analytically. The
former case is necessary if we consider temperatures and
fields whose effective energy scale is comparable to the
lowest CEF splitting energy ∆. The latter case is pos-
sible in the low-field and temperature range (h, T ≪ ∆)
where one may restrict to the lowest quasi-quartet states
as carried out in the main text.

Table III holds a compilation of the general expressions
(depending on CEF mixing angle θ) of the nonzero dipo-
lar and quadrupolar matrix elements. For completeness,
Table IV holds the definitions of the quadrupole operator
components in terms of the angular momentum operator
components as used in this article. It is obvious that the
quadrupolar matrix element m′

Q for CeRh2As2 is com-
paratively strong enabling the pronounced field induction
of the Oxy quadrupole. The θ variation of (non-constant)
matrix elements is shown in Fig. 7. The relevant multi-
pole order parameters necessary for the analysis are rep-
resented by 6 × 6 matrices using the row and column

sequence
{
|Γ(1)

7+⟩, |Γ
(1)
7−⟩, |Γ6+⟩, |Γ6−⟩, |Γ(2)

7+⟩, |Γ
(2)
7−⟩
}
:

dipolar Γ5 operators:

Jx =



0 ma1 0 m′
a 0 ma3

ma1 0 m′
a 0 ma3 0

0 m′
a 0 ma2 0 m′

a2

m′
a 0 ma2 0 m′

a2 0

0 ma3 0 m′
a2 0 −ma1

ma3 0 m′
a2 0 −ma1 0



Jy = i



0 −ma1 0 m′
a 0 −ma3

ma1 0 −m′
a 0 ma3 0

0 m′
a 0 −ma2 0 m′

a2

−m′
a 0 ma2 0 −m′

a2 0

0 −ma3 0 m′
a2 0 ma1

ma3 0 −m′
a2 0 −ma1 0


(A5)

dipolar Γ2 operator:

Jz =



mc1 0 0 0 mc3 0

0 −mc1 0 0 0 −mc3

0 0 mc2 0 0 0

0 0 0 −mc2 0 0

mc3 0 0 0 1−mc1 0

0 −mc3 0 0 0 −(1−mc1)


(A6)

quadrupolar Γ4 operator:

Oxy = i



0 0 −m′
Q 0 0 0

0 0 0 m′
Q 0 0

m′
Q 0 0 0 −m′

Q2 0

0 −m′
Q 0 0 0 m′

Q2

0 0 m′
Q2 0 0 0

0 0 0 −m′
Q2 0 0


(A7)

Within the quasi-quartet model subspace the respective
top left 4 × 4 blocks represent the multipoles with the
corresponding sequence {|1+⟩, |1−⟩, |2+⟩, |2−⟩} of states.
The various matrix elements are given in terms of the
CEF mixing parameter θ in Table III. Since we want
to calculate the H-T phase diagram we also need these
operators expressed in terms of the eigenstates in an ex-
ternal field corresponding to the total local Hamiltionian
for each site. For H ∥ c there is no change while for
H ∥ a the multipoles in quasi-quartet subspace are given
in Eqs. (11) and (12) and (13).
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