
Exact descriptional complexity of determinization of
input-driven pushdown automata

Olga Martynova∗

April 17, 2024

Abstract

The number of states and stack symbols needed to determinize nondeterministic
input-driven pushdown automata (NIDPDA) working over a fixed alphabet is de-
termined precisely. It is proved that in the worst case exactly 2n

2
states are needed

to determinize an n-state NIDPDA, and the proof uses witness automata with a
stack alphabet Γ = {0, 1} working on strings over a 4-symbol input alphabet (Only
an asymptotic lower bound was known before in the case of a fixed alphabet). Also,
the impact of NIDPDA determinization on the size of stack alphabet is determined
precisely for the first time: it is proved that s(2n

2−1) stack symbols are necessary in
the worst case to determinize an n-state NIDPDA working over an input alphabet
of size s+5 with s left brackets (The previous lower bound was only asymptotic in
the number of states and did not depend on the number of left brackets).

1 Introduction

Input-driven pushdown automata, also known as visibly pushdown automata, are a model
of computation equipped with a stack. An automaton has finitely many states. It reads
an input string from the left to the right changing its state. The automaton also uses
an infinite memory in the form of stack with restricted access. An input alphabet is
Σ = Σ0 ∪Σ+1 ∪Σ−1, with Σ0 containing neutral symbols, Σ+1 left brackets and Σ−1 right
brackets. When an automaton reads a left bracket, it pushes onto the stack a symbol of
its stack alphabet; when it sees a right bracket, it looks at the top symbol of the stack and
pops it out; and when the automaton processes a neutral symbol, it makes a transition
without looking at the stack.

Deterministic input-driven pushdown automata (DIDPDA) were invented by
Mehlhorn [7]. He also proved that every language defined by an n-state DIDPDA can

be recognized by an algorithm that uses O((logn)2

log logn
) bits of memory and works in poly-

nomial time. Von Braunmühl and Verbeek [3] considered a nondeterministic version of
input-driven pushdown automata (NIDPDA) that at every step may have several possible
actions. Such an automaton accepts a string if there is at least one accepting computation

∗Department of Mathematics and Computer Science, St. Petersburg State University, 7/9 Universitet-
skaya nab., Saint Petersburg 199034, Russia, olga22mart@gmail.com.

1

ar
X

iv
:2

40
4.

10
51

6v
1

 [
cs

.F
L

]
 1

6
A

pr
 2

02
4

on it. A natural question immediately follows: whether deterministic and nondeterminis-
tic input-driven pushdown automata are equal in power. Von Braunmühl and Verbeek [3]
made the first determinization construction: for an n-state NIDPDA, working over an al-
phabet Σ = Σ0∪Σ+1∪Σ−1, they constructed a DIDPDA with 2n

2
states and with 2n

2|Σ+1|
stack symbols recognizing the same language. Also von Braunmühl and Verbeek [3] im-
proved the result by Mehlhorn [7]: they have shown that any language defined by an
n-state DIDPDA is recognized by an algorithm working in logarithmic memory. Later
Rytter [13] created a simpler algorithm for this task also using log n bits of memory.

Alur and Madhusudan [1, 2] reintroduced the model of input-driven pushdown au-
tomata under the name of visibly pushdown automata and obtained many important
results on these automata. They proved that the class of languages recognized by these
automata is closed under intersection, union, concatenation and the Kleene star. They
also defined input-driven pushdown automata that work on infinite strings and investi-
gated properties of this variant of the model. Alur and Madhusudan [1, 2] established
the first lower bound on the number of states needed for NIDPDA determinization: for
each n, they constructed an n-state NIDPDA with the fixed input alphabet such that any
deterministic automaton recognizing the same language has at least 2Ω(n2) states; this
lower bound is asymptotically tight. Furthermore, Alur and Madhusudan [1, 2] studied
decidability and complexity of input-driven pushdown automata and showed that univer-
sality and inclusion problems for NIDPDA are NEXP-complete. There is some current
research on decision problems for NIDPDA. Han, Ko and Salomaa [4] built an algorithm
that for a given NIDPDA decides in polynomial time whether its path size is finite, that
is, whether a number of leaves in a tree of its computations on every string is bounded
by a common constant. They also proved that deciding whether the path size of a given
NIDPDA is less than a given number is EXP-complete.

The research on NIDPDA determinization was continued by Okhotin, Piao and Sa-
lomaa [9], who bounded from below not only the number of states in the determinis-
tic automaton but also the number of stack symbols it uses. They showed that using
2Ω(n2) stack symbols can be necessary to determinize an n-state NIDPDA. Furthermore,
Okhotin, Piao and Salomaa [9] and later Okhotin and Salomaa [11] studied the state
complexity of different operations on DIDPDA. Jirásková and Okhotin [5] continued im-
proving bounds for operations on DIDPDA, and in addition proved that in the worst case
one needs 2n

2
states to determinize an n-state NIDPDA. This lower bound is precise,

however, witness automata used by Jirásková and Okhotin [5] work over an input alpha-
bet of size exponential in n. So the problem of determining the exact state complexity of
NIDPDA determinization in the case of a bounded alphabet has remained open.

The state complexity of determinization was investigated for variants of the classical
model of input-driven pushdown automata. Nguyen Van Tang and Ogawa [14] introduced
event-clock input-driven pushdown automata and proved that these automata can be de-
terminized. Later Ogawa and Okhotin [8] defined a direct determinization construction
for these automata, establishing an upper bound: it is enough to use 2n

2
states, 2n

2+k|Σ+1|
stack symbols and k clock constraints to determinize an n-state nondeterministic event-
clock input-driven pushdown automaton with k clock constraints. Furthermore, Ogawa
and Okhotin [8] proved a lower bound to this transformation which is asymptotically pre-
cise both in the number of states and in the size of a stack alphabet. Rose and Okhotin [12]
first considered probabilistic input-driven pushdown automata and determined asymptot-
ically precisely the state complexity of determinization for this model. Kutrib, Malcher

2

and Wendlandt [6] defined a variant of input-driven pushdown automata in which ev-
ery input string is read twice: first, a deterministic sequential transducer determines the
type of each symbol (in this model an alphabet is not initially split into left brackets,
right brackets and neutral symbols), and then the string is read by an input-driven push-
down automaton. Kutrib et al. [6] proved that such input-driven pushdown automata
with transducers are stronger than without transducers, determinized such automata and
established their closure properties.

In this paper I improve the bounds on the complexity of determinization for classical
input-driven pushdown automata (NIDPDA) both in the number of states and in the size
of the stack alphabet. In Section 3, it is proved that in the worst case one can need 2n

2

states to determinize an n-state NIDPDA that uses 2 stack symbols and works over a
4-symbol input alphabet. This is the first precise lower bound on the number of states
needed for NIDPDA determinization with bounded alphabet.

In Section 4, the precise lower bound |Σ+1|(2n
2 − 1) on the number of stack symbols

in a deterministic automaton that recognizes a language defined by an n-state NIDPDA
is proved in a special case of only one left bracket (Σ+1 = {<}). The witness nondeter-
ministic automata in this proof have stack alphabets growing linearly in n, and the input
alphabet is bounded.

Finally, in Section 5 I establish the exact lower bound on the complexity of NIDPDA
determinization, for any number of left brackets in the input alphabet fewer than 2n

2
, both

in the number of states and in the number of stack symbols: in the worst case one needs
2n

2
states and |Σ+1|(2n

2−1) stack symbols to determinize an n-state NIDPDA. Moreover,
these examples of NIDPDA that are hard to determinize work over input alphabets that
do not depend on n and use stack alphabets growing linearly in n and logarithmically in
the number of left brackets. This lower bound is precise, since the known upper bound of
|Σ+1| · 2n

2
stack symbols is improved to |Σ+1|(2n

2 − 1) stack symbols in Section 2.

2 Input-driven pushdown automata

Input-driven pushdown automata, also known as visibly pushdown automata, were inves-
tigated a lot. These automata were first invented by Mehlhorn [7]; later von Braunmühl
and Verbeek [3] introduced the nondeterministic version of input-driven pushdown au-
tomata.

This paper uses the definition given by Alur and Madhusudan [1] but with one differ-
ence: Alur and Madhusudan [1] allow computations on ill-nested strings, whereas in the
definition used in this paper, input strings must be well-nested, as in the first definitions
of these automata.

A nondeterministic automaton will be defined first, and a deterministic one is its
special case.

Definition 1 (Mehlhorn [7], von Braunmühl and Verbeek [3], Alur and Madhusu-
dan [1]). A nondeterministic input-driven pushdown automaton (NIDPDA) is a sextuple
A = (Σ, Q,Γ, Q0, (δa)a∈Σ, F), where

• Σ = Σ0 ∪ Σ+1 ∪ Σ−1 is a finite input alphabet split into three disjoint sets: Σ0

contains neutral symbols, Σ+1 consists of left brackets and Σ−1 has right brackets;

• Q is a finite set of states of the automaton;

3

• Γ is a finite stack alphabet;

• Q0 ⊆ Q is a subset of initial states;

• (δa)a∈Σ are functions that for each symbol of the alphabet define possible actions of
the automaton at this symbol:

– for a neutral symbol a ∈ Σ0, the function δa : Q → 2Q for each state gives a
set of possible next states of the automaton;

– for a left bracket a ∈ Σ+1, the function δa : Q → 2Q×Γ for each state assumed
at a symbol a specifies the set of pairs (q, s) in which the automaton can make
a transition forward in the state q pushing the symbol s onto the stack;

– for a right bracket a ∈ Σ−1, the function δa : Q× Γ → 2Q for a state and for a
symbol popped out of the stack gives a set of all possible next states;

• F ⊆ Q is a subset of accepting states.

Inputs of the automaton A are well-nested strings over an alphabet Σ. A string w
is called well-nested if it has as many left brackets as right brackets and if every prefix
contains at least as many left brackets as right brackets.

Let w = a1 . . . aℓ be a well-nested string. A computation of the automaton A on the
string w is a sequence (p0, α0), . . . , (pℓ, αℓ) of pairs of a state and of stack contents, with
the neighbouring pairs related to each other as follows.

The automaton A begins reading the string in one of the initial states with an empty
stack: the initial pair (p0, α0) must have the form (q0, ε), where q0 ∈ Q0 is an initial state.
Let the automaton have processed the first i symbols and let a pair (pi, αi) describe its
state and the stack at the moment. Then, the next pair (pi+1, αi+1) should be reachable
from the previous pair by the transition by the next symbol of the string. Consider three
cases.

• If the next symbol is neutral: ai+1 = c, for c ∈ Σ0, then the stack remains the same:
αi+1 = αi, and the next state is obtained from the previous state by a transition:
pi+1 ∈ δc(pi).

• If the next symbol in the string is a left bracket: ai+1 = <, for < ∈ Σ+1, then a new
stack symbol is pushed onto the stack at the current step and the next pair must
have the form (pi+1, αi+1) = (r, αis), for a state r ∈ Q and for a stack symbol s ∈ Γ
such that (r, s) ∈ δ<(pi).

• If the next symbol is a right bracket: ai+1 = >, for > ∈ Σ−1, then the symbol at
the top of the stack is popped; the stack is not empty at the current moment, since
the string w is well-nested. Let s ∈ Γ be a symbol at the top of the stack, that is,
let αi = βs. Then, the automaton removes the top stack symbol: αi+1 = β, and
changes its state to one of the possible next states, while seing the popped symbol:
pi+1 ∈ δ>(pi, s).

The automaton finishes its computation on a string in a state pℓ with an empty stack
αℓ (the stack is empty since the string w is well-nested). If the final state is accepting:
pℓ ∈ F , then the computation (p0, α0), . . . , (pℓ, αℓ) of the automaton An on the string w

4

is called accepting. The string w is said to be accepted by the automaton if there is at
least one accepting computaion on this string. And the automaton A defines the language
L(A) consisting of all well-nested strings over the alphabet Σ accepted by the automaton.

An input-driven pushdown automaton is called deterministic (DIDPDA), if it has a
unique initial state, |Q0| = 1, and if in every situation it has exactly one possible action:

• |δa(q)| = 1, for all q ∈ Q and a ∈ Σ0 ∪ Σ+1;

• |δa(q, s)| = 1, for all q ∈ Q, s ∈ Γ and a ∈ Σ−1.

Simplified notation is used in the deterministic case: it is said that a deterministic au-
tomaton has a unique initial state q0 and all functions give not a set of possible actions but
a deterministically defined action: δa : Q → Q, for a ∈ Σ0, δa : Q → Q × Γ, for a ∈ Σ+1,
and δa : Q× Γ → Q, for a ∈ Σ−1.

A DIDPDA is complete, that is, all functions (δa)a∈Σ are fully defined. There are some
definitions of DIDPDA in the literature that allow rejecting in the middle of the string.
The bounds proved for complete and for partial variants of the definition usually differ
by one state.

It is known that NIDPDA can be determinized: von Braunmühl and Verbeek [3] for an
arbitrary n-state NIDPDA constructed a deterministic automaton recognizing the same
language with 2n

2
states and with 2n

2 |Σ+1| stack symbols.
The number of stack symbols in the determinization construction can be slightly im-

proved to (2n
2 − 1)|Σ+1|. This small improvement was not needed before, but since I

prove exact lower bounds in Sections 4 and 5, it is useful to make the upper bound match
these lower bounds.

Theorem 1. Let A be an n-state NIDPDA, working over an alphabet Σ = Σ0∪Σ+1∪Σ−1.
Then, there is a DIDPDA with 2n

2
states and with |Σ+1|(2n

2 − 1) stack symbols that
recognizes the language L(A).

Proof. Consider the modern presentation of the determinization construction by von
Braunmühl and Verbeek [3] given in the survey by Okhotin and Salomaa [10, Thm. 1].
Let B be a deterministic automaton obtained from A, as in this survey. The idea of
the construction is that the deterministic automaton B calculates the behaviour relation
R ⊆ Q × Q of the nondeterministic automaton on a current well-nested segment of a
string, and when the automaton B sees a left bracket, it pushes this relation onto the
stack along with the bracket. This is how 2n

2
states and 2n

2|Σ+1| stack symbols occur.
On the other hand, if the automaton B enters the state ∅ in any situation, then the

behavior relation of a current well-nested segment is empty, and this segment cannot be
passed by the nondeterministic automaton A. So, the state∅means that the string should
be rejected by B. Then, this state is made a rejecting state—the transition function is
modified so that all transitions from the state ∅ lead again to this state ∅. Is it useful
to push onto the stack the empty relation R = ∅? If the automaton B pushes a symbol
of the form (∅, <), then a string contains a well-nested segment that cannot be passed
through by A and the string is rejected. Then, the transition that pushes (∅, <) onto
the stack can be modified. The automaton can instead assume the rejecting state ∅ and
push onto the stack a symbol (R,<) with any non-empty relation R, and the automaton
will reject the string as well. After the transitions of the automaton B are changed this
way, the stack symbols of the form (∅, <) are not pushed onto the stack anymore. These
symbols can be removed from the stack alphabet, leaving (2n

2−1)|Σ+1| stack symbols.

5

3 The exact bound on the number of states

Alur and Madhusudan [1, 2] established the first lower bound on the state complexity of
the determinization of NIDPDA. They proved that some nondeterministic input-driven
pushdown automata with n states require at least 2Ω(n2) states in equivalent deterministic
automata. Alur and Madhusudan [1, 2] used NIDPDA examples with a fixed input
alphabet and with stack alphabet growing linearly in n. Later, Jirásková and Okhotin [5]
obtained the exact lower bound of 2n

2
states, using nondeterministic automata with input

alphabet exponential in n.
In this section, the exact lower bound of 2n

2
states on the state complexity of deter-

minization is proved for the first time in the case of a fixed input alphabet. Moreover,
the stack alphabet of nondeterministic automata is also fixed and is of size 2. This is the
minimal size of the stack alphabet that allows an automaton to get any information from
the stack.

Theorem 2. For each n ⩾ 1, there is an n-state NIDPDA An = (Σ, Q,Γ, q0, (δa)a∈Σ, F),
over a 4-symbol input alphabet Σ+1 = {<}, Σ−1 = {>}, Σ0 = {−,#}, with one initial
state, and with stack alphabet Γ = {0, 1}, such that any DIDPDA recognizing the language
L(An) has at least 2n

2
states.

Proof. Let n be fixed. The desired automaton An is defined as follows. The set of states
is Q = {0, . . . , n−1}, with the initial state 0. All states are accepting: Q = F . The input
alphabet Σ and the stack alphabet Γ have already been defined in the theorem statement.
And the symbols of the input alphabet act in the following way.

The symbol ‘#’ contains all the nondeterminism of the automaton An, the automaton
can move from every state to every state by this symbol:

δ#(i) = {0, . . . , n− 1}, for i ∈ {0, . . . , n− 1}.

The automaton works deterministically on all other symbols of Σ. The symbol ‘−’ de-
creases the state of An by 1 modulo n:

δ−(i) = {(i− 1) mod n}, for i ∈ {0, . . . , n− 1}.

By the left bracket ‘<’, the automaton does not change the state and pushes the informa-
tion, whether the current state is 0 or not, onto the stack, that is, for a state i, it pushes
sgn i, which is 0 if the state is 0, and is 1 otherwise:

δ<(i) = {(i, sgn i)}, for i ∈ {0, . . . , n− 1}.

By the right bracket ‘>’, the automaton either stays in the same state or rejects. If the
current state is not 0, or if the symbol in the stack is not 0, the automaton An continues
in the same state. And if the current state and the symbol at the top of the stack both
equal 0, then the automaton rejects:

δ>(i, s) = {i}, for i ∈ {0, . . . , n− 1}, s ∈ {0, 1}, (i, s) ̸= (0, 0).

Now the automaton An has been defined.

6

αi αi αi αi
#

0 i

i j j i

i i
yi

yj

#

wR

#
x x'

Figure 1: The accepting computation of the automaton An on the string #xwRyj#x′yi,
where (i, j) ∈ R.

If n = 1, the theorem is trivial, because a deterministic automaton needs at least
21 = 2 states: an accepting state to accept the empty string and a rejecting state to reject
the string <>. Then, let n be at least 2.

It should be proved that a deterministic automaton must use at least 2n
2
states to

recognize the language L(An).
First, strings with specific behaviour of the automaton An are constructed.

Claim 1. For each relation R ⊆ Q×Q, there is a well-nested string wR ∈ Σ∗, such that
for all i, j ∈ Q, the automaton An can start reading the string wR in the state i and finish
reading it in the state j if and only if (i, j) ∈ R.

For each state i ∈ Q, there is such a well-nested string yi ∈ Σ∗, that if the automaton
An enters yi in some state other than i, then it rejects, and if An enters the string yi in
the state i, then it can leave the string in the state i and cannot leave the string yi in any
other state.

There are two strings x ∈ {−, <}∗ and x′ ∈ {−, >}∗, such that x has as many left
brackets as there are right brackets in x′. If the automaton An begins reading x in the
state i ∈ Q, then it leaves this string in the same state i and pushes some string αi onto
the stack. And if An enters the string x′ in a state i′ ∈ Q having the string αi on the top
of the stack, then, if i′ ̸= i, it rejects, and if i′ = i, it leaves the string x′ in the state i.

The plan of the proof of Theorem 2 is to build strings with special properties defined
in Claim 1 using encoding over a small aphabet, and then to consider computations of
the automaton An on strings of the form #xwRyj#x′yi, for R ⊆ Q × Q and i, j ∈ Q. It
will be proved, that if (i, j) ∈ R, the automaton An accepts the string #xwRyj#x′yi, as
in Figure 1. And if (i, j) /∈ R, then there will be no accepting computations of An on this
string. As in the earlier lower bound proofs [2], the final step of the plan is to show that
any deterministic automaton should remember the relation R in its state after reading
the string wR to be ready to give the correct answer for every possible pair (i, j) ∈ Q×Q
in the suffix yj#x′yi.

The conditions on strings wR in Claim 1 can be reformulated as follows.
For a well-nested string w ∈ Σ∗, one can define a behaviour relation R(w) ⊆ Q × Q:

the pair (i, j) is in R(w) if and only if there is a computation of the nondeterministic
automaton An on the string w, that begins in the state i and ends by leaving the string
in the state j. In these terms, for each relation R ⊆ Q × Q, one wants to construct a
well-nested string wR with the behaviour relation R(wR) = R.

For example, for a full behaviour relation, one can take a string # as wQ×Q, because

7

R(#) = Q×Q. To construct strings with all possible relations, it is enough to learn how
to eliminate an arbitrary pair of states from the relation of a string. This is done in the
following claim.

Claim 2. There are strings ui ∈ {−, <}∗, for all i ∈ Q, and vj ∈ {−, >}∗, for all j ∈ Q,
such that for each well-nested string w ∈ Σ∗, and for all states i, j ∈ Q, the equality
R(uiwvj) = R(w) \ {(i, j)} holds.

Furthermore, strings ui and vj satisfy the following conditions.

• Each string ui, for i ∈ Q, has exactly one left bracket, and there is exactly one right
bracket in each string vj, for j ∈ Q.

• If the automaton An begins reading the string ui, for i ∈ Q, or vj, for j ∈ Q, in some
state, then it can leave the string only in this state. On the string vj the automaton
can reject in some cases; it never rejects while reading the string ui.

Strings ui and vj are defined as follows:

ui = (−)i<(−)n−i, for i ∈ Q;

vj = (−)j>(−)n−j, for j ∈ Q.

There are no symbols ‘#’ in these strings, and therefore the automaton An works deter-
ministically on them. When the automaton An enters a string ui in a state i′, first, it
passes i symbols ‘−’ decreasing its state i times, and comes to the symbol ‘<’ in a state
(i′ − i) mod n. If i′ = i, this state is 0 and the automaton pushes 0 onto the stack at
the left bracket ‘<’, otherwise it pushes 1 onto the stack. Finally, it reads the last n − i
symbols ‘−’ and finishes reading the string ui in the state i′.

Then, consider computations of the automaton An on a string vj. Let An enter this
string in a state j′ ∈ Q with a symbol s ∈ {0, 1} on the top of the stack. After reading
the first j symbols ‘−’ the automaton comes to the symbol ‘>’ in a state (j′ − j) mod n.
If s = 0 and j′ = j at the same time, then An rejects, and if the symbol on the top of the
stack is not 0 or the state of the automaton at the symbol ‘>’ is not 0, the automaton
safely passes through the right bracket. And after reading the remaining n − j symbols
‘−’ the automaton recovers the state j′.

How the behaviour relation on a well-nested string w will change if one wraps it in a
pair of strings ui and vj, for i, j ∈ Q, that is, if the string w is replaced with uiwvj?

Can the pair (i, j) lie in the relation R(uiwvj)? Consider any computation of An on
the string uiwvj that enters the string in the state i and leaves the string in the state
j. The automaton begins reading ui in the state i, and so it pushes 0 at the top of the
stack. Since the substring w is well-nested, the automaton will pop this symbol 0 out of
the stack while reading the substring vj, and because the substring vj does not change the
state of the automaton, the automaton An enters the substring vj in the state j. Then,
it rejects and (i, j) /∈ R(uiwvj). The relation R(uiwvj) cannot contain any pairs that are
not in R(w), because the strings ui and vj do not change the state of the automaton,
and therefore the automaton should enter the substring w in the state i′ and leave this
substring in the state j′ to enter the whole string uiwvj in the state i′ and leave it in the
state j′. Each pair (i′, j′) ∈ R(w), that is not equal to (i, j), lies in the relation R(uiwvj),
because there is the following computation on the string uiwvj. First, the automaton
enters the substring ui in the state i′ and leaves it in the state i′, while pushing 1 onto the

8

i i i–1i 1 1 01 n–1 n–1 n–1 n–2 i+1 i+1 i+1 i

1
–< > ...

1
–< > –

1
–< > ...

1
–< >

Figure 2: The automaton An begins reading the string yi in the state i and deterministi-
cally leaves this string in the same state i.

stack if i′ ̸= i, and 0 otherwise. Then, the automaton reads the substring w and changes
its state from i′ to j′, it can do this, since (i′, j′) ∈ R(w). Finally, it begins reading the
string vj in the state j′. Since (i′, j′) ̸= (i, j), at this moment the automaton cannot at
the same time be in the state j and have 0 at the top of the stack, so the automaton does
not reject while reading vj and finishes its computation by leaving the string uiwvj in the
state j′. Therefore, R(uiwvj) = R(w) \ {(i, j)}.

Claim 2 is proved.
Now it is time to construct all special strings in Claim 1. Strings wR for all R ⊆ Q×Q

can be obtained from a string # with a full behaviour relation, using Claim 2. Let
R ⊆ Q×Q be an arbitrary relation. Let (i1, j1) ,. . . , (ik, jk) be all pairs of states that are
not in R. Then, the string wR can be defined as:

wR = uikuik−1
. . . ui1#vj1 . . . vjk−1

vjk .

By Claim 2, the behaviour relation on this string is obtained from Q×Q by eliminating
pairs (i1, j1) ,. . . , (ik, jk), so it equals R. Also, this string wR is well-nested, since each
string uit , for t = 1, . . . , k, has exactly one left bracket, and each string vjt , for t = 1, . . . , k,
has exactly one right bracket.

Next, the well-nested string yi ∈ Σ∗, for i ∈ Q, can be constructed as:

yi = wR, where R = {(i, i)}.

There is another way to define the string yi, explicitly and without symbols ‘#’:

yi = (<>−)i−(<>−)n−i,

In this construction, each pair of brackets <> forbids the current state to be equal to
0 and as a result it is prohibited to enter the string in any state other than i. Figure 2
shows how the automaton An reads the string yi, starting in the state i. If the automaton
enters the string yi in some state i′ ̸= i, then it will be in the state 0 after reading the
first i′ symbols ‘−’. And since i′ ̸= i, there is a substring <> in the string yi after the
i′-th symbol ‘−’; the automaton reads this substring in the state 0 and rejects.

It remains to construct the strings x ∈ {−, <}∗ and x′ ∈ {−, >}∗. Consider the
diagonal relation R = {(0, 0), (1, 1), . . . , (n − 1, n − 1)}. The string with this relation is
wR = uikuik−1

. . . ui1#vj1 . . . vjk−1
vjk , where (i1, j1), . . . , (ik, jk) are all pairs of states that

are not in R. Then, the strings x and x′ are defined as:

x = uikuik−1
. . . ui1 ,

x′ = vj1 . . . vjk−1
vjk .

9

Then the string x is defined over an alphabet {−, <} and contains exactly k left brackets,
whereas x′ is a string over an alphabet {−, >} and has exactly k right brackets. The
strings x and x′ have no symbols ‘#’, so the automaton An works on these strings de-
terministically. For each state i ∈ Q, there is a uniquely defined string αi ∈ Γ∗, which is
pushed onto the stack when the automaton reads the string x from the state i. Since the
strings ui, for i ∈ Q, preserve the state of the automaton An, the string x also cannot
change the state of the automaton. Analogously, the automaton cannot change its state
by reading x′, but it may reject on x′, because the strings vj, for j ∈ Q, have these
properties.

It shall be proved that if the automaton reads the string x′ with the string αi at the
top of the stack, then it can move through this string in the state i, but the automaton
will reject the string if it enters x′ in any other state. Consider the behaviour relation of
the automaton An on the string x#x′. The symbol ‘#’ allows the automaton to change
each state to each state, whereas the strings x and x′ preserve the state of the automaton.
Thus, the pair (i, j) ∈ Q×Q is in the relation R(x#x′) if and only if the automaton An

first enters the string x in the state i and pushes the string αi onto the stack, and then
enters the string x′ in the state j having the string αi on the top of the stack and does not
reject. On the other hand, by the definition, the relation R(x#x′) is the diagonal relation:
R(x#x′) = {(0, 0), (1, 1), . . . , (n − 1, n − 1)}. So, for each i ∈ Q, since (i, i) ∈ R(x#x′),
the automaton An can enter the string x′ in the state i with the string αi at the top
of the stack, and finish reading x′ in the state i. Also, the automaton should have no
computations on the string x′ with αi at the top of the stack that begin and end in some
state j ̸= i, since (i, j) /∈ R(x#x′), for j ̸= i. Therefore, the constructed strings x and x′

are as desired and this finishes the proof of Claim 1.
Now all special strings have been constructed, and it remains to prove that the non-

deterministic automaton An accepts a string #xwRyj#x′yi if and only if (i, j) ∈ R, and
that every deterministic automaton needs many states to do the same.

Claim 3. Let i, j ∈ Q and R ⊆ Q×Q, let the well-nested strings wR, yi, yj ∈ Σ∗ and the
strings x ∈ {−, <}∗, x′ ∈ {−, >}∗ be constructed as in Claim 1. Then, the automaton An

accepts the string #xwRyj#x′yi if and only if (i, j) ∈ R.

Let (i, j) be in R. Then there is the following accepting computation of the automaton
An on the string #xwRyj#x′yi, illustrated in Figure 1. At the first symbol ‘#’ the
automaton guesses the state i. It enters the substring x in the state i and pushes the
string αi onto the stack while reading x. Then, it leaves the substring x in the same state
i and enters the substring wR. Since (i, j) ∈ R, the automaton can leave the substring
wR in the state j after entering it in the state i. So, the automaton changes the state
from i to j and finishes reading the substring wR in the state j. The next substring yj
prohibits all states except j, but the automaton is in the state j, and it safely passes this
substring. Then, at the other symbol ‘#’ the automaton An nondeterministically chooses
the state i. Since the substring wRyj# is well-nested, the string αi that has been pushed
onto the stack while reading the substring x, is at the top of the stack at this moment.
The automaton moves through the substring x′ popping the string αi out of the stack,
and comes to the next substring in the same state i. The stack is empty after reading x′.
And finally the automaton An reads the substring yi in the state i and leaves the whole
string #xwRyj#x′yi in the state i. Therefore, the automaton accepts the string, because
all states are accepting.

10

Now let the automaton An accept a string #xwRyj#x′yi, for some i, j ∈ Q and R ∈
Q × Q. It shall be proved that (i, j) ∈ R. Consider an arbitrary accepting computation
of the automaton An on the string #xwRyj#x′yi. Let i′ be the state guessed by the
automaton at the first symbol ‘#’, let j′ be the state assumed by An after reading the
substring wR, and let the state i′′ be chosen at the symbol ‘#’ before the substring x′yi.
The automaton always gets out of the substring x′ in the state in which it enters this
substring, and also the automaton rejects if it enters the substring yi in any state other
than i. Therefore, i′′ = i. Not to reject on the substring x′, the automaton should enter it
in the same state in which it has entered the substring x, so i′′ = i′ = i. The automaton
will reject while reading the substring yj if it starts reading it in a state other than j.
Thus, j′ = j. However, since the substring x cannot change the state of the automaton,
the automaton An enters the substring wR in the state i and leaves it in the state j. This
means that (i, j) ∈ R.

It has been shown that the nondeterministic automaton An works correctly on strings
of the form #xwRyj#x′yi, and accepts such a string if and only if (i, j) ∈ R. Now it will
be proved that no deterministic automaton recognizes the language L(An) using fewer
than 2n

2
states.

Claim 4. Let A be a deterministic input-driven pushdown automaton that recognizes the
language L(An). Then the automaton A has at least 2n

2
states.

By the definition, DIDPDA is complete, so the automaton A cannot reject in the
middle of the string. The automaton A accepts a string of the form #xwRyj#x′yi if and
only if (i, j) ∈ R, since it recognizes the same language as An, and since the automaton
An has this property by Claim 3. Here all the strings wR, for R ⊆ Q × Q, yi, for i ∈ Q,
x and x′ are constructed by Claim 1. Let qR, for any relation R ⊆ Q × Q, be the state
assumed by the deterministic automaton A after reading the substring #xwR from the
initial state. It will be shown that all states qR, for R ∈ Q×Q, are pairwise distinct, then
the automaton A will have at least 2n

2
such states.

For the sake of a contradiction, let R1, R2 ⊆ Q × Q be two different relations with
qR1 = qR2 . Since R1 ̸= R2, there is a pair of states (i, j) ∈ Q×Q that lies in exactly one of
the relationsR1, R2. Then, the automatonA accepts only one of the strings #xwR1yj#x′yi
and #xwR2yj#x′yi. While reading the prefix #x the deterministic automaton A always
pushes onto the stack the same string α. And since qR1 = qR2 and since the substrings
wR1 and wR2 are well-nested, the automaton A gets out of substrings #xwR1 and #xwR2

in the same state qR1 = qR2 with the stack α. Then, in its computations on the strings
#xwR1yj#x′yi and #xwR2yj#x′yi the deterministic automaton enters the suffix yj#x′yi
in the state qR1 = qR2 with the stack α. Thus, the automaton either accepts both strings
or rejects both, this is a contradiction.

Therefore, all the states qR, for R ⊆ Q×Q, are pairwise distinct and the deterministic
automaton A has at least 2n

2
states. Theorem 2 is proven.

Note that if an n-state nondeterministic input-driven pushdown automaton uses a one-
symbol stack alphabet, then it can be determinized like a simple DFA by the well-known
subset construction using only 2n states. Therefore, using two stack symbols in a stack
alphabet Γ in the automata in Theorem 2 is optimal.

11

4 The lower bound on the number of stack symbols:

one left bracket

It has been proven in Section 3 that, in the case of a fixed alphabet, 2n
2
states can be

necessary to determinize an n-state nondeterministic automaton.
However, the size of an input-driven pushdown automaton is described not only by the

number of its states but also by the number of stack symbols it uses. The determiniza-
tion construction by von Braunmühl and Verbeek [3], for an n-state NIDPDA, gives a
deterministic automaton with 2n

2
states and 2n

2|Σ+1| stack symbols. This upper bound
has been slightly improved to (2n

2 − 1)|Σ+1| stack symbols and the same 2n
2
states in

Theorem 1 in Section 2.
How optimal is this determinization construction in the number of stack symbols? The

best lower bound of 2
n2

c stack symbols, with a constant c > 1, was obtained by Okhotin,
Piao and Salomaa [9]. They used witness automata working on strings over a bounded
input alphabet and with a stack alphabet of size linear in n.

The goal is to prove an exact lower bound on the number of stack symbols needed
for NIDPDA determinization, and preferably using a linearly growing stack alphabet and
working over a fixed input alphabet. To do this, one needs to work efficiently with small
alphabets to avoid division by a constant c, and also needs to learn how to use several
left brackets to multiply the bound by |Σ+1|.

In this section, the exact bound is proved in a simpler case of only one left bracket,
and in the next Section 5 it will be shown how to use any number of left brackets less
than 2n

2
to multiply the number of stack symbols in a deterministic automaton by |Σ+1|.

Theorem 3. For each n ⩾ 1, there is an n-state NIDPDA Bn = (Σ, Q,Γ, q0, (δa)a∈Σ, F),
with one initial state, with a stack alphabet of size |Γ| = 2n+ 2, working over a 5-symbol
input alphabet: Σ+1 = {<}, Σ−1 = {>,≫}, Σ0 = {−,#}, such that any DIDPDA
recognizing a language L(Bn) has at least 2

n2
states and at least 2n

2 − 1 stack symbols.

Proof. Consider the automaton An defined in the proof of Theorem 2. It is an n-state
automaton with Q = {0, 1, . . . , n − 1}; the state 0 is initial and all states are accepting;
the automaton has stack alphabet {0, 1} and works over an input alphabet Σ\{≫}. The
automaton Bn will be obtained from An by adding a new right bracket ‘≫’, new stack

symbols î and
−→
i , for i ∈ Q, and some new transitions.

The stack alphabet of the automaton Bn is

Γ = {0, 1} ∪ { î | i ∈ Q } ∪ {−→i | i ∈ Q }.

Transitions by symbols ‘−’, ‘#’, ‘>’ in the automaton Bn remain the same as in An.
The automaton An does not change its state on a left bracket ‘<’, and pushes 0 onto the
stack if the state is 0, and 1 if the state is not 0 (in other words, An pushes sgn i in a
state i). The automaton Bn can either do the same, or alternatively decide to change its
state (maybe, to the same state) and to push onto the stack either the old state i as î, or

the new state j as
−→
j .

δ<(i) = {(i, sgn i)} ∪ { (j, î) | j ∈ Q } ∪ { (j,−→j) | j ∈ Q }, for i ∈ {0, . . . , n− 1}

If a new stack symbol is popped out of the stack at an old right bracket ‘>’, then the
automaton rejects. If 0 or 1 is at the top of the stack when the automaton Bn reads a

12

double bracket ‘≫’, then it also rejects. If a symbol î, for i ∈ Q, is popped out of the
stack at a double bracket ‘≫’, then, if the current state is 0, the automaton moves to the
state i, and otherwise rejects.

δ≫(0, î) = {i}, for i ∈ Q

And if a stack symbol is of the form
−→
j , for j ∈ Q, then at a double bracket ‘≫’ the

automaton changes the state 1 to the state j and rejects in all states other than 1.

δ≫(1,
−→
j) = {j}, for j ∈ Q

Now the automaton Bn has been defined.
If Bn begins reading some well-nested string without double brackets ‘≫’ in some state

i ∈ Q and leaves the string in some state j ∈ Q, then in this computation the automaton
Bn makes a transition of An at each left bracket ‘<’. Indeed, if Bn chooses to push onto
the stack any new stack symbol while reading the left bracket ‘<’, then it will later pop
this symbol out of the stack at the matching old right bracket ‘>’ and reject. Therefore,
the next property holds.

Claim 5. For each well-nested string without double brackets ‘≫’ and for all states i, j ∈
Q, the automaton Bn can change its state from i to j by reading this string if and only if
so can An.

Using Claim 5, one can easily prove that determinization of Bn requires at least as
many states as determinization of An.

Claim 6. Every DIDPDA recognizing the language L(Bn) has at least 2
n2

states.

First, by Claim 5, automata An and Bn accept the same sets of strings without double
brackets ‘≫’, that is, L(Bn) ∩ (Σ \ {≫})∗ = L(An). It is also used here that An and Bn

have the same initial and accepting states. For the sake of a contradiction, assume that
there is a deterministic automaton A that recognizes the language L(Bn) using less than
2n

2
states. Then, one can delete the double bracket ‘≫’ from the alphabet of A getting

a new deterministic automaton A′, recognizing the language L(An) with fewer than 2n
2

states. And it is impossible by Theorem 2.
If n = 1, then Claim 6 is enough to prove Theorem 3, since the stack alphabet of any

DIDPDA has at least 21
2 − 1 = 1 symbol. From this moment, let n be at least 2; the

following proof uses the existence of states 0 and 1.
Let yi, for i ∈ Q, and wR, for R ⊆ Q×Q, be well-nested strings constructed in Claim 1

in the proof of Theorem 2. These strings contain no double brackets ‘≫’, therefore the
automaton Bn works on them as An. And the next claim is a direct corollary of Claim 1.

Claim 7. All strings yi, for i ∈ Q, and wR, for R ⊆ Q × Q, are well-nested, and the
automaton Bn works on them as follows.

1. If Bn enters a string yi, for i ∈ Q, in any state other than i, then it rejects, and if
it enters this string in the state i, then it can leave it in the state i and cannot leave
it in any other state.

2. The automaton Bn can enter a string wR in a state i and leave it in a state j if and
only if (i, j) ∈ R.

13

< >>
#

. . .

. . .

i j
jk–1

ik+1 jk+1

...

wRk < >>
<

y0#

. . .
yj

>>
y1#

yi

jm–1

ik–1

i
j

ik–1

i
j

ik–1

i
ik–1

i
ik–1

...
jm–1

ik–1

i
j

...

jm

...

jm–1

ik–1

i
j

...

jm

...

jm–1

ik–1

i
j

...
...

ik–1

i
j

...

ik–1

i
j

...

ik–1

i

...

ik–1

i

...

ik–1

i

...

ik–1

i

...

ik–1

...

ik–1

...

jm
0 0

jm

0 0
j j 1 1

i i

i1 i1 i1 i1 i1 i1 i1 i1 i1 i1 i1 i1 i1 i1 i1 i1

fR1,...,Rm
gi,j,k,m

Figure 3: An accepting computation of the automaton Bn on a string fR1,...,Rmgi,j,k,m,
for (i, j) ∈ Rk. First, it is shown in the figure how the automaton moves through the

substring <wRk
< of fR1,...,Rm = <wR1<wR2 . . . <wRm<, pushing onto the stack

−→
i ĵ. Then

Bn enters the second part gi,j,k,m of the string, that begins in the figure with a symbol
‘#’ at the top, and it is illustrated how Bn gets through a substring #y0≫yj#y1≫yi of

gi,j,k,m popping symbols ĵ and
−→
i out of the stack.

It shall be proved that every deterministic automaton recognizing the language of the
automaton Bn has at least 2n

2 − 1 stack symbols. To this end, special strings comprised
of any substrings wR, with R ⊆ Q×Q, and yi, with i ∈ Q, and also of symbols ‘<’, ‘≫’,
‘#’, are constructed. For a sequence of m non-empty relations R1, R2, . . . , Rm ⊆ Q×Q,
a string fR1,...,Rm is defined:

fR1,...,Rm = <wR1<wR2 . . . <wRm<.

Also, for all i, j ∈ Q, for each m ⩾ 1 and for each k = 1, . . . ,m, a string gi,j,k,m is defined:

gi,j,k,m = (#≫)m−k#y0≫yj#y1≫yi(#≫)k−1

The goal is to prove that the nondeterministic automaton Bn accepts a string
fR1,...,Rmgi,j,k,m if and only if (i, j) ∈ Rk, and that any deterministic automaton needs
at least 2n

2 − 1 stack symbols to do the same.

Claim 8. Let m ⩾ 1 and k = 1, . . . ,m be integers, let R1, R2, . . . , Rm ⊆ Q × Q be
non-empty relations, let i, j ∈ Q be two states. Then, the automaton Bn accepts a string
fR1,...,Rmgi,j,k,m if and only if (i, j) ∈ Rk.

First, let (i, j) lie in Rk. Then there is the following accepting computation of the
automaton Bn on a string fR1,...,Rmgi,j,k,m (see Figure 3). Since relations R1, . . . , Rm

are non-empty, one can choose pairs (i1, j1) ∈ R1, (i2, j2) ∈ R2, . . . , (im, jm) ∈ Rm,
taking ik = i and jk = j. For convenience, let also j0 = 0 and im+1 = 0. The string
fR1,...,Rm = <wR1<wR2 . . . <wRm< has m+1 unmatched left brackets and the automaton
Bn starts its computation at the first of them in the state 0. The computation will be

14

constructed so that the automaton will get to each t-th unmatched left bracket in the
state jt−1, for all t = 1, . . . ,m+ 1. On t-th unmatched bracket the automaton Bn moves

from the state jt−1 to the state it, pushing onto the stack either the symbol
−→
it , for t ⩽ k,

or the symbol ĵt−1, for t > k. Next, if t ̸= m + 1, the automaton enters the substring
wRt in the state it. This is a well-nested string, so reading it does not change the stack.
Since (it, jt) ∈ Rt, there is a computation on wRt that begins in the state it and ends in
the state jt. This computation is used as a part of an accepting computation on the full
string. As a result, the automaton gets from the state jt−1 at the t-th unmatched left
bracket to the state jt at the next unmatched left bracket. Thus, the correct computation
of the automaton Bn on the substring fR1,...,Rm has been constructed, and it ends with
the automaton leaving the substring in the state 0 with the following stack contents:

−→
i1
−→
i2 . . .

−→
ik ĵkĵk+1 . . . ĵm.

Next, the automaton Bn reads a string gi,j,k,m = (#≫)m−k#y0≫yj#y1≫yi(#≫)k−1,
and the computation should be continued to make the automaton accept the full string.
The automaton can pass by a substring (#≫)m−k assuming the state 0 after reading

each symbol ‘#’. Since the last m − k symbols pushed onto the stack are ĵk+1, . . . ĵm,
which are symbols of the form q̂, for q ∈ Q, the automaton can pop these symbols out of
the stack in the state 0 at double right brackets ‘≫’ without rejecting. Then, Bn needs
to get through a substring #y0≫yj#y1≫yi. This can be done as follows: at the first
symbol ‘#’ the automaton assumes the state 0, in this state it moves through y0 without
rejecting and enters the first double bracket ‘≫’ of this substring. The automaton pops
the symbol ĵk out of the stack in the state 0 at the double bracket ‘≫’ and moves to
the state jk = j. This allows the automaton Bn to pass through the substring yj. At
the second symbol ‘#’ the automaton chooses the state 1 and passes y1. Then it pops

the symbol
−→
ik out of the stack in the state 1 at ‘≫’ and changes its state to ik = i. In

this state i it safely moves through yi. It remains to read the last substring (#≫)k−1,
and this can be done by choosing the state 1 at every symbol ‘#’. The remaining string

in the stack is
−→
i1
−→
i2 . . .

−−→
ik−1, and the automaton can pop symbols of this form at double

brackets ‘≫’ in the state 1. Thus, the automaton Bn completes its computation on the
string fR1,...,Rmgi,j,k,m and accepts, since all states are accepting.

Now let (i, j) be not in Rk. It shall be proved, that the string fR1,...,Rmgi,j,k,m is not
accepted by Bn. Consider an arbitrary computation of the automaton Bn on the string
fR1,...,Rmgi,j,k,m. There are exactly m+ 1 unmatched left brackets in a substring fR1,...,Rm ,
and if the automaton did not reject while reading this substring, then it will leave the
substring with some string α = s1 . . . sm+1 of length m + 1 in the stack. Symbols sk
and sk+1 were pushed onto the stack at the first and at the last left brackets in the

substring <wRk
<. If sk =

−→
i and sk+1 = ĵ, then the automaton Bn leaves the first

symbol ‘<’ and enters the substring wRk
in the state i and leaves this substring and

enters the last left bracket in the state j. Since (i, j) /∈ Rk, it is impossible to enter

wRk
in the state i and leave it in the state j. Therefore, either sk ̸= −→

i , or sk+1 ̸= ĵ.
It will be shown that in both cases the automaton rejects while reading the substring
gi,j,k,m = (#≫)m−k#y0≫yj#y1≫yi(#≫)k−1. The symbol sk+1 is popped out of the
stack while reading the substring #y0≫yj. Strings y0 and yj wrapping the double right
bracket ‘≫’ require that the automaton enters ‘≫’ in the state 0 and leaves it in the
state j. Such a change of a state at ‘≫’ is possible only with the symbol ĵ at the top

15

of the stack. Therefore, if sk+1 ̸= ĵ, the automaton rejects. The second case is when

sk ̸= −→
i . The symbol sk is popped out of the stack while reading the substring #y1≫yi,

here the double right bracket ‘≫’ is wrapped in substrings y1 and yi, and not to reject
the automaton Bn should change the state 1 to the state i at the double bracket ‘≫’.

But this is impossible since the symbol at the top of the stack is not
−→
i . Therefore, if

(i, j) /∈ Rk, the automaton Bn rejects the string fR1,...,Rmgi,j,k,m in any computation.
Claim 8 has been proven. It remains to show that any deterministic automaton needs

a lot of stack symbols to work as Bn.

Claim 9. Let DIDPDA A work over an alphabet Σ and let it accept a string fR1,...,Rmgi,j,k,m
if and only if (i, j) ∈ Rk, for all m ⩾ 1, for all non-empty relations R1, R2, . . . , Rm ⊆
Q×Q, for all states i, j ∈ Q and for all k ∈ {1, . . . ,m}. Then, there are at least 2n

2 − 1
stack symbols in the stack alphabet of the automaton A.

Let N be the number of states in the automaton A and let M be the size of its stack
alphabet. Then the automaton A finishes reading each string of the form fR1,...,Rm in one
of N states with a string of length m+ 1 in the stack, since a string fR1,...,Rm has exactly
m + 1 unmatched left brackets. For a fixed m, there are at most N · Mm+1 possible
outcomes of reading a string fR1,...,Rm , for m arbitrary non-empty relations. On the other
hand, for a fixed m, a number of strings of the form fR1,...,Rm is (2n

2 − 1)m, since each of
m non-empty relations R1, . . . , Rm ⊆ Q×Q can be chosen in 2n

2 − 1 ways.
For the sake of a contradiction, assume that the deterministic automaton A has a small

number of stack symbols: M < 2n
2 − 1. Since the number of states N of the automaton

A is fixed and M < 2n
2 − 1, one can choose m large enough, so that the number of

possible outcomes of reading a substring fR1,...,Rm will be fewer than the number of such
substrings: N ·Mm+1 < (2n

2 − 1)m. Therefore, there are two distinct sequences of non-
empty relations R1, . . . , Rm and S1, . . . , Sm, such that the automaton A finishes reading
the strings fR1,...,Rm and fS1,...,Sm in the same state q and with the same stack contents α.

Since the sequences of relations R1, . . . , Rm and S1, . . . , Sm are different, there is a
pair of states (i, j) ∈ Q × Q and there is a number k ∈ {1, . . . ,m}, such that the pair
(i, j) lies in exactly one of the relations Rk and Sk. Without loss of generality, one can
assume that (i, j) ∈ Rk and (i, j) /∈ Sk. Then the deterministic automaton A accepts the
string fR1,...,Rmgi,j,k,m and rejects the string fS1,...,Smgi,j,k,m. However, on both strings the
automaton enters the second part gi,j,k,m in the state q with the string α in the stack, and
therefore it finishes reading both strings fR1,...,Rmgi,j,k,m and fS1,...,Smgi,j,k,m in the same
state, and either accepts both strings, ot rejects both. This is a contradiction, and Claim 9
is proved.

By Claim 8, the nondeterministic automaton Bn accepts a string fR1,...,Rmgi,j,k,m if and
only if (i, j) ∈ Rk. Then, every deterministic automaton recognizing the language of Bn

does the same and satisfies the conditions of Claim 9. Therefore it has at least 2n
2 − 1

stack symbols, and Theorem 3 has been proven.

5 The lower bound on the number of stack symbols:

several left brackets

The number of stack symbols sufficient for determinizing an n-state NIDPDA is (2n
2 −

1)|Σ+1|, established in Section 2. In the case of only one left bracket, the exact lower

16

bound on the size of stack alphabet needed for determinization is 2n
2 − 1, proved in

Section 4. How to multiply the number of stack symbols needed for determinization by
the number of left brackets, if |Σ+1| > 1? The exact lower bound in the case of several
left brackets is proved in the next theorem.

Theorem 4. For any integers n and s, such that n ⩾ 1 and 1 ⩽ s ⩽ 2n
2
, there is

an n-state NIDPDA Bn,s = (Σ, Q,Γ, q0, (δa)a∈Σ, F), with one initial state, with a stack
alphabet of the size |Γ| = 2+2n+ ⌊log2(2s−1)⌋ and working over an (s+5)-symbol input
alphabet: Σ+1 = {<0, <1, . . . , <s−1}, Σ−1 = {>,≫,≫}, Σ0 = {−,#}, such that every
DIDPDA recognizing the language L(Bn,s) has at least 2n

2
states and at least s(2n

2 − 1)
stack symbols.

Proof. Let n ⩾ 2 (a degenerate case of n = 1 will be handled at the end of the proof).
Also let s ⩾ 2 (if s = 1, then one can take the automaton Bn from Theorem 3 as Bn,s).
Then ⌊log2(2s− 1)⌋ = ⌊log2(s− 1)⌋+ 1.

The automaton Bn,s is constructed as a more complicated version of the automaton
Bn in Theorem 3. It has a set of states Q = {0, . . . , n − 1}, with the initial state 0 and
with all states accepting, as the automaton Bn. The input alphabet of Bn,s is defined in
the statement of Theorem 4. The stack alphabet is

Γ = {0, 1} ∪ { î | i ∈ Q } ∪ {−→i | i ∈ Q } ∪ { x○ | x = 0, . . . , ⌊log2(s− 1)⌋ }.

Stack symbols from the set {0, 1} ∪ { î | i ∈ Q } ∪ {−→i | i ∈ Q } are already used by the
automaton Bn in Theorem 3; the automaton Bn,s has also some new stack symbols: x○,
for x ∈ {0, . . . , ⌊log2(s−1)⌋}. And |Γ| = 2+2n+⌊log2(s−1)⌋+1 = 2+2n+⌊log2(2s−1)⌋,
as required.

Next, the transition function of the automaton Bn,s is defined.
The possible transitions of Bn,s at the neutral symbols ‘#’ and ‘−’ and at the old right

brackets ‘>’ and ‘≫’ coincide with the transitions of Bn at these symbols.
For each left bracket ‘<ℓ’, for ℓ ∈ {0, . . . , s−1}, the automaton Bn,s has all transitions

that are defined for Bn at the left bracket ‘<’. Also there are new transitions, that
arbitrarily change the state of the automaton and push onto the stack the position of
any unary bit in the binary representation of the number ℓ of the left bracket. Denote
the coefficient at 2x in the binary representation of the number ℓ as ℓ[x], and denote the
transition function of Bn as δ(Bn). Then the transition function of the automaton Bn,s at
left brackets is defined as:

δ<ℓ
(q) = δ

(Bn)
< (q) ∪ { (r, x○) | r ∈ Q, ℓ[x] = 1 }, for ℓ ∈ {0, . . . , s− 1}, q ∈ Q.

It remains to define the transition function of Bn,s at a new triple right bracket ‘≫’.

No transitions are defined at this bracket for old stack symbols from sets {0, 1}, { î | i ∈ Q }
and {−→i | i ∈ Q }. If a new stack symbol of the form x○ ∈ {0, . . . , ⌊log2(s − 1)⌋} is at
the top of the stack, then the automaton Bn,s at a triple bracket ‘≫’ can only change its
state from the state (x mod n) to the state ⌊x

n
⌋. Such a definition of transitions at a triple

bracket ‘≫’ allows the automaton to extract all the information about a symbol x○ from
the stack. The automaton cannot simply put x in its state while reading a triple bracket
‘≫’, since, for s = 2n

2
, the number x can reach the value of ⌊log2(2n

2 − 1)⌋ = n2 − 1,
and the automaton has only n states. Thus, a number x at the top of the stack is read in

17

two parts: the state (x mod n) should be assumed before reading the bracket ‘≫’, and
the state ⌊x

n
⌋ emerges after reading this bracket. Since 0 ⩽ x ⩽ n2 − 1, it holds that

x = ⌊x
n
⌋ · n+ (x mod n).

δ≫(x mod n, x○) = {
⌊x
n

⌋
}

The automaton Bn,s has been completely defined.
If the automaton Bn,s pops out of the stack a new stack symbol of the form x○ at one

of the old right brackets ‘>’ and ‘≫’, it immediately rejects. So, new stack symbols can
be popped only at a triple right bracket ‘≫’. Thus, accepting computations of Bn,s on
well-nested strings without triple brackets ‘≫’ are the same as accepting computations of
Bn, if each left bracket in the input alphabet of Bn,s is considered as the only left bracket
‘<’ of the automaton Bn. Then one can bound from below the number of states needed
for determinization of the automaton Bn,s.

Claim 10. Each DIDPDA recognizing the language L(Bn,s) has at least 2
n2

states.

Indeed, if one eliminates left brackets <1, . . . , <s from the alphabet of the DIDPDA,
leaving only the symbol ‘<0’ as ‘<’, and if one also deletes the triple right bracket ‘≫’,
then the resulting deterministic automaton will recognize exactly the language of the
automaton Bn and will have the same number of states as the original deterministic
automaton. And the language L(Bn) cannot be recognized by a DIDPDA with fewer
than 2n

2
states.

Furthermore, since the automaton Bn,s works on well-nested strings without triple
brackets ‘≫’, as the automaton Bn, if all left brackets of Bn,s are considered as the
bracket ‘<’ of Bn, one can define strings wR, for R ⊆ Q × Q, and yi, for i ∈ Q, for the
automaton Bn,s. These strings are constructed like in Claim 1 in the proof of Theorem 2;
the left bracket ‘<0’ is used as the symbol ‘<’. These strings are well-nested and do not
contain double and triple right brackets ‘≫’ and ‘≫’, therefore the automaton Bn,s works
on them as Bn, and the automaton Bn works on them as the automaton An in Theorem 2.
Then, computations of Bn,s on these strings are described by the next claim that directly
follows from Claims 1 and 7.

Claim 11. The automaton Bn,s works on well-nested strings yi, for i ∈ Q, and wR, for
R ⊆ Q×Q, as follows.

1. If the automaton enters a string yi, for i ∈ Q, in the state i, then it can leave this
string in the state i and cannot leave it in any other state. If the automaton Bn,s

begins reading yi in any state other than i, it rejects.

2. For every two states i, j ∈ Q, the automaton Bn,s can begin reading a string wR in
the state i and leave this string in the state j, if and only if (i, j) ∈ R.

Strings fR1,...,Rm and gi,j,k,m were defined for the automaton Bn in Theorem 3. Each
string fR1,...,Rm has exactly m+1 unmatched left brackets and m intermediate substrings
with non-empty behaviour relations R1, . . . , Rm. Now, more elaborate strings will be
defined, in which every unmatched left bracket can be any numbered bracket: <0, <1,
. . . , <s−1. Such a string is determined not only by a sequence of m non-empty relations,
but also by a sequence of m + 1 left bracket numbers. For every integer m ⩾ 1, for a

18

sequence of m non-empty relations R1, R2, . . . , Rm ⊆ Q×Q and for a sequence of indices
ℓ1, . . . , ℓm+1 ∈ {0, . . . , s− 1}, the following string is defined:

fR1,...,Rm,ℓ1,...,ℓm+1 = <ℓ1wR1<ℓ2wR2 . . . <ℓmwRm<ℓm+1 .

Strings gi,j,k,m, for i, j ∈ Q, for m ⩾ 1 and for k = 1, . . . ,m, are exactly the same as for
the automaton Bn:

gi,j,k,m = (#≫)m−k#y0≫yj#y1≫yi(#≫)k−1

If a well-nested string has no triple right brackets ‘≫’, then, while moving through this
string, the automatonBn,s either rejects, or works asBn, considering every left bracket as a
symbol ‘<’ of the automaton Bn. Then, since all strings of the form fR1,...,Rm,ℓ1,...,ℓm+1gi,j,k,m
are well-nested and have no triple brackets ‘≫’, Claim 8 for the automaton Bn and for
strings of the form fR1,...,Rmgi,j,k,m implies the same claim for the automaton Bn,s and for
strings of the form fR1,...,Rm,ℓ1,...,ℓm+1gi,j,k,m.

Claim 12. Let m ⩾ 1 be an integer, let R1, R2, . . . , Rm ⊆ Q × Q be any non-empty
relations, let ℓ1, . . . , ℓm+1 ∈ {0, . . . , s − 1} be indices of left brackets, let i, j ∈ Q be any
two states and let k = 1, . . . ,m be an integer. Then the automaton Bn,s accepts the string
fR1,...,Rm,ℓ1,...,ℓm+1gi,j,k,m if and only if (i, j) ∈ Rk.

For every pair of strings fR1,...,Rm,ℓ1,...,ℓm+1 and fR′
1,...,R

′
m,ℓ′1,...,ℓ

′
m+1

with different sequences
of non-empty relations, Claim 12 allows one to choose such a continuation gi,j,k,m, that
the automaton Bn,s will give different answers on the strings fR1,...,Rm,ℓ1,...,ℓm+1gi,j,k,m and
fR′

1,...,R
′
m,ℓ′1,...,ℓ

′
m+1

gi,j,k,m, accepting one and rejecting the other. But to distinguish in this
way all pairs of strings of the form fR1,...,Rm,ℓ1,...,ℓm+1 , one also needs to construct such
suffixes that will separate any two strings fR1,...,Rm,ℓ1,...,ℓm+1 and fR′

1,...,R
′
m,ℓ′1,...,ℓ

′
m+1

with
different indices of left brackets in some position: ℓk ̸= ℓ′k.

The next goal is to define strings hk,x,m, for m ⩾ 1, for a left bracket number k ∈
{1, . . . ,m + 1} and for a bit number x ∈ {0, . . . , ⌊log2(s − 1)⌋}, such that the string
fR1,...,Rm,ℓ1,...,ℓm+1hk,x,m is accepted by the automaton Bn,s if and only if ℓk[x] = 1, that
is, if the coefficient at 2x in the binary representation of the number ℓk equals 1. Such
strings hk,x,m will distinguish any two strings fR1,...,Rm,ℓ1,...,ℓm+1 and fR1,...,Rm,ℓ′1,...,ℓ

′
m+1

, in
which, for some number k, the indices of unmatched left brackets differ: ℓk ̸= ℓ′k, that is,
if there is a bit number x, such that ℓk[x] ̸= ℓ′k[x].

A string hk,x,m, for m ⩾ 1, for k ∈ {1, . . . ,m + 1} and for x ∈ {0, . . . , ⌊log2(s − 1)⌋},
is defined as:

hk,x,m = (#≫)m−k+1#yx mod n≫y⌊ x
n
⌋(#≫)k−1.

The next claim is that strings hk,x,m have the desired properties.

Claim 13. Let m ⩾ 1 be an integer, let R1, R2, . . . , Rm ⊆ Q × Q be any non-empty
relations, let ℓ1, . . . ℓm+1 ∈ {0, . . . , s− 1} be indices of left brackets, let k ∈ {1, . . . ,m+1}
be an integer and let x ∈ {0, . . . , ⌊log2(s−1)⌋} be a bit number. Then the automaton Bn,s

accepts the string fR1,...,Rm,ℓ1,...,ℓm+1hk,x,m if and only if ℓk[x] = 1, that is, if the coefficient
at 2x in the binary representation of the number ℓk is 1.

First, let ℓk[x] = 1. Then there is the following accepting computation of the au-
tomaton Bn,s on the string fR1,...,Rm,ℓ1,...,ℓm+1hk,x,m, illustrated in Figure 4. Since relations
R1, . . . , Rm are non-empty, one can choose a pair of states of Bn,s for each relation:

19

. . .

< m+1 >>
#

. . .
jk–1

ik+1

...

wRk < k+1
< k

. . .
ik–1

x
...

...

jm
0 1

i1

ik+1

im
0

ik–1

x

...
...

i1

ik+1

im

ik–1

x

...

i1

ik+1

ik–1

x

...

i1

ik–1

x

...

i1

ik–1

...

i1

ik+1

>>>
#

yx/n

>>

ik–1

x

...
...

i1

ik+1

im

ik–1

x

...
...

i1

ik+1

im

ik–1

x

...

i1

ik+1

ik–1

x

...

i1

yx mod n

ik–1

x

...

i1

ik–1

x

...

i1

ik–1

...

i1

ik–1

...

i1

ik jk 0

0

1
x mod n

x
n

x
n

x mod n

fR1,...,Rm, 1,..., m+1
hk,x,m

Figure 4: An accepting computation of the automaton Bn,s on a string
fR1,...,Rm,ℓ1,...,ℓm+1hk,x,m, in a case of ℓk[x] = 1.

(i1, j1) ∈ R1, . . . , (im, jm) ∈ Rm. The automaton reads the string fR1,...,Rm,ℓ1,...,ℓm+1 =
<ℓ1wR1<ℓ2wR2 . . . <ℓmwRm<ℓm+1 as follows: it begins in the state j0 = 0 and comes to
every t-th unmatched left bracket ‘<ℓt ’, for t = 1, . . . ,m, in the state jt−1, and then, at
each bracket ‘<ℓt ’ it changes its state from jt−1 to it, reads wRt changing the state it to jt
(this is possible, since (it, jt) ∈ Rt), and comes to the next unmatched left bracket <ℓt+1

in the state jt. Finally, the automaton gets to the last unmatched left bracket of the
substring fR1,...,Rm,ℓ1,...,ℓm+1 in the state jm and leaves the substring in the state im+1 = 0.

During this computation, the automaton pushes symbols
−→
it onto the stack at every un-

matched left bracket ‘<ℓt ’, for t ̸= k, and pushes onto the stack the symbol x○ at the k-th
unmatched left bracket (this can be done, since ℓk[x] = 1). As a result, the automaton
leaves the first part of the string fR1,...,Rm,ℓ1,...,ℓm+1 in the state 0 with the stack contents

α =
−→
i1 . . .

−−→
ik−1 x○

−−→
ik+1 . . .

−−→
im+1.

Now it will be shown, how the automaton Bn,s with such a stack gets through the
substring hk,x,m = (#≫)m−k+1#yx mod n≫y⌊ x

n
⌋(#≫)k−1. The first segment (#≫)m−k+1

and the last segment (#≫)k−1 are easy to pass: the automaton chooses the state 1 at

symbols ‘#’ and does not reject while popping the symbols
−→
it , for t ̸= k. The symbol x○ is

popped out of the stack while reading the substring #yx mod n≫y⌊ x
n
⌋. The automaton can

go through this substring as follows: it chooses the state (x mod n) at the first symbol ‘#’,
passes the substring yx mod n, pops the symbol x○ out of the stack at the triple right bracket
‘≫’ and changes the state from (x mod n) to ⌊x

n
⌋. The state ⌊x

n
⌋ allows the automaton

to pass the substring y⌊ x
n
⌋. Therefore, the automaton Bn,s can move through the second

part hk,x,m, entering it in the state 0 and with stack contents α, and accept, since all
states are accepting. Thus, the automaton accepts the string fR1,...,Rm,ℓ1,...,ℓm+1hk,x,m.

Now let the automaton Bn,s accept the string fR1,...,Rm,ℓ1,...,ℓm+1hk,x,m, it shall be
proved that ℓk[x] = 1. Consider an arbitrary accepting computation of the automa-
ton Bn,s on this string. First, the automaton reads the substring fR1,...,Rm,ℓ1,...,ℓm+1 =
<ℓ1wR1<ℓ2wR2 . . . <ℓmwRm<ℓm+1 , pushing onto the stack some string α of length m + 1.
It pushes the k-th symbol of α onto the stack at the left bracket ‘<ℓk ’, denote this

20

stack symbol as c. Next, the automaton reads the second part of the string, which is
hk,x,m = (#≫)m−k+1#yx mod n≫y⌊ x

n
⌋(#≫)k−1, and pops the k-th symbol of the string α

out of the stack while reading the substring #yx mod n≫y⌊ x
n
⌋. Since the automaton rejects

at the triple right bracket ‘≫’ if it pops a stack symbol not of the form z○, therefore
c = z○, for some z ∈ {0, . . . , ⌊log2(s − 1)⌋}. Since the triple bracket ‘≫’ is wrapped in
substrings yx mod n and y⌊ x

n
⌋, and since each of them allows only one state, the automaton

comes to the triple bracket ‘≫’ in the state (x mod n) and leaves this bracket in the state
⌊x
n
⌋. Such a change of a state at the triple bracket ‘≫’ is possible only if the symbol

at the top of the stack is x○, that is, if c = x○. And the symbol c was pushed onto the
stack while reading the left bracket ‘<ℓk ’, therefore, since c = x○, it holds that ℓk[x] = 1.
Claim 13 has been proven.

It remains to prove that any deterministic automaton needs a lot of stack symbols to
simulate the automaton Bn,s.

Claim 14. Let DIDPDA A work over the alphabet Σ and recognize the language L(Bn,s).
Then the automaton A has at least s(2n

2 − 1) stack symbols.

Let N be the number of states in the automaton A, and let M be the number of stack
symbols it uses. For the sake of a contradiction, suppose that M < s(2n

2 − 1).
Then, for a fixed m, the automaton A can get at most N · Mm+1 combinations of

a state and of stack contents after reading strings of the form fR1,...,Rm,ℓ1,...,ℓm+1 with

m + 1 unmatched left brackets. There are exactly (2n
2 − 1)m · sm+1 strings of the form

fR1,...,Rm,ℓ1,...,ℓm+1 , where R1, . . . , Rm ⊆ Q×Q are non-empty relations, and ℓ1, . . . , ℓm+1 ∈
{0, . . . , s − 1} are left bracket numbers. Since M < s(2n

2 − 1), for values of m large
enough, the number N ·Mm+1 is less than (2n

2 − 1)m · sm+1. Let m be a sufficiently large
integer. Then, there are two different strings fR1,...,Rm,ℓ1,...,ℓm+1 and fR′

1,...,R
′
m,ℓ′1,...,ℓ

′
m+1

, such
that the deterministic automaton A begins reading both strings in its initial state and
leaves both strings in the same state q, with the same stack contents α.

Let us first consider the case when the two strings differ in some relation: Rk ̸=
R′

k, for some k. Then there are two states i, j ∈ Q, such that the pair (i, j) lies in
exactly one of the relations Rk and R′

k; without loss of generality, assume that (i, j) ∈ Rk

and (i, j) /∈ R′
k. Then, by Claim 12, the nondeterministic automaton Bn,s accepts the

string fR1,...,Rm,ℓ1,...,ℓm+1gi,j,k,m and rejects the string fR′
1,...,R

′
m,ℓ′1,...,ℓ

′
m+1

gi,j,k,m. Then, the
deterministic automaton A does the same, but it cannot give different answers on these
strings, since on both strings it enters the suffix gi,j,k,m in the state q with a stack α.
Therefore, the case of Rk ̸= R′

k is impossible.
Then, the two strings fR1,...,Rm,ℓ1,...,ℓm+1 and fR′

1,...,R
′
m,ℓ′1,...,ℓ

′
m+1

differ in some left bracket
numbers: ℓk ̸= ℓ′k. Then one can choose a bit x, such that the coefficients at 2x in numbers
ℓk and ℓ′k differ: ℓk[x] ̸= ℓ′k[x]. Without loss of generality, let ℓk[x] = 1 and ℓ′k[x] = 0. Then,
by Claim 13, the automaton Bn,s accepts the string fR1,...,Rm,ℓ1,...,ℓm+1hk,x,m and rejects the
string fR′

1,...,R
′
m,ℓ′1,...,ℓ

′
m+1

hk,x,m. That means that the deterministic automaton A also gives
different answers on these strings, but this is impossible, since on both strings it enters
the suffix hk,x,m in the same state q with the same stack α. This is a contradiction, and
therefore the automaton A has at least s(2n

2 − 1) stack symbols.
This finishes the proof of Claim 14 and of Theorem 4.
It has not been explained yet, why Theorem 4 holds in the degenerate case of only one

state: n = 1. If s = 1, one can use Theorem 3. Since s ⩽ 2n
2
, the remaining case is n = 1

and s = 2. The desired NIDPDA B1,2 can be constructed as follows. An input alphabet

21

is: Σ0 = ∅, Σ+1 = {<,≪}, Σ−1 = {>,≫}. At the single left bracket ‘<’ the automaton
pushes the symbol 0 onto the stack, at the double left bracket ‘≪’ it pushes 1. At the
single right bracket ‘>’ the automaton B1,2 moves forward if there is 0 at the top of the
stack, and rejects, if there is 1; and works vice versa at the double right bracket ‘≫’. The
automaton B1,2 thus defined accepts a string if and only if each single left bracket ‘<’
corresponds to a single right bracket ‘>’, and every double left bracket ‘≪’ corresponds
to a double bracket ‘≫’.

Let A be a deterministic automaton recognizing the language L(B1,2). Then, it has at
least 2 states: an accepting state to accept the empty string, and a rejecting one to reject
the string <≫. It shall be proved that the automaton A has at least 2(21

2 − 1) = 2 stack
symbols. Assume the opposite, that there is only one stack symbol in the stack alphabet
of A. There are two different strings u and u′ of the same length over an alphabet {<,≪},
such that the automaton A finishes reading them in the same state q. Consider the string
v, that matches the string u with right brackets of the same types, so that B1,2 accepts
the string uv. On the other hand, since u ̸= u′, there is a left bracket in u′ that differs
from the left bracket at the same position in u, and therefore this bracket in u′ does not
correspond to the matching right bracket in v, and the automaton B1,2 rejects the string
u′v. Then, the automaton A also accepts the string uv and rejects the string u′v, but it
leaves the substrings u and u′ in the same state q with the same stack contents, this is a
contradiction.

Note that the size of the stack alphabet in Theorem 4 of Bn,s is linear in the number
of states and is logarithmic in the number of left brackets. The theorem is stated for
a number of left brackets not exceeding 2n

2
. As a matter of fact, this lower bound

cannot possibly be extended for an unbounded number of brackets, because an n-state
nondeterministic automaton has only 2|Γ|n

2
possible transition functions by left brackets,

and the simulating automaton could remember this function instead of a bracket. Thus,
the restriction on the number of left brackets in the theorem is close to the best possible.

6 Conclusion

There are some open questions on the state complexity of input-driven pushdown au-
tomata. The lower bound on the number of states needed for determinization is precise,
the input alphabet is fixed and the stack alphabet is two-symbol, so it is hard to improve
anything here. However, in the lower bound on the number of stack symbols in a deter-
ministic automaton obtained by NIDPDA determinization, witness automata use a stack
alphabet linear in n. Is it possible to obtain the same lower bound using a stack alphabet
smaller than linear in n?

Jirásková and Okhotin [5] investigated the state complexity of operations on DIDPDA.
Lower and upper bounds on the number of states for concatenation and for the Kleene
star are asymptotically tight: mnn and m(nn + 2n) for concatenation of automata with
m and n states, and nn and nn+2n+1 for the Kleene star. One can try to find the exact
state complexity.

Ogawa and Okhotin [8] established asymptotically precise bounds for determinization
of event-clock input-driven pushdown automata, but one can try to make these bounds
even more precise.

22

Rose and Okhotin [12] introduced probabilistic input-driven pushdown automata, de-
terminized them and proved the asymptotically precise lower bound on the number of
states needed for determinization. It remains an open problem to prove a lower bound on
the number of stack symbols in a deterministic automaton needed for determinization of
probabilistic input-driven pushdown automata.

Acknowledgements

I am grateful to Alexander Okhotin for his advices on the presentation and for help in
translating the paper to English.

This work was supported by the Ministry of Science and Higher Education of the
Russian Federation, agreement 075-15-2022-287.

References

[1] R. Alur, P. Madhusudan, “Visibly pushdown languages”, ACM Symposium on The-
ory of Computing (STOC 2004, Chicago, USA, 13–16 June 2004), 202–211.

[2] R. Alur, P. Madhusudan, “Adding nesting structure to words”, Journal of the ACM,
56:3 (2009), 1–43.

[3] B. von Braunmühl, R. Verbeek, “Input driven languages are recognized in log n
space”, Annals of Discrete Mathematics, 24 (1985), 1–20.

[4] Y.-S. Han, S.-K. Ko, K. Salomaa, “Deciding path size of nondeterministic (and input-
driven) pushdown automata”, Theoretical Computer Science, 939, 2023, 170–181.

[5] G. Jirásková, A. Okhotin, “Towards exact state complexity bounds for input-driven
pushdown automata”, Developments in Language Theory (DLT 2018, Tokyo, Japan,
10–14 September 2018), LNCS 11088, 441–452.

[6] M. Kutrib, A. Malcher, M. Wendlandt, “Tinput-Driven Pushdown, Counter, and
Stack Automata”, Fundamenta Informaticae, 155:1–2 (2017), 59–88.

[7] K. Mehlhorn, “Pebbling mountain ranges and its application to DCFL-recognition”,
Automata, Languages and Programming (ICALP 1980, Noordweijkerhout, The
Netherlands, 14–18 July 1980), LNCS 85, 422–435.

[8] M. Ogawa, A. Okhotin, “On the Determinization of Event-Clock Input-Driven Push-
down Automata”, Computer Science–Theory and Applications: 17th International
Computer Science Symposium in Russia (CSR 2022, Virtual Event, June 29 – July
1, 2022), LNCS 13296, 256–268.

[9] A. Okhotin, X. Piao, K. Salomaa, “Descriptional complexity of input-driven push-
down automata”, Languages Alive: Essays Dedicated to Jürgen Dassow on the Oc-
casion of His 65th Birthday, LNCS 7300, 2012, 186–206.

[10] A. Okhotin, K. Salomaa, “Complexity of input-driven pushdown automata” ACM
SIGACT News, 45:2 (2014) 47–67.

23

https://dl.acm.org/doi/10.1145/1007352.1007390
dx.doi.org/10.1145/1516512.1516518
http://dx.doi.org/10.1016/S0304-0208(08)73072-X
http://dx.doi.org/10.1016/S0304-0208(08)73072-X
https://doi.org/10.1016/j.tcs.2022.10.023
https://doi.org/10.1016/j.tcs.2022.10.023
https://doi.org/10.1007/978-3-319-98654-8_36
https://doi.org/10.1007/978-3-319-98654-8_36
https://doi.org/10.3233/FI-2017-1576
https://doi.org/10.3233/FI-2017-1576
https://doi.org/10.1007/3-540-10003-2_89
https://doi.org/10.1007/978-3-031-09574-0_16
https://doi.org/10.1007/978-3-031-09574-0_16
http://dx.doi.org/10.1007/978-3-642-31644-9_13
http://dx.doi.org/10.1007/978-3-642-31644-9_13
https://doi.org/10.1145/2636805.2636821

[11] A. Okhotin, K. Salomaa, “State complexity of operations on input-driven pushdown
automata.”, Journal of Computer and System Sciences, 86, 207–228 (2017).

[12] A. Rose, A. Okhotin, “Probabilistic Input-Driven Pushdown Automata”, 48th In-
ternational Symposium on Mathematical Foundations of Computer Science (MFCS
2023), LIPIcs 272, 2023, 78:1–78:14.

[13] W. Rytter, “An application of Mehlhorn’s algorithm for bracket languages to log
n space recognition of input-driven languages”, Information Processing Letters, 23,
81–84 (1986).

[14] N. Van Tang, M. Ogawa, “Event-clock visibly pushdown automata”, Theory and
Practice of Computer Science (SOFSEM 2009), LNCS 5404, 2009, 558–569.

24

https://doi.org/10.1016/j.jcss.2017.02.001
https://doi.org/10.1016/j.jcss.2017.02.001
https://doi.org/10.4230/LIPIcs.MFCS.2023.78
https://doi.org/10.1016/0020-0190(86)90047-5
https://doi.org/10.1016/0020-0190(86)90047-5
https://doi.org/10.1007/978-3-540-95891-8 50

	Introduction
	Input-driven pushdown automata
	The exact bound on the number of states
	The lower bound on the number of stack symbols: one left bracket
	The lower bound on the number of stack symbols: several left brackets
	Conclusion

