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Optical absorption in tilted geometries as an indirect measure of longitudinal plasma
waves in layered cuprates
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Electromagnetic waves propagating in a layered superconductor with arbitrary momentum with
respect to the main crystallographic directions display an unavoidable mixing between longitudinal
and transverse degrees of freedom. Here we show that this basic physical mechanism explains the
emergence of a well-defined absorption peak in the in-plane optical conductivity for light propagating
at small tilting angles with respect to the stacking direction in layered cuprates. More specifically,
we show that this peak, often interpreted as a spurious leakage of the c-axis Josephson plasmon,
is instead a signature of the true longitudinal plasma mode occurring at larger momenta. By
combining a classical approach based on Maxwell’s equations with a full quantum derivation of
the plasma modes based on the modelling of the superconducting phase degrees of freedom, we
provide an analytical expression for the absorption peak as a function of the tilting angle and light
polarization. We suggest that an all-optical measurement in tilted geometry can be used as an
alternative way to access plasma-wave dispersion, usually measured by means of large-momenta
scattering techniques like RIXS or EELS.

I. INTRODUCTION

In superconductors the breaking of the continuous gauge symmetry below the superconducting (SC) critical tem-
perature is accompanied by the emergence of two collective modes, associated with the amplitude (Higgs) or phase
(Goldstone) fluctuations of the complex SC order parameter, whose absolute value at equilibrium defines the spectral
gap for single-particle excitations [I]. While the former is a massive excitation, the latter is massless at long wave-
length, reflecting the infinity of possible ground states connected by a global change of the order-parameter phase.
Nonetheless, the coupling of the SC phase to the density is directly affected by long-range Coulomb interactions
between charged electrons. This effect moves the phase mode to the plasma energy scale [2], that is usually much
larger than the spectral gap. As a consequence, optical signatures at the plasma energy scale, i.e. at the zero of the
dielectric function, are usually unaffected by the SC transition. A rather different phenomenology is instead observed
in anisotropic layered superconductors, i.e. systems where the pairing mainly occurs within planes stacked along the ¢
direction, and SC order is established below T, thanks to a weak Josephson-like inter-plane interaction. The hallmark
of this category is represented by high-temperature cuprates [3], where the marked anisotropy has been experimentally
proven by different optical probes, starting from linear optics, which measures two well-separated energy scales for the
plasma modes at long-wavelength for electric fields propagating in the CuQOs planes or perpendicular to them. In these
systems the incoherent quasiparticle hopping along the stacking direction makes the c-axis response badly metallic: in
contrast, below T, the opening of a sizeable spectral gap along with the weak inter-layer pair hopping leave a rather
sharp SC plasma edge at a frequency w,. of few THz in the optical reflectivity, that clearly testifies the emergence
of a well-defined SC Josephson plasmon. Even though this feature has been experimentally observed already in the
late "90s [4H9], a renewed interest in the physics of Josephson plasmons emerged more recently thanks to non-linear
THz spectroscopy from one side [TI0HI5], and to nano-plasmonic from the other side [I6], [I7]. In both cases it becomes
theoretically relevant understanding the momentum dependence of the plasmon dispersion at generic momentum, i.e.
not along the main crystallographic axes. In this configuration one immediately realizes that the anisotropy leads to
a non-trivial response of the system, due to the fact that the current induced by the external electric field is no more
parallel to the field itself. As it has been extensively discussed in details in Ref.s [I820], this mechanism leads to
a mixing of the longitudinal and transverse response inside the material, making the distinction between plasmons
and polaritons blurred at momenta smaller than a scale k ~ Vw2, —w?2/c set by the anisotropy between in-plane
wep and out-of-plane w,. plasma frequencies. Since usually wgp > w,, the effect is relevant for non-linear Josephson
plasmonics in the THz regime [2IH24], but does not affect e.g. the measurements of plasmons in RIXS [25H29] or EELS
[30H32], that usually measure momenta in a fraction of the Brillouin-zone. In the present manuscript we investigate
an additional consequence of the above-mentioned mixing, showing how even linear optics can be used to disentangle
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the longitudinal-transverse mixing in a reflection or transmission geometry which highlights the emergence inside the
material of a longitudinal response induced by an external transverse electromagnetic wave. The effect manifests
as an absorption peak at a scale nearby w. for an electromagnetic wave travelling at small angle with respect to
the ¢ direction. This feature has been measured in the past in different samples of electron-doped cuprates [33H36]
below T, and it has been often interpreted as a leakage of the c-axis plasmon into the in-plane response [37]. Even
more interestingly, the peak position has been shown to change by varying the wave polarization in the plane of
incidence, challenging considerably the interpretation of the results. Here we provide a full theoretical description
of the microscopic mechanism behind the anomalous absorption peak, and we show that it is a direct consequence
of the plasmon-polariton mixing in an anisotropic layered superconductor. We argue that this effect can be used to
indirectly probe the plasmon dispersion that usually appears in RIXS and EELS experiments at much larger momenta
and, by changing the light polarization, to extract the in-plane and out-of-plane plasma frequencies. Our findings are
benchmarked against existing experimental data for cuprates. On a more general ground, our results offer a novel
perspective on the possibility to access collective polariton modes in complex materials by properly engineering optical
measurements.

II. ANISOTROPIC LINEAR RESPONSE OF LAYERED SYSTEM

As we discussed in the Introduction, several experiments in electron-doped cuprates [33H36] have shown the emer-
gence of a peak in the in-plane conductivity below T, at a frequency close to the one of the out-of-plane plasma edge,
whose position moves by changing the light polarization. This peak is often interpreted as a spurious effect due to the
leakage of the c-axis plasmon into the in-plane response [37], and light polarization is used to remove the effect [36].
However, in Ref. [35] the problem has been investigated in details by growing on purpose a sample with a stacking
direction tilted with respect to the light wave-vector, and a preliminary interpretation has been provided linked to such
a tilted geometry. Here we will follow the same reasoning, and we will study the response for propagating wave-vector
at tilted angle with respect to the stacking direction. To fix the notation, in the following we will use the convention
by which the SC sheets are parallel to the ab-plane and stacked along the c-axis. We then assume, without loss of
generality, that the momentum k of the propagating wave is along the ac-plane (k, = 0). The angle between k and
the c-axis is denoted 1 and the angle between the transverse current and the b-axis is denoted ¢j (see Fig. [If for the
notation followed in this manuscript). Even though in such tilted geometries the discussion of the Fresnel conditions
at the sample/air boundary is not straightforward, we will postpone this analysis to the last Section, and we will focus
here on the behavior inside the sample. We are then interested in determining the measured conductivity, defined as
the ratio between the current J induced in the field direction and the modulus of the electric field E itself.

Because of anisotropy, the charge mobility within the planes is much higher than in between stacked layers and the
current J in the material is in general not parallel to E unless propagation occurs along the the principal axes of the
crystal (a,b,c). Indeed, in general one can write the conductivity tensor as

Ja Tab O 0 Ea
Jo =0 ow O Ey |, (1)
Je 0 0 o, E.

where o4, and o, are the in-plane and out-of-plane conductivities respectively. In the following we simplify the
tensorial notation by writing the reference frame in which a quantity is considered as its subscript, e.g. Eq. reads
Jave = GFapcEape. If the wave is propagating perpendicularly to the planes (n = 0), the electric field oscillates within
the SC sheets and one directly extracts o, from the measured transmissivity /reflectivity; analogously, with a wave
propagating within the planes (n = 7/2) one can measure o.. However, for a generic value of the propagation angle
the measured conductivity will be a combination of the two quantities. In other words, for k at generic angle n
the current J will develop both longitudinal and transverse components with respect to the momentum. To see this
explicitly, we perform a rotation of angle  around the b-axis to move in the reference frame (¢, b,1) in which [ labels
the longitudinal components and ¢ labels the transverse component with respect to the momentum in the ac-plane,
while preserving the second transverse component b. In this frame Eq. transforms into Jup; = 64 Eyp, where the
conductivity tensor now reads

Oapcos?n 4 oesin®n 0 (0. — o4p)sinncosn
&tbl = O OTab 0 . (2)
(0c — oap)sinncosn 0 oap sin?n + o, cos? 7

Notice that the components J, and J; are coupled to both E; and E;, as one expects in an anisotropic crystal, whereas
the transverse J;, component only couples to E;. As we will detail below, what one determines experimentally is an
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Figure 1. Sketch of the notation used in the manuscript to define the reference frames. The crystalline orientation defines
the frame (a, b, c), the direction of the momentum defines (¢,b,1). The angles n and ¢; are also represented. The tb-plane is
highlighted in blue.

effective conductivity defined as the ratio between the transverse current and the transverse electric field. According
to Ampere’s law %J + %"%—]‘; = 0, with ¢ the light velocity and £, the background dielectric constant, so that
the current in the longitudinal direction is compensated by the displacement current. We then obtain the relation
4mJ; — iweoE; = 0 that can be used to eliminate the longitudinal component and write a system that only takes the

transverse components ¢ and b into consideration, J;, = 64,Es,. The transverse conductivity tensor reads

. oy 0
70= (5 o) )

where

—iwe oo /4T (Tap 082 1) + 0 8IN% 1) + Tapoe

(4)

or(w,n) =
t(wsm —iWE oo JAT + Ty sin® ) + 0. cos2

For an electric field polarized along ¢ (E, = 0), Eq. immediately gives the conductivity we were looking for,
oy = Ji/E;. This expression was first derived in Ref. [34], and its real part displays a peak with central frequency that
2
EooWy

2
moves with 1. To show it explicitly, we replace o4, = —E;Tfjb and 0. = —72-¢, where wgy, and w, are the in-plane
and out-of-plane plasma frequencies respectively: one then immediately sees that the real part of o,(w,n) peaks at

frequency w;(n), that reads

w?(n) = wib sin’®n + wf cos? 1. (5)

As we will discuss below, w; does not define a plasma mode of the system: this can be immediately understood
already within a classical approach, by writing explicitly the dielectric function corresponding to the conductivity .

By using o4 = _%r(gab —£50) and 0, = — ¥ (g, — £,.) we can write the in-plane £4, and out-of-plane ¢, dielectric

T 4r
functions of the SC system as:

€ab(W) = Eoo (1 - %2”’> ; (6)

and

Thus Eq. can be recast as 0; = — (g, — 4, ), where

T dm
(w2 — wip) (@ — i)

w? (w2 - wlz (77))

er(w,n) = oo
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In Eq. the frequency w;(n) in Eq. appears as a divergence of the dielectric function, while the plasma frequencies
in the long-wavelength limit appear as usual as zeros of the dielectric function. This already proves that the scale
w; does not identify a true plasma mode. However, as we will demonstrate below, it turns out that w; provides a
good approximation for the finite-momentum longitudinal plasmon of the layered system at large momenta, i.e. in
the momentum region where retardation effects are no more relevant. As a consequence, the present results show that
the optical absorptive peak in the tilted geometry, that appears as linear response in the long-wavelength limit, can
be used to indirectly access the plasma-wave dispersion at large momenta. Notice that in principle Eq. is valid
in general for any collective mode in an anisotropic uniaxial system, provided that the corresponding expressions of
oab(w) and o.(w) are used.

Even though these considerations solve the problem of defining a transverse conductivity at tilted angles for electric
field polarized along ¢, two main issues remain open. The first one regards the connection between the frequency of the
peak and the real plasma modes of the anisotropic superconductor. The second point is to link these results to the
measured quantity in an experiment with a generic polarization of the electric field. The first matter will be discussed
in the next Section, by using a quantum formalism based on the description of the electromagnetic modes via the SC
phase degree of freedom. The second issue will be the subject of the last Section, where we will explicitly study the
Fresnel problem for transmission/reflection through a tilted-grown sample and we further discuss the dependence of
the measurement on the polarization ¢ of the external incident electric field.

III. LINEAR RESPONSE OF GENERALIZED PLASMA MODES
A. Effective action description of plasma modes

To gain a better physical insight into the results of the previous section, we will take advantage of the description of
the plasma modes in the SC state obtained via the phase degrees of freedom. Indeed, as it has been recently discussed
in Ref.s [I8] [19], this is a rather powerful and elegant approach to describe the interplay between longitudinal and
transverse plasma waves in a layered superconductor, that leads to generalized plasma modes with mixed character
at low momenta. We summarize here the main ingredients of the derivation, referring the reader to Ref.s [I8] [19] and
references therein for a detailed derivation of the layered phase-only model.

Below the critical temperature T, the neighboring SC planes interact with a Josephson-like coupling [3] 10, 23], [38H4T]
that is much weaker than the in-plane phase stiffness. Following the notation set above, we denote the in-plane
superfluid stiffness by Dy, and the out-of-plane one by D, and we write the Gaussian action for the phase fluctuations
0 as [42H44)

Sl6] = 5 37 (%02, + Dk + Dek?)10(a) 0

q

where ¢ = (i€, k) is the imaginary-time 4-momentum, with Q,, = 27mT the bosonic Matsubara frequencies,
kap = VK2 + k% and k. are the in-plane and out-of-plane momentum respectively and kg is the compressibility. In
the following we denote by |k|? = k2, + k2. We introduce the electromagnetic field A by performing in Eq. @D the
minimal coupling substitution k6 — ik 4+ 2eA /¢, where —e is the charge of the electron, and we also add the action
of the free electromagnetic field [T,

SemlAl = £ 3 QAW + Ak x Al (10)

Both the minimal coupling substitution and Eq. are written in the Weyl gauge in which the scalar potential is
zero. We then recast the coupling between the phase fluctuations and the electromagnetic field by performing the
substitution

. 2e

P(a) = kd(q) + —Alq). (11)

These gauge-invariant fields provide a full description of the plasma modes once the phase fluctuations are integrated

out [I8,[19]. In the basis ¥ ;. = (wa Uy z/JC)T, and by taking the limit for infinite compressibility that is appropriate
for cuprates,

02 e + 2k32 0 —Pkoke
Stbud = s Swh ) [ 0 RewrehE 00 | (12
abc 2 abc m-a abc ’
32me q —%kake. 0 02 e+ k2



where we have set the in-plane momentum along the a-direction (k, = 0) without loss of generality, such that ¢ is
decoupled, in full analogy with the case of Eq. above. In the action we have defined, in the Matsubara formalism,
the in-plane dielectric function

: Wiy
gab(lQm) = €0 1+ QT y (13)

and the out-of-plane dielectric function

ee(iQm) = €0 (1 + (‘;’22 ) : (14)

m

where the plasma frequencies are linked to the in-plane and out-of-plane superfluid stiffness, wgb = 47e? D,y /0o and
w? = 4me? D, /e respectively. Indeed, these go back to Eq.s @ and once the analytic continuation iQ,, — w+i0"
is performed. Notice that the dielectric tensor is diagonal in the basis ¥ ., as (a,b, ¢) is the reference frame of the
principal axes of the crystal. By their definition in Eq. , the gauge invariant fields are formally proportional to
currents, and we can then apply within the effective-action framework the same procedure used above for the classical
approach, i.e. a change of the reference frame to describe a transverse dielectric tensor. We thus perform a rotation
around the b-axis that combines the 1, and . components into transverse 1; and longitudinal ¢; components with

respect to the momentum k. The matrix that performs the change of basis 9, — % = (¥r Vb wl)T reads

ke/lk| 0 ka/lK|
U= 0 1 0 , (15)
—ka/lk| 0 kc/lKk|
and Eq. transforms in this basis as
1 _
Slth] = 307e2 Z ¢£l(—Q)Dtb;¢tbz(Q)y (16)
q
where the matrix of the coefficients reads
Q7 (cank? +ecky) /[ + [k [? 0 Q7 (ec — €ap)kake /K|
Dy, = 0 02, c0p + A2|k|? 0 . (17)
07, (e — cab)kake/ K[ 0 07, (cavky +eck2) /K [?

Before moving forward and studying the linear response, we here provide a brief review of the generalized plasma
modes that Eq. describes, useful in the following to provide a physical interpretation of the finite-frequency peak
in the real part of the conductivity. The action identifies two longitudinal-transverse mixed modes and one decoupled
purely transverse mode along the b-direction. The former ones cannot be studied separately, as the anisotropy of
layered superconductors is such that the v; and 1; components are coupled for generic direction of the momentum,
that is, the off-diagonal elements of Eq. are nonvanishing. On physical grounds, this is a manifestation of
retardation effects: as already seen in the previous section, at generic wavevector the current induced in the system
is not parallel to E. This induces a longitudinal electric field in the system in response to a transverse perturbation,
making longitudinal and transverse response unavoidably mixed. Since the displacement current scales as OE/J(ct),
the corrections coming from retardation effects are also named relativistic, as they vanish for ¢ — co. The dispersion
relations of the two modes obtained from Eq. read

2
(R~ k) (w2, — ) | (18)

2 Ll o o, 2 224 &
wi(k):§ wab+wc+£|k| 4/ (Wi —w?) +87|k| -2

oo

A detailed discussion of the properties of the generalized plasma modes of single-layer anisotropic superconductors can
be found in Ref. [I8]. Nonetheless, it is important here to stress the main physical outcomes of the present derivation.
The generalized dispersions describe two regular functions of the momenta that give wy(k — 0) — wgp and
w_(k = 0) — w,. For generic propagation direction n and for momenta k| < k = /e (w2, —w?)/c these modes
have mixed longitudinal /transverse character, with a degree of mixing that is maximum at 7 = 7/4 and vanishes as
one moves along the main crystallographic directions (k, = 0 or k. = 0), as one immediately realizes by the structure



of the off-diagonal matrix elements of Eq. scaling as kyk.. Explicitly neglecting this coupling, i.e. setting the
off-diagonal elements to zero, would result in having the two modes uncoupled, one of which purely transverse and
the other purely longitudinal. In this case the dispersion relation of the latter, that is by definition the plasma mode
of the system, can be found by setting to zero the bottom-right element of D;bll:

kq ke
e e e

= eqp(w)sin®n + e.(w) cos®n = 0, (19)
where we have performed the analytic continuation i€, — w + 40" and used k. = |k|cosn and k, = |k|sin7. Using
the definitions of the dielectric functions in Eq.s and , the solution of Eq. is exactly the frequency

2

k2 k
wi(k) = w?, |kT2 + w? |kT2 = w?, sin? 1 4 w? cos? 7, (20)

defined in Eq. (5). In addition, one can easily see from Eq. that in the limit ¢ — oo, i.e. in the regime where
k/|k| — 0, retardation (or relativistic) effects can be neglected and one obtains

w_(k) = wi(k), [k|>k=1/coo(w?, —w?)/ec. (21)

In other words, the expression w;(n) defines the longitudinal-plasmon dispersion in a layered superconductor that one
obtains by neglecting retardation effects, as one usually does in the standard RPA approach where only Coulomb
interactions are included [42H48]. We also note in passing that the limit of w;(k) for k — 0 is non-regular as it depends
on the direction 7 of the momentum. As shown above, this is not the case for the real electromagnetic mode w_,
that is regular at [k| = 0. In Fig. 2a) we show w_ (k) and w;(n) for small values of the propagation angle: as one
can see, as |k| overcomes the k scale w_ rapidly approaches the w; limit and the mode becomes longitudinal. By
using realistic values of plasma frequencies in cuprates one sees that k ~ ym~™'. As such, this scale is two orders of
magnitude smaller than the momenta usually accessible in RIXS [25H29] or EELS [30H32] experiments, that are not
sensitive to the relativistic regime and probe the plasmon dispersion given by Eq. (20]).

B. Interpretation of the conductivity peak of plasmons

From the action in Eq. (16) we can perform the integration of 3; and work with an action of the transverse

components ¥, = (1/),5 1/15) only. This procedure is equivalent to using Ampere’s law as a condition to eliminate the
longitudinal components, see Eq. and the discussion below. One is left with an action that reads

1 02 e, + A2k[? 0
Stbal = oz =) (T H M € ) wala) 2
q

where

EabEe

&¢(1Qm, ) = (23)

Eapsinn +e.cos2n’
is a dielectric function that describes the transverse linear response of the superconductor along the t-axis. Indeed, by
making use of the relation e, = €, + 4mio, /w between the optical conductivity and the dielectric function along the
direction « [49] one recovers oy as in Eq. . Remarkably, the denominator of €, can be brought back to the left-hand
side of the characteristic equation for the uncoupled longitudinal mode. Indeed, by using the explicit expressions
in Eq.s and for the in-plane and out-of-plane dielectric functions of plasma modes and performing the analytic
continuation i, — w+1407", one can rewrite Eq. as €1(w,n) = oo (W? —w?%) ) (W? —w?) /w?(W? —w?(n)), exactly as
in Eq. above. While this result has been formally obtained already within the Maxwell’s classical formalism of the
previous Section, we can now identify the energy of the peak in the transverse conductivity at vanishing momentum
as the value of the longitudinal plasma mode in the high-momentum regime, i.e. the same usually probed by EELS
and RIXS, since w;(n) is a good approximation of the dispersion of the lower mode w_ (k) for |k| > k, see Eq. .

The real part of the conductivity o; is shown in Fig. b), where we also introduced a finite damping parameter
~ when performing the analytic continuation i€2,, — w + iy. We emphasize once more that such a peak is not a
direct manifestation of the Josephson plasmon of the superconductor [33H36] which, as discussed above, for vanishing
momentum is at frequency w,. for every direction 7. Indeed, plasma modes appear as zeroes of the dielectric function
and do not lead to finite-frequency peaks in the conductivity. Instead, the absorptive peak at w;(n) is a manifestation
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Figure 2.  (a) Dispersion of the Josephson plasma mode w_(k) (solid lines) and w;(n) (dashed lines) for different small
propagation angles, having chosen wq/we = 100. (b) Real part of the conductivity o; in the case of superconducting plasma
modes for corresponding values of 7 of panel (a). The conductivity spectra are normalized to the maximum value of the peak
at n = 0.5°. Phenomenological damping parameter is taken as v = 0.1w,.

of the mixing mechanism between in-plane and out-of-plane plasma modes described in the previous section, as the
dielectric function in Eq. comes directly from the action for the coupled modes Eq. . On a more general
ground, our derivation clarifies that a signature of longitudinal nature appears in the transverse response whenever
the longitudinal mode is coupled to the transverse one without directly participating in the detection, that is, the
degree of freedom is integrated out.

It is worth mentioning that our derivation is not restricted to electron-doped cuprates, in which the peak has already
been experimentally reported [33H36], but it is in principle valid for any single-layer superconductor, like the hole-
doped LSCO. We also point out that the results could be extended to bilayer superconductors like YBCO, that display
two Josephson plasmons at frequencies w.; and wes. Indeed, by using the out-of-plane bilayer dielectric function [5]
Ec = Eoo(W? — w3 (wW? — w?)/w?(w? — w?), with w2 = w? ds + w2d; and dj 2 the intra- and inter-bilayer spacings,
one predicts two absorptive peaks in the conductivity centered at the high-momenta values of the dispersions of the
Josephson modes [I9]. The high-energy one follows the same trend of the peak in single-layer superconductors, moving
with 7 from w1 to wgep. The low-energy one quickly moves from weo to wr even for small values of 7, and does not
disappear for n = 7/2 [4H9] 1T}, 13].

IV. FRESNEL EQUATIONS AT NORMAL INCIDENCE ON A TILTED-GROWN SAMPLE

To link the results obtained in the previous sections to experiments we must consider the measured quantity, that
is the electric field transmitted or reflected through the sample with respect to the incident wave, and link it to
the conductivity o;. Moreover, one might argue that due to the fact that the system is anisotropic, both angles n
and ¢j that define the current propagation within the material differ respectively from 7;,, the angle between the
incident momentum of the external wave and the normal to the planes, and ¢, angle between the b-axis and the
electric field that describes its polarization. To this aim, we must write the Fresnel conditions at the boundaries of the
sample. In this section we analyze the configuration in which a THz pulse is at normal incidence on a thin-film layered
superconductor, grown with tilted planes at a small angle n [33H36], and we show that in this case the theoretical
results can be easily related to the experiments, see Appendix A.

Following the notation set above, we define the reference frame (¢,b,1) in such a way that the tb-plane corresponds
to the interface and the [-axis is perpendicular to it, see Fig. (a). At normal incidence 7;, = n immediately, as
the momentum of the wave does not change its direction while crossing the interface. Within the material, the b-
polarized and t-polarized electric fields are decoupled and travel with different values of the wave-vector, see Eq.
and the discussion below. In particular, from Eq. the equations of motion read |k|?> = w?ey;/c? for the former
and |k|? = w?e;/c? for the latter [22], with &, defined in Eq. (23). We then impose the continuity of the tangential
components of the electric field, E; and Ej, and of the magnetic field, B; and By, at the interface [ = 0 and at [ = d,
with d the sample thickness. By solving the system set by these conditions one finds the transmission and reflection
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Figure 3. (a) Sketch of the experimental configuration with a THz wave at normal incidence on a tilted-grown sample of
thickness d. The reference frame (t,b,1) for this configuration is also shown, to highlight the direction of the external electric
field E™ that defines the polarization angle ¢. (b) Real part of the measured conductivity as a function of frequency and
polarization angle as in Eq. . Solid black line corresponds to w,(n, ¢) as in Eq. . In this plot n = 0.25°, d = 0.150 pm,
wab/we = 100 and v = 0.lw.. (c) Fit of experimental data from Ref. with o(w,n, ¢) for different polarization angles.
Fitting parameters are extracted at once from the three measurements: wgqp/27 = 60 THz, w./27w = 0.6 THz, n = 0.26°,
~v = 0.075 THz.

coeflicients for the ¢ and the b components of the field in the thin-film configuration, that read

T 24)
Ro= R )
e ey (20
Rb _ Rb(l _ eQinbwd/c) (27)

1— Rge%nbwd/c ’

where n, = /4 is the refractive index along the direction a, 7, = 2/(1 4 nq) is the transmission coefficient going
from vacuum to the material, 7 = 2n,/(1 4+ n4) is analogously the transmission coefficient from the sample to the
vacuum, and R2 = 1 — 7,7. accounts for the Fabry-Perot interference within the thin film. The ratios T;/T}, and
R:/Ryp carry the information on the rotation of the polarization of the transmitted or reflected wave. By the definition
of the dielectric function &; in Eq. one has that €; ~ g, under the assumption of small tilt angle of the planes.
Then n; ~ n; and the ratios are approximately 1: one can thus conclude that the polarization of the transmitted
or reflected wave does not differ significantly from the one of the incident wave in the experiment. With the same
reasoning o; ™~ o4, S0 that the transverse current is approximately parallel to the field, see Eq. , and we can thus
conclude that ¢ ~ ¢;. In an experiment the measured quantity (see Appendix A) is either the transmissivity

T = Ty cos? ¢ + Ty sin® ¢, (28)
or, analogously, the reflectivity
R = Ry cos? ¢ + Ry sin” . (29)

From these quantities one can define the measured transverse conductivity. Indeed, under the assumption of film-
thickness d much smaller than the wavelength of the radiation inside the material and its penetration depth, one finds

1361

o) =g (3-1) (30)



where Zy = 4m/c is the impedance of free space. This proportionality establishes the link between the measured
quantity and the theoretical conductivity we were looking for. Moreover, in the case of cuprates one can numerically
estimate T < 1 in Eq. , and then approximate o o< 1/T. Since also o4,  1/T} and oy o< 1/Ty, from one can
express the measured transverse conductivity as

Oab0t

o(w,n, p) ~ (31)

OapSin® ¢ + oy cos2 ¢

With o; from Eq. and using the expressions of o, and o, for the superconductor, one finds that the real part of
the conductivity has a peak at a resonance frequency w, (7, ¢) that depends on both 7 and ¢:

w2, sin? nsin? ¢ 4+ w?(1 — sin? 7 sin” @)

5 :
1 —sin®ncos? ¢ + ( "’“b> sin? n cos? ¢

Wa

Wz (777 ¢) = (32)

In Fig. b) we show the real part of Eq. as a function of the external polarization angle and we compare the
peak emerging in the measured conductivity with Eq. . Indeed, the approximated expression provides an
excellent description of the experimental data in Ref.s [33H36], and the frequency Eq. establishes a link between
the peak of the experimental conductivity and the plasma frequencies wgy, and w., which can then be extracted as
fitting parameters given the angles n and ¢. In Fig. c) we fit experimental data from Ref. [36] to provide an estimate
of the in-plane and out-of-plane plasma frequencies of the overdoped Laj g7Ce.13CuQy4 (T, = 21 K) at 5 K. So far, it
was only empirically observed in Ref. [33] that the data could be well fitted by using an effective conductivity o (w, esr)
having the same functional form of Eq. , but with an effective tilt angle n.g = 7 sin ¢. This result actually follows
from Eq. in the case of small angle n between the momentum and the c-axis of the crystal, which is indeed the
configuration of Ref. [33]. In this case, the frequency of the peak in Eq. can be approximated as

Wi (1, @) = wly Sin® Nest + W €08” Nt = W] (Tert), (33)
where again ne.g = 7sin ¢.
At first, one might as well consider the configuration in which the THz pulse is incident with a small angle on a
c-axis grown sample. However, computing the Fresnel conditions in this case results in featureless transmissivity and
reflectivity, and no peak appears in the real part of the conductivity (see Appendix A for details)

V. CONCLUSIONS

In this manuscript we studied the optical absorption in layered superconductors in a tilted geometry, where the light
propagates inside the sample by forming a small angle with the stacking direction. We showed that such a geometry
makes it possible to observe with optics, that is essentially a zero-momentum probe, a direct signature of the plasmon
dispersion at momenta of the order of a fraction of the Brillouin zone, that is usually probed by RIXS or EELS.
The basic physical mechanism behind this observation is the intrinsic mixing between transverse and longitudinal
electromagnetic modes in a layered material, due to the anisotropy between the in-plane and out-of-plane response.
Such mixing, that is absent when light propagates along the main crystallographic axes, leads to the emergence of
an absorption peak in the transverse optical conductivity in tilted geometry. Interestingly, we can show analytically
that the peak frequency moves as a function of the tilting angle according to the functional law that the physical
longitudinal plasmon displays at momenta larger than the scale where transverse/longitudinal mixing is relevant. In
cuprates, where the SC c-axis plasmon is weakly affected by Landau damping due to the opening of a large spectral
gap below T,, the peak is well defined at small tilting angle, and it has been indeed observed in several electron-
doped cuprates [33H36]. Here we argue that the same effect can be seen in any layered sample, provided that the
appropriate Fresnel geometry is implemented. In addition, we provide an analytical expression for the peak frequency
as a function of both tilting angle and light polarization, that can be used to obtain from a single-set of measurements
the relevant scales for plasma excitations in these systems. It is worth stressing that in the last few years, after charged
plasmons have been detected for the first time with high-resolution RIXS [25H29] and EELS [30H32] experiments, an
intense discussion emerged on the nature of charge fluctuations in these correlated materials [31, [32]. The all-optical
measurement proposed here is in principle a bulk probe, it is not affected by the lack of sensitivity at small momenta
connected to plasmon measurements via charge-detecting probes, and it allows for a precise control on the momentum
value, that can be problematic e.g. to EELS [32]. As a consequence, the experimental verification of this idea could
provide an additional knob to explore charge fluctuations in cuprates, and their possible interplay with other collective
modes of the systems.
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APPENDIX A

] k
1ET Nin n
A X Ein

Z
0 d y 0 d

Figure 4. Sketch of the two possible experimental configurations discussed in this Appendix. In both cases the reference frame
(z,vy, 2z) is defined such that xy is the vacuum-sample interface and xz is the plane of incidence. For graphical purposes, only
TM polarized waves are depicted. (a) Geometry of the configuration in which the incident THz pulse is at normal incidence on
a thin-film crystal grown with layers tilted at angle n with respect to the vacuum-sample interface, as in Section 3.3. In this case
the (z,y, z) reference frame corresponds to the (¢,b,1) frame introduced in the main text. (b) Geometry of the configuration
in which the incident field is at oblique incidence with angle 7;, on a thin-film sample with planes parallel to the interface. In
this case the (z,v, z) reference frame corresponds to the crystallographic (a, b, c) frame.

In this Appendix we derive the transmitted electric field in two experimental configurations in which the electro-
magnetic wave travels with a finite angle with respect to the stacking direction of the planes, by means of standard
Fresnel-like boundary conditions applied on a uniaxial film. Let us consider a transmission experiment on a super-
conductor placed in the region 0 < z < d, as in Fig.[d The electric field satisfies Maxwell’s equations

(34)

VQE—C%%Z;]E:O 2<0, z>d
VZE-V(V-E)—1%EB _ g g<z<d

c2

where € is the dielectric tensor of the uniaxial material. By expanding the electric field on a basis of plane waves, Eq.
becomes a linear system for the Cartesian Fourier components of the electric field

2 272 _
{(|k| w?/c2)8,5E5 =0 2<0,2>d (35)

(|k|2§a[3 — kakﬁ — w25a5/62)E5 =0 0<z<d

A propagating solution is allowed whenever the determinant of this system is zero. For the experimental configuration
of Fig. [ a) in which the frame (z,y, z) corresponds to (¢,b,1), as in Section 3.3, the incoming momentum is along the
z (or ) direction. In this geometry the dielectric tensor is defined as (see Eq.s and (7))

Eab COS> N+ e sin? n 0 (gap — &c)cosnsing
0 Eab 0 . (36)
(€ap — €c)cosysing 0 eqpsin®n + e, cos?n

>
I
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TE z<0 (a) TE z>d (b) TE z>d (c)

I . I }  (detection)
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Figure 5. (a) Incoming electric field E™™ at a generic polarization angle ¢ with respect to the TE axis (corresponding to the
y axis and to the crystallographic b axis in both configurations of Fig. . (b) Transmitted electric field ET found by means
of the appropriate set of boundary conditions. The transmitted field still lies in the TM-TE plane due to conservation of the
parallel component of the incident momentum, but ET is generically polarized with angle ¢’ # ¢. (c) Comparison between
the directions of the transmitted field ET and of the projected field E” along the incoming polarization, that is the measured
quantity in a transmission experiment.

From Eq. one can notice that the subspace associated with E, is decoupled from the one associated with E,
and E,. As a consequence, one can show immediately that y-polarized electric fields in the material propagate with
wave-vector |k|? = w?e,;/c?, while z- and z-polarized electric fields propagate with wave-vector |k|? = w?e;/c?, where

EabEe

Et = (37)

. b
EqpSIn® N + £, cos2n

as in Eq. in the main text. Conversely, for the experimental configuration of Fig. (b) in which the frame (z,y, 2)
corresponds to the crystallographic frame (a,b,c), the dielectric tensor is diagonal é,3 = €40q8 (seec Eq.s and
(12)). As the wave-vector belongs to the zz-plane, again in this case the equation for E, is decoupled from the other
two components. One can then in both cases solve the system separately for the transmission of the y— and for the
mixed zz— polarized components of E. In the following we will refer to the former component as the Transverse
Electric (TE) field and to the latter as the Transverse Magnetic (TM) field, as one would commonly do in the oblique
incidence configuration in which the plane of incidence is zz. Notice that the transmitted wave ET is generically
polarized along a direction ¢’ that differ from the polarlzatlon & of the incident wave E™, although the experiment
is still set so to measure the outgoing ¢-polarized wave ET ._Assuming that the TE and TM transmission coefficients
are known, such that ETE ™ = TrETMETE TV (See Fig. for the notation), one finds the measured transmitted
field polarized along ¢ as

EY = E" cos (¢ — )
= ET cos¢’ cos ¢+ ET sin ¢’ sin ¢
= TreEly; cos ¢ + Ty By, sin ¢
= (Trg cos® ¢ + Ty sin? ¢)E™ = TE™. (38)

Analogously, one can express the reflected field in a similar way. For the configuration discussed in the Section 3.3,
see Fig. a), the TE and TM components stand for the b and ¢ components respectively, and one recovers Eq.
of the main text. We now compute explicitly the transmission coefficients Tty and Tty for the two configurations
separately.

For the first configuration (Fig. [(a)) Trg = T, and Tty = Ty, thus the TE and TM components propagate
with different refractive indices, ny = /€qp and n; = ,/e; respectively. Imposing the continuity of the tangential
components of the electric E and magnetic B fields, one recovers the usual expression for transmission at normal
incidence on a slab, namely

1 i d
nnemaw /c

Toa= 1— Rge%nawd/c’

(39)

where T, = 2/(n, + 1) is the transmission coefficient from vacuum n = 1 to a medium with refractive index n,,
T2 =2n4/(ne + 1) is analogously the transmission coefficient from medium to vacuum and the denominator accounts
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for the Fabry-Perot interference inside the slab of thickness d, with R2 = 1—T,7.. Eq. can also be expressed as

_ 2nq
 2n4c08(, —i(n2 +1)sin¢,’

(40)

(e

where {, = nqwd/c. In the approximation d < |nq|w/c, i.e. the thickness of the film is much smaller than the
wavelength of the radiation inside the material A = Re(ny)w/c and the skin depth § = Im(n,)w/c, one can take at
first order in (,

nZ +1 (n2 + 1)wd
— ]2 w=1—i——. 41
Toz ! 2na C ! 2c ( )
Using the relation between refractive index and conductivity o = ;2 (n2 — 1) one can rewrite Eq. ([41)) as
1 drdo, . 2wd drdo,
— =1t ——i— =14+ — 42
T, + 2¢c e + 2¢ ' (42)

where again we considered wd/c < 1. Consequently, one finds

2 1
=7 (1) )

where Zy = 4m/c. This relation between the conductivity and the transmissivity is valid along both the b and
t directions. On the other hand, one can imagine to extract an experimental conductivity from the experimental
transmissivity T as in Eq. by applying the same relation, see e.g. Ref. [36] where Eq. is used.

In the second configuration (Fig. [4[b)) the interface is parallel to the ab-plane of the crystal and one needs to solve
a wider set of continuity conditions. Indeed, one must impose the continuity of the tangential components of the
electric E and magnetic B fields as for the previous configuration, but also the continuity of the normal component
of the displacement field D [50, 5I]. To understand how the transmission occurs in this case, let us first recall the
results expected for an isotropic film, where the propagation of the electromagnetic wave inside the sample is defined

by a unique refractive index n. In this case one easily finds that T(5%) = ET JE™ reads:

TTleinwd cosn/c
1 — R2e2inwdcosn/c’

T (1, m) = (44)
where 7 is the propagation angle inside the material, see Fig. (b), while 7;,, is the external angle of incidence. Here
we defined as before T = 2 cos 1;, /(n cosn;, + cosn) as the transmission coefficient from vacuum to the medium and
analogously 7’ = 2n cosn/(n cos n;, + cosn) as the transmission coefficient from medium to vacuum, while again the
denominator of Eq. accounts for the Fabry-Perot interference inside the slab of thickness d, with R? =1 —T7T".
In Eq. we made explicit the dependence of the transmissivity T on the incident angle and on the refractive index
n only. Indeed, the propagation angle inside the sample is automatically defined by these two quantities thanks to the
Suell’s law, which states that sinn = sin;,/n (notice that in the isotropic case one has to define n with respect to
the normal to the interface as there are no planes, but we maintain the notation to press the analogy between the two
cases). However, in the uniaxial case of Fig. b) Snell’s relation is not valid, since due to anisotropy of the refractive
indices the components k., and k. of the momentum are rescaled differently. This makes the transmission coefficient
a function of 7;,,n, and n.. More specifically, for the TM wave one finds that Ty has an expression analogous to
Eq. 7 provided that one replaces n — n, = /€4 and sinn — sin Nin/Me = sSin nm/\/a:

TTleinbwd cosn/c
1 — R2e2inpwdcosn/c’

Trm (Min, np, e) = (45)

with 7 and 7 retaining the same functional dependence on 7, 7;, as before. In this situation, the argument of the
complex exponential in Eq. reads:

w wd sin? Nin
Cznb?cosn:nb? 1-—

e, (46)

One can check that for THz frequencies around the Josephson plasma frequency w ~ w. the divergence in the square
root possible for 7, # 0 is weakened by the residual quasiparticle damping v, so that we obtain {( < 1. Then,
evaluating 1/T1y from at small ¢ one gets
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1 . zﬂl Eab €OS% Nin + 1 — sin? Nin/Ec
Trm 2¢ COS Nin '

(47)

Similar reasonings can be made for the TE component, that is expressed as in Eq. , provided that sinn —
Sin 7y /My = sin 1, /+/€ab- Also in this case one can approximate the transmission coefficient along this direction as:
1 1 ‘wd eq4p cos? Nin +1 — sin? Nin/Eab
— 1l - .
Trg 2c COS Nin
Even though Eq.s and still depend on a combination of €, and €., these structures do not lead to the pole
observed in the transverse dielectric function &;, as opposed to Eq. obtained in the first configuration. In the
end, by explicit numerical computation with realistic parameter values for cuprates of the transmissivity Tty and
Trg in Eq. (45]), with the corresponding definitions of 1, we verified that the corresponding conductivities, expressed
as in Eq. (43)), are featureless, and no finite-frequency peaks are observed.
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