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2John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

Ferroelectricity is commonly understood in terms of dynamical charges, which represent the dipole moments
generated by atomic displacements or the forces induced by electric fields. In ferroelectrics with a high degree
of symmetry, the dynamical charges are typically symmetric tensors, and can be visualized as ellipsoids. In
van der Waals (vdW) materials which break centrosymmetry, a new type of ferroelectricity arises which dif-
fers greatly from conventional ferroelectrics. The polarization is purely electronic, arising from an interlayer
charge transfer, and most of the polarization generated is perpendicular to atomic motion. We show that the
unconventional properties of vdW ferroelectrics are manifested in their dynamical charges, which exhibit spa-
tial modulation and intrinsic asymmetry. Dynamical charges in vdW ferroelectrics, and more generally, any
strongly anisotropic ferroelectric, can be visualized as deformable, non-ideal ellipsoids dependent on the atomic
configuration. Furthermore, we show that, due to the mixed electrostatic boundary conditions employed for
two-dimensional materials, non-diagonal dynamical charges in 2D materials are always asymmetric.

Introduction.—Ferroelectricity, a spontaneous polarization
that can be switched with an applied electric field, is a mate-
rial property not only of great interest in terms of fundamental
physics, but also enables many useful applications in semi-
conductor technologies [1]. Ferroelectricity arises from the
softening of unstable polar phonon modes in a non-polar ref-
erence state, allowing the material to relax into one of several
lower-energy polar states characterized by a spontaneous po-
larization. This polarization can be reversibly switched be-
tween states using an applied electric field. For example,
in oxide perovskites ABO3, a commonly studied family of
‘conventional’ ferroelectrics, the polarization is understood to
originate from polar phonon mode displacements, typically
the off-centering of the B cation with respect to the oxygen
octahedra [2].

In conventional ferroelectrics, the polarization P is well-
described by

Pβ = Z∗
κ,αβ xκ,α , Z∗

κ,αβ = Ω
∂Pβ

∂xκ,α
=

∂Fκ,α

∂Eβ
, (1)

i.e. the product of the polar mode displacements xκ of atoms
κ , and the dynamical charges Z∗, where Ω is the unit cell vol-
ume. The dynamical charges are mixed derivatives of the free
energy, and can either be thought of as the dipole generated by
an atomic displacement, or the forces Fκ induced by an elec-
tric field E [3, 4]. The dynamical charges can be calculated
as a linear response [5] using density functional perturbation
theory (DFPT) [3, 4, 6–8], and have proven to be a useful con-
cept for understanding the electrical properties of insulators:
they provide an intuitive way to visualize charges in materi-
als in a dynamical sense, which can differ significantly from
the static charges, by taking into consideration the complex
dielectric environment surrounding the ions. For a crystal in a
phase with a high degree of symmetry, the antisymmetric part
of Z∗ is zero or negligible, it has real eigenvalues as well as
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orthogonal eigenvectors. This allows the dynamical charges
to be visualized as ellipsoids: ∑3

i=1 λix2
i ≤ 1 [4], where xi are

coordinates along the eigenvectors vi, which define the prin-
ciple axes, and λi are the eigenvalues. The dynamical charges
are also a well-defined quantity, being a derivative of the total
polarization, in contrast to polarization itself, which in a pe-
riodic crystal is a lattice-valued quantity and must be treated
using the modern theory of polarization [9, 10]. They also
have the powerful advantage that they allow the polarization
to be decomposed into contributions from the displacements
of individual ions, and displacements in individual directions.
Additionally, the dynamical charges are essential for describ-
ing the relaxed-ion responses of materials, such as dielectric
permittivity, piezoelectricity and optical responses [3, 11].

Recently, a new type of ferroelectricity in two-dimensional
(2D) layered materials was proposed [13] and experimentally
observed [14–21]. In layered van der Waals (vdW) systems
such as hexagonal boron nitride (hBN) or transition metal
dichalcogenides (TMDs), where centrosymmetry is broken
(typically by artificial stacking-engineering), an out-of-plane
polarization P⊥, which is purely electronic, occurs via an in-
terlayer charge transfer, the magnitude of which is determined
by the relative stacking between the layers, see Fig. 1. P⊥ can
be switched by a relative sliding of one third of a unit cell
diagonal between the layers, known as van der Waals sliding
[15], which results in ‘vdW ferroelectricity’. This new and
unconventional type of ferroelectricity has been shown to out-
perform state-of-the-art ferroelectric field transistors (FeFET)
[16], with a spontaneous polarization that persists at room
temperature, retention times of up to one month, and ultrafast
switching times as low as 1 ns, which can be achieved using
electric field pulses. In addition, little to no fatigue has been
observed up to 1011 cycles; due to the long-range nature of
the interlayer electrostatic interactions, no bonds are broken
as one layer slides over the other to invert the polarization.

When there is a relative twist or lattice mismatch between
the layers, forming a moiré superlattice, the interlayer charge
transfer results in an out-of-plane polarization texture [22, 23],
and the stacking domains which form can be identified as
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FIG. 1. (a) Out-of-plane and (b) in-plane polarization as a func-
tion of relative displacement along the unit cell diagonal, obtained
from Berry phases (red dots), integrating the dynamical charges (red
line) and multiplying the dynamical charges by the relative displace-
ment (black line). The in-plane polarization is shown as a projec-
tion onto the unit cell diagonal: P∥ = P∥ · 1√

2
(a1 +a2). The Berry

phases were calculated with mixed electrostatic boundary conditions:
{E∥,D⊥}= 0. The dynamical charges for the same boundary condi-
tions, Z2D, were obtained by modifying the Born effective charges as
described by Eq. (5). The high symmetry stackings AA (x = 0), AB
(x = 1

3 ), DW (x = 1
2 ) and BA (x = 2

3 ) are indicated by the ticks and
sketched above. (c) Out-of-plane and (d) in-plane polarization as a
function of relative stacking in 2D. A primitive cell of commensurate
bilayer hBN is sketched.

moiré polar domains (MPDs), see Fig. 1 (c), which have been
experimentally shown to result in ferroelectricity [16, 19]
via the growing and shrinking of the MPDs in response to
an applied field [22, 23]. Additionally, it was recently pro-
posed that the different relative stackings also give rise to an
in-plane polarization P∥ [24, 25], see Fig. 1 (d), which in
moiré superlattices result in topologically nontrivial polariza-
tion textures. This makes vdW materials, both twisted and
untwisted, a promising avenue for engineering ferroelectrics
on the nanoscale.

Although the origin is still based on symmetry breaking,
unstable polar modes (shear modes for vdW sliding) and
charge transfer, the mechanism for ferroelectricity in vdW
materials is very unique when compared to conventional
ferroelectrics such as oxide perovskites. First, in conven-
tional ferroelectrics the polarization is typically parallel to the
atomic displacements: P ∥ x, but in vdW ferroelectrics a sig-
nificant polarization is generated perpendicular to the atomic
motion, i.e. an out-of-plane polarization P⊥ is generated in re-
sponse to in-plane sliding x [24, 25]. Second, in conventional
ferroelectrics, the dynamical charges are approximately con-
stant for small displacements, and the polarization is given by
Eq. (1). In vdW ferroelectrics however, the Born charges are
nonlinear functions of the atomic displacements, and Eq. (1)
is not valid; the polarization must be obtained by integrating

the dynamical charges [24, 25],

Pα(x) =
∫ x

0
Z∗

κ,αβ (x
′)dx′κ,β , (2)

from a non-polar reference configuration to a general config-
uration x, see Figs. 1 (a) and (b).

In this letter, we show that the unconventional nature of
2D layered ferroelectrics results in peculiar features of the dy-
namical charges, using first-principles calculations for rhom-
bohedral bilayer hBN, the prototypical vdW ferroelectric.
Due to the polarization generated perpendicular to atomic mo-
tion, the dynamical charges are asymmetric for low-symmetry
stackings. In many common ferroelectrics, the dynamical
charges are symmetric or have a negligible antisymmetric
part, and can be visualized as regular ellipsoids. For systems
with a low-degree of symmetry, the dynamical charges cannot
be expected to be symmetric, as was reported for La2NiMnO6,
for example [26]. However, the origin, implications and phys-
ical interpretation of asymmetric dynamical charges are not
well-known. We show that when considering mixed electro-
static boundary conditions {E∥,D⊥}= 0 (E is the electric field
and D is the displacement field), appropriate for 2D materi-
als, the dynamical charges are naturally asymmetric, provided
they are non-diagonal. Furthermore, we show that when the
dynamical charges have a small antisymmetric part, they still
have real eigenvalues, but the eigenvectors are no longer or-
thogonal. In vdW ferroelectrics, the dynamical charges, their
eigenvalues and the angles between the eigenvectors modulate
as a function of relative stacking between the layers. Thus, the
dynamical charges in vdW ferroelectrics, and more generally
in any anisotropic system, can be visualized as deformed ellip-
soids which are sensitive to the atomic configurations. Finally,
we discuss the possible consequences of asymmetric dynami-
cal charges.

Results.—First-principles density functional theory (DFT)
calculations were performed to simulate bilayer hBN, in the
rhombohedral (aligned) stacking, using the ABINIT [27, 28]
code. Norm-conserving [29] PSML [30] pseudopotentials
were used, obtained from Pseudo-Dojo [31]. ABINIT em-
ploys a plane-wave basis set, which was determined using a
kinetic energy cutoff of 1000 eV. A Monkhorst-Pack k-point
grid [32] of 16×16×1 was used to sample the Brillouin zone.
The revPBE exchange-correlation functional was used [33],
and the vdw-DFT-D3(BJ) [34] correction was used to treat
the vdW interactions between the layers.

In order to sample the relative stackings between the lay-
ers in ‘configuration space’ [35], the top layer was translated
along the unit cell diagonal over the bottom layer, which was
held fixed. A fine sampling of 96 points was used, which ex-
plicitly includes the high symmetry stackings: the AA stack-
ing, where the two layers are perfectly aligned, the AB and
BA where the opposite atoms in neighboring layers are ver-
tically aligned, given by a relative shift of x = 1

3 or 2
3 of a

unit cell diagonal, respectively, and domain wall (DW) stack-
ing, given by a shift of x = 1

2 of a unit cell diagonal. At each
point a geometry relaxation was performed to obtain the equi-
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0.00

0.25

0.50

0.75

1.00
AA AB DW BA AA

0.00

0.01

0.02

0.03

0.04

0.05

0 1
3

1
2

2
3 1

∆θ
B

1
ij

(d
eg

.)

θ13
θ23
θ12

‖∆
Z B

1
‖ F

(e
)

x

Z2D

ZS

ZA

−60

−40

−20

0

20

40

60
AA AB DW BA AA

−60

−40

−20

0

20

40

60

0 1
3

1
2

2
3 1

P ⊥
(1

0−
4

C
/m

2 )

Z2D

ZS

ZA

∆P
‖

(1
0−

4
C

/m
2 )

x

Z2D

ZS

ZA

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

v1

v2

v3

FIG. 2. (a) Sketch of a flat ellipsoid, representing the dynamical charges in vdW ferroelectrics. (b) Illustration of eigenvectors vi and their
deflections with respect to principle axes φi. A primitive cell of hBN is sketched in red, with lattice vectors a1 = x̂ and a2 = 1

2 x̂+
√

3
2 ŷ.

The direction of sliding along the unit cell diagonal is indicated by the red dashed line. Eigenvalues (c) in-plane and (d) out-of-plane, for
the B atom in the bottom layer. The eigenvalues of all atoms are available in Ref. [12]. (e) Deviation from orthogonality of the eigenvectors,
∆θi j =

∣∣cos−1 (vi ·v j
)
− π

2

∣∣. (f) Frobenius norm of the change in Z2D (black), and symmetric (red) and antisymmetric (blue) parts, as a function
of x: ∥∆Z∥F ≡ ∥Z(x)−Z(0)∥F. (g) Out-of-plane and (h) in-plane polarization, obtained by integrating Z2D (black), and by integrating the
symmetric (blue) and antisymmetric (red) parts individually.
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FIG. 3. (a) Out-of-plane and (b) in-plane change in polarization
δPβ = Z2D

κ,αβ δxκ,α (black) and contributions from in-plane motion
(red) and out-of-plane corrugation (blue). (c) Out-of-plane and (d)
in-plane change in antisymmetric polarization δPA

β = ZA
κ,αβ δxκ,α

(black) and contributions from in-plane motion (red) and out-of-
plane corrugation (blue).

librium layer separation, while keeping the in-plane atomic
positions fixed. DFPT calculations were then performed us-
ing both electric field and phonon perturbations to calculate
the dynamical charges [3, 4]:

Z∗
κ,αβ =

−2ie f Ω
(2π)3

occ

∑
n

∮
BZ

⟨∂xκ,α un,k|∂kβ un,k⟩dk , (3)

where |un,k⟩ are the Bloch states, Ω is the unit cell volume and
f is the occupation factor (2 for spin-degenerate systems).

Due to the semi-periodic nature of 2D systems, mixed elec-
trostatic boundary conditions should be employed to calcu-

late electromechanical properties, taking the electric field to
be zero in-plane and the displacement field to be zero out-of-
plane: {E∥,D⊥} = 0 [36]. The polarization as a function of
stacking in Fig. 1 was calculated using these mixed bound-
ary conditions, and differs in the out-of-plane direction by a
factor ε∞

zz , ε∞ being the electronic (clamped-ion) permittivity,
with respect to calculations performed at fixed electric field
in all directions [12]. The dynamical charges evaluated at
fixed electric field are the well-known Born effective charges
(Z∗), and when calculated at fixed displacement field, they
are known as the Callen charges

(
ZC

)
[37]. Mixed electro-

static boundary conditions {E∥,D⊥} = 0 yield a dynamical
charge of mixed Born and Callen type

(
Z2D

)
, although cur-

rently no widely available DFT code is capable of performing
DFPT calculations with mixed electrostatic boundary condi-
tions. The mixed dynamical charges can be related to the Born
charges through the relation between the polarization with dif-
ferent electrostatic boundary conditions:

P2D
∥ = P∥

P2D
⊥ =

1
ε∞

zz
P⊥

, (4)

where P is the polarization calculated for {E∥,E⊥} = 0 and
P2D is the polarization calculated for {E∥,D⊥}= 0. Combin-
ing Eqs. (2) and (4) yields

Z2D
κ,αβ = Z∗

κ,αβ , α = x,y

Z2D
κ,zβ =

1
ε∞

zz
Z∗

κ,zβ
, (5)

which is similar to the relation between Born charges and
Callen charges [4], however only the third column of Z∗

κ
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is modified. Eq. (5) implies that, under mixed electrostatic
boundary conditions, the dynamical charges naturally asym-
metric, provided they are non-diagonal.

The eigenvalues and eigenvectors of the dynamical charges
were calculated as a function of relative stacking, and are
shown for the B atom in the bottom layer in Fig. 2, with the
rest available in Ref. [12]. The in-plane eigenvalues are close
to the formal charges, and the out-of-plane one is significantly
smaller, due to the 2D nature of the system. Thus, the dynam-
ical charges can be visualized as flat discs, see Fig. 2 (a). In
general, one of the eigenvectors, v1, points along the unit cell
diagonal a1 + a2 (a1 and a2 are the lattice vectors of hBN),
which is the direction of atomic motion, and the other, v2,
is orthogonal to v1 and in-plane. The third eigenvector, v3,
points out of the plane, see Fig. 2 (b). Because of the inter-
layer electronic charge transfer which occurs with changes in
relative stacking, the eigenvalues modulate as one layer slides
over the other, see Figs. 2 (c) and (d). Additionally, the eigen-
vectors are non-orthogonal for all except the high-symmetry
stackings AA, AB and BA, see Fig. 2 (e). As one layer slides
over the other, the eigenvectors v1 and v3, which are confined
to a plane which is normal to the bilayer and along the direc-
tion of motion, deflect by φ1 and φ3, respectively, while φ2,
which is orthogonal to this plane, is zero for every stacking.
Thus the angle θ13, where θi j = cos−1 (vi ·v j), deflects from
π
2 as a function of stacking.

The dynamical charges were decomposed into sym-
metric and antisymmetric parts: Z2D = ZS +ZA, where
ZS,A

κ,αβ = 1
2 (Z

2D
κ,αβ ±Z2D

κ,βα). The Frobenius norm of the dy-

namical charges, ∥Z∥F = tr
(
ZZ†

) 1
2 , which is the analogue of

the Euclidean norm of a vector, were calculated, with respect
to the AA stacking, and are shown in Fig. 2 (f). Although
ZA is traceless, and ∥ZA∥F is small compared to ∥Z2D∥F, their
spatial modulations are comparable. Additionally, we can see
that there is a direct correspondence between the change in the
angle between the eigenvectors and the spatial modulation of
ZA.

The eigenvalues of ZA are always of the form(
+iλ A,−iλ A,0

)
, with only a single independent pa-

rameter λ A, which is remarkably close to ∆θ13, although a
general relation does not exist [12]. The in-plane eigenvectors
of ZA, vA

1,2 lie along a3 + i(a1 + a2) and are antiparallel,
and the out-of-plane eigenvector is vA

3 = a1 − a2. All three
eigenvectors of ZA are constant as a function of stacking.

In general, the dynamical charges can be characterized by

3

∑
i=1

λix2
i +∑

i̸= j
λi cos(θi j)xix j ≤ 1 (6)

where cos(θi j) = vi · v j. When ∆θi j ∼ λ A ̸= 0, the charges
deform from an ideal ellipsoid.

The dynamical charges allow the total polarization to be
decomposed into contributions from the motion of different
atoms in different directions, and additionally, into symmetric
and antisymmetric contributions, see Figs. 2 (g) and (h). We

can see that the total polarization arises mostly from ZS. De-
composing the total polarization into in-plane sliding and out-
of-plane corrugation from the layers, see Figs. 3 (a) and (b),
we can see that most of the polarization is generated from the
in-plane sliding of the layers, with higher-order contributions
from out-of-plane corrugation. The directional contributions
to the antisymmetric part of the polarization is completely per-
pendicular, see Figs. 3 (c) and (d). While the antisymmetric
contributions on the individual B and N atoms are quite large
[12], they are nearly equal and opposite (apart from the small
charge transfer), and thus ZA makes a negligible contribution
to the total polarization as a function of stacking.

Discussion and conclusions.—In this work, we examine the
unconventional nature of ferroelectricity in vdW systems and
provide an intuitive description using the dynamical charges.
The dynamical charges themselves are also quite unconven-
tional, where both the eigenvalues and eigenvectors change
as a function of relative stacking. We propose a physical in-
terpretation of the dynamical charges in vdW ferroelectrics
as non-ideal ellipsoids which deform as function of relative
stacking. The change in the eigenvalues, i.e. the major axes of
the ellipsoid are a result of charge transfer, and are essential
for describing ferroelectricity and topological polarization in
vdW materials. The change in the angles between the eigen-
vectors, i.e. the deformation from a regular ellipsoid, denote
an anomalous polar response, which is described by the an-
tisymmetric part. This is a generalization of the physical de-
scription of dynamical charges as regular ellipsoids in con-
ventional ferroelectrics, i.e. those with a high degree of sym-
metry, where ZA is typically zero or negligible. This visu-
alization is applicable to any anisotropic insulator. Further-
more, we show that, upon considering the appropriate electro-
static boundary conditions, every 2D system has asymmetric
dynamical charges, provided the Born effective charges are
non-diagonal.

We note that while in a commensurate bilayer, most of the
stacking configurations are dynamically unstable (all except
for AB and BA), in a moiré superlattice, i.e. a system with
relative strains and/or twists between constituent layers, these
stackings are stabilized as they are pinned as dislocations via
stacking-engineering. Thus, the asymmetry of the dynamical
charges of vdW ferroelectrics should be realizable by intro-
ducing relative twists or lattice mismatches between the lay-
ers. Furthermore, calculating the polarization in terms of the
effective charges allows us to understand the origin of the
polarization, which mostly arises from the in-plane stacking
(shear modes), with higher-order contributions from the out-
of-plane corrugation of the layers.

The spatial modulations of ZA as a function of stacking are
comparable to the spatial modulations of Z2D. Despite this,
ZA does not contribute much to the total polarization in hBN
as ZA fluctuates about zero whereas Z2D fluctuates about a
finite value; the nearly equal and opposite antisymmetric con-
tributions arising from the displacements of the B and N atoms
almost cancel, resulting in a very small contribution to the to-
tal polarization, i.e. only from the electronic charge transfer
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and not from ionic contributions. However, the anomalous
dynamical charges in vdW ferroelectrics may result in inter-
esting phenomena in other higher-order material responses.
For example, the relaxed-ion contributions to many response
properties are related to the dynamical charges, including
permittivity, electromechanical responses such as piezoelec-
tricity and electrostriction [38], as well as electro-optic re-
sponses and Raman intensities [39, 40]. Asymmetric dynam-
ical charges may lead to anomalous responses in such quanti-
ties, in particular in the vicinity of a phase transition.

The authors thank X. He for helpful discussions. D.B. ac-
knowledges funding from the University of Liège under spe-
cial funds for research (IPD-STEMA fellowship programme),
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SUPPLEMENTARY MATERIAL
Asymmetric dynamical charges in two-dimensional ferroelectrics
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Mixed electrostatic boundary conditions

The polarization as a function of relative stacking in bilayer hBN for different electrostatic boundary conditions is shown in
Fig. S1.
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FIG. S1. Polarization as a function of relative stacking in bilayer hBN for different electrostatic boundary conditions: {E‖,E⊥}= 0 (blue) and
{E‖,D⊥}= 0 (red).
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Eigenvalues and eigenvectors

The eigenvalues of the dynamical charges in hBN are shown as a function of relative stacking in Fig. ??. The angles φi between
between the eigenvetors vi and the principle axes are shown in Fig. S2 for each atom, and as a function of relative stacking. The
angles θi j between between the eigenvetors vi and v j are shown in Fig. S3. The imaginary part of λ A, the eigenvalue of ZA,
multiplied by rad = 180

π , is shown in Fig. S4 for each atom in bilayer hBN and as a function of relative stacking.
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FIG. S4. Angles θi j between the eigenvectors vi and v j, for each atom in bilayer hBN, as a function of relative stacking
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ANTISYMMETRIC CONTRIBUTION

The norms of the change in total, symmetric and antisymmetric dynamical charge, with respect to the nonpolar AA stacking,
are shown in Fig. S5, for each atom and as a function of stacking.
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