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Abstract. The discovery of drug-target interactions (DTIs) plays a
crucial role in pharmaceutical development. The deep learning model
achieves more accurate results in DTI prediction due to its ability to ex-
tract robust and expressive features from drug and target chemical struc-
tures. However, existing deep learning methods typically generate drug
features via aggregating molecular atom representations, ignoring the
chemical properties carried by motifs, i.e., substructures of the molecu-
lar graph. The atom-drug double-level molecular representation learning
can not fully exploit structure information and fails to interpret the DTI
mechanism from the motif perspective. In addition, sequential model-
based target feature extraction either fuses limited contextual informa-
tion or requires expensive computational resources. To tackle the above
issues, we propose a hierarchical graph representation learning-based
DTI prediction method (HiGraphDTI). Specifically, HiGraphDTI learns
hierarchical drug representations from triple-level molecular graphs to
thoroughly exploit chemical information embedded in atoms, motifs,
and molecules. Then, an attentional feature fusion module incorporates
information from different receptive fields to extract expressive target
features. Last, the hierarchical attention mechanism identifies crucial
molecular segments, which offers complementary views for interpreting
interaction mechanisms. The experiment results not only demonstrate
the superiority of HiGraphDTI to the state-of-the-art methods, but also
confirm the practical ability of our model in interaction interpretation
and new DTI discovery.

Keywords: drug-target interaction prediction · hierarchical graph rep-
resentation learning · feature fusion · attention mechanism

1 Introduction

Nowadays, pharmaceutical scientists still rely on existing drug-target interac-
tions (DTIs) to develop novel drugs [3]. Therefore, there is a pressing need
to accurately and efficiently discover new DTIs. Although traditional in vitro
wet-lab verification can obtain reliable DTIs, the complex experimental process
⋆ Corresponding author.
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consumes considerable time and labor, making it challenging to screen through a
large number of candidates rapidly [29]. The computational methods receive con-
siderable focus, since they can significantly diminish the resources for screening
by predicting reliable DTI candidates [1]. Deep learning models have achieved
superior performances in DTI prediction, due to their ability to extract robust
and high-quality features from abundant drug and target structure information
[22,4]. Deep learning DTI prediction methods typically extract drug and tar-
get features from their chemical structures and integrate them to infer unseen
interactions [27].

Drugs are chemical molecules, represented by either the Simplified Molecular
Input Line Entry System (SMILES) strings [2] or molecular graphs [19]. Convo-
lutional Neural network (CNN) [28] and Transformer [14,26] are utilized to gen-
erate drug embeddings via encoding sequential molecular information in SMILES
strings. On the other hand, the molecular graphs explicitly depict atom relations
in 2-dimensional geometric space, enabling graph neural networks (GNNs) to ex-
tract more informative drug representations [13,17]. Motifs, molecular subgraphs
composed of part of atoms and their bonds, usually carry indicative information
about the important molecular properties and functions [25]. Nevertheless, exist-
ing GNN-based deep learning models typically learn atom node embeddings and
aggregate them via readout or attention-weighted summation to derive molec-
ular representations, ignoring important functional characteristics expressed by
motifs. Furthermore, current DTI prediction methods only offer the contribution
of each atom to the interaction between drug and target, failing to investigate
the biological interpretation of DTIs from the motif perspective.

For targets, DTI prediction methods use sequential models, such as CNN [23,13],
RNN [12] and Transformer [8] to extract high-level features from their amino
acid sequences. They commonly select the last layer of the deep neural network
as final representations. However, CNN and RNN-based target features lack a
broad receptive field [23,13,12]. Although Transformer-based target representa-
tions fuse every amino acid embeddings, they suffer expensive computational
costs [8].

In this study, we propose a hierarchical graph representation learning-based
DTI prediction method (HiGraphDTI) to enrich the information involved in
drug and target features and enhance the interpretation of DTI mechanisms.
First, we employ hierarchical molecular graph representation to extract atom,
motif, and global-level embeddings, enabling atomic information aggregation
more orderly and reliable while incorporating more chemical properties. Then,
we develop an attentional target feature fusion module, which extends recep-
tive fields to improve the expressive ability of protein representations. Finally,
we design a hierarchical attention mechanism to capture the various level cor-
relations between drugs and targets, providing comprehensive interpretations of
DTIs from multiple perspectives. Experimental results on four benchmark DTI
datasets illustrate that HiGraphDTI surpasses six state-of-the-art methods. The
effectiveness of our method in providing valuable biological insights is verified
via case studies on multi-level attention weight visualizations.
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2 Related Work

Predicting drug-target interactions (DTIs) is a crucial area of research in drug
development. In recent years, predominant computational approaches comprise
two categories: traditional machine learning and deep learning.

Traditional machine learning DTI prediction methods typically rely on man-
ually crafted features, e.g., molecular descriptors for drugs and structural and
physicochemical property-based protein features [21]. In [15], the SVM classi-
fier utilizes different kernel functions to determine the similarity of compounds
and proteins, and combines chemical and genomic spaces via tensor products.
EBiCTR [20] is an ensemble of bi-clustering trees trained on the reconstructed
output space and dyadic (drug and target) feature space.

Deep learning approaches can alleviate the issue by their capability to learn
feature representations. DeepDTA [30] only leverages the sequence information
of drugs and targets to predict drug-target binding affinity. DeepConv-DTI [16]
employs convolution on amino acid subsequences of varying lengths to capture
local residue patterns in proteins, enriching the information of target features.
TransformerCPI [7] let target features serve as the output of the Transformer
encoder and the drug features serve as the input to the Transformer decoder
to catch the interactions between drugs and targets. MolTrans [14] introduces
a Frequent Consecutive Sub-sequence (FCS) mining algorithm, which utilizes
unlabeled data to learn contextual semantic information in SMILES strings and
amino acid sequences. The FCS algorithm enhances the expressive power of the
model and makes progress in exploiting other information. However, it merely
identifies patterns in SMILES strings, which may not correspond to the struc-
tural characteristics of drugs. IIFDTI [9] comprises four feature components:
target features extracted by convolutional neural networks, drug features ex-
tracted by graph attention networks, and two interaction features obtained from
the Transformer. Similar to MoLTrans, it also incorporates semantic information
of SMILES and amino acid sequences. DrugBAN [5] utilizes a bilinear attention
network module to capture local interactions between drugs and targets for DTI
prediction.

Although the aforementioned methods have achieved excellent performance,
they still encounter issues: 1. They explore the structural information in drug
molecules inadequately. 2. They typically employ summation or averaging as the
READOUT function, leading to an unordered aggregation of information in this
process. 3. They lack multi-level biological interpretation.

3 Method

In this section, we illustrate the proposed HiGraphDTI model that predicts in-
teractions between drugs and targets via hierarchical graph representation learn-
ing. Fig. 1 outlines the architecture of HiGraphDTI, which consists of three main
modules:
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– Hierarchical molecular graph representation that extracts drug features, en-
riching the chemical structure properties and characteristics exploitation and
making the information aggregation process more orderly and reliable.

– Attentional target feature fusion that adopts a broader receptive field to
protein sequence representation extraction.

– Hierarchical attention mechanism that captures the correlations between
drug and target features from various perspectives, providing comprehen-
sive explanations for DTI mechanisms.

3.1 Hierarchical Molecular Graph Representation

Hierarchical graph representation for drugs contains two parts: hierarchical graph
construction and message-passing. The molecular graph partition process is il-
lustrated in Fig. 2.

First, We transform the original drug molecules into a graph G = (V,E),
where each atom corresponds to a node v ∈ V , and the bonds between atoms cor-
respond to bidirectional edges in E. G is the atom layer of the molecular graph.
Then, we divide the drug molecules into multiple functional fragments using the
Breaking of Retrosynthetically Interesting Chemical Substructures (BRICS) al-
gorithm, which defines 16 rules and breaks strategic bonds in a molecule that

Fig. 1. The overview architecture of HiGraphDTI.
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match a set of chemical reactions [11]. Following the work [25], we supplement
an additional partition rule, i.e., disconnecting cycles and branches around min-
imum rings, to BRICS algorithm to get rid of excessively large fragments.

These obtained fragments, referred to as motifs, construct the second level
of the molecular graph. We create a node for each motif, and the collection of
nodes is defined as Vm. We connect each motif node with its involved atoms in
the atom layer, and the collection of these edges is defined as Em. To avoid the
over-smoothing issue in graph neural networks and make message aggregation
more reasonable, these edges are unidirectional, pointing from the atom layer to
the motif layer.

Finally, to aggregate the global information of drug molecules, we construct
a global node Vg, which is the graph-layer. We establish connections between it
and all motif nodes, and the collection of these edges is referred to as Eg. These
edges are also unidirectional, pointing from motif nodes to the global node Vg.
The final hierarchical graph is constructed as follows:

Ḡ = (V̄ , Ē), V̄ = (V, Vm, Vg), Ē = (E,Em, Eg) (1)

Fig. 2. Hierarchical graph representation construction. In the diagram, solid lines rep-
resent bidirectional edges, and dashed lines represent unidirectional edges.

Given the triple-layer molecular graph, we employ Graph Isomorphism Net-
work (GIN) to propagate messages and learn node embeddings due to its superior
expressive power demonstrated by Weisfeiler-Lehman (WL) test [24]. Specifi-
cally, the message-passing formula of GIN is:

hl
v = MLP l(hl−1

v +
∑

u∈N (v)

(hl−1
v +WlXuv)) (2)
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where MLP l represents a multi-layer perceptron (MLP) for node features uti-
lized to update nodes, Xuv represents the edge embeddings between nodes u and
v, Wl represents the embedding parameters of Xuv for each layer and h0

v = Xv

is the input node feature of v ∈ V̄ . After multiple iterations of updates, we obtain
the final embeddings of atom, motif, and global nodes, denoted as Ha ∈ R|a|×d,
Hm ∈ R|m|×d and Hg ∈ R1×d respectively, where |a| is the number of atoms,
|m| is the number of motifs. We adopt Hg as the representation of the whole
drug molecule.

3.2 Attentional Target Feature Fusion

Following previous work [23], we partition the target sequence into 3-gram amino
acids to obtain the initial vector, denoted as XP = {x1, x2, ..., xl}, where xi ∈ Rd

represents the embedding of the i-th segment, l is the number of the partitioned
sequences, and d is the embedding dimension. To better aggregate critical fea-
tures in the protein vector representation, We design a one-dimensional (1D)
convolutional neural network with layer-wise decreasing channels, and the for-
mula for each layer is as follows:

Xi = Relu(BNi(Conv1Di(Xi−1))) (3)

where Xi represents the feature representation for the i-th layer, and X0 = XP ,
Conv1D represents the 1D convolution in the i-th layer with the kernel size of
15 and the output channels reduced by half, Relu represents the ReLu nonlinear
activation function, BNi represents the batch normalization in the i-th layer.

We obtain target feature representations X1, X2, X3 at three different convo-
lutional layers. To aggregate target information, we adapt the attentional feature
fusion (AFF) module [10] tailored to amino acid sequences. The process is de-
picted in Fig. 3. We perform transposed convolution on X3 to map it to the same
dimension as X2 and then put it into the AFF module. Next, Map the result to
the same dimension as X1 and put it into the AFF module to obtain the out-
come, denoted as HP ∈ Rl×d, where l is the number of partitioned sequences,
is the embedding dimension.

The detailed illustration of AFF module are shown in Fig. 4. AFF module
receives two inputs, I1 and I2, where I1 is the high-level feature after trans-
posed convolution, and I2 is the low-level feature. We combine the information
from those through element-wise summation as I and feed the result into mod-
ule M to extract additional information. Module M achieves channel attention
across multiple scales by changing the spatial pooling size. It mainly consists of
two parts: one for extracting global features and the other for extracting local
features, as illustrated in Eq. (4).

M(I) = σ(L(I)⊕ L(MeanPooling(I))) (4)

where σ is the Sigmoid function, MeanPooling(I) = 1
l

∑l
i=1 I[i, :] is the average

pooling along columns, ⊕ refers to the broadcasting addition and L(I) is defined
as:

L(I) = BN(PWConv2(Relu(BN(PWConv1(I))))) (5)
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Fig. 3. The overview architecture of feature fusion module for protein. The high-level
feature is mapped to the same dimension as the low-level using transposed convolution
and then input into the AFF module for fusion. Taking the result as high-level features,
repeat the operation.

Fig. 4. The architecture of AFF module, which utilizes operation M to compute the
attention matrix for weighted aggregation of inputs I1 and I2.
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In L(I), PWConv1 and PWConv2 refer to two point-wise 1D convolutions to
capture information from diverse channels and maintain the model as lightweight
as possible. After applying the module M , We obtain the attention matrix. To
get the final output, we perform the following operations.

O = M(I)⊗ I1 + (1−M(I))⊗ I2 (6)

where ⊗ denotes the element-wise multiplication. In Fig. 4, the black dashed
line denotes (1−M(I)). M(I) and 1−M(I) are real arrays in the range of 0 to
1, facilitating a weighted sum of I1 and I2.

3.3 Hierarchical Attention Mechanism

We design a hierarchical attention mechanism to capture the correlation between
triple-level drug features (Ha, Hm, Hg) and target features (HP ). Graph level
drug features Hg aggregates the global molecular information after cross-level
message-passing. It consists of only a single vector, lacking robustness. Incorpo-
rating additional information could significantly decrease its express capacity.
Therefore, we only incorporate drug features into the target embedding HP . We
calculate the attention between targets and different levels of drugs using the
following formula:

Attna = Relu(H⊤
PWaHa) (7)

Attnm = Relu(H⊤
PWmHm) (8)

Attng = Relu(H⊤
PWgHg) (9)

where Attna ∈ Rl×|a|, Attnm ∈ Rl×|m|, Attng ∈ Rl×1 represent attention
matrices between protein partitioned sequence and different levels (atom, motif,
and global) of the drug molecule. Next, we calculate the mean along the rows
for each attention matrix, resulting in three attention vectors Aa, Am, Ag. The
summation of these vectors utilized as weights for updating HP yields the protein
representation enriched with drug information. Its formula is as follows:

FP = HP · (SF (Aa) + SF (Am) + SF (Ag)) (10)

where SF is the softmax function.
Finally, we concatenate Hg and FP and then feed them into a multi-layer

perceptron (MLP) model to derive the probability of drug-target interaction Ŷ.
The binary cross-entropy loss is utilized for training our model.

L = − 1

N

N∑
i

yi · log(ŷi) + (1− yi) · log(1− ŷi) (11)

where yi is the true label, ŷiis the predicted label, N is the number of training
samples.
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4 Experiments

4.1 Experimental Setup

We select four benchmark datasets in the DTI field to evaluate our model, in-
cluding Human dataset [18], Caenorhabditis elegant (C.elegans) dataset [18],
BindingDB dataset [12], GPCR dataset [7]. Human and C.elegans datasets are
created using a systematic screening framework to obtain highly credible nega-
tive samples [18]. GPCR dataset is constructed through the GLASS database [6],
which uses scores to describe the drug-target affinity(DTA). To obtain samples
for DTIs, GPCR uses a threshold of 6.0 to categorize positive and negative sam-
ples. The BindingDB dataset [12] primarily focuses on the interactions of small
molecules, and it is well-divided into non-overlapping training, validation, and
test sets. Table 1 presents the statistics of the mentioned datasets.

Table 1. Statistics of datasets.

Datasets Targets Drugs Interactions Positive Negative

Human 852 1052 6738 3369 3369
C.elegans 2504 1434 8000 4000 4000

BindingDB 812 49745 61258 33772 27486
GPCR 356 5359 15343 7989 7354

For the Human and C.elegans datasets, we employ a five-fold cross-validation
approach. They are divided into training set, validation set and test set according
to the ratio of 8:1:1. For the BindingDB dataset, the training set, validation set
and test set are partitioned well [12]. For the GPCR dataset, the training set
and test set are divided well [7]. We randomly select the 20% of the training set
as the validation set.

We select six state-of-the-art DTI prediction methods for comparison: Deep-
DTA [30], DeepConv-DTI [16], MolTrans [14], TransformerCPI [7], IIFDTI [9],
and DrugBAN [5]. A brief introduction to the methods mentioned above is pro-
vided in the Supplementary Materials. To adapt DeepDTA, a drug-target affinity
prediction model, to the DTI prediction task, we replace the loss function in its
last layer with binary cross-entropy loss.

We choose four metrics for evaluating our models: AUC (the area under the
receiver operating characteristic curve), AUPR (the area under the precision-
recall curve), Precision, and Recall. We execute all models ten times using dif-
ferent random seeds, calculating their averages to compare performance.

For all datasets, we save the model parameters that achieve the highest AUC
on the validation set. Then, we evaluate its performance on the test set to obtain
results. For each dataset, we execute the experiments ten times with different ten
seeds and calculate their average and standard deviation (std) as the final results
to compare. Details regarding dataset partitioning and model hyperparameter
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settings are available in the Supplementary Materials. The codes of our model
are available at https://anonymous.4open.science/r/HiGraphDTI-08FB.

4.2 Comparison Results

As shown in Table 2 and Table 3, HiGraphDTI outperforms the six baselines in
terms of AUC and AUPR on all datasets. We attribute the excellent performance
to three merits of HiGraphDTI. First, using hierarchical graph representation
allows drugs to aggregate information across different levels, enriching the molec-
ular structure representation. Second, employing feature fusion modules enables
targets to capture information from different receptive fields, enhancing the pro-
tein sequence representation. Thrid, Applying hierarchical attention mechanisms
computes interactive attention between different levels of drugs and targets, aug-
menting the interaction information between drugs and targets.

IIFDTI ranks second on the Human, C. elegans and GPCR datasets. The
innovation of IIFDTI lies in its utilization of Word2Vec to separately extract
feature representations from SMILES and amino acid sequences. It incorporates
textual information encoded in SMILES, while HiGraphDTI enriches hierarchi-
cal information in molecular graph representations. Compared to compressed
textual information, hierarchically aggregated information based on molecular
chemical properties is more expressive. At the same time, after hierarchical par-
titioning, our method can calculate attention scores between different levels and
the target. That enriches the information of interaction features and allows for di-
verse biological interpretations at different levels of DTI. HiGraphDTI surpasses
IIFDTI in AUC and AUPR, especially on the GPCR dataset, with improvements
of 1.3% and 0.8%, respectively. For the larger dataset BindingDB, DrugBAN is
the second-best in terms of AUC. DrugBAN utilizes graph neural networks and
convolutional neural networks to extract feature representations for drugs and
targets. It employs its proposed Bilinear Attention Network to obtain interaction
features. However, It does not incorporate additional information to enrich its
feature representation, resulting in its inferiority to HiGraphDTI. Furthermore,
HiGraphDTI also exhibits advantages over IIFDTI on the BindingDB dataset,
achieving improvements of 0.9% in AUC and 1.1% in AUPR. The results for
precision and recall are presented in the supplementary materials.

4.3 Ablation Experiment

To validate the effectiveness of each module in HiGraph, we design the following
ablation experiments.

– HiGraphDTIw/oFF: We remove the target feature fusion module and retain
the last output convolutional layer as target representation.

– HiGraphDTIw/oHI: We remove all attentions between drugs and targets. We
only concatenate the global-level features of drugs and the mean of target
features for prediction.

https://anonymous.4open.science/r/HiGraphDTI-08FB
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Table 2. Experiment results in terms of AUC, where the best and runner-up results
are highlighted in bold and underlined, respectively.

Model
Dataset Human C.elegans BindingDB GPCR

DeepDTA 0.972 (0.001) 0.983 (0.001) 0.934 (0.007) 0.776 (0.006)

DeepConv-DTI 0.967 (0.002) 0.983 (0.002) 0.922 (0.003) 0.752 (0.011)

MolTrans 0.974 (0.002) 0.982 (0.003) 0.899 (0.006) 0.807 (0.004)

TransformerCPI 0.970 (0.006) 0.984 (0.002) 0.933 (0.011) 0.842 (0.007)

IIFDTI 0.984 (0.003) 0.991 (0.002) 0.944 (0.003) 0.845 (0.008)

DrugBAN 0.984 (0.001) 0.989 (0.001) 0.945 (0.007) 0.837 (0.010)

Ours 0.985 (0.001) 0.993 (0.001) 0.954 (0.003) 0.858 (0.004)

Table 3. Experiment results in terms of AUPR, where the best and runner-up results
are highlighted in bold and underlined, respectively.

Model
Dataset Human C.elegans BindingDB GPCR

DeepDTA 0.973 (0.002) 0.984 (0.007) 0.934 (0.008) 0.762 (0.015)

DeepConv-DTI 0.964 (0.004) 0.985 (0.001) 0.921 (0.004) 0.685 (0.010)

MolTrans 0.976 (0.003) 0.982 (0.003) 0.897 (0.010) 0.788 (0.009)

TransformerCPI 0.974 (0.005) 0.983 (0.003) 0.934 (0.015) 0.837 (0.010)

IIFDTI 0.985 (0.003) 0.992 (0.003) 0.945 (0.004) 0.842 (0.007)

DrugBAN 0.981 (0.001) 0.990 (0.002) 0.944 (0.005) 0.823 (0.013)

Ours 0.988 (0.001) 0.993 (0.001) 0.955 (0.003) 0.850 (0.003)

– HiGraphDTIw/oHC: We remove the hierarchical structure from the graph
representation and only use atom-level embeddings to construct drug fea-
tures.

– HiGraphDTIw/oML: We remove the motif-level nodes from the hierarchical
molecular graph and only utilize atom and global nodes to construct drug
features.

The experimental results on the GPCR dataset are shown in Fig. 5. The result
of HiGraphDTIw/oFF validates the importance of the feature fusion module
in constructing target features. Losing multiple receptive fields leads to a de-
crease in model performance. The result of HiGraphDTIw/oHI demonstrates
the validity of the hierarchical attention mechanisms. It comprehends the in-
teraction between drugs and targets from different perspectives, enhancing the
understanding and predictive capability of the model. Finally, the comparison
between HiGraphDTIw/oHC and HiGraphDTIw/oML confirms the superiority
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Fig. 5. Ablation experiment results on the GPCR dataset

of hierarchical graph representation learning methods in drug feature extraction.
The multi-layered structure enriches the expression of drug features.

4.4 Attention Interpretation

The hierarchical attention mechanism not only enhances model performance but
also assists us in understanding the drug-target interaction from various insights.
In this part, we utilize the attention weights to interpret the effectiveness of
the hierarchical attention mechanism. Furthermore, we illustrate the drug-target
interaction from the atom and motif levels to offer valuable assistance for drug
discovery.

To better understand the interaction between drug and target, we choose
target PDB: 1N28 and drug (ligands) PDB: I3N (C19H19NO3) as a case study.
We use the hierarchical attention mechanism to calculate the attention vector
BP = SF (Aa)+SF (Am)+SF (Ag) ∈ Rl, which demonstrates the distribution
of amino acid attention weights. The values in BP are all within the range of 0 to
1. The attention weights for each amino acid of PDB:1N28 are shown in Fig. 6(a),
where different colors represent varying attention weights. The actual binding
sites are represented by amino acid letters with a red background. From Fig. 6(a),
we can observe that the model gives high attention to six among the total eleven
binding sites. In addition, the model provides seven other positions (located at
30, 31, 32, 69, 70, 97, 98) with high attention weights, which could serve as
potential binding sites for future chemical experiments. Fig. 6(b) depicts the
3D visualization of the docking interaction of PDB: I3N and PDB: 1N28, where
red regions represent binding sites with high attention weights, yellow segments
indicate the binding site with low attention weights, green regions represent the
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(a) Attention Weights for each amino acid of PDB: 1N28

(b) 3D visualization of docking interaction
of PDB: I3N with PDB: 1N28

Fig. 6. Visualization of target attention weights for interaction of PDB: I3N and PDB:
1N28

high attention weighted amino acids that have not been recognized as binding
sites.

In the process of computing BP , we obtain three attention matrices: Attna ∈
Rl×|a|, Attnm ∈ Rl×|m|, and Attng ∈ Rl×1. We further average every column of
Attna, Attnm to obtain the attention vector Ba ∈ R|a|, Bm ∈ R|m|, where each
element illustrates the importance of each node to the interaction. Visualization
of drug attention weights for the interaction of PDB: I3N and PDB: 1N28 are
shown in Fig. 7, where dashed lines of the same color connect motif and its
composed atoms. There are fifteen atoms interacting with at least one amino
acid, where 2/3 attention weights exceed 0.6. The corresponding motif nodes
also exhibit high attention weights. It can be observed that the 11-th atom (C)
is an active node in the docking simulation. While its atom attention weight is
not high, the 3-rd motif node containing it has a high attention weight, serving as
a powerful supplement. This validates that the hierarchical graph representation
approach to constructing drug features permits the model to better discern the
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Fig. 7. Visualization of drug attention weights for the interaction of PDB: I3N and
PDB:1N28

importance of nodes and ensures crucial nodes are not overlooked during the
drug development process.

5 Conclusion

In this paper, we propose a novel model to predict DTI, named HiGraphDTI.
We utilize hierarchical molecular graph representation to construct drug features,
which possess more information about drug structures and a more reasonable
way to convey messages. To expand the receptive field of target features, we
design the attentional target feature fusion strategy to obtain more informative
protein representations. Furthermore, with the hierarchical attention mechanism,
we catch the interactive information between drugs and targets from multiple
views. To validate the effectiveness of our model, we compare it with six state-
of-the-art models on four datasets. The experimental results indicate that our
model outperforms comparing baselines in terms of AUC and AUPR metrics.
Finally, the visualizations of attention weights confirm the interpretation ability
of HiGraph to support new drug discovery.
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