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The phase transition between gapped topological phases represents a class of unconventional criticality beyond
the Landau paradigm. However, recent research has shifted attention to topological phases without a bulk gap,
where the phase transitions between them are still elusive. In this work, based on large-scale density matrix
renormalization group techniques, we investigate the critical behaviors of the extended quantum XXZ model
obtained by the Kennedy-Tasaki transformation. Using fidelity susceptibility as a diagnostic, we obtain a
complete phase diagram, which includes both topological nontrivial and trivial gapless phases. Furthermore,
as the XXZ-type anisotropy parameter Δ varies, both the critical points ℎ𝑐 and correlation length exponent 𝜈
remain the same as in the Δ = 0 case, characterized by 𝑐 = 3/2 (Ising + free boson) conformal field theory. Our
results indicate that fidelity susceptibility can effectively detect and reveal a stable unconventional critical line
between the topologically distinct gapless phases for general Δ. This work serves as a valuable reference for
further research on phase transitions within the gapless topological phase of matter.

I. INTRODUCTION

The classification of the quantum phase of matter constitutes
a core issue in condensed matter and statistical physics [1–
4]. Nevertheless, in the past few decades, the development
of topological phases has received significant attention [5–
10], expanding our understanding of quantum phases beyond
the Landau paradigm. A notable example is the symmetry-
protected topological (SPT) phases [7–9], where the bulk is
gapped and nontrivial gapless modes emerge at the boundary.
It’s worth emphasizing that discussions of SPT phases typi-
cally focus on gapped quantum phases [11–19]. Despite the
crucial role of the bulk gap in defining topological phases,
recent research [20–46] has revealed that many key features
of topological physics, such as degenerate edge modes, per-
sist in the gapless systems, even in the presence of nontrivial
coupling between the boundary and critical bulk fluctuations,
which we refer to as gapless topological phases. These new
phases are not described by the Landau paradigm, and re-
cent studies have explored their exotic properties [36, 38–46].
However, the phase transitions between them remain largely
unexplored.

On a different front, the development of the theory of quan-
tum phase transitions (QPTs) stands as one of the striking
achievements in modern physics [1, 47, 48]. The traditional
theory of phase transitions relies on the Landau-Ginzburg-
Wilson symmetry-breaking paradigm [49]. However, in the
last few decades, it has become clear that this paradigm does
not fully capture the complexities at quantum critical points
(QCPs), which are referred to as unconventional QCPs [50–
52]. A notable example is the topological phase transitions
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between the gapped topological phases, which cannot be de-
scribed in terms of fluctuating local order parameters or sym-
metry breaking [53–56]. Nonetheless, as mentioned in the
last paragraph, the gapless topological phases represent a new
type of exotic quantum matter beyond the Landau paradigm,
and their phase transitions may be highly nontrivial and worth
exploring in depth.

Fidelity susceptibility is a concept borrowed from quantum
information theory and has found widespread utility as a useful
diagnostic for pinpointing QCPs in the realms of condensed
matter and statistical physics [57–69]. Its advantage lies in the
fact that it does not require prior knowledge of order parame-
ters or symmetry breaking. To date, fidelity susceptibility has
proven effective in detecting various types of QCPs, includ-
ing conventional symmetry-breaking QCPs [57, 59], topolog-
ical phase transitions [61], Anderson transitions [63], non-
conformal commensurate-incommensurate transitions [64],
deconfined quantum criticality [70], and even non-Hermitian
critical points [65, 71]. Nevertheless, it remains an open ques-
tion whether fidelity susceptibility can detect quantum phase
transitions between gapless topological phases, and more im-
portantly, determine the critical exponents and universality
class at these QCPs.

In this work, we take the first step towards addressing the
above questions by investigating the QPT between trivial and
intrinsically gapless topological phases (gSPT). We accom-
plish this by constructing a one-dimensional extended quantum
XXZ spin model through the Kennedy-Tasaki (KT) transfor-
mation [41]. Specifically, using fidelity susceptibility as a
diagnostic and in combination with the string order parameter
and entanglement spectrum, we establish a complete global
phase diagram, which includes both intrinsically gSPT and
trivial gapless phases. Furthermore, by performing finite-size
scaling on fidelity susceptibility, we conclude that as XXZ-
type anisotropy parameters Δ vary, these topologically distinct
gapless phases undergo a continuous phase transition, with the
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FIG. 1. Phase diagram and schematic representation of the extended
quantum XXZ spin chain with anisotropy parameter Δ and transverse
field ℎ. The critical point ℎ∗𝑐 is obtained from polynomial fitting
ℎ𝑐 (𝑁) = ℎ∗𝑐 + 𝑎𝑁−1/𝜈 of the peak position of fidelity susceptibility
ℎ𝑐 (𝑁) for 𝑁 = 48, 56, 64, 72, 80, 88, 96 sites. Symbols denote the
numerical results of the critical values ℎ∗𝑐 .

critical points ℎ𝑐 and correlation length exponent 𝜈 remaining
the same as in the Δ = 0 case, characterized by conformal
field theory (CFT) with central charge 𝑐 = 3/2 [72, 73], which
can be identified as an Ising CFT combined with a free boson
CFT [41]. It indicates that the unconventional critical point be-
tween topologically distinct gapless phases for Δ = 0 expands
to a critical line for general Δ.

The paper is organized as follows: Sec. II contains the
lattice model of the extended quantum XXZ spin chain after
the KT transformation, the numerical method employed, the
string order parameter, entanglement spectrum, and the scaling
relations of fidelity susceptibility. Section III shows the global
phase diagram of the model and the finite-size scaling of the
various physical quantities. The conclusion is presented in
Sec. IV. Additional data for our numerical calculations are
provided in the Appendix.

II. MODEL AND METHOD

A. Extended quantum XXZ spin chain through KT
transformation

We consider a lattice model exhibiting topologically distinct
gapless quantum phases. This model can be obtained by stack-
ing an Ising-ordered Hamiltonian with an XXZ chain via the
KT transformation [41]. The Hamiltonian is given by [38]:

𝐻 = −
𝐿∑︁
𝑖=1

(
𝜏𝑧2𝑖−1𝜎

𝑥
2𝑖𝜏

𝑧
2𝑖+1 + 𝜏

𝑦

2𝑖−1𝜎
𝑥
2𝑖𝜏

𝑦

2𝑖+1 + Δ𝜏𝑥2𝑖−1𝜏
𝑥
2𝑖+1

+ 𝜎𝑧
2𝑖𝜏

𝑥
2𝑖+1𝜎

𝑧
2𝑖+2 + ℎ𝜎𝑥

2𝑖

)
,

(1)

where 𝐿 denotes the number of unit cells, with the total number
of sites 𝑁 being twice that, i.e., 𝑁 = 2𝐿. Each unit cell is com-
posed of a pair of spins (𝜏2𝑖−1, 𝜎2𝑖) represented by Pauli oper-
ators 𝜎𝛼 and 𝜏𝛼 on the even and odd sites, respectively. The
parameter ℎ > 0 acts only on even sites (𝜎 spins) and denotes
the strength of the transverse field. The XXZ-type anisotropic
parameter Δ renders the Hamiltonian non-integrable and ex-
act solvability is not feasible. The system exhibits a class of
gapless phases described by a 𝑐 = 1 free boson CFT and pos-
sesses a Z4 symmetry generated by 𝑈 =

∏
𝑖 𝜎

𝑥
2𝑖𝑒

𝑖 𝜋
4 (1−𝜏𝑥

2𝑖−1 ) ,
and also exhibits an emergent anomaly in the low-energy sec-
tor, known as intrinsically gSPT phases [34]. Specifically,
in this sector, the Z4 symmetry is approximately realized as
𝑈 ∼ ∏

𝑖 𝜎
𝑥
2𝑖𝑒

𝑖 𝜋
4 (1−𝜎𝑧

2𝑖−2𝜎
𝑧
2𝑖 ) , which is analogous to the anomaly

observed on the boundary of a 2+1D Levin-Gu SPT state [74].
This anomaly prevents the system from realizing a unique
symmetry-preserving gapped phase and gives rise to interest-
ing physical properties. Furthermore, in an open chain with
a length 𝑁 , the square of the low-energy symmetry opera-
tor fractionalizes onto each end of the boundary, as detailed
in [44, 45]. Specifically, 𝑈2 ∼ 𝜏𝑥1 𝜎

𝑧
2 𝜎

𝑧
2𝐿 . This charge locally

anticommutes with the 𝑈 symmetry, protecting a two-fold de-
generacy in the intrinsically gSPT ground state.

Since the model is not integrable and exact solvability is not
feasible, in this work, we solve the model using the density ma-
trix renormalization group (DMRG) method [75–78] based on
matrix product states (MPS)[79–81]. DMRG stands as one of
the most powerful unbiased numerical techniques for address-
ing one-dimensional strongly correlated many-body systems.
We have fixed the maximal MPS bond dimension at 1024 to
ensure reliable convergence of true energy eigenstates and fi-
delity susceptibilities. To this end, we maintain relative energy
errors below 10−9. The fidelity susceptibility, defined later
[Eq.(6)], is computed with a minimal step of 𝛿ℎ = 10−3. In
practical DMRG calculations, a random initial state is chosen,
and open boundary conditions are applied in most cases.

B. String order and entanglement spectrum in gapless
topological phases

We first utilize the long-distance behavior of non-local string
order parameters and the bulk entanglement spectrum under
periodic boundary conditions (PBC) to identify the possible
quantum phases in the phase diagram before investigating QPT
and pinpointing QCPs.

Following the KT transformation, as described in Ref. [41],
the conventional local spin correlation function before the KT
transformation is converted into string order parameters after-
ward, specifically denoted as 𝜎 and 𝜏 string correlations:
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O𝜎 ( |𝑖 − 𝑗 |) = ⟨𝜎𝑧
2𝑖 (

𝑗−1∏
𝑘=𝑖

𝜏𝑥2𝑘+1)𝜎
𝑧
2 𝑗⟩ , (2)

O𝜏 ( |𝑖 − 𝑗 |) = ⟨𝜏𝑧2𝑖−1 (
𝑗−1∏
𝑘=𝑖

𝜎𝑥
2𝑘)𝜏

𝑧
2 𝑗−1⟩ . (3)

For Δ = 0.0, in the trivial gapless phase (1.0 < ℎ < 2.0), the 𝜎
string correlation exhibits exponential decay at long distances,
while the 𝜏 string correlation function displays algebraic decay
behavior. Conversely, in the intrinsically gSPT phase (0.0 <

ℎ < 1.0), the 𝜎 string correlation exhibits long-range order,
while the 𝜏 string correlation still displays algebraic decay
behavior.

Furthermore, the bulk entanglement spectrum encodes in-
formation beyond entanglement entropy, suggesting that the
bulk ground state wave function captures universal boundary
information, such as topologically protected degenerate edge
modes [82], and hence can be used to detect the gapped/gapless
topological phases [38, 83]. The entanglement spectrum con-
sists of the eigenvalues of the entanglement Hamiltonian �̃�𝐴,
related to the reduced density matrix (𝜌𝐴) of subsystem 𝐴 by:

𝜌𝐴 = Tr𝐵 |Ψ⟩⟨Ψ| =
∑︁
𝛼

𝑒−𝜉𝛼
��Ψ𝐴

𝛼

〉 〈
Ψ𝐴

𝛼

�� = 𝑒−�̃�𝐴 . (4)

Here, |Ψ⟩ represents the ground state wave function of the
Hamiltonian and 𝜉𝛼 ≡ − ln𝜆𝛼 where 𝜆𝛼 is the eigenvalue
of 𝜌𝐴. In our study of 1D quantum chains, 𝐴 = 1, 2, ...𝐿/2
and 𝐵 = 𝐿/2 + 1, ...𝐿 represent a spatial bipartition of the
entire chain, and the bulk entanglement spectrum displays two
degenerate and non-degenerate ground states in topologically
nontrivial and trivial gapless phases, respectively.

C. Fidelity susceptibility and scaling relations

In this work, we utilize fidelity susceptibility, a concept bor-
rowed from quantum information theory, offering a remarkably
simple and intuitive method for identifying QCPs and obtain-
ing critical exponents through finite-size scaling.

The concept of fidelity susceptibility is as follows: Given
a Hamiltonian 𝐻 (ℎ) = 𝐻0 + ℎ𝐻1 with a driving parameter
ℎ, the quantum ground-state fidelity 𝐹 (ℎ, ℎ + 𝛿ℎ) is defined
as the overlap amplitude of two ground states |𝜓(ℎ)⟩ and
|𝜓(ℎ + 𝛿ℎ)⟩:

𝐹 (ℎ, ℎ + 𝛿ℎ) = |⟨𝜓(ℎ) |𝜓(ℎ + 𝛿ℎ)⟩|. (5)

When a system undergoes a continuous phase transition from
an ordered to a disordered phase by tuning the external field ℎ

to a critical value ℎ∗𝑐, at which the structure of the ground-state
wave function changes significantly, the quantum ground-state
fidelity is nearly zero near ℎ∗𝑐. In practice, a more convenient
quantity for characterizing QPTs is the fidelity susceptibility,
defined by the leading term of fidelity:

𝜒𝐹 (ℎ) = lim
𝛿ℎ→0

2(1 − 𝐹 (ℎ, ℎ + 𝛿ℎ))
(𝛿ℎ)2 . (6)
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FIG. 2. (a-b) The scaling behaviors of 𝜏 and 𝜎 string correlations
in the intrinsically gSPT phase (ℎ = 0.5) and trivial gapless phase
(ℎ = 1.5) for Δ = 0.2 and 𝑁 = 192. (c) The evolution of the
entanglement spectrum as a function of ℎ for Δ = 0.2 and 𝑁 = 96
under PBC with only the first 50 low-lying values are displayed in the
plot.

For a continuous QPT of a finite system with size 𝑁 , fi-
delity susceptibility exhibits a peak at the pseudocritical point
ℎ𝑐 (𝑁), and the true QCP ℎ∗𝑐 can be estimated through poly-
nomial fitting ℎ𝑐 (𝑁) = ℎ∗𝑐 + 𝑎𝑁−1/𝜈 [84]. In the vicinity of
ℎ𝑐 (𝑁), previous studies have shown that the finite-size scaling
behaviors of fidelity susceptibility 𝜒𝐹 (ℎ) are described by [57]

𝜒𝐹 (ℎ → ℎ𝑐 (𝑁)) ∝ 𝑁𝜇, (7)

where 𝜇 = 2 + 2𝑧 − 2Δ𝑉 is the critical adiabatic dimension.
Here, 𝑧 is the dynamical exponent and Δ𝑉 is the scaling di-
mension of the local interaction 𝑉 (𝑥) at the critical point. On
the other hand, it is shown that the fidelity susceptibility per
site scales as [57]:

𝑁−𝑑𝜒𝐹 (ℎ) = 𝑁 (2/𝜈)−𝑑 𝑓𝜒𝐹 (𝑁1/𝜈 |ℎ − ℎ∗𝑐 |), (8)

where 𝑑 is the spatial dimension of the system, 𝑓𝜒𝐹 is an un-
known scaling function and 𝜈 is the critical exponent of the
correlation length, which can be easily computed according
to the relation 𝜈 = 2/𝜇. Based on Eq. (7) and (8), the val-
ues of critical exponent 𝜇 and 𝜈 can be determined and the
corresponding critical behavior can be easily confirmed. In
practice, the critical exponent 𝜈 and 𝜇 are usually extracted
from fidelity susceptibility per site, 𝜒𝑁 (ℎ) = 𝜒𝐹 (ℎ)/𝑁𝑑 .
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FIG. 3. (a) Fidelity susceptibility per site 𝜒𝐹/𝑁 of the extended quan-
tum XXZ spin chain for Δ = 0.2 and 𝑁 = 48, 56, 64, 72, 80, 88, 96
sites as a function of the transverse field ℎ; symbols denote DMRG
results. (b) The extrapolation of critical point ℎ∗𝑐 with differ-
ent 𝑁; symbols denote the finite-size DMRG results for Δ = 0.2
and 𝑁 = 48, 56, 64, 72, 80, 88, 96 sites. We use polynomial fit-
ting ℎ𝑐 (𝑁) = ℎ∗𝑐 + 𝑎𝑁−1/𝜈 and extrapolate the critical point
ℎ∗𝑐 ≈ 0.98761(8).

III. PHASE DIAGRAM AND CRITICAL BEHAVIOR

A. Quantum phase diagram: an overview

Before exploring phase transitions, let’s investigate the pos-
sible quantum phases that appear in a phase diagram. As a first
step, we examine a limiting case: When Δ = 0.0, the model
simplifies to an Ising-ordered Hamiltonian combined with an
XY chain via the KT transformation. References [41, 42] in-
dicate that this model exhibits a phase transition between the
intrinsically (0.0 < ℎ < 1.0) and trivial gapless topological
phases (ℎ > 1.0). For a general Δ, since the model is no
longer exactly solvable, we employ the DMRG simulations to
ascertain the possible phases in the model by computing the
scaling behavior of 𝜎 and 𝜏 string correlations for Δ = 0.2
(see Appendix A for other Δ). As depicted in Fig 2(a) and
(b), we observed that when ℎ < 1.0, 𝜎 and 𝜏 string corre-
lations respectively exhibit long-range order and power-law
decay behavior at the long-distance limit, consistent with the
characteristics of intrinsically gSPT as we mentioned before.
Conversely, when ℎ > 1.0, 𝜎 and 𝜏 string correlations dis-
play exponential and power-law decay behaviors, respectively,
consistent with the features of trivial gapless phases.

Furthermore, to elucidate the topological properties of gap-
less topological phases more clearly, we computed the bulk
entanglement spectrum as a function of ℎ under Δ = 0.2 (see
Appendix A for other Δ). As illustrated in Fig 2(c), we ob-
serve that the ground state degeneracy of the bulk entangle-
ment spectrum transforms from twofold (0.0 < ℎ < 1.0) to a
unique ground state (ℎ > 1.0). This indicates that the system
undergoes a phase transition from topologically nontrivial to
trivial gapless phases.

The numerical results mentioned above suggest that irre-
spective of the magnitude of the XXZ-type perturbation, which
breaks the integrability of the model, stable trivial and intrinsi-
cally gapless topological phases continue to exist in the ground
state phase diagram, determined through DMRG calculations
for 𝑁 = 48, 56, 64, 72, 80, 88, 96 sites, with the results pre-
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c
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30 20 10 0 10
L 1/ν(h− hc)
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0.008

0.012

L
−

2/
ν
χ
F

(b)N=48
N=56
N=64
N=72
N=80
N=88
N=96

FIG. 4. (a) The finite-size scaling of the fidelity susceptibility per
site 𝜒𝐹 (ℎ𝑐) at the peak position ℎ𝑐 where 𝜇 ≈ 1.894. (b) Data
collapse of fidelity susceptibility 𝜒𝐹 for the extended quantum XXZ
spin chain; symbols denote the finite-size DMRG results for Δ = 0.2
and 𝑁 = 48, 56, 64, 72, 80, 88, 96 sites, where 𝜈 ≈ 1.05873(1), 𝜇 ≈
1.88905(3) and ℎ∗𝑐 ≈ 0.98761(8) are used for data collapse plots.

sented in Fig. 1. When Δ = 0.0, the ground state exhibits
an intrinsically gSPT phase with a two-fold degeneracy at
ℎ ∈ (0.0, 1.0) and transitions to a trivial gapless phase as ℎ

greater than 1.0, consistent with previous findings[41]. Addi-
tionally, for finite Δ, we find that the model exhibits a stable
intrinsically gSPT and a trivial gapless phase across the entire
range of Δ that we consider.

The finite-size scaling behavior of fidelity susceptibility for
Δ = 0.2 with different 𝑁 is presented in Fig. 3(a), which fol-
lows the scaling relation 𝜒𝑁 (ℎ𝑐 (𝑁)) ∝ 𝑁𝜇−1 [Eq. (7)] near
the second-order QPT critical point. As the system size 𝑁

increases, the peak position ℎ𝑐 (𝑁) approaches the exact crit-
ical point value ℎ∗𝑐 more closely (see Appendix B for other
Δ). Specifically, for the extended XXZ model with Δ = 0.2,
ℎ∗𝑐 is determined by polynomial fitting ℎ𝑐 (𝑁) = ℎ∗𝑐 + 𝑎𝑁−1/𝜈 ,
and then extrapolating to 𝑁 → ∞ [Fig. 3(b)]. According
to Eq. (8), the fidelity susceptibility follows an exact scaling
relation and collapses to one master curve [Fig. 4(b)], confirm-
ing the appropriateness of the extrapolation. The finite-size
scaling behavior of fidelity susceptibility for other Δ values is
also investigated (see Appendix C for details), and the results
are presented in Table I. The findings indicate that the QCPs
remain unchanged as Δ varies.

B. Finite-size scaling and critical exponent

The next questions concern the critical behavior of the ex-
tended XXZ chains with different Δ values and whether there

TABLE I. Critical exponents and critical points of the extended quan-
tum XXZ chain for different Δ.

Δ ℎ∗𝑐 𝜇 𝜈

0.0 0.98761(8) 1.88965(3) 1.05839(1)
0.2 0.98761(8) 1.88905(3) 1.05873(1)
0.4 0.97875(1) 1.88995(3) 1.05822(1)
0.6 0.97875(1) 1.88925(3) 1.05862(1)
0.8 0.98903(9) 1.88958(2) 1.05843(1)
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FIG. 5. The correlation length exponent 𝜈 (a) and critical adia-
batic dimension 𝜇 (b) with respect to Δ; the symbols denote the
finite-size DMRG results that are obtained by extrapolating from
the fidelity susceptibility 𝜒𝐹 (ℎ𝑐 (𝑁)) at the peak position ℎ𝑐 (𝑁) of
𝑁 = 48, 56, 64, 72, 80, 88, 96 sites.

exists a critical threshold Δ𝑐 at which the critical behavior
changes. To address these questions, we conduct large-scale
DMRG simulations for various 𝑁 in the region 0.0 ≤ Δ < 1.0
to extrapolate the critical exponents 𝜇 and 𝜈 through the finite-
size scaling of fidelity susceptibility.

The fidelity susceptibility per site, 𝜒𝑁 = 𝜒𝐹/𝑁 , at the peak
position ℎ𝑐 (𝑁) for different 𝑁 at Δ = 0.2 is illustrated in
Fig. 4(a). The adiabatic critical dimension 𝜇 is well-fitted by
a polynomial function of 𝜒𝑁 (ℎ𝑐 (𝑁)) = 𝑁𝜇−1 (𝑐 + 𝑑𝐿−1).

According to Eq.(8), the fidelity susceptibility can be scaled
by 𝑁−2/𝜈𝜒𝐹 as a function of 𝑁1/𝜈 (ℎ−ℎ∗𝑐) in the vicinity of the
QCP ℎ∗𝑐. The correlation length exponent 𝜈 is then determined
by 𝜈 = 2/𝜇. By substituting the obtained critical point ℎ∗𝑐 and
critical exponent 𝜈 into Eq.(7), all fidelity susceptibilities for
different 𝑁 collapse into a single curve (Fig. 4(b)), indicating
the accuracy of the estimated critical point and critical expo-
nent (see Appendix. D for other Δ). It is worth noting that
the peak in the data collapse is not precisely at 0 due to the
finite-size effect for ℎ(𝑁) = ℎ∗𝑐 + 𝑎𝐿−1/𝜈 (𝑎 ≠ 0).

The extrapolations of the critical adiabatic dimension 𝜇 and
the correlation length exponent 𝜈 for other Δ values are pre-
sented in Appendix C, and the results for all Δ are summarized
in Table. I and Fig. 5. Both 𝜈 and 𝜇 remain unchanged as
Δ varies. This indicates that the XXZ-type term acts as ir-
relevant perturbations and the unconventional critical point
described by CFT with central charge 𝑐 = 3/2 for Δ = 0.0,
as discussed in the literature [41], expands to a critical line
for general Δ. This trend also suggests that the unconven-

tional QCP between the topologically distinct gapless phases
is robust against the XXZ-type perturbation, and there does
not exist a critical threshold Δ𝑐 at which the critical behavior
changes.

IV. CONCLUSIONS AND OUTLOOK

In summary, we investigate the phase transition between
topologically distinct gapless phases, namely, intrinsically
gSPT phases. We establish a complete phase diagram for
the Hamiltonian, which is a one-dimensional extended XXZ
model constructed by the KT transformation. Using fidelity
susceptibility as a diagnostic and in combination with the string
order parameter and entanglement spectrum, we unambigu-
ously reveal the intrinsically gSPT and trivial gapless phases
in the phase diagram. Moreover, by computing fidelity sus-
ceptibility and performing finite-size scaling, we observe a
continuous phase transition between the topologically distinct
gapless phases as the XXZ-type anisotropy term Δ varies. Re-
markably, the critical points and correlation length exponent
remain the same as in the Δ = 0 case, characterized by CFT
with central charge 𝑐 = 3/2, which can be identified as an Ising
CFT combined with a free boson CFT. Our results indicate that
fidelity susceptibility can effectively detect and reveal an un-
conventional critical point for Δ = 0.0 extended into a critical
line for general Δ. Future intriguing questions involve explor-
ing the critical behavior between topologically distinct gapless
phases in higher dimensions and within different symmetry
groups (e.g., Z3, 𝑈 (1), among others), as well as construct-
ing finite-temperature phase diagrams. Our work could shed
new light on the phase transition between gapless topological
phases of matter.
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Appendix A: STRING ORDER AND ENTANGLEMENT SPECTRUM FOR OTHER VALUES OF Δ

In this section, we provide additional data to identify the intrinsically gSPT and trivial gapless phases through the scaling
behavior of string correlations and the entanglement spectrum for different Δ values.

On the one hand, as described in the main text, the long-distance behavior of the 𝜏 and 𝜎 string correlations can be completely
different within the intrinsically gSPT and trivial gapless phases. Specifically, as shown in Fig. A1, we computed the 𝜏 and 𝜎

string correlations as a function of lattice distance 𝑟 for Δ = 0.0 (a1-a2), Δ = 0.4 (b1-b2), Δ = 0.6 (c1-c2), and Δ = 0.8 (d1-d2)
with a simulated system size of 𝑁 = 192 under OBC. The results indicate that ℎ > 1 and ℎ < 1 exhibit the characteristics of
trivial gapless and intrinsically gapless SPT phases, respectively.

On the other hand, to more intuitively exhibit the topological properties of gapless quantum phases, as in the main text, we
calculated the bulk entanglement spectrum as a function of ℎ under different Δ, as shown in Fig. A2 (a) Δ = 0.0, (b) Δ = 0.4, (c)
Δ = 0.6, and (d) Δ = 0.8 with 𝑁 = 96 under PBC. Here, we only display the first 50 low-lying values in the plot. Our results
indicate that regardless of the magnitude of Δ, the ground state degeneracy of the entanglement spectrum changes from double
degeneracy to a unique ground state at ℎ ≈ 1.0 (blue dashed lines in Fig. A2) as Δ increases. This change in topological properties
is consistent with the change in the long-distance behavior of string correlations as mentioned in the previous paragraph.
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FIG. A1. The scaling behaviors of string correlations in the intrinsically gSPT phase (ℎ = 0.5) and trivial gapless phase (ℎ = 1.5) for (a1-a2)
Δ = 0.0, (b1-b2) Δ = 0.4, (c1-c2) Δ = 0.6, and (d1-d2) Δ = 0.8. The simulated system size is 𝑁 = 192 under OBC.
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FIG. A2. The entanglement spectrum as a function of ℎ for (a) Δ = 0.0, (b) Δ = 0.4, (c) Δ = 0.6, and (d) Δ = 0.8 with 𝑁 = 96 under PBC. We
only display the first 50 low-lying values in the plot.

Appendix B: FIDELITY SUSCEPTIBILITY FOR OTHER VALUES OF Δ

In this section, we provide additional data to obtain the critical line via fidelity susceptibility for other values of Δ.
As in the main text, fidelity susceptibility per site 𝜒𝑁 of the extended quantum XXZ spin chain for Δ = 0.0 (a), Δ = 0.4 (b),

Δ = 0.6 (c), and Δ = 0.8 (d), with system sizes 𝑁 = 48, 56, 64, 72, 80, 88, 96, as a function of the transverse field ℎ, are shown in
Fig. A3. At first, we observe that regardless of the value of Δ, fidelity susceptibility exhibits obvious peaks as ℎ varies, indicating
continuous phase transitions between topologically distinct gapless phases. Moreover, we find that the QCPs remain unchanged
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FIG. A3. Fidelity susceptibility per site 𝜒𝑁 for the extended quantum XXZ spin chain for (a) Δ = 0.0, (b) Δ = 0.4, (c) Δ = 0.6, (d) Δ = 0.8
and 𝑁 = 48, 56, 64, 72, 80, 88, 96 sites as a function of driving parameter ℎ; symbols denote finite-size DMRG results.
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FIG. A4. The finite-size scaling of pseudocritical point ℎ𝑐 (𝑁) as a function of inverse system size 1/𝑁 for (a)Δ = 0.0, (b)Δ = 0.4, (c)Δ = 0.6,
(d)Δ = 0.8; We use polynomial fitting formula ℎ𝑐 (𝑁) = ℎ∗𝑐 + 𝑎𝑁−1/𝜈 .

for different values of XXZ-type perturbation.

Appendix C: QUANTUM CRITICAL POINT FITTING AND CRITICAL ADIABATIC DIMENSION FOR OTHER VALUES OF Δ

In this section, we provide additional data to extrapolate accuracy critical points and critical adiabatic dimensions for other
values of Δ.

As the same in the main text, on the one hand, we determined the pseudocritical point ℎ𝑐 (𝑁) corresponding to the maximum
values of the fidelity susceptibility and performed finite-size scaling of the pseudocritical point ℎ𝑐 (𝑁) as a function of inverse
system sizes 1/𝑁 for Δ = 0.0 (a), Δ = 0.4 (b), Δ = 0.6 (c), and Δ = 0.8 (d), with 𝑁 = 48, 56, 64, 72, 80, 88, 96 sites, as shown
in Fig.A4. The extrapolated critical points are summarized in Table I. The accurate critical point ℎ∗𝑐 remains unchanged with
increasing Δ.

Furthermore, we examined the maximal fidelity susceptibility per site 𝜒𝑁 (ℎ𝑐 (𝑁)) = 𝜒𝐹 (ℎ𝑐 (𝑁))/𝑁 as a function of system
sizes 𝑁 for Δ = 0.0 (a), Δ = 0.4 (b), Δ = 0.6 (c), Δ = 0.8 (d), and 𝑁 = 48, 56, 64, 72, 80, 88, 96 sites, as illustrated in Fig.A5.
The critical adiabatic dimensions are also summarized in Table I. We observe that the critical adiabatic dimension 𝜇 remains
unchanged with increasing Δ.

Appendix D: DATA COLLAPSE FOR OTHER VALUES OF Δ

In this section, we present additional data demonstrating the variation in correlation length exponents 𝜈 of the extended
quantum XXZ chain.

As the same in the main text, data collapse of fidelity susceptibility 𝜒𝐹 for the one-dimensional extended XXZ model is shown
for Δ = 0.0 (a), Δ = 0.4 (b), Δ = 0.6 (c), and Δ = 0.8 (d), with 𝐿 = 48, 56, 64, 72, 80, 88, 96 sites in Fig. A6. The correlation
length exponents are summarized in Table I. It is evident that the correlation length exponents of the extended quantum XXZ
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FIG. A5. The maximal of fidelity susceptibility per site 𝜒𝐹 (ℎ𝑐) as a function of system size 𝑁 for (a)Δ = 0.0, (b)Δ = 0.4, (c)Δ = 0.6,
(d)Δ = 0.8, and 𝑁 = 48, 56, 64, 72, 80, 88, 96 sites. We use the fitting formula𝜒𝐹 (ℎ𝑐) = 𝑁𝜇 (𝑐 + 𝑑𝑁−1).
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FIG. A6. Data collapse of fidelity susceptibility 𝜒𝐹 for the extended quantum XXZ spin chain for (a) Δ = 0.0, (b) Δ = 0.4, (c) Δ = 0.6, (d)
Δ = 0.8 and 𝑁 = 48, 56, 64, 72, 80, 88, 96 sites as a function of transverse field ℎ.

chain is the same as observed in the Δ = 0.0 case, characterized by a CFT with central charge 𝑐 = 3/2, which can be understood
as a combination of Ising and free boson CFTs.
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