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MODULE SCHEMES IN INVARIANT THEORY

HOLGER BRENNER

Abstract. Let G be a finite group acting linearly on the poly-
nomial ring with invariant ring R. If the action is small, then a
classical result of Auslander gives in dimension two a correspon-
dence between linear representations of G and maximal Cohen-
Macaulay R-modules. We establish a correspondence for all linear
actions between representations and objects over the invariant ring
by looking at quotient module schemes (up to modification) instead
of the modules of covariants.

Introduction

We fix a field K. Let G be a finite group and fix a linear represen-
tation β : G → Gld(K). This corresponds to a linear action of G on
the polynomial ring S = K[X1, . . . , Xd], respectively, on the scheme
Ad, and its invariant ring R = SG (rather Sβ) and the quotient scheme
X = Ad/β = SpecR. Suppose moreover that β is faithful. We consider
β as the basic representation and want to understand what objects on
X are defined by other linear representations of G.
Let ρ be another linear representation of G in Glm(K) with the

corresponding linear action on a vector space V ∼= Km or on the affine
space Am. This defines the module of covariants (S⊗KV )G (G acting on
both tensor components) which is a maximal Cohen-Macaulay module
over R. If G is a small group, meaning that β(G) ⊆ Gld(K) does
not contain any (pseudo-)reflection (a linear mapping 6= Id that fixes
a hyperplane), then we have the following correspondence (see [30,
Corollary 5.20]).

(1) linear irreducible representations (V, ρ) of G.
(2) indecomposable R-modules of the form (S ⊗K V )G, which are

a direct summand of S as an R-module.

This correspondence is particularly nice in dimension two, where ev-
ery maximal Cohen-Macaulay module of R is of the form described
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2 HOLGER BRENNER

in (2). This correspondence has been studied intensively from vari-
ous perspectives and under various conditions, studying finite Cohen-
Macaulay type, looking at the resolution of the singularities of SpecR,
using the Mc Kay quiver, applying noncommutative algebra and non
commutative resolutions, working with matrix factorizations and de-
rived categories, etc., see [16] [28], [18], [2], [3], [4], [31], [9], [45], [11]
[10].
However, ifG is a reflection group (generated by reflections), then the

invariant ring SG is itself a polynomial ring by the theorem of Chevalley,
Shephard, Todd and Serre, and therefore the only maximal Cohen-
Macaulay modules are the free ones. Hence for all these groups, such
a correspondence cannot work, as every representation ρ of dimension
m yields always the free module Rm.
In this paper, we develop another perspective on the question of

which object on SpecR should correspond to ρ. The two representa-
tions β and ρ define the product representation

β × ρ : G −→ Gld(K)×Glm(K)

and the corresponding product action of G on Ad×Am. We denote the
quotient scheme

Zρ := (Ad × Am)/β × ρ
considered as a scheme over X . This is quite a natural approach, as it
deals on both sides, the basic representation β and the varying repre-
sentation ρ, with the same construction. On the ring level this means
that we look at the invariant algebra K[X1, . . . , Xd,W1, . . . ,Wm]

β×ρ as
an algebra over the invariant ring K[X1, . . . , Xd]

β .
The gain of this perspective can be seen in the simplest examples.

Example 1. Let G = Z/(2) act on K[X ] with the nontrivial element
acting by negation. The invariant ring is K[X2] = K[A], which is again
a polynomial ring. The trivial action of G on K[W ] yields the invariant
algebra K[A,W ], just the polynomial algebra over the invariant ring.
However, the nontrivial linear action of G on K[W ] yields the invariant
algebra K[X2,W 2, XW ] = K[A,B,C]/(AB − C2) over K[A]. We see
that this algebra has an isolated singularity. Moreover, the fiber of
its spectrum over SpecK[A] is for a point where A 6= 0 just an affine
line, represented by SpecK[C], but over the point where A = 0, the
fiber is K[B,C]/(C2), a nonreduced affine line. Hence we see a big
schemetheoretic (though settheoretic neglectable) difference between
the two quotient schemes corresponding to the two representations.
Note also that, for K = C, the fundamental group of the punctured
second quotient scheme is the group itself.
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We mention the following features of our approach which are not
available when only looking at the module of covariants. The difference
is in particular strong in the case of a reflection group.

(1) The methods of invariant theory for rings apply directly to in-
variant algebras/quotient schemes.

(2) The properties of Zρ as a K-scheme are relevant as well as the
properties of the morphism Zρ → X (K-algebra versus algebra
over the invariant ring). See Example 3.7 and Example 6.6.

(3) The fibers of Zρ → X have geometric properties that reflect
properties of the group representation (Theorem 6.1).

(4) The quotient schemes exhibit ramification behavior that mirrors
properties of the group representation (Theorem 7.2).

(5) The dimension of the fibers of Zρ is constant, which helps to
distinguish them from other Cohen-Macaulay modules (Section
17, Section 19).

(6) The reflection properties of the basic representation and of the
product representation have parallel but not identical impacts
(Section 20).

(7) The singularities of the quotient schemes reflect properties of
the group representation (Theorem 21.9, Theorem 21.12).

(8) Ring-theoretic constructions (in particular, the normalization)
allow the reconstruction of the group representation from the
quotient schemes (Theorem 23.4, Corollary 24.6).

(9) The fundamental group (for K = C) of the regular loci of the
quotient schemes helps to reconstruct the group and its action
(Corollary 22.7, Theorem 22.10, Theorem 26.4).

Other properties are quite parallel to the situation where one works
with modules of covariants.

(1) The product of representations corresponds to the (normaliza-
tion of the) product of quotient schemes (Corollary 8.5).

(2) The regular representation, which contains all irreducible repre-
sentions is reflected in the decomposition of the regular invariant
algebra (Theorem 9.1).

(3) The module of covariants (S ⊗ V )G and the invariant algebra
(S[V ])G should be considered more generally for any action of
G on a K-algebra S by K-algebra automorphisms (Section 14,
Section 15).

(4) In the small case, the symmetric algebra of the module of covari-
ants and the invariant algebra coincide over the regular locus
of X (Section 18).
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(5) In the small case, irreducible representations correspond to ir-
reducible fiberflat bundles (Section 25).

A recurring feature is the comparison of the symmetric algebra of
the module of covariants and the invariant algebra. There is a natural
ring homomorphism SymR((S⊗V )G)→ (S⊗K[V ])G, see Lemma 5.3,
Corollary 5.13, Lemma 14.4. The comparison between Spec(SymR((S⊗
V )G)) and the quotient scheme Zρ = Spec(S ⊗ K[V ])G as schemes
over X is enhanced by the following concepts: the spectrum of the
symmetric algebra is a module scheme (Section 10), which is basi-
cally a scheme-theoretic version of a module, considered in passing by
Grothendieck in [23, 1.7.13]. A module scheme M is a commutative
group scheme with an addition α :M×M →M and also a scalar mul-
tiplication A1×M →M fulfilling the usual axioms. Typical examples
are geometric vector bundles. In contrast, for invariant algebras, the
coaddition on the polynomial ring S⊗K[V ]→ S⊗K[V ⊕V ] induces a
natural ring homomorphism (S⊗K[V ])G → (S⊗K[V ⊕V ])G. The lat-
ter algebra contains the tensor product (S⊗K[V ])G⊗SG (S⊗K[V ])G,
but the coaddition does not land in the tensor product. In geometric
language, there are morphisms

Zρ×ρ −→ Zρ
↓ ...ր

Zρ ×X Zρ ,
but the dotted arrow which is needed to talk about an addition on
Zρ is not a morphism. However, when Y = SpecS is normal, then
the vertical arrow is the normalization (see Theorem 8.3), hence the
addition exists as a birational morphism, and it exists as a morphism
on the normalization of the tensor product. Thus we introduce mod-
ule schemes up to normalization (Section 12) which is a very natural
concept within invariant theory.
We provide an overview of the paper and some indications of how one

may read it. In Section 1, we describe the situation in the generality
we will be working in, and we fix notation and conventions. Section 2
collects some lemmata of invariant theory for which we could not find
an adequate reference. In Section 3, we study the toric case with many
examples (many relevant phenomena already occur in this case), and in
Section 4 nontoric examples, to which we will come back as the theory
evolves. Section 2 to Section 4 might be skipped first and consulted
when needed.
Section 5 deals with the direct relation between the symmetric alge-

bra of the module of covariants and the invariant algebra. There is a
ring homomorphism from the first to the second (Lemma 5.3), which
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is an isomorphism over the open subset U ⊆ X coming from the fixed
point free locus and where they both define the same vector bundle
(Corollary 5.13). Outside of U , we have almost never an isomorphism,
and the quotient scheme contains much more subtle information. In
Section 6, we describe the fibers of the quotient scheme Zρ → X and
in Section 7, we determine which fibers are reduced. To do this, the
restriction of the representation ρ to the stabilizers of the basic action
β is important (Theorem 6.1, Theorem 7.2). In Section 8, we look at
the product of two representations ρ1 and ρ2 (with basic representation
β fixed) and study the relation between Zρ1×ρ2 and Zρ1 ×X Zρ2. Theo-
rem 8.3 shows that, under the condition that Y is normal, the quotient
scheme of the product action is the normalization of the product of
the quotient schemes. In Section 9, we apply this approach to under-
stand the structure of the quotient scheme of the regular representation
(the reader more interested in the geometric properties of the quotient
schemes might jump directly to Section 21).
In Section 10 to Section 16, we draw our attention on the question

of what kind of object the quotient schemes Zρ → X are. In Sec-
tion 10, we have a look at the notion of a module scheme, which is
a commutative group scheme together with an action of A1 on it ful-
filling natural conditions. The spectrum of the symmetric algebra of
a module is a module scheme. Section 11 deals with the Hopf-side of
a module scheme. It turns out that the algebras describing a module
scheme are standard-graded and that we can use a theorem of Milnor
and Moore to deduce a structure result for module schemes over a ring
containing a field of characteristic zero (Theorem 11.6). In Section 12,
we weaken the condition of a module scheme to a module scheme up
to normalization, which fits the quotient schemes Z → X that we en-
counter in invariant theory. There is an action of A1 on Z as before,
but, as in the diagram above, the addition is not defined on Z ×X Z,
but rather on a finite birational extension of it. In Section 13, we de-
fine linear mappings between module schemes up to normalization and
linear actions of a finite group G on a module scheme up to normal-
ization, in Section 14, we address the corresponding quotients and in
Section 15, we show how these quotients behave in the presence of a
normal subgroup of G. In Section 16 we collect some observations on
objects where similar module schemes up to modification occur (Rees
algebra, reflexive symmetric algebra, tangent bundle on a resolution).
Section 17 to Section 19 describe further properties of the quotient

schemes. In Section 17, we introduce fiberflat bundles, a property
which quotient schemes share, in contrast to the spectra of symmetric
algebras. Section 18 deals with the case where the locus where the
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bundle is a vector bundle contains all points of codimension one, which
holds for quotient schemes for a small action. In this case, one can
translate back and forth between invariant modules and invariant al-
gebras, though the objects are still quite different. It turns out that
the so-called factorial closure (see [46]) is the ring of global sections of
the total space of the vector bundle. In Section 19 we give criteria to
assert that a reflexive bundle does not have a fiberflat realization.
Section 20 deals with relations between reflections of the basic repre-

sentation and reflections of a product representations. This is helpful
in Section 21 to understand (for K = C) where the singularities of a
quotient scheme Z are located and how they are related to the singu-
larities of X . In Section 22, we compute the fundamental group of the
regular locus of Zρ in terms of the acting group G and the reflection
subgroup of the product representation (Theorem 22.10).
In Section 23 to Section 26, we deal with the question of in what

sense we can reconstruct the original representation ρ and the linear
action on Ad × Am from the quotient scheme Zρ → X . In Section
23, we show that for a given action of G on a normal scheme Y with
quotient X , we can reconstruct the linear action of G on Am from the
quotient scheme Zρ by pulling it back along Y → X and normalizing
the pull-back (Theorem 23.4). Hence, we do not lose information when
going from the linear action to the quotient schemes. In Section 24, we
extend this to obtain in Corollary 24.6, for a basic action on a normal
affine scheme Y with a unique fixed point, a correspondence between
linear representations, linear actions on Y ×Am and quotient schemes
on X . Section 25 proves that in the small case, this correspondence
translates irreducible representations into irreducible reflexive fiberflat
bundles. In Section 26, we consider fiberflat bundles Z on X (without
knowing Y ) and try to find conditions that help to reconstruct a group
G, a scheme Y and a linear action on Y × Am. For this, we use the
fundamental group of the regular loci of X and Z. We close in Section
27 with some questions.
I thank Marc Chardin, Hailong Dao, David Eisenbud, Eleonore Faber,

Robin Hartshorne, Craig Huneke, Colin Ingalls, Ines Melzer, Mandira
Mondal, Stefan Schröer, Bernd Sturmfels and Bernd Ulrich for useful
discussions, comments and references.
This material is based upon work supported by the National Science

Foundation under Grant No. DMS-1928930 and by the Alfred P. Sloan
Foundation under grant G-2021-16778, while the author was in resi-
dence at the Simons Laufer Mathematical Sciences Institute (formerly
MSRI) in Berkeley, California, during the Spring 2024 semester.
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1. The setting

Let K be a field and S be a K-algebra. Let G be a finite group
acting faithfully on S by K-algebra automorphisms. The main case
for us is when S = K[X1, . . . , Xd] is a polynomial algebra and where
the action is K-linear. However, to allow natural base changes and
intermediate quotients, it is better to allow any K-algebra S. We write
the geometric action on SpecS from the left, hence (gh)Q) = g(h(Q))
for g, h ∈ G (where we consider g as the corresponding automorphism),
and the action of G on the ring from the left, so that fg corresponds to

the composition SpecS
g→ SpecS

f→ A1. The identity (fg)h = f(gh)
is clear, as both sides are f ◦ g ◦ h. When we want to stress the
action instead of the group, we sometimes write gβ(Q), in the sense
that the group element g has to be interpreted as the automorphism
gβ determined by β (and then applied to the point Q).
Let ρ be anm-dimensional K-linear representation of G, i.e., a group

homomorphismG→ Glm(K), or a linear action ofG onKm. This gives
rise to a linear action of G on K[W1, . . . ,Wm], on S[W1, . . . ,Wm] and
on Y × Ad (action on both components). In particular, if S is itself
a polynomial ring, we denote the basic representation by β and then
β × ρ acts on K[X1, . . . , Xd,W1, . . . ,Wm].
Let Y = SpecS. The invariant ring R = SG = Sβ is the subring of S

consisting of all the elements of S that are fixed by the action. They are
the basic objects of invariant theory (for finite groups), for background
on invariant theory, see [5], [15]. X = SpecR is the quotient of Y under
the group action, i.e., the morphism SpecS → SpecR is invariant, it is
a finite morphism, and the points of SpecR correspond to the G-orbits
of SpecS. If Y is affine space, then we call the image point in X of the
origin the vertex point of X .
The action of G on Y × Am via β × ρ gives in the same way rise to

a quotient scheme
Zρ = (Y × Am)/β × ρ ,

which is the spectrum of the invariant algebra (we talk about invariant
algebras in contrast to the basic invariant ring)Bρ = (S[W1, . . . ,Wm])

β×ρ.
Since we consider the action β to be fixed, we usually only write ρ. As
the morphism Y × Am → Y is G-equivariant, we get a commutative
diagram

Y ←− Y × Am

↓ ↓
X ←− Zρ .

The vertical morphisms are quotient morphisms for group actions, and
the horizontal morphisms are bundle-like morphisms (which has to be
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made precise for the lower morphism, see Section 12). These objects
Zρ → X are the main objects of this paper. More precisely, for G,
Y and X fixed, we want to understand how the Zρ reflect properties
of the (varying) representations ρ. This is also the reason why, in the
second component, we stick to linear actions on a polynomial ring.
The schemes Zρ are always normal, as this is true for all quotient
schemes of a normal scheme under a finite group, and the invariant
algebra is always an N-graded (not standard-graded) Cohen-Macaulay
(in the nonmodular case, i.e., if the group order is not 0 in K, see [29,
Proposition 13]) and of finite type over K if Y is. If the representation
ρ is trivial, then Zρ = X × Am is the trivial vector bundle over X
(m = 0 yields the zero-bundle X → X).
The invariant algebra Bρ = K[X1, . . . , Xd,W1, . . . ,Wm]

β×ρ (or, more
generally, S[W1, . . . ,Wm]

β×ρ) is not so easy to compute, as is the case
for invariant rings in general. The knowledge of the invariant rings
K[X1, . . . , Xd]

β and K[W1, . . . ,Wm]
ρ does not suffice for this question.

Of course, K[X1, . . . , Xd]
β ⊗K[W1, . . . ,Wm]

ρ is a K-subalgebra of Bρ,
consisting of theX-invariants and theW -invariants together. However,
there are also mixed invariants, some of which come from characters.
A character for G is a group homomorphism χ : G → K×, i.e., a
one dimensional representation. For an action of the group G on a
K-algebra S and a given character χ, the module of semi-invariants is

SG,χ = {f ∈ S|fg = χ(g) · f for all g ∈ G} .
We denote by χ−1 the character given by a character χ followed by the
inversion in the field. A tensor without a subscript always refers to the
base field.

Lemma 1.1. Let G be a finite group acting on K-algebras S and T via
β and ρ through K-algebra automorphisms. We then have the inclusion

⊕

χ

Sβ,χ ⊗ T ρ,χ−1 ⊆ (S ⊗ T )β×ρ ,

where the sum runs over the characters χ of G.

Proof. The inclusions are clear since for f1 ∈ Sβ,χ, f2 ∈ T ρ,χ
−1

and
g ∈ G we have

(f1 ⊗ f2)gβ×ρ = f1g
β ⊗ f2gρ = χ(g) · f1 ⊗ (χ(g))−1 · f2 = f1 ⊗ f2 .

�

In the toric situation, we will see in Lemma 3.1 that we have an
equality in the previous statement.
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Example 1.2. In general, there are also elements in the invariant alge-
bra that do not stem from characters. Let G be the binary icosahedral
group with the action β on K[U, V ] yielding the E8-singularity. It is
known that this group has no nontrivial character, which is the reason
why this singularity is factorial. We look at the product of β with
itself. The only contribution from Lemma 1.1 is the tensor product
K[U, V ]G⊗K[W,Z]G. However, the invariant algebras are always over
a non empty open subset of X = K[U, V ]G a polynomial algebra (by
Corollary 5.13) and hence generically smooth.

2. Some lemmata

We provide some well-known lemmata that we need in the following
and where we could not find a source of appropriate generality. We use
the language of group schemes and consider a finite (usual) group G
as the group scheme SpecK |G|, which consists of |G| closed K-points,
endowed with the group scheme structure coming from the group.
The following is basically proven in [33, Theorem 1.1] for reductive

groups in char 0 (see [33, Amplification 1.3] for the nonmodular case
in positive characteristic) to give a universal geometric quotient, but
we need base change on the quotient itself (for finite groups).

Lemma 2.1. Let G be a finite nonmodular group acting on S by K-
algebra automorphisms with invariant ring R = SG. Let A be an R-
algebra. Then

(A⊗R S)G ∼= A ,

where the action on the left is on S.

Proof. Let τ : S → R, s 7→ 1
|G|

∑

g∈G sg, denote the Rayleigh map,

which is R-linear, and exists due to the nonmodular assumption. There
is a natural ring homomorphism

ϕ : A −→ (A⊗R S)G, a 7−→ a⊗ 1 .

Tensorization gives the A-linear map IdA⊗τ : A⊗R S → A, which also
shows that A ⊆ A⊗RS is a subring and so ϕ is injective. The Rayleigh
map τ̃ for A⊗R S equals τ̃ = ϕ ◦ (1⊗ τ), since

τ̃(a⊗ s) = 1

|G|
∑

g∈G

(a⊗ s)g = 1

|G|
∑

g∈G

(a⊗ sg) = (a⊗ 1

|G|
∑

g∈G

sg)

=a⊗ τ(s) = aτ(s)⊗ 1 = ϕ(aτ(s)) .

Hence ϕ is also surjective since τ̃ is. �
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This means that in the situation

Y ←− Y × Am

↓ ↓
T −→ X ←− Zρ ,

where T is a scheme with a fixed morphism to X , in the base change
diagram to T ,

T ×X Y ←− T ×X (Y × Am)
↓ ↓
T ←− T ×X Zρ

both vertical maps are quotients of the corresponding group actions
by Lemma 2.1 (on the right, apply the lemma to the base change
T ×X Zρ → Zρ). For T = {P} a point, this is

P ×X Y ←− P ×X (Y × Am)
↓ ↓
P ←− P ×X Zρ ,

where P ×X Y is the fiber over P in Y , which is given by the fiber
ring S/mPS. In the case of Y = Ad and P the image of the origin (the
vertex), this is the ring of coinvariants.
Important properties of an action β of a finite group G on Y can be

understood by looking at the morphism

β × p2 : G× Y → Y × Y, (g, y) 7−→ (gy, y) ,

and at the morphism G×Y → Y ×X Y , where X denotes the quotient.
The ring version of this is

S ⊗ S → K |G| ⊗ S ∼= SG, s⊗ t 7→
∑

g∈G

(s)gteg .

The action is called free (in the sense of fixed point free) if the morphism
β × p2 : G× Y → Y × Y is a closed embedding.

Remark 2.2. In the free case according to [33, Proposition 0.9], Y →
X is faithfully flat andG×Y → Y×XY is aG-equivariant isomorphism,
where the action on the left is only on the first component. Such actions
are called principal fiber bundles. As we consider only group schemes
G coming from a usual group (so that the corresponding group scheme
is reduced), the morphism Y → X in the free case (and if everything
is essentially of finite type) is also étale.

In our situation, we basically never have a free action, but we have
a free action on an open subset.
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Lemma 2.3. Let S be a K-domain and let the finite group G act
faithfully on S via K-algebra automorphisms. Then there exists an
invariant 0 6= f ∈ S such that the action on D(f) is free.

Proof. Let R = SG. In the quotient fields, we have a Galois field
extension Q(R) ⊆ Q(S), hence, we have a Q(R)-isomorphism

Q(S)⊗Q(R) Q(S) ∼= K |G| ⊗Q(S) ∼= Q(S)|G|

coming from the natural ringhomomorphism

S ⊗R S −→ K |G| ⊗ S .
This gives an isomorphism after a suitable localization. �

There is then also a largest open G-invariant subset V ⊆ Y where
the action is free.

Lemma 2.4. If G acts freely on V , then G also acts freely on Y × V ,
where G acts somehow on Y .

Proof. Let ν : G × Y → Y be the action on Y . By assumption,

G× V µ×p2−→ V × V is a closed embedding. We look at

G× Y × V ν×µ×p2×p3−→ (Y × V )× (Y × V ) .
Here, µ×p2×p3 is already a closed embedding into Y ×V ×V , hence, it
remains a closed embedding after adjoining the additional map ν. �

Every reflection group yields a flat morphism to the quotient, but
the action is not free and the quotient map is usually not étale.

Remark 2.5. Let G act on Y via µ with quotient X . We look at the
commutative diagram (ν denotes the operation in the group)

G×G× Y ν×p3,p1×p3,p2×p3−→ G× Y µ,p2−→ Y
q−→ X

µ1 × µ2 × p3 ↓ ↓ µ× p2 ↓ ↓
Y ×X Y ×X Y

p1×p2,p1×p3,p2×p3−→ Y ×X Y
p1,p2−→ Y

q−→ X,

where the lower row represents the setting of faithfully flat descent, see
[37, Section VIII]. When the action is free, we have vertical isomor-
phisms everywhere, see [6, Example 6.2.B], and then the data above
Y (a module, an algebra, an affine scheme) with a group action are
compatible with the group action if and only if they are descent data.

Example 2.6. Let S = K[X ]/(Xk) with the action of Z/(k) where
the generator acts by multiplication with a primitive kth root of unity
ζ , provided it exists. The invariant ring is just K, and the morphism
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K → S is flat, but not étale since dX 6= 0. The action is not free,
because, under the ring homomorphism

K[X ][Y ]/(Xk, Y k) −→ K[U ]/(Uk − 1)[X ]/(Xk), X 7→ X, Y 7→ UX ,

U does not lie in the image (or, because on the left, the spectrum
has one point and on the right it has k points, so there is no closed
embedding).

See also Example 3.9 for a related example.

3. Toric case

Invariant rings and invariant algebras are especially easy to describe
in the toric situation and are therefore a good starting point. Let K
be any field. We consider normal toric rings, which are given as the
degree 0-part of K[X1, . . . , Xd] under a D-grading given by a group
homomorphism δ : Zd → D, where D is a finite commutative group
and the grading is determined by δi := δ(ei), the degree of the variable
Xi (also called the weights of the corresponding action). We usually
assume that δ is surjective. The dual group G = D∗ = Hom(D,K×)
(here K× is the multiplicative unit group of K) acts on the polynomial
ring in the following way: An element χ ∈ G, i.e., a character χ : D →
K×, acts on the variables Xi by

χXi = χ(δi)Xi ,

hence, by the diagonal matrix








χ(δ1) 0 . . . 0
0 χ(d2) . . . 0
...

...
. . .

...
0 0 . . . χ(δd)









.

The invariant ring under this action is, under the assumption that K
contains enough roots of unity, just K[X1, . . . , Xd]0, the degree zero
part of the δ-grading. The condition that the grading is surjective
corresponds to the property that the action of G is faithful.
All toric normal monoid rings with a finite divisor class group arise

in this way. These are the monoids given by a rational polyhedral
cone that are simplicial, meaning that the number of facets of the cone
equals the dimension. A two dimensional cone is always simplicial,
hence, two dimensional affine monoid rings can always be realized in
this way.
A (not necessarily surjective) D-grading ǫ of another polynomial ring

K[W1, . . . ,Wm] corresponds to another linear action ρ of G. Its invari-
ant algebra over the invariant ring K[X1, . . . , Xd]0 is the degree zero
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part
Bρ = K[X1, . . . , Xd,W1, . . . ,Wm]0 .

This algebra can be written as

Bρ =
⊕

ν∈Nm

K[X1, . . . , Xd]−ǫ(ν)W
ν .

Lemma 3.1. Suppose the toric situation and that K contains enough
roots of unity so that D∗ is isomorphic to D. Then, we have

Bρ =
⊕

χ

K[X1, . . . , Xd]
β,χ ⊗K[W1, . . . ,Wm]

ρ,χ−1

,

where the sum runs over the characters of G.

Proof. We have

Bρ =
⊕

ν∈Nm

K[X1, . . . , Xd]−ǫ(ν)W
ν

=
⊕

λ∈D

(
⊕

ν∈Nm, ǫ(ν)=λ

K[X1, . . . , Xd]−λW
ν)

=
⊕

λ∈D

K[X1, . . . , Xd]−λ ⊗K[W1, . . . ,Wm]λ

The grading groupD is the same as the character group of G = D∗, and
the elements of degree λ are the semi-invariants of the corresponding
character since for a character χ of G = D∗ corresponding to a degree
λ we have
K[X1, . . . , Xd]

χ ={f ∈ K[X1, . . . , Xd]|g · f = χ(g)f for all g ∈ G}
={f =

∑

δ∈D

fδ|g · f = g(λ)f for all g ∈ D∗}

={
∑

δ∈D

fδ|
∑

δ∈D

g(δ)fδ = g(λ)
∑

δ∈D

fδ for all g ∈ D∗}

=K[X1, . . . , Xd]λ ,

because the condition on the roots of unity implies that fδ = 0 for
δ 6= λ. �

We look at one-dimensional examples, which already exhibit quite
typical behavior.

Lemma 3.2. Let k ∈ N+, let G = Z/(k) and let ζ denote a primitive
kth root of unity in K (assuming that it exists). Let β be the action
of G on K[X ], where the group generator acts as X 7→ ζX, and let
ρ = ρℓ, ℓ = 0, 1, . . . , k − 1, be the action of G on K[W ], where the
generator acts as W 7→ ζℓW . Then the following properties hold.
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(1) The invariant ring is K[X ]β = K[Xk] = K[A] = R.
(2) The invariant K[X ]β-algebra is

Aℓ = K[X,W ]β×ρℓ = K[X iW j |i+ jℓ ∈ Zk] =

∞
⊕

j=0

K[X ]−jℓW
j .

(3) For ℓ = 0, we obtain A0 = K[Xk][W ].
(4) For ℓ ≥ 1, the monomial Xk−ℓW 1 has the property that every

monomial as above can be expressed as (for some n)

X iW j =
(Xk−ℓW 1)j

(Xk)n
.

In particular, after localizing at A, we have

K[X,W ]β×ρℓA
∼= K[A]A[X

k−ℓW 1] .

Proof. (1) and (2) follow from the toric situation, and Lemma 3.1, (3)
and (4) are also clear. �

In Lemma 3.2, the action onK[X,W ] is given by the matrix

(

ζ 0
0 ζℓ

)

.

Example 3.3. We look at Lemma 3.2 for ℓ = k−1 = −1. The invariant
algebra is K[Xk,W k, XW ] ∼= K[A,B,C]/(AB − Ck), describing the
two-dimensional Ak−1-singularity, considered as a K[A]-algebra. Over
the punctured spectrum of SpecR, the isomorphism of Lemma 3.2 (4)
is

K[A,B,C]A ∼= K[A]A[C] .

The fiber ring over the vertex point (the origin in our case), when we
mod out A, is K[B,C]/(Ck), a nonreduced affine line.

Example 3.4. We look at Lemma 3.2 for ℓ = 1, the invariant algebra
is the Veronese ring

K[Xk, Xk−1W, . . . ,W k] = K[A0, . . . , Ak]/(binary relations) ,

considered as aK[Xk]-algebra. Over the punctured spectrum of SpecR,
the isomorphism of Lemma 3.2 (4) is

K[Xk, Xk−1W, . . . ,W k]Xk
∼= K[Xk]Xk [Xk−1W ] .

In the fiber ring over the origin, when we mod out Xk, all the mono-
mials with the exception of W k (which is the free variable of the fiber)
become nilpotent. The exponent of nilpotence of XW k−1 is k, that of
X2W k−2 is ⌊(k + 1)/2⌋, etc.
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Example 3.5. We continue with Lemma 3.2 for k = 2. There are two
one-dimensional representations, accordingly we have on the quotient
scheme, which is just the affine line, two quotient schemes of relative
dimension one, the trivial one, and Z1 = Spec[A,B,C]/(AB−C2) with
a nonreduced fiber over the origin.

Example 3.6. We continue with Lemma 3.2 for k = 3. There are three
one-dimensional representations, for ℓ = 0, 1, 2, and accordingly we
have on the quotient scheme, which is just the affine line SpecK[X3] =
SpecK[A], three quotient schemes of relative dimension one, the trivial
one, Z2 = SpecK[A,B,C]/(AB−C3) with the nonreduced fiber being
K[C,B]/(C3) and the Veronese ring

Z1 = SpecK[X3, X2W,XW 2,W 3]

∼= SpecK[A,B,C,D]/(AD − CB,B2 −AC,C2 − BD,C3 − AD2, B3 − A2D) ,

with the fiber over the origin being SpecK[B,C,D]/(CB,B2, C2 −
BD,C3), where D is a free variable, and 1, B, C, C2 is a basis over
K[D].

Example 3.7. We continue with Lemma 3.2 for k = 5 and look at the
one-dimensional representations for ℓ = 2 and 3. The invariant ring is
K[X5] = SpecK[A] and the invariant algebras are

B2 = K[X,W ](1,2) = K[X5, X3W,XW 2,W 5]

∼= K[A,C,D,B]/(C2 −AD,CD2 − AB,D3 − BC) ,
and

B3 = K[X,W ](1,3) = K[X5, X2W,XW 3,W 5]

∼= K[A,E, F,B]/(F 2 −BE, FE2 −AB,E3 −AF ) .
As K-algebras, these two algebras are isomorphic via A ↔ B,C ↔
F,D ↔ E (inherited from X ↔ W ). However, they are not isomorphic
as K[A]-algebras (this follows from Theorem 23.4). In fact, not even
the fiber rings above the origin are isomorphic K-algebras, as we will
see in Example 6.6.

Example 3.8. As in Lemma 3.2, we consider the action of Z/(k) but
now on the Artinian algebra S = K[X ]/(Xk), the invariant ring is
just K. This is the action from Lemma 3.2 over the base change
K[A] → K, A 7→ 0, see also Lemma 2.1. The invariant algebra for
the representation ρℓ is

K[X iW j| i+ ℓj ∈ Zk]/(Xk) ,

its reduction is K[W k].
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Example 3.9. In the situation of Lemma 3.2, the morphism µ × p2
from Remark 2.5 corresponds to the ring homomorphism

K[X ]⊗K[Xk]K[X ] = K[X, Y ]/(Xk−Y k) −→ K[X ]⊗K[U ]/(Uk−1), Y 7→ UX .

On the left, we have k lines meeting in a point, on the right, we have
k disjoint lines.

Example 3.10. We consider the action of the group G = Z/(2)
on S = K[X, Y ], where the nontrivial group element acts by mul-
tiplication with −, and the invariant ring is R = K[X2, Y 2, XY ] ∼=
K[A,B,C]/(AB − C2). We further consider the action of G on K[W ]
by sign. The invariant algebra is the Veronese algebra in three variables
in degree 2,

K[X, Y,W ]G = K[X2, Y 2, XY,W 2, XW, YW ]

= K[A,B,C,D,E, F ]/(AB − C2, AD −E2, BD − F 2, . . .)

Outside of the zero locus V (A), this algebra isK[A,C]A[E] (similar out-
side V (B)), over V (A,B,C) the fiber algebra isK[D,E, F ]/(E2, F 2, EF ).

Example 3.11. The action of the group Z/(k) on the polynomial

ring K[X, Y ], where 1 acts via the matrix

(

ζ 0
0 ζ−1

)

(ζ a primitive

kth root of unity), yields the invariant ring R = K[Xk, Y k, XY ] ∼=
K[A,B,C]/(AB − Ck), the Ak−1-singularity. The action ρ = ρℓ given
on K[W ] by 1 acting as W 7→ ζℓW gives the quotient schemes

Zℓ = SpecK[X, Y,W ]β,ρℓ .

The invariant algebra is given as

K[X, Y,W ](1,−1,ℓ) = [X iY jWm : i− j + ℓm ∈ Zk] .

In the first nontrivial case, k = 2 and ℓ = 1, this isK[X2, Y 2, XY,W 2, XW, YW ],
so the second Veronese ring in three variables. Over R, this algebra is

R[D,E, F ]/(CD− EF,CE −AF,BE − CF,AD − E2, BD − F 2) .

When we invert A, this algebra is isomorphic to the polynomial ring
RA[E], as D = E2/A and F = CE/A, when we invert B, this algebra is
isomorphic to RB[F ]. The fiber ring over (A,B,C) isK[D,E, F ]/(EF,E2, F 2).

Example 3.12. Let G = Z/(2) × Z/(2) act naturally by compo-
nentwise negation onK[X, Y ], with invariant ringK[X2, Y 2] = K[A,B].
(1). The action onK[W ], where the first component of the group acts

by − and the second component acts as the identity, so on K[X, Y,W ],



MODULE SCHEMES IN INVARIANT THEORY 17

(+,+) acts as the identity, (+,−) as (+,−,+), (−,+) as (−,+,−),
(−,−) as (−,−,−). This yields the invariant algebra

K[X2, Y 2,W 2, XW ] ∼= K[A,B,C,D]/(D2 −AC) .
This is a nonisolated singularity, the singular locus consists of the line
V (A,C,D), and its image is V (A). If we invert A, we get K[A,B]A[D],
but over A = 0, we get K[B] ⊆ K[B,C,D]/(D2), so this is a nonre-
duced affine line over an affine line.
(2). If we look at the action which factors through the sum Z/(2)×

Z/(2)→ Z/(2), then (+,−) acts as (+,−,−), (−,+) as (−,+,−), and
(−,−) as (−,−,+). This yields the invariant algebra

K[X2, Y 2,W 2, XYW ] ∼= K[A,B,C,D]/(D2 − ABC) .
This is a nonisolated singularity, and the singular locus consists of three
lines V (A,B,D), V (A,C,D) and V (B,C,D). The images of these lines
are the point V (A,B) and the lines V (A) and V (B). If both A and B
are inverted, then we get K[A,B]AB[D]. Above A = 0 (similar above
B = 0), we get K[B][C,D]/(D2).

Example 3.13. Let G be the cyclic group of order 4 with the ba-

sic action β given (for the generator) by the matrix M =

(

−1 0
0 i

)

,

the subgroup H of reflections is Z/(2), generated by M2. The in-
variant ring under H is C[X1, X

2
2 ], and the invariant ring under G is

C[X2
1 , X

4
2 , X1X

2
2 ]
∼= C[A,B,C]/(AB−C2). Let ρ be the one-dimensional

representation of G given by multiplication with i. Then the represen-
tation β × ρ is small, and the invariant algebra is

K[X1, X2,W ](2,1,1) = K[X2
1 , X1X

2
2 , X

4
2 ,W

4, X2W
3, X2

2W
2, X3

2W,X1W
2, X1X2W ] .

See also Example 21.7 and Example 22.11.

4. Further examples

We describe several further nontoric examples (the first one is toric
in characteristic 6= 2 after a change of coordinates).

Example 4.1. We consider the symmetric action of the group G =
Z/(2) on S = K[X, Y ], where the nontrivial group element exchanges
X and Y , and the invariant ring is K[X + Y,XY ] ∼= K[A,B]. We
further consider the action of the group onK[W ] by sign. The invariant
algebra is then

K[X, Y,W ]G = K[X + Y,XY,W 2, (X − Y )W ]

= K[A,B, U, V ]/(V 2 − U(A2 − 4B)) .
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Outside of the zero locus V (A2−4B), this algebra is K[A,B]A2−4B[V ],
over this zero locus the algebra is K[A,B]/(A2−4B) ⊆ K[A,B]/(A2−
4B)[U, V ]/(V 2).

Lemma 4.2. For the symmetric group Sd with its natural action on
K[X1, . . . , Xd] (and with the invariant ring given by K[E1, . . . , Ed], Ei
being the elementary symmetric polynomials) and the nontrivial action
of Sd on K[W ], which factors through the sign homomorphism Sd →
{1,−1}, the invariant algebra is

K[E1, . . . , Ed][W
2, DW ] ∼= K[E1, . . . , Ed][U, V ]/(V

2 − UD2)

where D =
∏

i<j(Xi−Xj) denotes the Vandermonde determinant. Out-

side of V (D2), the invariant algebra is K[E1, . . . , Ed]D2 [V ], and above
V (D2), the invariant algebra is K[E1, . . . , Ed]/(D

2)[U, V ]/(V 2).

Proof. This follows from the fact that for the action of Sd on the
polynomial ring, the semi-invariants with respect to − are given by
K[E1, . . . , Ed]D. �

Note that the natural action of the symmetric group is generated by
the reflections coming from the transpositions, the mirror hyperplanes
are V (Xi −Xj) for i 6= j. The diagonal is fixed by the action.

Example 4.3. We consider the symmetric group S3 with its natural
action on K[X, Y, Z], and the invariant ring is K[X + Y + Z,XY +
XZ + Y Z,XY Z] ∼= K[A,B,C]. We further consider the action of the
group via the sign homomorphism S3 → {1,−1} on K[W ] by sign.
The invariant algebra is

K[X, Y, Z,W ]G = K[X + Y + Z,XY +XZ + Y Z,XY Z,W 2, DW ]

= K[A,B,C, U, V ]/(V 2 − UD2) ,

where D = (X − Y )(X − Z)(Y − Z), in accordance with Lemma 4.2.

Remark 4.4. In general, if G ⊆ Gld(K) is a finite group generated by
reflections, with mirror hyperplanes H1, . . . , Hn, then the image of the
mirror hyperplanes in X is described by the discriminant △. If the
mirror Hi is given by the linear form Li and the order of the subgroup
with this mirror is νi, then the discriminant is (up to a unit)

∏n
i=1 L

νi
i ,

which is an element of the invariant ring, see [10, 2.3.1]. In the situation
of Lemma 4.2, we have △ = D2.

Example 4.5. We let the symmetric group S3 act on A2 via the ma-
trices (from the left)

(

1 0
0 1

)

,

(

0 1
1 0

)

,

(

−1 0
−1 1

)

,

(

1 −1
0 −1

)

,

(

−1 1
−1 0

)

,

(

0 −1
1 −1

)

,
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the one with determinant −1 are reflections (with axes K(e1 + e2),
Ke1, Ke2) and we have a reflection group. The corresponding actions
on K[X, Y ] of the transpositions are given by X ↔ Y , X 7→ −X ,
Y 7→ −X + Y and X 7→ X − Y , Y 7→ −Y . The invariant ring
is K[X2 + Y 2 − XY, 2X3 − 3X2Y − 3XY 2 + 2Y 3] = K[A,B]. The
discriminant is △ = 4A3 − B2 = 27X2Y 2(X − Y )2. Its square root is
a semi-invariant with respect to −, as in Lemma 4.2. Hence, if ρ is the
representation given by the determinant, then the invariant algebra is
K[A,B][U, V ]/(V 2 − U△).

Example 4.6. We restrict the action from Example 3.12 to the union
of the two reflecting lines, so G = Z/(2) × Z/(2) is acting on the
ring K[X, Y ]/(XY ) with invariant ring K[A,B]/(AB). For the first
representation, the invariant algebra is K[A,B,C,D]/(AB,D2−AC),
for the second representation, it is K[A,B,C,D](AB,D2), which can
be computed directly or follows from Example 3.12 by Lemma 2.1.

5. Invariant modules and invariant algebras

Suppose that a finite group G acts on the K-algebra S by K-algebra
automorphism and that G acts linearly via ρ on a finite dimensional
K-vector space V . Then the natural action of G on the free S-module
N = S ⊗K V ∼= Sm is given for g ∈ G as (action from the right, think
of V as a space of linear forms)

S ⊗K V −→ S ⊗K V, s⊗ v −→ sg ⊗ vg .

This action is compatible in the sense that

sg · wg = (sw)g

holds for all g ∈ G and s ∈ S. The module S⊗K V is an SG-module by
restricting the scalars in the first component, and the mappings given
by g ∈ G are SG-module automorphisms. The module of covariants
(or invariant module from now on)

Nρ = {w ∈ N : wg = w for all g ∈ G}

is therefore an SG-module.

Remark 5.1. If S is a Cohen-Macaulay ring and G is nonmodular,
then the invariant modules are maximal Cohen-Macaulay R-modules.
They are, if they are indecomposable, direct summands of S as R-
modules, see Section 9 (in particular Lemma 3.13), and S is also a
Cohen-Macaulay R-module, as follows with local cohomology.
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Remark 5.2. Basically every example of a group generated by reflec-
tions shows that this module assignment comes with a loss of infor-
mation, because then the invariant ring is a polynomial ring and all
maximal Cohen-Macaulay modules are free.

Lemma 5.3. Let G be a finite group acting faithfully via β on a K-
algebra S by K-algebra automorphisms with invariant ring R = SG.
Let ρ be a K-linear representation on the K-vector space V , let G
act naturally on N = S ⊗K V and let M = Nρ be the correspond-
ing invariant R-module. Then there is a canonical N-graded R-algebra
homomorphism

SymR(M) −→ (S ⊗K K[V ])β×ρ .

It is an isomorphism in degrees 0 and 1.

Proof. We start with the natural S-module homomorphism

S ⊗K V −→ S ⊗K K[V ],

where on the right we have an S-algebra. This mapping isG-equivariant,
therefore, we obtain an R-module homomorphism

M = (S ⊗K V )ρ −→ (S ⊗K K[V ])ρ .

By the universal property of the symmetric algebra, this gives an R-
algebra homomorphism

SymR(M) −→ (S ⊗K K[V ])ρ .

On both sides, the degree 0 part is R and the degree 1 part is M . �

This algebra homomorphism is in general not surjective. The corre-
sponding scheme morphism is Zρ → Spec(SymR(M)), and in Lemma
14.4, we will understand this morphism as a morphism of module
schemes up to normalization.

Example 5.4. In the situation of Lemma 3.2, the invariant K[Xk]-
module is the free module of rank 1 generated by Xk−ℓW 1, which is
embedded in the invariant algebra according to Lemma 5.3. The ring
homomomorphism from Lemma 5.3 is only an isomorphism when ℓ = 0.
This will follow from Theorem 7.2 or Theorem 23.4, but can also be seen
directly: For ℓ 6= 0, let j be the smallest number such that j(k−ℓ) ≥ k.
Then the invariant monomial Xj(k−ℓ)−kW j is not a power of Xk−ℓW ,
and hence not in the image.

Example 5.5. In Example 3.8, the invariant module is just a K-vector
space, and hence, its symmetric algebra is always a polynomial algebra.
The ring homomorphism from Lemma 5.3 is

K[T ] −→ K[X iW j| i+ ℓj ∈ Zk]/(Xk), T 7→ Xk−ℓW 1 .
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Example 5.6. In Example 3.12 (2), the ring homomorphism from
Lemma 5.3 is

K[A,B][T ] −→ K[A,B][C,D]/(D2 − ABC), T 7→ D .

Example 5.7. In Example 3.11, the ring homomorphism from Lemma
5.3 (for k = 2 and ℓ = 1) is

K[A,B,C]/(AB−C2)[S, T ]/(CS−AT,BS−CT ) −→ K[X2, Y 2, XY,XW, YW,W 2] ,

with S 7→ XW = D, T 7→ YW = E. This is an isomorphism over
the punctured spectrum (in codimension one), but not in general, as
W 2 is not in the image. Hence, also for a small action, we cannot
expect an isomorphism. The fiber of the symmetric algebra over the
isolated singularity (A,B,C) is a two-dimensional plane, the fiber of the
invariant ring is SpecK[D,E, F ](D2, E2, DE), and this fiber contracts
to the origin under the morphism. In particular, the morphism between
the spectra is not surjective.

Lemma 5.8. Let G be a finite group acting faithfully via β on a K-
algebra S by K-algebra automorphisms with invariant ring R = SG.
Let ρ be a K-linear representation on the K-vector space V . Then the
degree n component of the invariant algebra (S ⊗K K[V ])β×ρ is

((S ⊗K K[V ])β×ρ)n = (S ⊗K Symn
K V )

G ,

where G acts naturally on the symmetric powers of V .

Proof. Because the action is homogeneous on K[V ], we have

(S ⊗K K[V ])β×ρ)n = ((S ⊗K K[V ])n)
ρ = (S ⊗K Symn

K V )G .

�

For a finitely generated N-graded R-algebra A with An finite R-
modules, we call the function given by n 7→ µR(An) the Hilbert function
of A, where µr denotes the minimal number of R-module generators.

Corollary 5.9. Let G be a finite nonmodular group acting linearly and
faithfully via β as a reflection group on K[X1, . . . , Xd] with invariant
ring R = SG ∼= K[T1, . . . , Td]. Let ρ be a K-linear representation on
the K-vector space V of dimension m. Then the Hilbert function of the
invariant R-algebra (S ⊗K K[V ])β×ρ is

(

n+m−1
m−1

)

.

Proof. By Lemma 5.8, we have to determine the minimal number of
R-generators of (S⊗K Symn

K V )G. As we have a reflection group acting,
this is a free R-module of rank

(

n+m−1
m−1

)

. �
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In the following, we want to show that over suitable open subsets U ⊆
X the K-algebra homomorphism from Lemma 5.3 is an isomorphism
and that Zρ exhibits the structure of a vector bundle there.

Lemma 5.10. Let G be a finite group acting faithfully via β on the K-
algebra S through K-algebra automorphisms with invariant ring R =
SG. Suppose that the action of G on SpecS is free. Let ρ be a K-
linear representation on the K-vector space V , let G act naturally on
N = S ⊗K V , and let M = Nρ be the corresponding invariant R-
module. Then the natural K-algebra homomorphism from Lemma 5.3
is an isomorphism. Moreover, Spec(SymR(M)) ∼= Zρ is a vector bundle
over SpecR.

Proof. We have S⊗R S ∼= K |G|⊗S ∼= S |G| by [33, Proposition 0.9] and
R→ S is faithfully flat. We look at the diagram

S −→ S[W1, . . . ,Wm]
↑ ↑
R −→ Bρ

after applying the faithfully flat base change R→ S, which yields

K |G| ⊗ S −→ (K |G| ⊗ S)[W1, . . . ,Wm]
↑ ↑
S −→ S ⊗R Bρ .

The action of G on K |G| and on the variablesWi is as before, but there
is no action on S anymore.
We denote the idempotent elements of K |G| by eg. We look at the

K |G| ⊗ S-homomorphism

ψ : (K |G| ⊗ S)[T1, . . . , Tm] −→ (K |G| ⊗ S)[W1, . . . ,Wm]

given by Ti 7→
∑

g∈G(Wig)eg, where G acts on the left-hand side only

via the natural action on K |G|.
For any element F ∈ S[W1, . . . ,Wm], the element Feg is the el-

ement F on the open and closed subset D(eg) (which is isomorphic
to S[W1, . . . ,Wm]) of Spec(K

|G| ⊗ S)[W1, . . . ,Wm] corresponding to g
and the zero function on the other components. This mapping ψ is
N-graded, G-equivariant, as for h ∈ G, we have

(
∑

g∈G

Wigeg)h =
∑

g∈G

Wighegh =
∑

g∈G

Wigeg ,

and it is an isomorphism since it is an isomorphism on each D(eg).
This means that we can trivialize the action of G and that the resulting
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invariant algebra is isomorphic to S[T1, . . . , Tm], and in particular

SymS((K
|G|⊗S⊗K[W1, . . . ,Wm]1)

G) −→ S[T1, . . . , Tm] ∼= ((K |G|⊗S)[W1, . . . ,Wm])
G

is an isomorphism.
We now use descent properties for faithfully flat base change. By [24,

Proposition 2.7.1 (viii)], it follows that the original ring homomorphism
is an isomorphism, and by [24, Proposition 2.5.2] it follows that M is
locally free. �

Remark 5.11. The previous result can also be deduced from faithfully
flat descent for affine schemes (see [37, Théorème VIII.2.1]). To see this,
one needs the mentioned result from GIT that R ⊆ S is flat and that
the compatible free group action corresponds to descent data, see [6,
Example 6.2.B].

Example 5.12. A special case of Lemma 5.10 is that K ⊆ L is a
Galois extension of fields. This means that in this case every invariant
algebra is a polynomial algebra. One can also apply Lemma 5.10 when
Y = XL = X ×K L for any K-scheme X .

Corollary 5.13. Let G be a finite group acting faithfully via β on the
K-algebra S through K-algebra automorphisms with invariant ring R =
SG. Let V ⊆ SpecS be an invariant open subset where the action is free
and let U ⊆ SpecR be its image. Let ρ be a K-linear representation
on the K-vector space V , let G act naturally on N = S ⊗K V , and let
M = Nρ be the corresponding invariant R-module. Then the natural
K-algebra homomorphism from Lemma 5.3 is an isomorphism over U .
Moreover, (Spec(SymR(M)))|U ∼= Zρ|U is a vector bundle over U .

Proof. Let SpecSf = D(f) ⊆ SpecS be an invariant open affine subset
where the action is free. The construction of the invariant module, the
invariant algebra, the symmetric algebra and the homomorphism in
Lemma 5.3 commute with localization, and whether a given scheme
morphism is an isomorphism can be checked locally. Hence, the result
follows from Lemma 5.10. �

Corollary 5.14. Let G be a finite group acting linearly and faith-
fully via β on Kd and let ρ be a linear representation of G. Let
R = K[X1, . . . , Xd]

β be the invariant ring and let M be the invari-
ant R-module corresponding to ρ. Let V ⊆ Ad be the nonempty open
locus where the action β is free and let U ⊆ X be its image. Then, the
natural K-algebra homomorphism from Lemma 5.3 is an isomorphism
over U . Moreover, (Spec(SymR(M)))|U ∼= Zρ|U is a vector bundle over
U .
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Proof. This is a special case of Corollary 5.13. The nonemptyness fol-
lows from Lemma 2.3. �

For an R-module M , the Rees algebra R(M) is defined by

R(M) = Sym(M)/(R − torsion) .

For an ideal I, this matches the usual definition of a Rees algebra, at
least when R is a domain, see [46].

Lemma 5.15. Let G be a finite group acting faithfully via K-algebra
automorphisms on the K-domain S with invariant ring R = SG. Let
ρ be a K-linear representation on the K-vector space V , let G act
naturally on N = S ⊗K V , and let M = Nρ be the corresponding
invariant R-module. Then the natural K-algebra homomorphism from
Lemma 5.3 factors through the Rees algebra R(M).

Proof. This is clear, as S[V ] and hence S[V ]G is a domain. �

Example 5.16. We look at Example 3.10. The degree one com-
ponent of the invariant algebra and hence the invariant module is
M ∼= 〈XW, YW 〉. This module is isomorphic to the ideal I = (A,C)
with the R-linear representation

R2 −→ R2 −→ I −→ 0

where the matrix is

(

C −A
B −C

)

. The symmetric algebra of this module

is therefore just

R[U, V ]/(CU − AV,BU − CV ) .

The natural ring homomorphism from Lemma 5.3 is

R[U, V ]/(CU − AV,BU − CV ) −→
K[A,B,C,D,E, F ]/(AB−C2, AD−E2, BD−F 2, CD−EF,AF−CE,BE−CF )
with U 7→ E and V 7→ F . The fiber over V (A,B,C) of the symmetric
algebra is SpecK[U, V ] (two-dimensional), and the fiber of the quotient
scheme, which is SpecK[D,E, F ]/(E2, F 2, EF ) (one-dimensional), is
contracted under the corresponding scheme morphism to the origin.
In between the two algebras we have, by Lemma 5.15, the Rees

algebra of the ideal R+ (A,C) + (A,C)2 + . . .. In the describing ideal
of the symmetric algebra we have the relation

BU(CU −AV ) + AV (BU − CV ) = C(BU2 − AV 2) ,

but the factors on the right are not in the ideal. The element BU2−AV 2

equals in the Rees-Algebra the element BA2 − A(AB), so this goes to
0. It is also zero in the invariant algebra.
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6. Fibers

We want to describe the fibers of the quotient schemes Zρ → X . For
G acting on Y and a point Q ∈ Y , the stabilizer of Q is the subgroup
of group elements mapping Q to itself (no requirements on the residue
class field).

Theorem 6.1. Let G be a finite nonmodular group acting faithfully via
β on Y = SpecS by K-algebra automorphisms with quotient scheme
X = SpecR. Let P ∈ X be a closed point with maximal ideal mP , let
Q ∈ Y be a preimage and let S/mPS ∼= S1×· · ·×Sr be the decomposition
of the fiber ring S/mPS into local rings, with Q corresponding to S1.
Let H denote the stabilizer group for the point Q. Let ρ be a linear
action of G on Am, let Zρ = (Y × Am)/β × ρ be the quotient scheme,
and let ρ̃ be the induced action of H on Am. Then, the fiber ring of Zρ
over P is (S1[W1, . . . ,Wm])

ρ̃.

Proof. The stabilizers are for all points above P conjugated subgroups,
and the rings Si are isomorphic rings, as the group acts transitively on
the orbits. The fiber ring over P is S⊗Rκ(P ) ∼= S⊗RR/mP

∼= S/mPS.
The tensor products of the diagram

S −→ S[W1, . . . ,Wm]
↑ ↑
R −→ (S[W1, . . . ,Wm])

ρ

along R→ κ(P ) yields

S/mPS −→ (S/mPS)[W1, . . . ,Wm]
↑ ↑

κ(P ) −→ κ(P )⊗R (S[W1, . . . ,Wm])
ρ .

Since the quotient of a finite nonmodular group is compatible with base
changes on X by Lemma 2.1, we obtain

κ(P )⊗R (S[W1, . . . ,Wm])
ρ ∼= ((S/mPS)[W1, . . . ,Wm])/G .

On the right, we have the action of G on (S1 × · · · × Sr)[W1, . . . ,Wm],
where the elements of G act transitively on the points above P . There-
fore, the result follows from Lemma 6.2. �

Lemma 6.2. Let T and W be schemes, and let Y = T1⊎ . . .⊎Tr be the
disjoint union of r copies Ti ∼= T . Let G be a finite group acting on Y
and on W , and suppose that G acts transitively on the set {T1, . . . , Tr}.
Let H1 ⊆ G be the subgroup of elements h with h(T1) = (T1). Then,
there is a natural isomorphism (T1 ×W )/H1

∼= (Y ×W )/G.
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Proof. The natural inclusion T1 ×W → Y ×W is H1 −G-equivariant
and induces a morphism

(T1 ×W )/H1 −→ (Y ×W )/G .

For each i, we fix a gi ∈ G with gi(Ti) = T1, so this is a representing
system for G/H . We look at the morphism

(Y ×W ) =
⊎

i

(Ti ×W )
⊎
gi−→ T1 ×W π−→ (T1 ×W )/H1 .

This morphism is G-invariant: for g̃ ∈ G and some Ti let g̃(Ti) = Tj.
Then gj g̃g

−1
i ∈ H1 and hence πgi and πgj g̃ coincide on each Ti. Hence,

this induces a morphism

(Y ×W )/G −→ (T1 ×W )/H1 .

These two morphisms are inverse to each other. �

Remark 6.3. Theorem 6.1 also shows that all fibers of Zρ → X have
the same dimension m. This is in contrast to the symmetric algebra of
a module, where the dimension of the generic fiber is the rank of the
module and where the dimension can increase over special points, as
in Example 5.7. See Section 17.

Remark 6.4. For a linear action β, the fiber ring over the vertex
point [0] ∈ X = Ad/β is K[X1, . . . , Xd]/R+K[X1, . . . , Xd], which is
also called the ring of coinvariants (and R+K[X1, . . . , Xd] is called
the Hilbert ideal or Hilbert ideal of the null cone). The only point
above [0] is 0, and the stabilizer group is G itself. For another linear
representation ρ, the fiber ring is hence

((K[X1, . . . , Xd]/R+K[X1, . . . , Xd])[W1, . . . ,Wm])
ρ ,

in accordance with Theorem 6.1. For an interpretation of the length of
the ring of coinvariants as a Hilbert-Kunz multiplicity, see [7].

Example 6.5. For Z/(k) acting on K[X ], as in Lemma 3.2, the fiber
ring of A1 → A1 over the origin is K[X ]/(Xk), and the fiber ring of Zℓ
for the representation ρℓ is the K-algebra (see also Example 3.8)

(K[X ]/(Xk)[W ])β×ρ = K[X iW j| i+ ℓj ∈ Zk]/(Xk) .

Example 6.6. We determine the fiber rings over the origin for B2 and
B3 in Example 3.7. We get

B2 ⊗K[A] K = K[B,C,D]/(C2, CD2, D3 −BC)
and

B3 ⊗K[A] K = K[B,E, F ]/(FE2, E3, F 2 − BE) .
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These are nonisomorphic K-algebras: if we go modulo the third power
of the maximal ideal m, we get K[B,C,D]/(m3 + (C2, BC)) with K-
dimension 8 in the first case and K[B,E, F ]/(m3 + (F 2 − BE)) with
dimension 9 in the second case.

Example 6.7. We want to analyze the two cases of Example 3.12
along Theorem 6.1. For the point (a, b) = (0, 0), the fiber ring is
K[X, Y ]/(X2, Y 2) with no further decomposition, and the stabilizer
group is Z/(2) × Z/(2). For (a, b) = (0, b) with b 6= 0, the preimage

consists of (0,±
√
b), the fiber ring has the decomposition

K[X, Y ]/(X2, Y 2 − b) ∼= K[X ]/(X2)×K[X ]/(X2)

and the stabilizer groupH is Z/(2) (the first component of G = Z/(2)×
Z/(2)). For (a, b) = (a, 0) with a 6= 0, we have a similar behavior, and
the stabilizer group is now the second component.
In the first case, where G acts via the first component and then

through negation, over (0, b), the induced action is negation, hence, the
fiber ring is (K[X ]/(X2)[W ])H = K[W 2, XW ]/((XW )2), over (a, 0),
the induced action is trivial, and hence, the fiber ring is (K[Y ]/(Y 2)[W ])H =
K[W ].
In the second case, the invariant algebra has the form K[A,B] ⊆

K[A,B,C,D]/(D2 − ABC), the fiber ring over every point (a, b) ∈
V (AB) is just K[C,D]/(D2). Above (0, b), the induced action of the
stabilizer group on K[X ]/(X2)[W ] is negation, the fiber ring is there-
fore K[W 2, XW ]/((XW )2), and the same holds over (a, 0).

Remark 6.8. The fiber ring over the origin (0, 0) in both cases of
Example 6.7 is K[C,D]/(D2). This shows that one cannot reconstruct
the representation ρ from the fiber over the origin of Zρ alone, see
Theorem 23.4 for our main reconstruction result.

Example 6.9. We analyze Example 4.3 along Theorem 6.1. For a
point Q = (x, y, z) with three different entries, the decomposition in
Theorem 6.1 consists in 6 reduced points, the stabilizer group is trivial
and the fiber of Zρ above the image point P is a reduced affine line.
For a point with two different entries, say Q = (0, 0, 1), there are three
points above the image point P = (1, 0, 0). The fiber ring is

K[X, Y, Z]/(X + Y + Z − 1, XY +XZ + Y Z,XY Z) ,

the ring in the decomposition corresponding to Q is K[X ]/(X2) (via
Y 7→ −X , Z 7→ 1), the stabilizer group is S2, with the induced
action given by X 7→ −X . The fiber of Zρ above P is given by
(K[X ](X2)[W ])ρ̃, which is K[XW,W 2]/((XW )2), in accordance with
Lemma 4.2. For a point with only one entry, say Q = (0, 0, 0), there is
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no other point above the image point P = (0, 0, 0). The fiber ring is
K[X, Y, Z]/(X + Y + Z,XY +XZ + Y Z,XY Z), the stabilizer group
is S3. The fiber of Zρ above P is described by

(K[X, Y, Z]/(X + Y + Z,XY +XZ + Y Z,XY Z)[W ])ρ ,

which is K[△W,W 2]/((△W )2).

We now describe the fibers of a quotient scheme Zρ over X as a
topological space (the geometric fiber). It turns out that they are
homeomorphic to quotients of affine spaces modulo linear actions.

Lemma 6.10. Let a finite group G act faithfully via β by K-algebra
automorphisms on a local Artinian K-algebra S with residue class field
K and let ρ be a linear representation of G. Then

(S[W1, . . . ,Wm])
β×ρ −→ K[W1, . . . ,Wm]

ρ

is the reduction. The corresponding map of spectra is a homeomor-
phism.

Proof. The homomorphism is well-defined since g(s) and s have the
same value in S/m, because of s− s ∈ m and since the automorphisms
preserve the maximal ideal. There is also a subring relation

K[W1, . . . ,Wm]
ρ ⊆ (S[W1, . . . ,Wm])

β×ρ

and so the homomorphism is surjective (and the morphism of the spec-
tra is a closed embedding). The right-hand side above is reduced, and
both rings are irreducible and of the same dimension. Hence, the closed
embedding is the reduction. �

Theorem 6.11. Let K be an algebraically closed field. Let a finite
nonmodular group G act via β faithfully on Y = SpecS of finite type
over K by K-algebra automorphisms with quotient scheme X, let Q ∈
Y be a closed point with image point P ∈ X. Let ρ be a linear action
of G on Am with quotient scheme Zρ = (Y ×Am)/(β × ρ). Let H ⊆ G
denote the stabilizer group of Q. Then, the geometric fiber of Zρ over
P is naturally homeomorphic with Am/ρ̃, where ρ̃ is the restriction of
ρ to H.

Proof. By Theorem 6.1, the scheme theoretic fiber over P has the form
of Lemma 6.10, so this lemma gives the result. �

Corollary 6.12. Let K be an algebraically closed field. Let the fi-
nite nonmodular group act linearly and faithfully on Ad with quotient
scheme X and vertex point 0̃. Let ρ be a linear action on Am with
quotient scheme Zρ → X. Then, there is a natural homeomorphism
between the fiber of Zρ over 0̃ and Am/ρ.
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Proof. This is a special case of Theorem 6.11, as for 0 ∈ Ad the stabi-
lizer is G, hence, ρ̃ = ρ. �

Remark 6.13. Every quotient scheme of a linear group action on Ad

appears as the geometric fiber over the vertex point 0̃ of some quotient
scheme, as follows from Corollary 6.12.

Example 6.14. If G acts freely on Ad \{0}, then by Theorem 6.11, all
fibers of Zρ are affine spaces Am with the exception of the fiber over the
vertex, which is homeomorphic to Am/ρ according to Corollary 6.12.

Corollary 6.15. The geometric fibers of a quotient scheme of rank one
are affine lines.

Proof. This follows from Theorem 6.11, as the quotient of A1 modulo
a finite group acting linearly is, as it factors through a linear action of
a cyclic group, always an affine line. �

7. Ramification

We want to understand which fibers of Zρ → X are reduced. For
the trivial bundle, which stems from the trivial action, all fibers are
reduced. By Lemma 5.10, the fibers over the points that lie in the
image of the free locus of Y are also reduced since there we even have
the structure of a vector bundle.

Lemma 7.1. Let G be a finite group and let S be a local Artinian
nonreduced K-algebra, Y = SpecS. Let G act faithfully on S by K-
algebra automorphisms with invariant ring K. Let ρ be a nontrivial
linear representation of G. Then, the quotient scheme (Y × Am)/G is
not reduced.

Proof. Let H 6= G be the kernel of the representation ρ. We mod
out everywhere H , which gives the same situation back, with the ex-
tra property that G/H acts faithfully on Am. Note that Y/H is also
nonreduced, otherwise, it would already be SpecK. So we may as-
sume that G acts faithfully on Am. Let V ⊆ Am be a nonempty open
subset where the action is free, which exists by Lemma 2.3. We con-
sider the action of G on Y × V . This action is also free by Lemma
2.4, so Y × V → (Y × V )/G is étale by Remark 2.2. Since Y × V
is not reduced, (Y × V )/G is also not reduced by étale descent, see
[42, Lemma 10.163.7], hence, (Y × Am)/G is not reduced because it
contains (Y × V )/G as an open subset. �

Theorem 7.2. Let K be algebraically closed. Let G be a finite nonmod-
ular group acting via β by K-algebra automorphisms on a K-algebra S
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of finite type, and let Y = SpecS with quotient scheme X = SpecR.
Let ρ be a linear representation of G. Then, the fiber of the quotient
scheme Zρ = (Y ×Am)/β × ρ over a closed point P ∈ X is nonreduced
if and only if for one (any) point Q ∈ Y above P , the restriction of ρ
to the stabilizer of Q is not trivial.

Proof. If P belongs to the image of the free locus of the action on Y ,
then the fiber of the vector bundle (by Corollary 5.13) is reduced, and
the stabilizer group of Q is trivial. So suppose that P does not lie in
the image of the free locus. Then above P there are in Y less than
|G| points. The fiber ring S/mPS = S1 × · · · × Sr has K-dimension at
least the order of the group, and this is distributed equally on the local
rings of it, so they cannot be reduced. By Theorem 6.1, the fiber of
Zρ above P is S1[W1, . . . ,Wm]

ρ̃, where ρ̃ is the action restricted to the
stabilizer of some point Q above P . If ρ̃ is trivial, then the fiber ring
is K[W1, . . . ,Wm], hence reduced. If ρ̃ is not trivial, then the result
follows from Lemma 7.1. �

Remark 7.3. Typical examples for nilpotent elements in the fibers
described in Theorem 7.2 are mixed invariants, as given in Lemma 1.1.

Corollary 7.4. Let G ⊆ Gld(K) be a reflection group with the mirror
hyperplanes H1, . . . , Hn, let ρ : G→ Glm(K) be a linear representation,
and let Zρ → X = Ad/G be the corresponding quotient scheme. If
P ∈ X lies in the image of

⋃n
i=1Hi, then the fiber of Zρ above P is

nonreduced.

Proof. Outside the union
⋃n
i=1Hi, the action is free (see Corollary

21.3), therefore, we have a vector bundle by Corollary 5.14 above the
image of this union. �

Therefore, nonreduced fibers can occur only above the zero locus of
the discriminant, see Remark 4.4.

Corollary 7.5. Let G ⊆ Gld(K) be a reflection group with the mirror
hyperplanes H1, . . . , Hn, let ρ : G→ K× be the representation given by
the determinant, and let Zρ → X = Ad/G be the corresponding quotient
scheme. Then, the fiber of Zρ above a point P ∈ X is nonreduced if
and only if P lies in the image of

⋃n
i=1Hi.

Proof. One direction is a special case of Corollary 7.4. Let Q ∈
⋃n
i=1Hi

be a point above P , say Q ∈ H1. Let g 6= Id be a reflection with H1 as
fixed space. Then, g belongs to the stabilizer of Q, and ρ(g) = det(g) 6=
1, hence, the fiber is not reduced by Theorem 7.2. �

Corollary 7.5 can be applied in particular in the situation of Lemma
4.2, but in this case, the result is also clear from the explicit equation.
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Example 7.6. Theorem 7.2 does not hold in this form for a field that
is not algebraically closed, as any Galois extension K ⊆ L shows, where
(see Lemma 5.10 and Example 5.12) the (only) fiber of Zρ is always
reduced, the stabilizer group is always G and the action ρ need not be
trivial.

8. Products

We want to understand how the sum of two linear representations
ρ1 and ρ2 is related to the product of Zρ1 and Zρ2 over X .

Lemma 8.1. Let G be a finite group G acting on the affine k-schemes
X, Y, Z with compatible morphisms ϕ, ψ : Y, Z → X. Then, there is a
natural surjective integral morphism

(Y ×X Z)/G −→ Y/G×X/G Z/G .

Proof. The group G is also acting on Y ×X Z, therefore, we obtain
morphisms (Y ×X Z)/G→ Y/G and (Y ×X Z)/G→ Z/G, and hence,
by the universal property of the product, a morphism

(Y ×X Z)/G −→ Y/G×X/G Z/G .
An L-point on the right (K ⊆ L a field extension) is given as ([y], [z])
over [x]. Starting with y, we may assume that ϕ(y) = x. There exists
g ∈ G such that g(ψ(z)) = x. Then, [(y, gz)] is a preimage of ([y], [z]).
To show finiteness, we look at the ring homomorphism

AG ⊗SG BG −→ A⊗S B .
The elements of the form a ⊗ 1 fulfil an integral equation over A ⊗ 1,
and the elements of the form 1⊗b fulfil an integral equation over 1⊗B,
hence, the map is integral. �

This morphism is in general not an isomorphism, as basic examples
such as the following show.

Example 8.2. We consider Example 3.3 and we look at the tensor
product

A−1 ⊗R A−1 = K[Xk,W k, XW ]⊗K[Xk] K[Xk, W̃ k, XW̃ ]

∼= K[A][B,C][B̃, C̃]/(AB − Ck, AB̃ − C̃k) .

This is a subring of K[X,W, W̃ ]G, but in this ring, we also have ele-
ments such as WW̃ k−1, which do not belong to the tensor product (its
kth power does).
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Note that the invariant algebras in the example above are normal,
and the tensor product is not. In the example for k = 2, we have

ABAB̃ = C2C̃2, which implies BB̃ = C2C̃2

A2 , hence BB̃ has a square
root in the quotient field, and this square root, which corresponds to
WW̃ , belongs to the normalization of the tensor product, and in fact,
K[X,W, W̃ ]G is the normalization of K[X,W ]G⊗K[X]GK[X, W̃ ]G. It is

not the seminormalization, as the points with coordinates (0, b, 0, b̃, 0,±
√

bb̃)
are mapped to the same point. See also Example 14.3.
In the following, we mean by normalization first going to the re-

duction and then normalize, i.e., taking the integral closure within the
total ring of fractions. In our case, we only have one minimal prime, so
after reduction, the normalization is inside the quotient field. For an
example in a slightly different context where nilpotent elements occur,
see Example 23.9.

Theorem 8.3. Let G be a finite group acting via β on a normal K-
domain S through K-algebra automorphisms with invariant ring R =
SG. Suppose that there exists a nonempty invariant open subset of Y
where the action is free. Let ρ1 and ρ2 be linear representations of G
giving rise to the quotient schemes Zρ1 and Zρ2 over X = SpecR. Then
the morphism

Zρ1×ρ2 −→ Zρ1 ×SpecR Zρ2

from Lemma 8.1 is the normalization.

Proof. Let Y = SpecS and Z̃i = Y ×Ami , where G is acting via β×ρi.
We look at the commutative diagram

Z̃1 ×Y Z̃2 −→ Z1 ×X Z2

ւ ց ւ ց
Z̃1 Z̃2 Z1 Z2

ց ւ ց ւ
Y −→ X

which induces as in Lemma 8.1 a morphism

(Z̃1 ×Y Z̃2)/((β × ρ1)× (β × ρ2)) −→ Z1 ×X Z2 .

This morphism is surjective and integral.
We have Z̃1×Y Z̃2 = (Y ×Am1)×Y (Y ×Am2) = Y ×Am1 ×Am2 and

Zρ1×ρ2 = (Y ×Am1×Am2)(β×ρ1×ρ2) = (Z̃1×Y Z̃2)/((β×ρ1)×(β×ρ2)) .
Therefore, this is an integral scheme, and its quotient scheme is a nor-
mal scheme. Because of the surjectivity, Z1×X Z2 is irreducible. Hence
its reduction is an integral scheme.
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Let V ⊆ Y be a nonempty invariant open subset where the action is
free and let U ⊆ X be its image. Then Zρ1 |U , Zρ2 |U and Zρ1×ρ2 |U are
vector bundles over U by Corollary 5.13. The morphism restricts to an
isomorphism

Zρ1×ρ2 |U −→ Zρ1 |U ×U Zρ2 |U ,
which shows that the morphism is birational. �

Remark 8.4. The morphism from Theorem 8.3 commutes with the
morphism from Lemma 5.3, i.e. we have a commutative diagram

Zρ1×ρ2 −→ Zρ1 ×SpecR Zρ2
↓ ↓

Spec(SymR(M1 ⊕M2)) −→ Spec(SymR(M1))×SpecR Spec(SymR(M2)) ,

where on the bottom row we have an isomorphism.

Corollary 8.5. Let β be a faithful linear representation of a finite
group G on K[X1, . . . , Xd] with invariant ring R = K[X1, . . . , Xd]

G and
let ρ1 and ρ2 be linear representations of G, giving rise to the quotient
schemes Zρ1 and Zρ2. Then, the normalization of Zρ1 ×SpecR Zρ2 is
Zρ1×ρ2.

Proof. This follows from Theorem 8.3 and Lemma 2.3. �

Remark 8.6. Without a faithful basic action there is no birational
relation between the objects in Corollary 8.5. If we consider the group
Z/(2) with the trivial basic action on K and the cyclic action on K[X ],
then the invariant algebra is K[X2] = K[A], the tensor product of
the two copies is K[A,B], but the invariant ring of the tensor ring is
K[X2, Y 2, XY ] ∼= K[A,B][C]/(C2 − AB), which is not birational to
K[A,B] with the given embedding.

Example 8.7. The relation between the product Zρ1×Zρ2 and Zρ1×ρ2
is generally more complicated than in the normal case described in
Theorem 8.3. We look at Example 3.8 for k = 2 and ℓ = 1 taken twice.
The ring homomorphism is

K[XW,W 2]⊗K [XW̃ , W̃ 2] −→ K[XW,W 2, XW̃ , W̃ 2,WW̃ ]

with the relations (XW )2 = 0, (XW̃ )2 = 0 on the left and more rela-

tions on the right. If we reduce, we getK[W 2, W̃ 2]→ K[W 2, W̃ 2,WW̃ ],
which is not the normalization.

9. Regular representation

For a finite group G, the regular representation is the representa-
tion on K |G| given by g ∈ G acting through the permutation matrix
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eh 7→ egh, where eh is the standard vector indexed by h ∈ G. In the
nonmodular case, this representation has a decomposition

(K |G|, reg) ∼=
⊕

ρ∈C

V ⊕dimVρ
ρ ,

where the index set runs through a system C of all irreducible repre-
sentations, see [40, Corollary 1 in I.2.4]. G acts on the polynomial ring
S[K |G|] = Sym(S |G|) with invariant algebra (S[K |G|])G. Here, g sends
the variable Wh to Whg.

Theorem 9.1. Let S be a normal K-domain, and G be a finite non-
modular group acting on S by K-algebra automorphisms with invariant
ring R. Let C be a collection of all irreducible linear representations
of G, with corresponding invariant algebras Bρ for ρ ∈ C. Let G act
regularly on K |G|. Then the invariant algebra is (tensor is over R)

S[K |G|]G ∼= (
⊗

ρ∈C

(Bρ)⊗ dim(ρ))norm .

Proof. This follows from Theorem 8.3 and the decomposition of the
regular representation into irreducible representations. �

Lemma 9.2. The first graded component of the invariant algebra S[K |G|]G

of the regular representation is R-isomorphic to
⊕

ρ∈C((S⊗Vρ)G)⊕ dimVρ

and R-isomorphic to S via the embedding s 7→
∑

h∈G(s)hWh.

Proof. From the equivariant decomposition K |G| ∼=
⊕

ρ∈C V
⊕ dimVρ
ρ we

get

S ⊗K |G| ∼=
⊕

ρ∈C

S ⊗ V ⊕ dimVρ
ρ

∼=
⊕

ρ∈C

(S ⊗ Vρ)⊕ dimVρ .

Passing to the invariant modules yields

(S ⊗K |G|)G ∼=
⊕

ρ∈C

((S ⊗ Vρ)G)⊕dimVρ .

This is the degree 1-part of the invariant algebra by Lemma 5.3.
To prove the second statement, we look at the group isomorphism

S[K |G|]1 −→ S[K |G|]1 , sTh 7→ (s)hWh .

Here, the action of g ∈ G on the left is by permuting Th 7→ Thg (no
action on S) and on the right by sWh → (s)gWhg (which is the nat-
ural action on S[K |G|] restricted to the first degree component). This
homomorphism is G-equivariant and SG-linear. Hence, this induces
an isomorphism between the invariant submodules. On the left-hand
side, the invariant elements are elements of the form

∑

h∈G sTh, so
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they correspond to the elements s ∈ S, and these elements are sent to
∑

h∈G(s)hWh on the right. �

Corollary 9.3. Let S be a normal K-domain, G = Z/(k) = 〈ζ〉, k 6= 0
in K, acting on S via β by K-algebra automorphisms with invariant
ring R. Then, the invariant algebra of the regular representation is

S[T0, T1, . . . , Tk−1]
G ∼= (

⊗

ℓ=0,...,k−1

((S[Wℓ])
G)norm ,

where the generator acts on the left by Ti 7→ Ti+1, and on the right by

sending Wℓ 7→ ζℓWℓ. The mapping is given by Ti 7→
∑k−1

ℓ=0 ζ
iℓWℓ.

Proof. The first statement is a special case of Theorem 9.1. The second
statement follows from the explicit splitting of the regular representa-
tion in this case. �

10. Module schemes

In the following sections we will take a closer look at the question of
what kind of object Zρ → X is, beside being a scheme over X .
Let X denote a scheme. A well-known correspondence is that be-

tween (geometric) vector bundles over X and locally free OX -modules
on X . A vector bundle is a scheme Z → X that looks locally like
X × Ar → X and has the property that the transition mappings are
linear. A locally free OX -module looks locally like OrX . The corre-
spondence assigns to Z the dual sheaf of the sheaf of sections and to
a locally free sheaf F the (relative) spectrum of the symmetric algebra
Sym(F) = ⊕n∈N Symn(F), [26, Exercise II.5.18]. This last definition
can be applied for any quasicoherent OX -module F , see [23, Definition
1.7.8], and [23, Section 1.3] for the relative spectrum of a quasicoherent
algebra.
A vector bundle is in particular a module scheme (schéma de mod-

ules) in the sense of the following definition.

Definition 10.1. A module scheme Z over a scheme X is a commu-
tative group scheme Z → X together with a scheme morphism

· : A1
X ×X Z −→ Z

overX , fulfilling the natural compatible conditions from module theory.

This formulation requires that we consider A1
X with the natural ad-

dition and multiplication as a ring scheme (this term appears also in
[34, Section 26], the affine line in the only ring scheme we are dealing
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with). If α : Z ×X Z → Z denotes the addition of the group scheme,
then this definition means, to give some examples, that the diagram

A1
X ×X Z ×X Z

·12×·13−→ Z ×X Z
IdA1

X
×α ↓ ↓ α

A1
X ×X Z

·−→ Z

commutes (distributivity in the vectors), and that the diagram

A1
X ×X A1

X ×X Z
·13×·23−→ Z ×X Z

αA1
X
× IdZ ↓ ↓ α

A1
X ×X Z

·−→ Z

commutes (distributivity in the scalars).
The concept of a module scheme is referred to briefly in [22, Chapitre

0.8] (in particular 0.8.2.3), Grothendieck writes “L’exemple des groupes
a été traité avec assez de détails, mais par la suite nous laisserons
généralement au lecteur le soin de développer des considérations ana-
logues dans les exemples de structures algébriques que nous rencon-
trerons” (see [22, 8.2.8]). The concept is also mentioned in [14, 4.3.3],
but a thorough study is missing. Related work, but only over a field,
has been done by Greenberg ([20], [21], where module variety over a
(noncommutative) ring variety is used) and, in the context of graded
Hop algebras, by Milnor and Moore ([32], see also Remark 11.4 below).
The following lemma is stated in [23, 1.7.13] (see also [25, Section

9.4]. Grothendieck sets V (E) = Spec(Sym E) and calls this, quite in-
appropriately, fibré vectoriel ([14] uses fibration vectorielle instead),
and writes “Nous interpréterons ces faits en disant que S[T ] est un
S-schéma d’anneaux et que V (E) est un S-schéma de modules sur le
S-schéma d’anneaux (cf. chap. 0, § 8)”.

Lemma 10.2. For a quasicoherent module F on a schemeX, Spec(SymF)
is a module scheme over X.

Proof. We look at the affine situation with a commutative ring R and
an R-module M . By [23, Proposition 1.7.11(iii)], there is a canonical
isomorphism Sym(M) ⊗R Sym(M) ∼= Sym(M ⊕M). The diagonal R-
module homomorphism M → M ⊕M gives rise to the coaddition (in
the sense of Hopf-algebras)

Sym(M) −→ Sym(M)⊗R Sym(M) induced by m 7→ m⊗ 1 + 1⊗m,

the conegation is induced by m 7→ −m, and the zero section comes
from Sym(M) → R, which kills the positive part. The co-scalar-
multiplication is given through

SymM −→ R[T ]⊗R SymM, m1 · · ·mr 7→ T r ⊗m1 · · ·mr .
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The axioms of a module scheme are fulfilled, for example, the first
diagram above is commutative because of T ⊗ (m ⊗ 1 + 1 ⊗ m) =
T ⊗m⊗ 1 + T ⊗ 1⊗m for m ∈M . �

Example 10.3. For the free R-module Rr, the symmetric algebra is
the polynomial algebra R[T1, . . . , Tr].The coaddition is given by Ti 7→
Ti + Si.

Example 10.4. If R is a commutative ring andM a finitely generated

R-module with a presentation Rm A→ Rn → M → 0 with an n × m-
matrix A, then the symmetric algebra has the description

SymM = R[T1, . . . , Tn]/(a11T1+ . . .+an1Tn, . . . , a1mT1+ . . .+anmTn) ,

see [46]. For the use of symmetric algebras and their torsors to under-
stand closure operations, see [8].

Example 10.5. If R = K[X1, . . . , Xn]/(g1, . . . , gm), then the Jacobian

matrix J = (∂gi/∂Xj)ij gives a presentation R
m Jtr

→ Rn → ΩR|K → 0 for
the R-module of Kähler differentials as in Example 10.4. The module
scheme Spec(Sym(ΩR|K)) → SpecR restricts over the smooth locus
U ⊆ X to the tangent bundle TU , and provides thus a natural extension
for the tangent bundle above X .

Example 10.6. If R is a commutative ring with a maximal ideal
m = (x1, . . . , xd), then Sym(R/m) ∼= R[T ]/(x1T, . . . , xdT ). The corre-
sponding module scheme is a sky scraper module scheme over SpecR,
which is outside the maximal ideal an isomorphism, but the fiber above
the maximal ideal is an affine line.

Example 10.7. IfR is a commutative ring with an ideal I = (f1, . . . , fn)
(minimal generators), then

Sym(I) ∼= R[T1, . . . , Tn]/(g1T1 + . . .+ gnTn,
n

∑

j=1

gjfj = 0) .

Typical equations are the Koszul equations fiTj − fjTi, but there are
more in general. A section s : SpecR → Spec(Sym(I)) in the module
scheme given by Ti 7→ ai corresponds to the R-linear map I → R, fi 7→
ai. The module scheme is above D(I) ⊆ SpecR a trivial line bundle.
If I is primary to a maximal ideal m, then the fiber above m is an
n-dimensional affine space.

The jump in the dimension of the fibers is a typical behavior of the
spectrum of a symmetric algebra. If the module is finitely generated,
then the fiber dimension can increase by specializing.
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Example 10.8. Let R be a discrete valuation domain with local pa-
rameter π and let Q = Rπ be its quotient field. Then the symmetric
algebra is SymQ = R[Tn, n ∈ N]/(πTn+1 − Tn, n ∈ N). Here, the
generic fiber of the module scheme is a line and the special fiber is a
point.

11. Module schemes and graded Hopf algebras

An affine group scheme SpecA over SpecR corresponds to the struc-
ture of a commutative Hopf algebra structure on A. We want to un-
derstand what additional structure on the Hopf side is enforced by a
module scheme.

Lemma 11.1. Let R ⊆ A be an algebra over R. Then the following
hold.

(1) An action µ of the multiplicative group scheme Gm = SpecR[T, T−1]
on Z = SpecA is the same as a Z-grading of A with R ⊆ A0.

(2) An action of the multiplicative monoid scheme (SpecR[T ], ·) on
Z = SpecA is the same as an N-grading of A with R ⊆ A0.

(3) In the situation described in (2), R = A0 is equivalent with the
existence of a section 0 : X → Z such that the diagram

Z
(0

A1
◦p)×IdZ−→ A1

X ×X Z
p ↓ ↓ µ
X

0−→ Z

commutes.

Proof. (1) follows from [14, Proposition I.4.7.3]. In this correspondence,
for a Z-graded algebra A, the cooperation is given as an R-algebra
homomorphism

A→ A[Z] = A[T, T−1] ∼= A⊗R R[T, T−1], an 7→ anT
n ,

for homogeneous elements an of degree n. The elements r ∈ R map to
r ⊗ 1 = 1⊗ r and 1 lives in degree 0, hence also R. An R-point of the
multiplicative group is given by a ring homomorphism R[T, T−1]→ R,
i.e., by a unit u ∈ R, and the corresponding R-algebra automorphism
is A → A, an 7→ unan. In particular, the conegation is given as an 7→
(−1)nan. Conversely, if we start with an action of the group scheme
Gm on SpecA with coaction µ∗, then the nth graded component is
given as {f ∈ A|µ∗(f) = fT n}.
(2) If there is an action of the multiplicative monoid (A1, ·) on SpecA,

then this extends the action of the multiplicative group. This means
that the cooperation lands in A[T ], and therefore, the part of negative



MODULE SCHEMES IN INVARIANT THEORY 39

degree is 0, so A is N-graded. On the other hand, if A is N-graded,
then the cooperation as before lands in A[T ].
(3). If R = A0, then A+ is an ideal in A and A → A/A+

∼= R is a
cosection to R→ A. The algebraic version of the diagram

A ←− A[T ]
ι ↑ ↑ µ∗

R
modA+←− A

commutes, as the upper horizontal map sends T 7→ 0. If such a diagram
exists with a ring homomorphism θ : A→ R, then the homomorphism
from A to A via A[T ] must be modding out A+ and considering A0 in
A. If we go via R, we see that A0 ⊆ R. �

Note that in (1) and (2), it is allowed that A is concentrated in degree
0.

Remark 11.2. Lemma 11.1 can be applied in the case of a module
scheme or a module scheme up to normalization as well (see Section
12), the existence of a 0-section is part of the axioms of a group scheme
(up to normalization). Therefore, in these cases, we get a multiplicative
action of A1 on Z → X .

Lemma 11.3. Let A be an N-graded R-algebra with A0 = R and en-
dowed with an R-algebra homomorphism α∗ : A → A ⊗R A. Suppose
that R contains a field of characteristic 0. Then the following are equiv-
alent.

(1) A is standard-graded and the homogeneous elements of degree 1
are sent to α∗(a) = a⊗ 1 + 1⊗ a.

(2) The diagram

A[S, T ]
µ∗⊗µ∗←− A⊗R A

α∗
A1 ↑ ↑ α∗

A[T ]
µ∗←− A

commutes.

Proof. We have a look at the diagram, which expresses the distributiv-
ity with respect to scalars. A homogeneous element an ∈ An is sent to
an(S + T )n in the upper left corner via the lower left path. The upper
map sends ai ⊗ bj to aibjSiT j.
The formula for α∗(a) means that the diagram commutes for ele-

ments of degree 1. In the standard-graded case, the algebra is gener-
ated by elements of degree 1 and then the diagram commutes in general
(this holds without the assumption on the characteristic).
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Suppose now that the diagram commutes. Then, α∗(an) must be ho-
mogeneous of degree n, because the other homomorphisms are homoge-
neous and injective. Hence, α(an) =

∑n
i=0 bi where bi =

∑

m∈Mi
ci,m ⊗

dn−i,m with homogeneous elements ci,m, dn−i,m of the first index as de-
gree. This is sent to

∑n
i=0(

∑

m∈Mi
ci,mdn−i,m)S

iT j and we must have

∑

m∈Mi

ci,mdn−i,m =

(

n

i

)

an .

In particular, for n = 1, this means that a ∈ A1 is sent via α∗ to an
expression of the form 1⊗ b+ c⊗ 1 with b, c ∈ A1, and we deduce b =
c = a. Suppose now n ≥ 2. Applying the displayed formula for i = 1
shows that an is contained in the subalgebra generated by elements of
smaller degrees. Hence, standard-graded follows by induction. �

Remark 11.4. Positively graded Hopf-algebras A with A0 = K a
field (called connected) appear in the work of Milnor and Moore. If K
has characteristic 0, they prove results (the theorem of Milnor-Moore)
that imply (under commutative and cocommutative assumption) that
A is a polynomial algebra over K, generated by homogeneous ele-
ments, see [32, Corollary 4.18] and [12, Theorem 3.8.3]. Translated into
Grothendiecks terminology, this means via Lemma 11.1 and Lemma
11.3 that a module scheme over the spectrum of a field of characteris-
tic zero is a vector space (the spectrum of the symmetric algebra of a
vector space).

Example 11.5. Let K be a field of positive characteristic p > 0 and
let A = K[W ]/(W p). Then

A −→ A⊗K A ∼= K[W,Z]/(W p, Zp), W 7→W + Z ,

is a ring homomorphism, as (W + Z)p = W p + Zp = 0, and this gives
a cocommutative coaddition. The zero section is given by W 7→ 0, and
the conegation is given by W 7→ −W . A co-scalar multiplication is
given by

A −→ A⊗K K[T ] ∼= A[T ], W 7−→WT .

Theorem 11.6. Let R be a commutative ring containing of field of
characteristic 0 and let SpecA→ SpecR be a module scheme of finite
type. Then A is the symmetric algebra of a finitely generated R-module
(and the module scheme structure is the one from Lemma 10.2).

Proof. By Lemma 11.1 and Lemma 11.3, A is a standard-graded R-
algebra, and the scalar comultiplication and coaddition are given as
described there. Let M = A1, which is finitely generated. By the
universal property of the symmetric algebra, there is a surjective graded
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ring homomorphism SymM → A, which respects the module scheme
structures. We have to show that this homomorphism is injective. We
may assume thatR 6= 0 andM 6= 0. Assume that U ⊆ SymnM , U 6= 0,
is the kernel in degree n. This situation holds also after localizing at
some prime ideal p. Going modulo the maximal ideal pRp, we get by
the Lemma of Nakayama that U ⊗κ(p) 6= 0, but this is sent to 0 under

Sym(M ⊗R κ(p)) = (SymM)⊗R κ(p) −→ A⊗R κ(p) .
This contradicts the theorem of Milnor-Moore for the field case, see
[12, Theorem 3.8.3]. �

12. Module schemes up to normalization

We cannot expect that a quotient scheme Zρ → X is a module
scheme, as the results of Section 8 suggest that there is no natural
morphism

Zρ × Zρ −→ Zρ

which could take the role of the addition (see Example 14.3 for a con-
crete example). However, there is such a morphism when we replace
the left-hand side with its normalization, which is isomorphic to Zρ×ρ
by Theorem 8.3 (for Y normal).

Definition 12.1. Let Z → X be an affine scheme over a separated
scheme X . We say that Z is a module scheme up to normalization if
the following holds.

(1) There exists an open and dense subset U ⊆ X such that Z|U →
U is a module scheme.

(2) There exists a zero section X → Z, a negation − : Z → Z over
X , a scalar multiplication · : A1

X×XZ → Z extending the given
structures on U .

(3) There exists a morphism

α : ˜(Z ×X Z) −→ Z ,

extending α on U , where ˜(Z ×X Z)→ Z ×X Z is a finite bira-
tional morphism.

If Z is a module scheme, then it is also a module scheme up to
normalization (U = X). In the affine situation, if SpecA → SpecR is
a module scheme up to normalization, then we see by Lemma 11.1 and
Remark 11.2 that A is an N-graded R-algebra and that the conegation
and the zero section are determined as in the case of a module scheme.
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The diagram from Section 10 translates to

˜Z ×X Z ×X Z α̃×IdZ−→ Z̃ ×X Z
˜IdZ ×α ↓ ↓ α
Z̃ ×X Z α−→ Z ,

where α̃× IdZ is an extension of α× Id : ˜(Z ×X Z)×X Z −→ Z ×X Z
to suitable finite birational extensions.

Remark 12.2. The data that constitute a module scheme up to nor-
malization are determined by the data on the restriction to U , by [25,
Proposition 7.2.2]. The only relevant question is whether these data

can be extended to some Z̃ ×X Z. Since the properties are expressed
by the commutativity of certain diagrams, i.e., identities between mor-
phisms, these identities only need to be checked on a dense open subset.

Example 12.3. A module scheme Z → U over an open subset U ⊂
X , considered as a scheme over X , is not a module scheme up to
normalization since the zero section does not extend.

Example 12.4. We consider the module scheme Y = X×A1 π→ X , the
trivial vector bundle of rank one over X . If we remove a point Q 6= 0
from Y over P ∈ X and set Z = Y \ {Q}, then Z|X\{P} → X \ {P}
is a module scheme and the zero section extends to Z → X , but the
A1-scalar multiplication does not extend.

Lemma 12.5. (1) The product Z1×XZ2 of two module schemes up
to normalization over a separated scheme X is a module scheme
up to normalization.

(2) The pull-back of a module scheme up to normalization Z → X
under a dominant morphism X ′ → X is a module scheme up
to normalization.

(3) The restriction of a module scheme up to normalization Z → X
to a closed irreducible subset Y ⊆ X meeting the locus U where
we have the structure of a module scheme is a module scheme
up to normalization.

(4) Let X = SpecR with a normal domain R, and suppose that
Z → X is a module scheme up to normalization, which is gener-
ically a vector bundle. Then, the normalization Z̃ → X is a
module scheme up to normalization.

Proof. (1) The morphisms α1 : ˜Z1 ×X Z1 → Z1 and α2 : ˜Z2 ×X Z2 →
Z2 yield a morphism

( ˜Z1 ×X Z1)×X ( ˜Z2 ×X Z2)
α1×α2−→ Z1 ×X Z2 .
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The left-hand side is finite and birational over

(Z1 ×X Z1)×X (Z2 ×X Z2) = (Z1 ×X Z2)×X (Z1 ×X Z2) ,

which gives the addition up to normalization.
(2) We set Z ′ = X ′ ×X Z, and we have Z ′ ×X′ Z ′ = X ′ ×X Z ×X Z.

We look at the commutative diagram

Z̃ ×X Z α−→ Z
θ ↓ ↓

Z ×X Z −→ X

and pull it back via X ′ −→ X . The resulting morphism

θ′ : X ′ ×X Z̃ ×X Z −→ X ′ ×X Z ×X Z = Z ′ ×X′ Z ′

is again finite and, due to the dominance assumption, also birational.
(3) We have (Z×XZ)|Y = Z|Y ×Y Z|Y , and the finite birational map

Z̃ ×X Z → Z ×X Z yields a finite map after the restriction to Y . The
restriction to Y ∩U shows that this map is also birational. The addition

α : Z̃ ×X Z → Z restricts to an addition α : Z̃ ×X Z|Y → Z|Y . The
other properties are clear.
(4) Let R → A be the algebra. A is an N-graded R-algebra with

A0 = R by Lemma 11.1. Let f ∈ R, f 6= 0, be such that Af is a
polynomial ring over Rf . In particular, Af is normal, N-graded and

the normalization of A is in between A ⊆ Ã ⊆ Af . It follows that the
normalization is also N-graded, which gives the scalar action of A1 on

Spec Ã and the zero section. The coaddition α∗ : A → Ã⊗A sits in
the commutative diagram

A A⊗R A
↓ ց α∗ ↓
Ã Ã⊗R A
↓ ↓
Af −→ Af ⊗Rf

Af .

The image of an element a ∈ Ã in Af⊗Rf
Af fulfils an integral equation

over α∗(A), so it belongs to Ã⊗R A, which coincides with the normal-

ization of Ã ⊗R Ã. The other properties of a module scheme up to
normalization are clear. �

Remark 12.6. As the beginning of the proof of Lemma 12.5 shows, for
every pull-back of a module scheme up to normalization alongX ′ → X ,

we get an addition after a finite modification ˜Z ′ ×X′ Z ′ → Z ′, which
is in general not birational. In particular, for every point P ∈ X we
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get an addition in the fiber ZP up to modification, a finite morphism
˜ZP × ZP → ZP .

13. Linear actions on module schemes

We describe the morphisms between module schemes up to normal-
ization which respect the module structure, and the linear actions of a
group on them.

Definition 13.1. Let Z1, Z2 → X be module schemes up to normal-
ization. A morphism ϕ : Z1 → Z2 over X is called linear if the diagram

A1 × Z1
Id×ϕ−→ A1 × Z2

· ↓ ↓ ·
Z1

ϕ−→ Z2

commutes and if after suitable finite birational extensions, the diagram

Z̃1 × Z1
ϕ̃×ϕ−→ Z̃2 × Z2

α1 ↓ ↓ α2

Z1
ϕ−→ Z2

commutes.

For a module scheme, the same definition applies. Typical examples
are linear morphisms between vector bundles over X .

Example 13.2. For an m × n-matrix B over R, we get a linear mor-
phism An

SpecR → Am
SpecR between free module schemes (notice the

change in the notation compared to Example 10.4, which is due to
the contravariance).

Remark 13.3. Homomorphisms of module schemes have kernels, but,
like group schemes, in general no cokernels, which is clear by looking
at A1

R → A1
R given by T 7→ fT for a non-unit, non zero divisor f ∈ R.

But also the kernel as a module and as a module scheme may differ.
For R = K[X, Y ] and the matrix (x, y) as in Example 13.2, we get the
linear map

A2 × A2 −→ A2 × A1, (x, y, s, t) 7−→ (x, y, xs+ yt)

of module schemes above A2. The kernel is a module scheme, where the
fiber dimension is one on the punctured plane but two above the origin
(which is also the answer to the linear algebra question: determine the
kernel of the linear map (s, t) 7→ xs+yt in dependence of the parameters
(x, y)). The module kernel is just R, which equals the module of global
sections in the module scheme kernel.
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Example 13.4. For an R-module homomorphism M → N between
R-modules M and N , we obtain a natural R-algebra homomorphism
Sym(M)→ Sym(N) and hence a morphism Spec Sym(N)→ Spec Sym(M),
which is linear as a morphism between module schemes. If we want a
morphism in the same direction, we first have to go to the dual homo-
morphism N∗ →M∗.

Lemma 13.5. Let Z1, Z2, Z3, Z4 → X be module schemes up to nor-
malization over X, and let ϕ : Z1 → Z2 and ψ : Z3 → Z4 be linear
morphisms. Then, the following hold.

(1) The composition of linear morphisms is linear.
(2) The morphism ϕ× ψ : Z1 ×X Z3 → Z2 ×X Z4 is linear.
(3) The pull-back X ′×X Z1 → X ′×X Z2 is linear under a dominant

morphism X ′ → X.
(4) If the schemes Z1 and Z2 are of finite type, then ϕ is determined

by the restriction ϕ|U : (Z1)|U → (Z2)|U for any open dense
subset U ⊆ X. One can choose U such that ϕ|U is a morphism
of module schemes.

Proof. (1) is clear. (2) and (3) follow from Lemma 12.5. (4) is an
application of [25, Proposition 7.2.2]. For U sufficiently small, we get
module schemes. �

Remark 13.6. A symmetric algebra Spec SymM → SpecR for a
finitely generated R-module M comes naturally together with a linear
injective mapping Spec SymM → SpecR × Aν above SpecR, defined
by a surjection Rν → M , where ν is the number of generators of the
module. If M is locally free above U , then we get, by [25, Théorem
9.7.4], on U a mapping ϑ : U → Gr(ν+r, r) into the Grassmann variety,
where r denotes the rank ofM , and where the pull-back of the universal
bundle on Gr(ν + r, r) gives back the embedding of the bundle over U .
The higherdimensional fibers of Spec SymM → SpecR outside of U are
reflected by the property that the closure of the image of ϑ degenerates
to a higher dimension. For a module scheme SpecA → SpecR up to
normalization, realizing the same module M above U , the embedding
SpecA ⊆ SpecR×Aµ (where µ denotes the number of R-algebra gen-
erators of A) is not linear in general (not even above U), as Example
3.10 shows. Hence, there is also no interpretation of SpecA using the
Grassmannian.

Definition 13.7. Let G be a finite group acting on a scheme Y by
automorphisms and let Z → Y be a module scheme up to normalization
over Y . An action of G on Z that is compatible with the base action
is called linear if, for each g ∈ G, the morphism ϕg : Z → Z is linear.
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Remark 13.8. If Z = Y ×Am and G is acting in the second component
linearly, then this is a linear action on a module scheme. Here no
normalization process is needed, and this is usually the situation in
which we start.
If Z → X is a module scheme up to normalization, and G acts

trivially on X and on Z, then this is also a linear action. This is
usually the situation in which we will end up.

14. Quotient module schemes

We discuss for a module scheme up to normalization Z → Y with a
linear action of a finite group G on Z how the quotient Z/G inherits
this structure.

Theorem 14.1. Let G be a finite group acting on a normal scheme
Y over SpecK with quotient scheme X, and let Z → Y be a module
scheme up to normalization together with a compatible linear action ρ
of G on Z. Then, Z/G→ X is a module scheme up to normalization
on X.

Proof. The existence of the morphism Z/G → Y/G = X follows from

the compatibility. The zero section Y
0→ Z is G-equivariant and yields

the zero section X → Z/G by going to the quotients. The scalar
multiplication morphism

· : A1 × Z −→ Z

over Y is also G-equivariant by the linearity of the action and yields
by going to the quotients a morphism

A1 × Z/G −→ Z/G

over X . Also, the negation Z → Z is G-equivariant and yields the
negation Z/G → Z/G over X . Note that the diagonal action of G on
Z×Y Z induces an action on the normalization. The addition morphism

α : Z̃ ×Y Z −→ Z

over Y induces by going to the quotients under the action of G a
morphism

Z̃ ×Y Z/G −→ Z/G

over X . Since the left-hand side is the normalization of Z/G×X Z/G
by a suitable generalization of Theorem 8.3, we are in the situation of
a module scheme up to normalization. The group scheme properties
follow from the corresponding diagrams of the addition by going to the
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quotients. For example, the associativity law, i.e., the commutative
diagram

˜Z ×Y Z ×Y Z
˜Id×α23−→ Z̃ ×Y Z

˜α12 × Id ↓ ↓ α
Z̃ ×Y Z −→ Z

gives by going to the quotients the commutative diagram

˜Z ×Y Z ×Y Z/G
˜Id×α23−→ Z̃ ×Y Z/G

˜α12 × Id ↓ ↓ α
Z̃ ×Y Z/G −→ Z/G ,

which shows the associativity above

Z/G×X Z/G×X Z/G · · · → Z/G×X Z/G
... ↓ ... ↓

Z/G×X Z/G · · · → Z/G .

�

Corollary 14.2. Let the finite group G act faithfully on a normal
affine scheme Y via K-algebra automorphisms with quotient scheme
X, and let G act linearly via ρ on Am. Then the quotient scheme
Zρ = (Y × Am)/β × ρ→ X is a module scheme up to normalization.

Proof. This follows from Theorem 14.1. �

We give an example of a quotient scheme in order to show concretely
why a true addition does not exist.

Example 14.3. We consider Example 3.3 and Example 8.2 for k = 2,
the invariant ring is K[A], the invariant algebra is K[A,B,C]/(AB −
C2), the tensor product of the invariant algebra with itself over K[A] is

K[A,B,CB̃, C̃]/(AB−C2, AB̃−C̃2). The coaddition (of the affine line)
K[X, V ]→ K[X, V,W ],X 7→ X , V 7→ V+W , inducesK[A,B,C]/(AB−
C2)→ K[X, V,W ]G, which is the coaddition on the module scheme up
to normalization, according to Corollary 14.2. This is not a module
scheme, the pair (0, b, 0; 0, b̃, 0) ∈ Zρ ×X Zρ can not be added. Above

this point, we have in the normalization the two points (0, b, 0, b̃, 0,±
√

bb̃).

These points are sent by the up-to-addition to (0, b+ b̃±
√

bb̃, 0). The
problem is that the pair can not decide where to go, there are two
equally good candidates for their addition. One needs the extra infor-
mation of the normalization to remove this indeterminacy.
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We have a second look at the morphism from Lemma 5.3 with the
new terminology.

Lemma 14.4. Let G be a finite group acting faithfully via β on a K-
algebra S by K-algebra automorphisms, and let R = SG be its invariant
ring. Let G act on Km linearly via ρ, and let Zρ → SpecR be the
quotient scheme of the corresponding product action of G on Y × Am,
and let M be the corresponding invariant R-module. Then, there is a
canonical linear morphism

Zρ −→ Spec(SymR(M))

of module schemes up to normalization over SpecR.

Proof. The canonical morphism exists by Lemma 5.3, the module scheme
structure on Spec(SymR(M)) was noted in Lemma 10.2, and the mod-
ule scheme structure up to normalization on Zρ was shown in Theorem
14.1. Set B = S[W1, . . . ,Wm]. The linearity follows from the commu-
tative diagram

SymM −→ Bρ

↓ ց
SymM ⊗R SymM −→ Bρ ⊗R Bρ −→ ˜Bρ ⊗R Bρ = (B ⊗R B)ρ×ρ

and since SymM → Bρ is homogeneous. �

15. Normal subgroups

If G acts on Y with quotient scheme X and H ⊆ G is a normal
subgroup, then one can often understand the situation better by con-
sidering the quotient Y ′ = Y/H , on which the residue class group
G/H acts, and which has the quotient Y ′/(G/H) = Y/G. Typical ex-
amples arise when ρ is not a faithful representation on Km, and we use
H = ker ρ, or when G acts linearly on Kd and H = G ∩ Sld(K), where
G/H is a cyclic group, or when H ⊆ G is the subgroup generated by
the reflections inside G. We want to understand how module schemes
up to normalization behave in the presence of a normal subgroup.

Lemma 15.1. Let the finite group G act faithfully on a normal affine
scheme Y via K-algebra automorphisms with quotient scheme X. Let
Z1, Z2 → Y be module schemes up to normalization together with com-
patible linear actions of G on them, and let ϕ : Z1 → Z2 be a linear
G-equivariant morphism over a G-equivariant morphism ψ : Y → Y .
Then, this induces a linear morphism ϕ : Z1/G→ Z2/G over ψ : X →
X.
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Proof. The quotient schemes Z1/G and Z2/G are module schemes up to
normalization by Theorem 14.1. The linear morphism ϕ : Z1 → Z2 over
ψ : Y → Y induces the morphism ϕ : Z1/G → Z2/G over ψ : Y/G →
Y/G. The compatibility of ϕ with the scalar multiplication on Z1 and
on Z2 induces the compatibility of ϕ with the scalar multiplication on
Z1/G and on Z2/G. The commutativity of the addition diagram passes
also over to the quotients. �

Theorem 15.2. Let G be a finite group with a normal subgroup H ⊆
G and residue class group G/H. Let G act faithfully on a normal
affine K-scheme Y by K-automorphisms, and let Z → Y be a module
scheme up to normalization together with a compatible linear action of
G. Then, Z/H → Y/H is a module scheme up to normalization above
Y/H, on which the induced action of G/H is linear and compatible with
the action of G/H on Y/H. There is a natural linear isomorphism
Z/G→ (Y/H)/(G/H).

Proof. By invariant theory, we have the commutative diagram

Z −→ Z/H −→ Z/G
↓ ↓ ↓
Y −→ Y/H −→ Y/G ,

where G/H acts on the schemes in the middle and their quotients
coincide with the quotients on the right. Theorem 14.1 shows that
Z/H → Y/H and Z/G → Y/G are module schemes up to normaliza-
tion. It remains to show that the action of G/H on Z/H is linear. Let
[g] ∈ G/H . The result follows by applying Lemma 15.1 to the linear
morphism g : Z → Z and the group H . �

Corollary 15.3. Let G be a finite group with a normal subgroup H ⊆ G
and residue class group G/H. Let G act faithfully on a normal affine
K-scheme Y by K-automorphisms, and let ρ be a linear representation
of G. Then we have a commutative diagram

Y × Am −→ (Y × Am)/H −→ (Y × Am)/G
↓ ↓ ↓
Y −→ Y ′ −→ X

of module schemes up to normalization, where Y ′ = Y/H, X = Y/G =
Y ′/(G/H) and (Y × Am)/G = ((Y × Am)/H)/(G/H).

Proof. This is a special case of Theorem 15.2. �

16. Similar modifications

We describe further situations where there is no module scheme
structure in the strict sense, because of certain “bad” properties of
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the tensor product, but there is a module scheme structure after (some
kind of) a modification of the tensor product.

Remark 16.1. Let M be an R-module and consider the Rees algebra

R(M) = SymM/R− torsion .

We look at the diagram

SymM
α∗

−→ SymM ⊗R SymM
↓ ↓

R(M) R(M)⊗R R(M)
ց ↓

(R(M) ⊗R R(M))/R − torsion ,

where α∗ denotes the coaddition on the symmetric algebra. This ring
homomorphism does not induce a corresponding ring homomorphism
for the Rees algebras, but when we mod out the R-torsion in the tensor
product of the Rees algebras, we obtain a homomorphism. This shows
that the Rees algebra is a “module scheme up to torsion”.

Example 16.2. Let R = K[X, Y ]/(X2−Y 3), m = (X, Y ) and consider
the symmetric algebra Symm and the Rees algebra R(m) = R ⊕ m ⊕
m2 . . .. The symmetric algebra has the description

Sym(m) = R[A,B]/(yA− xB, xA− y2B)

and the Rees algebra is

R(m) = R[A,B]/(yA− xB, xA− y2B,A2 − yB2) .

The R-torsion of Sym(m) can be read from

y(A2 − yB2) = A(yA− xB) +B(xA− y2B) = 0 .

In the diagram of Remark 16.1, the element A2− yB2 ∈ Symm is sent
to (A+Ã)2−y(B+B̃)2 and this is then sent to 2AÃ−2yBB̃ 6= 0 on the
right, hence, there is no homomorphism fromR(M) toR(M)⊗RR(M).
This element is an R-torsion element in R(m)⊗R R(m).

Remark 16.3. Let M be an R-module and let U ⊆ X = SpecR be
open. We consider the N-graded R-algebra A, where the nth compo-
nent is Γ(U, SymnM). If R is normal and local of dimension ≥ 2 and
if U is the punctured spectrum, then this gives the reflexive symmetric
algebra, where the nth component is the reflexive hull (SymnM)∗∗ (see
also Section 18). The natural sheaf homomorphism

α : S̃ymM −→ S̃ymM ⊗OX
S̃ymM



MODULE SCHEMES IN INVARIANT THEORY 51

induces a natural R-algebra homomorphism as shown in the following
diagram
⊕

n∈N Γ(U, Sym
nM)

α−→ Γ(U, S̃ymM ⊗OX
S̃ymM)

⊆

(
⊕

n∈N Γ(U, Sym
nM))⊗R (

⊕

n∈N Γ(U, Sym
nM)) .

Again, we cannot expect that α lands in the tensor product below, so
we do not have a module scheme, but we have a module scheme after
a natural modification (after going to the reflexive hull in the specific
example).

Remark 16.4. Suppose that X = SpecR, normal of finite type over
a field K, has an isolated singularity in the point P , let U = X \ {P}
be the smooth punctured spectrum. The (geometric) tangent bundle

TU is a vector bundle on U . Let ϕ : X̃ → X denote a resolution of
singularities. Then TU ∼= Tϕ−1(U) extends on X̃ to the tangent bundle
TX̃ . We consider p : TX̃ → X as a scheme above X extending T |U . In
contrast to the other situations considered, this is not an affine scheme
over X , the exceptional fiber has dimension 2 dimX − 1 and contains
projective subvarieties of dimension dimX − 1. On the resolution, we
have the vector bundle addition α : TX̃ ×X̃ TX̃ → TX̃ , but we do not
have an addition TX̃ ×X TX̃ → TX̃ . Here, we have an addition on
TX̃ → X after a birational projective modification of X .
The same construction can be made for every vector bundle Z → U

which has a vector bundle extension after some blow-up.

Remark 16.5. In the construction of abelian varieties by A. Weil, one
first has only a rational composition V × V · · · → V , which must then
be extended to a proper variety (see [47, Théorème 15], [14, Exposé
XVIII]), and a similar construction occurs if one wants to spread an
abelian variety defined over a quotient field Q(R) to an abelian scheme
over a R, see [6, Section 4.3].

17. Fiberflat bundles

In the case of a finite group acting on S and on a free module N =
Sm, we have seen in Lemma 5.3 that there are two module schemes up
to normalization over X = SpecSG, namely, Spec(Sym(Nρ)) and Zρ,
which define over a dense open subset U ⊆ X the same vector bundle,
but are quite different when we look at the restriction above X \U . A
typical behavior of the spectrum of the symmetric algebra is that the
dimension of the fibers outside the locally free locus increase, whereas
they stay constant for Zρ.
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Definition 17.1. We call a module scheme up to normalization p :
Z → X fiberflat if the following conditions hold.

(1) Z is of finite type over X .
(2) There exists an open dense subset U ⊆ X such that Z|U → U

is a vector bundle.
(3) All fibers of p : Z → X have the same dimension.

Every vector bundle is fiberflat. The common dimension of the fibers
is called the rank of the fiberflat bundle. The term fiberflat points to
the fact that for a flat family, the dimension of the nonempty fibers is
constant, see [26, Proposition 9.5].

Lemma 17.2. Let the finite group G act faithfully on a normal affine
scheme Y via K-algebra automorphisms with quotient scheme X, and
let G act linearly via ρ on Am. Then, the quotient scheme Zρ = (Y ×
Am)/β × ρ→ X is a fiberflat bundle.

Proof. This follows from Corollary 14.2, Remark 6.3 and Corollary 5.14.
�

Lemma 17.3. Let X denote a separated scheme.

(1) The product Z1 ×X Z2 of two fiberflat bundles is fiberflat.
(2) The pull-back of a fiberflat bundle under a dominant morphism

X ′ → X is fiberflat.
(3) The restriction of a fiberflat bundle Z → X to a closed irre-

ducible subset Y ⊆ X meeting the locus U where we have the
structure of a vector bundle is fiberflat.

(4) Suppose that X is normal integal and excellent. Then the nor-

malization Z̃ → X of a fiberflat bundle is fiberflat.

Proof. This follows from Lemma 12.5 since the dimensions of the fibers
behave nicely for the products of the schemes and for normalization.
Excellence is needed to ensure that Z̃ is of finite type. �

Lemma 17.4. Let R be a commutative ring and let M be a finitely
generated R-module. Then, the symmetric algebra SymM is fiberflat
if and only if M is locally free.

Proof. We may assume that R is local. If M is free, the symmetric
algebra is a polynomial algebra, which is fiberflat. To prove the con-
verse, let r be the rank of M and ν the minimal number of generators
of M . The generic fiber of the spectrum of the symmetric algebra has
dimension r, the special fiber over the maximal ideal has dimension ν.
Fiberflatness implies that r = ν, which means that M is free. �
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Lemma 17.5. Let R be a domain essentially of finite type over a field
K and let p : Z → SpecR be a fiberflat bundle which is locally free
over U = SpecR \ {m}, where m denotes a maximal ideal. Suppose
that p−1(m) is irreducible. Then, Z is irreducible.

Proof. The open subset p−1(U) is irreducible, let C denote its closure in
Z, which is also irreducible. Assume that there is another component
C ′. This component must be the fiber above m and has dimension r,
the rank of Z. Therefore, the intersection C ∩ C ′ has dimension at
most r− 1. This intersection is not empty because of the zero section.
But then C → SpecR would contradict [17, Theorem 14.8]. �

Remark 17.6. Lemma 17.3 (3) shows that a generic restriction of a
fiberflat bundle to a closed irreducible subset is again fiberflat. In com-
bination with Lemma 17.5 this means that such a restriction is again
irreducible. This is in stark contrast for module schemes up to nor-
malization which are not fiberflat. There, the jump in the dimensions
forces the scheme to become reducible, when it is restricted to a closed
subset of small dimension. E.g., the module scheme

Spec(K[X, Y ][S, T ]/(SX + TY )) −→ A2

is integral, but if we restrict it to any line (or irreducible curve) through
the origin, we get a scheme with two components. See also Remark
19.5.

18. Reflexive bundles and factorial closure

For a quotient scheme Z → X and an open subset U ⊆ X , we cannot
expect that Z|U contains substantial information about Z. However,
this looks different, when U contains all points of codimension one.
The results of this section can only be applied in the case of a small
representation.

Definition 18.1. A module scheme up to normalization Z → X over a
normal scheme X is called reflexive if there exists an open subset U ⊆
X containing all points of codimension one such that the restriction
Z|U is a vector bundle.

Let F be the corresponding locally free sheaf on such an open subset
U ⊆ X . Then, for every open subset U ′ ⊆ U also containing all points
of codimension one, the global sections of F on U and on U ′ coincide.
We call Γ(U,F) the corresponding R-module of the reflexive bundle, it
is a reflexive module. In this setting, we call Z a geometric realization
of F , of ZU and of Γ(U,F).
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Definition 18.2. An R-moduleM is called fiberflat if it has a reflexive
fiberflat realization, i.e., if there exists a fiberflat bundle Z → X and
an open dense subset U ⊆ X containing all points of codimension one
such that Z|U ∼= (Spec(SymM))|U is a vector bundle.

Lemma 18.3. Let β be a linear faithful small representation of a finite
group G, and let X = Ad/G be the quotient. Let ρ be a linear repre-
sentation of G and let Zρ be the corresponding fiberflat bundle. Then
Zρ is reflexive.

Proof. A small action is fixed point free in codimension one, hence, this
follows from Corollary 5.13. �

Corollary 18.4. Let the finite group G act linearly and faithfully on
affine space Ad over K with quotient scheme X = SpecR. Let U ⊆ X
be the regular locus. Then the following hold.

(1) The tangent bundle T |U is fiberflat.
(2) Suppose that K is a perfect field of positive characteristic so that

R is F -finite. Then, the push-forwards F e
∗OU under iterations

of the Frobenius are fiberflat.

Proof. The corresponding modules on S = K[X1, . . . , Xd] are free of
finite rank, with linear representations induced by the basic represen-
tation. Their quotient schemes are fiberflat by Lemma 17.2 and they
give fiberflat realizations of the objects in question. �

Example 18.5. The algebra

K[X, Y ][D,E, F ]/(E2 −X2D,F 2 − Y 2D,EF −DXY, Y E −XF )
obtained in Example 23.9 describes a fiberflat reflexive bundle over A2

which is not normal.

Lemma 18.6. Let X = SpecR be a normal noetherian affine scheme
over K and let L → U be a line bundle on an open subset U ⊆ X
containing all points of codimension one and such that L is a torsion
element in the Picard group of U (which is the divisor class group of
X). Then L has a geometric realization Z → X with a reflexive fiberflat
bundle Z.

Proof. Let n be the order of L and let L be the corresponding invertible
sheaf on U . Choosing an isomorphism L⊗n ∼= OU , we can construct
an OU -algebra A = ⊕n−1

i=0 L⊗i and hence a finite scheme V → U which
trivializes L. Going to the integral closure S of R in the quotient
field of V , this map can be extended to Y = SpecS → X . The group
G = Z/(n) is acting on V and on Y with quotients U andX . The group
acts also on A1 such that the quotient (Y × A1)/G gives by Lemma
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18.3 and Lemma 17.2 a reflexive fiberflat bundle over X , which gives
back above U the line bundle L. �

The same conclusion does probably also hold for finite bundles, see
[35]. Example 19.6 shows that a line bundle which does not define a
torsion class, there is in general no fiberflat realization.

Lemma 18.7. Let X = SpecR be a normal affine scheme of finite
type over K and let p : Z = SpecA→ X be a normal reflexive fiberflat
bundle. Let U ⊆ X be an open subset containing all points of codimen-
sion one such that Z|U is a vector bundle, let M be the corresponding
module and set V = p−1(U). Then

A = Γ(V,OZ) =
⊕

n∈N

Γ(U, SymnM) =
⊕

n∈N

(SymnM)∗∗ .

Moreover, this is an R-algebra of finite type andM is a finite R-module.

Proof. Let d = dimX and r be the rank of the bundle, so that Z has
dimension d+ r. The complement of U , say Y = X \U , has dimension
≤ d−2, hence the dimension of p−1(Z) is ≤ d+r−2. Therefore, also V
contains all points of codimension one, which implies the first equality,
as A is normal. Let F denote the corresponding locally free sheaf on U .
Over U , the vector bundle Z|U is the (relative) spectrum of the graded
OU -algebra

⊕

n∈N Sym
nF . The ring of global sections of this spectrum

is
⊕

n∈N Γ(U, Sym
nF). As the coherent module M̃ corresponding toM

restricts to F on U , this equals
⊕

n∈N Γ(U, Sym
nM). As U contains all

points of codimension one, we have that Γ(U, SymnM) is the reflexive
hull of SymnM . The finiteness condition of this algebra is inherent in
the fiberflat condition. The finiteness of M follows, as M is the degree
one part of this algebra. �

The algebra
⊕

n∈N(Sym
nM)∗∗ is called the factorial closure of M ,

see [46, Chapter 7], [38]. The factorial closure gives the canonical
fiberflat realization of a reflexive fiberflat module.

Corollary 18.8. Let X = SpecR be a normal affine scheme of finite
type over K and let q : W = SpecB → X be an integral reflexive
fiberflat bundle. Then there is also a normal reflexive fiberflat bundle
p : SpecA → X realizing the same reflexive module. In fact, one can
take A to be the factorial closure of the module.

Proof. Let U ⊆ X be an open subset containing all points of codimen-
sion one such that W |U is a vector bundle, let M be the corresponding
module and set V = q−1(U). Then B → Γ(V,OW ) = A is the nor-
malization, as it is finite, birational and since V is normal. Therefore,
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SpecA→ X gives a normal fiberflat bundle by Lemma 17.3 (4), which
restricts to the same vector bundle on U . The statement about the
factorial closure follows from Lemma 18.7. �

The following two results will be important in Section 25 where we
characterize irreducible fiberflat bundles.

Lemma 18.9. Let X = SpecR be a normal affine scheme of fi-
nite type over K and let M1,M2 be finitely generated reflexive fiber-
flat R-modules with geometric realizations Zi = SpecAi, where Ai =
⊕

k∈N(Sym
k(Mi))

∗∗. Then M1 ⊕M2 is also reflexive and fiberflat, and
the normalization of Z1×XZ2 equals SpecA, where A =

⊕

n∈N(Sym
n(M1⊕

M2))
∗∗.

Proof. It is part of the definition of fiberflat that Zi and hence Z1×XZ2

are of finite type. The fibers of the product scheme q : Z1 ×X Z2 → X
have constant dimension. Let U ⊆ X be an open subset containing all
points of codimension one and such thatM1 and M2 are locally free on
U . We denote the corresponding locally free sheaves on U by Fi. Let
V = q−1(U) = Z1 ×U Z2. The complement of V has codimension ≥ 2,
as U has and by the fiberflat property. Hence the restriction map

A1 ⊗R A2 = Γ(Z1 ×X Z2,OZ1×XZ2
) −→ Γ(V,OZ1×XZ2

)

is finite by [24, Corollaire 5.11.4], it is an isomorphism above U , thus
birational, and therefore, it is the normalization, as V is normal. We
also have

Γ(V,OZ1×XZ2
) =

⊕

n∈N

Γ(U, Symn(F1 ⊕ F2)) =
⊕

n∈N

(Symn(M1 ⊕M2))
∗∗ .

�

Lemma 18.10. Let X = SpecR be a normal affine scheme of finite
type over K and let p : Z = SpecA→ X be a normal reflexive fiberflat
bundle. Let U ⊆ X be an open subset containing all points of codimen-
sion one such that Z|U is a vector bundle, let M be the corresponding
module and set V = p−1(U). Suppose that M has a decomposition
M =M1 ⊕M2. Then, M1 and M2 are also fiberflat and reflexive.

Proof. By Lemma 18.7, we have

A =
⊕

n∈N

(Symn(M1 ⊕M2))
∗∗ =

⊕

n∈N

⊕

k+ℓ=n

(Symk(M1)⊗R Symℓ(M1))
∗∗ .

We set A1 =
⊕

k∈N(Sym
k(M1))

∗∗ and A2 =
⊕

ℓ∈N(Sym
ℓ(M2))

∗∗. We
have

A1 ⊗R A2 =
⊕

n∈N

⊕

k+ℓ=n

(Symk(M1))
∗∗ ⊗R (Symℓ(M1))

∗∗ ,
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and we get a natural ring homomorphism A1 ⊗R A2 → A, which is an
isomorphism over U . We have the subring relation (by letting ℓ = 0)

A1 =
⊕

k∈N

(Symk(M1))
∗∗ ⊆

⊕

n∈N

⊕

k+ℓ=n

(Symk(M1)⊗R Symℓ(M1))
∗∗ = A .

The direct sum of all summands of A where ℓ ≥ 1 is an ideal in A; this
shows that there is also a ring homomorphism A→ A1 by moding out
this ideal. This implies that A1 is of finite type over R. It is clear that
the Mi are also locally free over U and that they are reflexive.
In geometric terms, we have morphisms qi : Z → Zi = SpecAi and

ϕi : Zi → Z such that qi ◦ ϕi = IdZi
. Set pi : Zi → X . We also

have q1 ◦ ϕ2 = 01 ◦ p2 (as a morphism Z2 → Z1), where 01 denotes the
zero section of Z1, which corresponds to the projection from A1 to R
modulo (A1)+.
We want to show that q1 × q2 : Z → Z1 ×X Z2 is surjective, for this,

we may assume that K is algebraically closed. Let (P1, P2) ∈ Z1×X Z2

be a K-point and consider (ϕ1(P1), ϕ2(P2)) ∈ Z ×X Z. We have a
commutative diagram

Z ×X Z ←− Z̃ ×X Z α−→ Z
q1 × q1 ↓ q1 × q1 ↓ ↓ q1
Z1 ×X Z1 ←− ˜Z1 ×X Z1

α1−→ Z1 .

Let w ∈ Z̃ ×X Z be a point above (ϕ1(P1), ϕ2(P2)). On the left-hand
side, this element is sent to (P1, 0), therefore, α(w) is sent via q1 to
P1, since α1 ◦ (IdZ1

×01) = IdZ1
. Hence, (q1 × q2)(α(w)) = (P1, P2).

We now look at the fibers of the morphism q1 × q2 : Z → Z1 ×X Z2

above a point P ∈ X . The fibers of Zi cannot be empty, as the fibers
of Z are not empty. Also, by [17, Theorem 14.8], the dimension of the
nonempty fibers of Zi cannot drop. The fibers of Z have dimension
r = r1 + r2, where ri is the generic rank of Mi, and the dimensions on
the right are ≥ r1 and ≥ r2, so, by surjectivity, we have equality. This
means that M1 is fiberflat as well. �

19. Fiberflat bundles on regular rings

For an invariant ring R = SG, there are in general many maximal
Cohen-Macaulay modules and we would like to distinguish the ones
coming from a representation from the others. The criterion, that the
first ones are (in the indecomposable case) the direct summands of
S, is very unintrinsic and not satisfactory. In Lemma 17.2, we have
noted that an invariant algebra defines a fiberflat bundle, which is, in
the small case, also reflexive by Lemma 18.3. Here we will show that
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fiberflatness can distinguish in many cases between maximal Cohen-
Macaulay modules coming from a representation and the others, but
the picture is not complete yet. What is missing is a satisfactory un-
derstanding of fiberflat bundles for regular rings.

Lemma 19.1. Let R be a noetherian excellent local domain of dimen-
sion d ≥ 3, M a finitely generated R-module of rank r. Let U ⊆ SpecR
denote the locus where M is locally free, suppose that U is regular,
contains all points of codimension one, and set Y = X \ U . Let
p : Z → SpecR be an irreducible geometric realization of M , which
is not fiberflat. Suppose that the dimension of p−1(Y ) is ≤ r + d − 2.
Then, M is not fiberflat.

Proof. The dimension of Z is ≥ d + r (look at a chain of prime ideals
on the zero section and then continue generically), so the complement
of the vector bundle p−1(U) in Z has codimension ≥ 2. Hence, A →
Γ(p−1(U),OZ) = C is a finite homomorphism by [24, Corollaire 5.11.4]
and C is the normalization of A. Then C gives a realization which is
also not fiberflat. Suppose that q : SpecB → X is an integral fiberflat
geometric realization ofM . Then the dimension of q−1(Y ) is ≤ r+d−2,
since dimY ≤ d−2. Therefore, C is also the normalization of B, which
yields a contradiction. �

For a finitely generated R-moduleM , we denote its minimal number
of generators by ν = ν(M).

Corollary 19.2. Let (R,m) be a noetherian excellent local domain of
dimension d ≥ 3, let M be a finitely generated R-module of rank r
which is locally free outside {m}. Suppose that r < ν(M) ≤ r + d − 2
and that the symmetric algebra SymM is irreducible. Then, M is not
fiberflat.

Proof. Let Z = Spec(Sym(M)) → SpecR. It has dimension d + r.
The fiber above m has dimension ν(M) > r, hence, Z is not fiberflat.
Therefore, all conditions of Lemma 19.1 are fulfilled and the result
follows. �

Corollary 19.3. Let (R,m) be noetherian excellent local domain of
dimension d ≥ 3, M a finitely generated R-module such that M is
locally free outside m. Suppose that M is fiberflat and ν(M) ≤ r+d−2.
Then, M is free.

Proof. This follows from Corollary 19.2 �

For ν(M) = r + d − 1, the fiber over the maximal ideal has codi-
mension one and then there are new (transcendental) functions defined
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on the open complement Z \ p−1(m), which changes the situation com-
pletely, as in Example 19.8 below. For ν(M) ≥ r + d, the fiber is a
component of its own and we have to look at the situation after moding
it out (going to the Rees algebra).

Corollary 19.4. Let R = K[X1, . . . , Xd]
G be an invariant ring for a

linear action of a finite group. Suppose that R has an isolated singu-
larity and that Spec(Sym(ΩR|K)) is irreducible. Then the embedding
dimension of R is ≥ 2d− 1.

Proof. We may assume d ≥ 3 and want to apply Corollary 19.2 for
the R-module ΩR|K . By Corollary 18.4, ΩR|K is fiberflat. It is not
free because of the singularity. Hence, we get embd(R) ≥ ν(ΩR|K) ≥
2d− 1. �

Remark 19.5. We suspect that for a regular ring, Corollary 19.3 holds
without the condition on the number of generators. The intuition be-
hind this is the following: A fiberflat bundle has the property that
going modulo a regular element of the base ring, the constance of the
dimension is preserved. By Lemma 17.5, a fiberflat bundle is irre-
ducible. Hence, a fiberflat bundle behaves in some geometric sense like
a maximal Cohen-Macaulay module. And for a regular ring, a maximal
Cohen-Macaulay module is free.

The following example shows that for a line bundle which does not
define a torsion class in the divisor class group (even in a toric ring),
there is in general no fiberflat realization.

Example 19.6. Let R = K[X, Y, U, V ]/(UX − V Y ) and consider
the prime ideal p = (X, Y ), which generates the divisor class group
Z of this ring. According to Example 10.7, its symmetric algebra is
R[S, T ]/(Y S−XT,US−V T ), which is a domain, as it is the determi-

nant ring for the matrix

(

X V S
Y U T

)

. realization. Due to Corollary

19.2, p is not fiberflat.

Example 19.7. The module M = Syz(X, Y, Z)∗ over K[X, Y, Z] is
realized geometrically as

SpecK[X, Y, Z][R, S, T ]/(RX + SY + TZ)

(the syzygies are the sections), which is a domain of dimension 5. Above
D(X, Y, Z), the fibers has dimension two, but above V (X, Y, Z), the
fiber has dimension three. By Lemma 19.1, M is not fiberflat.

Example 19.8. We consider

SpecK[X, Y, Z][A,B,C,D,E]/(XA+YB+ZC,XC+YD+ZE)→ SpecK[X, Y, Z] ,
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the spectrum of the symmetric algebra coming from the resolution (see
Example 10.4)

0 −→ S2 −→ S5 −→M −→ 0 .

M is locally free above D(X, Y, Z) since X2, Y 2 and Z2 appear as mi-
nors of the presenting matrix. The rank of the bundle is 3, and its
dimension as a scheme is 6, the fiber above V (X, Y, Z) has dimension
5, hence, this fiber has codimension 1 in the total space and its com-
plement must have sections not coming from the ring. In fact,

U =
CD −EB

X
=
C2 − AE

Y
=
CB − AD

Z

is a section. Adjoining this element to the symmetric algebra, we get
a new affine realization of M where now above V (X, Y, Z), we have 6
variables but with the relations CD − EB,C2 − AE,CB − AD = 0,
which gives fiber dimension 4. So M is not fiberflat by Lemma 19.1.

We describe a typical situation that yields maximal Cohen-Macaulay
modules on an invariant ring that are not fiberflat; for the first part,
compare [4, Proposition 1.6].

Lemma 19.9. Let G be a finite nonmodular group acting faithfully and
linearly on Ad, let χi, i ∈ I, and χj, j ∈ J , be finite sets of characters
for G and let fij ∈ K[X1, . . . , Xd] = S be a set of χ−1

i χj-semi-invariant

elements such that the cokernel of S |I| (fij)→ S |J | is Artinian. Suppose
further that the cokernel has no G-invariants 6= 0. Then the invariant
module of the kernel is a maximal Cohen-Macaulay R-module, R = SG.
If d ≥ 3 and r < ν(ker) ≤ r + d− 2, then it is not fiberflat.

Proof. We look at the exact sequence

0 −→ ker −→
⊕

i∈I

S(χi)
(fij)−→

⊕

j∈J

S(χj) −→ coker −→ 0 .

Here, S(χ) denotes S ⊗ (K,χ), so S, but with the action ◦ of G given
as s ◦ g = χ(g)(s)g. For s ∈ S(χi), we have in S(χj) the equalities

(sfij)◦g = χi(g)·(s)g·(fij)g = (s)g·χi(g)·χ−1
i (g)·χj(g)·fij = (s)g·χj(g)·fij = (s◦g)fij .

Therefore, the matrix describes a G-equivariant S-module homomor-
phism. Hence, the cokernel and the kernel carry a natural action of G
on them. Passing to the invariants, we get the short exact sequence of
R = SG-modules

0 −→ kerG −→
⊕

i∈I

Sχi
(fij)−→

⊕

j∈J

Sχj −→ 0 ,
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where the 0 on the right follows from our assumption. The surjection
and the Cohen-Macaulayness of Sχ ensure that H i(D(R+), ker

G) = 0
for i = 1, . . . , d − 1. Therefore, by the cohomological criterion for
maximal Cohen-Macaulay, we get the first statement.
Let d ≥ 3 and suppose that ker fulfills the condition on its rank.

Then, by Corollary 19.2, ker is not fiberflat, and hence also kerG is not
fiberflat. �

Example 19.10. We consider S = K[X, Y, Z] with the action of Z/(2)
by negation on every variable. The invariant ring R is the second
Veronese algebra of dimension three, which is the only invariant ring of
dimension ≥ 3 with only finitely many maximal Cohen-Macaulay mod-
ules, see [4, Theorem 4.1], [30, Theorem 16.5]. We consider, according
to Lemma 19.9, the exact sequence

0 −→ Syz(X, Y, Z) −→ S3 X,Y,Z−→ S(χ) −→ S/(X, Y, Z)(χ) −→ 0 ,

where χ is the nontrivial character. Taking G-invariant modules gives
the short exact sequence

0 −→M = (Syz(X, Y, Z))G −→ R3 X,Y,Z−→ Sχ −→ 0 .

S has the decomposition S = R ⊕ Sχ into homogeneous elements of
even and of odd degree, M is a maximal Cohen-Macaulay module,
which is not a submodule of S. By Lemma 19.9, M is not fiberflat.

20. Reflections

We describe possible reflections for a product representation. The
basic trivial observation is the following.

Lemma 20.1. Let G be a finite group, and let β and ρ be K-linear
representations of dimensions d and m. Then, for g ∈ G, the linear
mapping (β × ρ)(g) ∈ Gld(K) × Glm(K) is a reflection if and only if
β(g) is a reflection and ρ(g) is the identity or the other way around.

Proof. This is clear from the block matrix decomposition

(β × ρ)(g) = β(g)× ρ(g) =M1 ×M2 ∈ Gld(K)×Glm(K) .

�

Corollary 20.2. Let G be a finite group, and let β and ρ be faithful K-
linear representations of G of dimensions d and m. Then, the embedded
group (β × ρ)(G) ⊆ Gld(K)×Glm(K) is a small subgroup.

Proof. This follows from Lemma 20.1. �
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Corollary 20.3. Let G be a finite group, and let β be a small faithful
K-linear representation and ρ be any K-linear representations of G of
dimensions d and m. Then, the action β × ρ is also small.

Proof. This follows from Lemma 20.1. �

Corollary 20.4. Let G be a finite group, β be a faithful K-linear rep-
resentation of G on Kd and let ρ be a K-linear representation of G
on Km with kernel H ⊆ G. Then, the elements g ∈ G \ H are not
reflections, considered in Gld(K)×Glm(K).

Proof. For g ∈ G \H , in the block matrix decomposition (β × ρ)(g) =
M1 × M2 ∈ Gld(K) × Glm(K), both matrices are not the identity,
so g cannot be a reflection in the product representation by Lemma
20.1. �

Corollary 20.5. Let G be a finite group with a d-dimensional faith-
ful K-linear representation β and let ρ be a nontrivial K-linear rep-
resentation of G on Km. Then, the embedded group (β × ρ)(G) ⊆
Gld(K)×Glm(K) is not generated by reflections.

Proof. Let H ⊂ G be the kernel of ρ. Then, the elements g ∈ H have
in Gld(K)×Glm(K) the form β(g)× IdKm, and the elements g ∈ G\H
are by Corollary 20.4 not a reflection. So the subgroup generated by
the reflections is contained in the subgroup β(H) × {IdKm}, which is
not (β × ρ)(G). �

For a finite group G and a representation β : G → Gld(K), we
denote by Gβ refl the normal subgroup of G, which is the preimage of
the subgroup generated by reflections.

Lemma 20.6. Let G be a finite group, and let β be a faithful linear
representation and let ρ be any K-linear representation of G of dimen-
sion d and m. Then, Gβ×ρ refl ⊆ Gβ refl, and we have a surjective group
homomorpism G/Gβ×ρ refl → G/Gβ refl.

Proof. This is again clear from the block matrix decomposition. �

Example 20.7. We look at the situation described in Lemma 3.2. Via
β, G acts as a reflection group, so Gβ refl = G. Let n be the order of ℓ in

Z/(k). For the representation β×ρℓ, the power
(

ζ 0
0 ζℓ

)m

is a reflection

if and only if m is a multiple of n. Hence, Gβ×ρℓ refl = 〈n〉 ⊆ Z/(k) is
the subgroup of reflections, and G/Gβ×ρ refl = Z/(n).

Lemma 20.8. Let R′ = (Q, v) ∈ Ad × Am be a point above Q ∈ Ad.

(1) We have Stabβ×ρR′ = Stabβ(Q) ∩ Stabρ(v).
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(2) We have Stabβ×ρR′ ⊆ Stabβ Q.
(3) If R′ lies on the zero section, then we have the equality Stabβ×ρR′ =

Stabβ Q.

Proof. Clear. �

21. Singularities

In this section, we restrict to a linear action β of a finite group
G on Ad and another linear action ρ of G on Am, giving rise to the
quotient scheme up Zρ = (Ad × Am)/(β × ρ) → Ad/β = X . We
want to understand the singularities on Zρ, in particular their relation
with the singularities of X . As they are always quotient singularities,
they are normal Cohen-Macaulay (in the nonmodular case), rational
singularities, in positive characteristic (again nonmodular) they are
F -regular. Here, we are rather interested in the existence and the
localization (in the sense of where are they?) of singularities. For this
question, the theorem of Chevalley, Shephard, Todd, Serre is decisive
(see [13], [41], [39]). It says that a nonmodular group G ⊆ Gld(K) is a
reflection group if and only if the invariant ring is itself a polynomial
ring, and this is true if and only if the invariant ring is regular.

Lemma 21.1. A quotient scheme Zρ → X always has a singularity
unless β(G) is a reflection group and ρ is the trivial representation. In
this case, the quotient scheme is just the trivial bundle Ad×Am → Ad.

Proof. This follows from Corollary 20.5 in connection with the theorem
of Chevalley, Shephard, Todd and Serre, applied to Ad × Am. The
second statement follows from this theorem applied to Ad. �

We cite the following fact, which is a generalization of the theorem of
Chevalley, Shephard, Todd and Serre, as a reference, we only found [19,
Satz 1] in the complex case (see also [36]). Therefore, we will restrict
to K = C in this section, but we will continue to write K.

Lemma 21.2. Let K = C. Let β be a linear faithful representation of
a finite group G, let X = Ad/G be the quotient and let Q ∈ Ad be a
closed point with image point P ∈ X. Let Stab(Q) be the stabilizer of
Q. Then, P is a regular point if and only if β(Stab(Q)) ⊆ Gl(Kd) is
generated by reflections.

The following fact is known as theorem of Steinberg, see [43, Theorem
1.5], we include a short proof based on the previous lemma.

Corollary 21.3. Let G ⊆ Gld(C) be a reflection group and let Q ∈ Ad

be a point. Then the stabilizer group Stab(Q) is also a reflection group.
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Proof. By the theorem of Chevalley, Shepherd, Todd, the quotient is
Ad, so it is regular everywhere. Hence it follows from Lemma 21.2 that
S = Stab(Q) is generated by reflections. �

Corollary 21.4. Let β be a linear faithful small representation of a
finite group G, let X = Ad/G be the quotient. Then the singular locus
of X is the image of all fixed spaces of g ∈ G, g 6= Id.

Proof. Let V ⊆ Ad be the fixed point free locus. The inclusion V/G ⊆
Xreg always holds: Over the image of the free locus, the map V → V/G
is a principal fiber bundle, and V/G is smooth, see Remark 2.2. Now,
if Q ∈ Ad lies on the fixed space for some g ∈ G, g 6= Id, then g belongs
to the stabilizer of Q, and by the smallness assumption, the stabilizer
is not a reflection group. Hence, by Lemma 21.2, its image point is
singular. �

We now want to understand the singularities of Zρ in more detail and
in particular, how the singularities of Zρ are related to the singularities
of X . Let p : Zρ → X denote the projection.

Corollary 21.5. Let R′ ∈ Ad × Am. Then the point p(R′) = R ∈
Zρ is singular if and only if the image of the stabilizer group (β ×
ρ)(Stab(R′)) ⊆ (β × ρ)(G) ⊆ Gld(K) × Glm(K) is not a reflection
group.

Proof. This is a special case of Lemma 21.2. �

If ρ is the trivial action, then Zρ = X×Am and then a point R ∈ Zρ
is singular if and only if its base point in X is singular. The examples
described in Lemma 3.2 and, in fact, by Lemma 21.1, for every situation
where β(G) is a reflection group and ρ is not trivial, show that the
singular locus of Zρ is not always mapped into the singular locus of X
(this also shows that Corollary 21.8 below cannot be reversed). But
also the regular locus of Zρ is not always mapped to the regular locus
of X , as the following example shows (we will see later in Theorem
22.10 that the morphism Zρ reg \ p−1(Xreg)→ Xreg is relevant).

Example 21.6. In Example 3.10, the quotient scheme X has an iso-
lated singularity in [0]. The points above P 6= [0] in Zρ are regular.
Let R ∈ Zρ be a point above [0]. If R lies on the zero section, then R is
singular by Corollary 21.5, because the stabilizer of R′, a point above
R in A2 × A, is G ∼= (β × ρ)(G), and this is not a reflection group.
If R does not lie on the zero section, then R is regular, because the
stabilizer is now trivial (these properties also follow from properties of
the Veronese algebra).
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Example 21.7. We locate the singularities in Example 3.13. The
quotient scheme of the basic action is an A1-singularity. For the one-
dimensional representation ρ, the singular locus of Zρ is the line V (X2,W )
by Corollary 21.5: For a point with x2 6= 0 or w 6= 0, the stabilizer
is trivial, and for a point (x1, 0, 0) with x1 6= 0, the stabilizer is the
subgroup Z/(2), whose generator is a reflection via β, but the corre-
sponding element in Gl3(K) is not a reflection.

Corollary 21.8. Let R ∈ Zρ be a point on the zero section, and suppose
that P = p(R) ∈ X is singular. Then, R is also singular.

Proof. Let R′ = (Q, 0) ∈ Ad×{0} ⊆ Ad×Am be a point above R. Then
β(Stab(Q)) is not a reflection group within β(G) ⊆ Gld(K) by Lemma
21.2. We have Stab(R′) = Stab(Q) by Lemma 20.8 (3). Therefore, R
is also singular by Lemma 21.2. �

Theorem 21.9. Let Q ∈ Ad be a point with image point P ∈ X. The
following properties for the quotient scheme Zρ → X are equivalent.

(1) The fiber of Zρ → X over P contains a singular point (of Zρ).
(2) The point (P, 0) (the image of P under the zero section) is sin-

gular.
(3) The image (β × ρ)(Stab(Q)) inside Gld(K)×Glm(K) is not a

reflection group.

Proof. Let R be a singular point of the fiber and let R′ = (Q, v) be
a point in Ad × Am above R. We have Stab(Q, v) ⊆ Stab(Q, 0). By
Corollary 21.5, Stab(Q, v) is not a reflection group inside Gld(K) ×
Glm(K). Therefore, the same is true for Stab(Q, 0) by Corollary 21.3.
Hence, again by Corollary 21.5, (P, 0) is also singular. This gives the
equivalence between (1) and (2). The equivalence between (2) and
(3) follows from this since Stab(Q) equals Stab(Q, 0) by Lemma 20.8
(3). �

Corollary 21.10. Let Q ∈ Ad be a point with image point P ∈ X
and let Zρ → X be a quotient scheme. If the fiber of Zρ above P is
nonreduced, then it contains a singular point of Zρ.

Proof. By Theorem 7.2, the nonreducedness of the fiber is equiva-
lent with the property that the restriction of ρ to the stabilizer group
Stab(Q) is not trivial. Hence, there exists g ∈ Stab(Q), ρ(g) 6= IdKm .
All reflections of (β×ρ)(G) live in Gld(K)×{IdKm} by Corollary 20.4.
Therefore, (β × ρ)(Stab(Q)) is not a reflection group. By Theorem
21.9, the fiber contains a singularity. �

Corollary 21.11. Let β be a linear faithful representation of a finite
group G such that β(G) is generated by reflections, and let X = Ad/G
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be the quotient. Let ρ be a nontrivial linear representation of G, and
let Zρ be the corresponding fiberflat bundle. Then, Zρ → X has singu-
larities above a subset of codimension one. In particular, Zρ is not a
reflexive bundle.

Proof. Since β(G) is generated by reflections and ρ is not trivial, there
exists a g ∈ G such that β(g) is a reflection and ρ(g) 6= Id. Thus,
β(g) × ρ(g) is not a reflection by Lemma 20.1. Let H denote the
mirror hyperplane for g, we may assume that g generates the group
of reflections with this hyperplane. For every Q ∈ H , not in any
other mirror hyperplane, the stabilizer of Q is the group generated
by g; hence, (β × ρ)(Stab(Q)) is not a reflection group and so, by
Theorem 21.9, the fiber of Zρ above the image point of Q in X contains
singularities. The image of H is a subset of codimension one in X .
Therefore, Zρ is not locally free in codimension one. �

Theorem 21.12. Let Q ∈ Ad be a point with image point P ∈ X,
X = Ad/β, β a linear action. Let ρ be a linear representation of G
with the corresponding quotient scheme Zρ. Then every point of the
fiber of Zρ → X above P is singular if and only if Stab(Q) ∩ ker ρ is
not a reflection group via β.

Proof. Let R′ = (Q, v) ∈ Ad × Am with image point R ∈ Zρ above
P . By Corollary 21.5, the property that every point of the fiber over
P is singular means that for all v ∈ Am, the image of Stab(Q) ∩
Stab(v) (using Lemma 20.8 (1)) in Gld(K)×Glm(K) is not a reflection
group. The stabilizer of a sufficiently generic point v is ker ρ. Hence,
the image of Stab(Q) ∩ ker ρ in Gld(K) × Glm(K) is not a reflection
group. Since the image in Glm(K) is the identity, it follows that the
image of Stab(Q) ∩ ker ρ in Gld(K) is not a reflection group. Reading
this argument backwards shows that the generic point of the fiber is
singular. Since the singular locus is closed, this implies that every point
of the fiber is singular. �

Corollary 21.13. Let the symmetric group Sd act naturally on Ad

and let ρ denote the sign representation with the corresponding product
action on Ad × A1 (as in Lemma 4.2). Let Zρ → Ad/Sd ∼= Ad be the
corresponding module scheme. Let Q ∈ Ad with image point P . Then
the following hold.

(1) If Stab(Q) is trivial, then the fiber of Zρ above P contains no
singularity (of Zρ).

(2) If Stab(Q) is nontrivial, but contains only odd permutations,
then the fiber of Zρ above P has exactly one singularity (which
lies on the zero section).
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(3) If Stab(Q) contains a nontrivial even permutation, then every
point of the fiber of Zρ above P is a singularity.

Proof. (1) The stabilizer group of Q is trivial if and only if all coordi-
nates of Q are different. This condition describes the free locus of the
action and so Zρ is a vector bundle above the image of this locus by
Corollary 5.14 (this follows also directly from Lemma 4.2). (2) Under
the given condition, it follows from Theorem 21.9 that the point in the
fiber on the zero section is singular. It follows from (3) that this is the
only singular point. (3) follows from Theorem 21.12, since ker ρ is the
alternating group Ad and because the alternating group is small. �

22. The fundamental group of quotient schemes

Let K = C, all schemes are of finite type and we consider them as
complex analytic spaces, without changing the notation. We want to
understand the fundamental group of the regular locus of the quotient
schemes Zρ and its relation to the acting group. Note that the funda-
mental group of Zρ is trivial, as the spectrum of a positively graded
C-algebra is contractable. For background on algebraic topology, see
[27].

Lemma 22.1. Let K = C. Let β be a linear faithful representation of a
finite group G on Ad, and let X = Ad/G be the quotient. Let Gβ refl ⊆ G
be the subgroup generated by reflections, and let G = G/Gβ refl. Then,
the fundamental group of Xreg is G.

Proof. The quotient = Ad/Gβ refl is isomorphic to the affine space, G
is acting on it and the quotient of this action is also X , as mentioned
in the beginning of Section 15. So we can assume that the action β is
small. Let V ⊆ Ad be the free locus and let U = V/G be its image. The
complement Ad \V has codimension ≥ 2 since the group G contains no
reflection, and hence, X \ U also has codimension ≥ 2. The mapping
V → U is a covering space, U is a complex manifold, V is simply
connected, as Ad is and since the fundamental group does not change
by removing closed real submanifolds of real codimension ≥ 3, by [44,
Satz 4.B.2] (applied to a smooth stratification of Ad \ V ). Therefore,
G is isomorphic to the fundamental group of U . By Corollary 21.4, U
is the regular locus of X . �

Remark 22.2. In the correspondence described in Lemma 22.1, a
closed continuous path γ starting and ending in a point P ∈ Xreg rep-
resenting an element in the fundamental group π1(Xreg) corresponds
in the following way to an element in G. For a given point Q ∈ V
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above P , there exists a unique lifting γ̃ of the path starting in Q and
ending in a point Q′ over P . Then, there exists a unique g ∈ G with
g(Q) = Q′, and g corresponds to γ.

Remark 22.3. If G is generated by reflections, then G = 0 and Xreg =
Ad with a trivial fundamental group.

Remark 22.4. Lemma 22.1 is related to a result of M.A. Armstrong,
which says (see [1]), adopted to our situation, the following: Let G act
on Ad as before and let V ⊆ Ad be an invariant open subset such that
the complement Ad \ V has codimension ≥ 2. Then, the fundamental
group of V/G is G/I, where I ⊆ G is the subgroup generated by
elements with at least some fixed point.

We study now the fundamental group of the regular locus of Zρ in
relation to the fundamental group of the regular locus of X .

Example 22.5. We look at the situation described in Lemma 3.2, see
also Example 20.7. Via β, G acts as a reflection group, and for the
quotient, we have π1(A

1) = 0 in accordance with Remark 22.3. Let n
be the order of ℓ in Z/(k). Then, the fundamental group of the regular
locus of Zℓ is Z/(n) by Lemma 22.1. If ℓ is coprime to k, then the
fundamental group is Z/(k). In this case, ρℓ is faithful, so this follows
also from Corollary 22.7 below.

Example 22.6. For Example 3.12, the quotient scheme is A2 with
trivial fundamental group. For the first representation, the subgroup
generated by the reflections is Z/(2) (the nontrivial reflection is given
by the matrix with diagonal entries 1,−1, 1), so the fundamental group
of the regular locus of Zρ is Z/(2) by Lemma 22.1. For the second
representation, there is no reflection, and the fundamental group of
the regular locus is Z/(2)× Z/(2).

Corollary 22.7. Let K = C. Let G be a finite group, and let β be
a faithful C-linear representation of G of dimension d with quotient
scheme SpecC[X1, . . . , Xd]

β. Then, for every faithful C-linear repre-
sentation ρ of G, the fundamental group of the regular locus of the
quotient scheme Zρ is isomorphic to G.

Proof. By Lemma 20.2, the group (β×ρ)(G) is small. Hence the claim
follows from Lemma 22.1. �

Corollary 22.8. Let K = C. Let G be a finite group, and let β be a
small faithful C-linear representation of G of dimension d with quotient
scheme SpecC[X1, . . . , Xd]

β. Then, for every C-linear representation ρ
of G, the fundamental group of the regular locus of the quotient scheme
Zρ is isomorphic to G.
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Proof. By Corollary 20.3, the group (β × ρ)(G) is small. Hence, the
claim follows from Lemma 22.1. �

Lemma 22.9. Let K = C. Let G be a finite group, and let β be a
faithful C-linear representation of G and ρ be another linear represen-
tation with quotient scheme p : Zρ → Ad/β = X. Then, the following
holds.

(1) We have π1(Zρ reg \ p−1(Xreg)) = π1(Zρ reg).
(2) In the case of a small basic action β, the open subset Zρ reg \

p−1(Xreg) coincides with the vector bundle Zρ|U , where U ⊆ X
is the image of the fixed point free locus, and its fundamental
group is G.

Proof. (1). The singular locus of X has codimension ≥ 2, as X is
normal, and since the fibers of Zρ have the same dimension as noted
in Remark 6.3, p−1(Xreg) also has codimension at least 2. Hence,
π1(Zρ reg) ∼= π1(Zρ reg \ p−1(Xreg)) by the argument applied in the proof
of Lemma 22.1.
(2). In the case of a small basic, U is the regular locus of X by

Corollary 21.4. Zρ|U is a vector bundle by Corollary 5.14, hence Zρ)U =
Zρ reg \p−1(Xreg). The claim about the fundamental group follows from
Corollary 22.8. �

Recall from Section 20 the definition of Gβ refl, and in particular the
relation between Gβ refl and Gβ×ρ refl (Lemma 20.6).

Theorem 22.10. Let K = C. Let G be a finite group, let β be a faith-
ful C-linear representation of G of dimension d with quotient scheme
X, and let ρ be another linear representation of G with corresponding
quotient scheme p : Zρ → X. Let Gβ×ρ refl ⊆ Gβ refl ⊆ G be the sub-
groups generated by the reflections for these representations. Then, the
natural group homomorphism

π1(Zρ reg) ∼= π1(Zρ reg \ p−1(Xreg)) −→ π1(Xreg)

coincides with the surjection G/Gβ×ρ refl → G/Gβ refl.

Proof. By Lemma 22.1, the fundamental groups of the regular loci co-
incide with the residue class groups modulo the reflection groups. The
isomorphism on the left was noted in Lemma 22.9 (1).
We mod out G/Gβ×ρ refl in the situation, so we may assume that the

product representation β × ρ is small. Set H = Gβ refl. We have the
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commutative diagram

Ad ←− Ad × Am ⊇ Ṽ ⊇ V̂
↓ ↓ ↓ ↓

V ⊆ Ad/H ∼= Ad ←− (Ad × Am)/H ⊇ Ṽ /H ⊇ V̂ /H
↓ ↓ ↓ ↓ ↓
U ⊆ X ←− Zρ ⊇ Ṽ /G ⊇ V̂ /G .

On the left, V is the fixed point free locus of the action of the small
group G/H on Ad, V → U is a covering space, V is simply connected
and U = Xreg. On the right, Ṽ is the fixed point free locus of the
product action of G on Ad × Am, whose complement has codimension
≥ 2 since β × ρ is small. Hence, Ṽ has trivial fundamental group. On
the right, we have covering spaces, and Ṽ /G = Zρ reg. On the very

right, V̂ is such that V̂ /G = Zρ reg \ p−1(Xreg), which does not change

the fundamental groups. The horizontal morphisms map V̂ /G to U

and V̂ /H to V .

We fix a point R ∈ Zρ reg \p−1(Xreg) = V̂ /G with image point P ∈ U
and we fix a point T ∈ V̂ above R. An element γ ∈ π1(Zρ reg\p−1(Xreg))
with starting point R corresponds (see Remark 22.2) to a lifting γ̂ in

V̂ starting in T and ending in T ′, and γ corresponds to the unique
element g ∈ G with g(T ) = T ′. Let S and S ′ be the image points of T

and T ′ in V̂ /H . Then, we have the relation [g](S) = S ′ for [g] ∈ G/H .
Let Q and Q′ be the image points of S and S ′ in V . There, we also
have the relation [g](Q) = Q′. The corresponding relations hold for the

various images of the path γ̂ in V̂ /H , in V and in U , i.e., S ′ and Q′

are the endpoints of the liftings. Therefore, the image of γ in π1(U)
corresponds to [g]. �

Example 22.11. We continue with Example 21.7. The fundamental
group of the punctured spectrum of the quotient scheme X = A2/G ∼=
A2/(G/H) is G/H ∼= Z/(2) according to Lemma 22.1. The singular
locus of Zρ is the line V (X2,W ) mapping to a curve in X , and its
complement Zρ reg has fundamental group G according to Corollary
22.7. The set Zρ reg\p−1(Xreg) is the complement of two curves meeting
in a point, its fundamental group is also G, and the natural mapping
between the fundamental groups coincides with G→ G/H by Theorem
22.10.

Lemma 22.12. Let K = C. Let G be a finite group, and let β be
a faithful C-linear representation of G of dimension d with quotient
scheme X, where ϕ : Ad → X is the quotient morphism. Let ρ be an-
other linear representation of G with the corresponding quotient scheme
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p : Zρ → X. Suppose that the product representation β × ρ is small.
Let U ⊆ Xreg be an open subset where Zρ is a vector bundle. Then
ϕ−1(U)→ U is étale.

Proof. The mapping ϕ factors as

Ad ϕ1−→ Ad/Gβ refl
∼= Ad ϕ2−→ X ,

we show the étale property over U for both morphisms. The map
ϕ2 is étale over the regular locus of X which contains all points of
codimension one according to Corollary 21.4. Note that ϕ−1

2 (Zρ) is
a vector bundle over ϕ−1

2 (U). For ϕ1 and the acting group Gβ refl,
due to our assumption, the image group (β × ρ)(Gβ refl) contains no
reflection. Let Q ∈ ⋃

iHi ⊆ Ad be a point in the union of the mirror
hyperplanes, hence the stabilizer group Stab(Q) is not trivial. Then,
(β × ρ)(Stab(Q)) is not a reflection group, and therefore, by Theorem
21.9, the fiber of ϕ−1

2 (Zρ) over ϕ1(Q) contains a singularity. Thus,
ϕ1(Q) /∈ ϕ−1

2 (U) since over ϕ−1
2 (U), we have a vector bundle. Hence

ϕ−1
2 (U) does not meet the images of the mirror hyperplanes, and so ϕ1

is étale on ϕ−1(U). �

23. Pull-back

We want to show that we can reconstruct the linear action of G on
Am from the quotient module scheme Zρ → X , knowing the action of
G on Y .

Definition 23.1. Let G be a finite group acting on a scheme Y with
quotient scheme X . For any scheme Z over X , the pull-back of Z is the
Y -scheme Y ×X Z together with the G-action on the first component.

In particular, for the quotient module scheme Zρ up to normalization,
the pull-back is Y ×X Zρ together with the action of the group G on
the first component.

Lemma 23.2. Let the finite group G act faithfully on an affine K-
scheme Y = SpecS by K-automorphisms with quotient scheme X =
Y/G = SpecR, and let ρ be a linear representation of G with the
corresponding action on Y × Am and with quotient scheme Zρ → X.
Then there is a natural G-equivariant finite surjective morphism

Y × Am −→ Y ×X Zρ .
Proof. The natural projection Y ×Am → Y and the quotient morphism
Y × Am → Zρ are compatible with the morphisms to X . By the uni-
versal property of the product, this gives the morphism. A point (y, v)
is sent to (y, [(y, v)]). For g ∈ G, the element g(y, v) = (g(y), g(v)) is
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sent to (g(y), [(g(y), g(v))]) = (g(y), [(y, v)]); hence, the morphism is
G-equivariant.
Surjectivity. The map sends (y, v) to (y, [(y, v)]). If (y, [(ỹ, v)]) is

given, then y and ỹ are β-conjugate, say ỹ = gy with some g ∈ G.
Then, the element is the same as (y, [(y, g−1(v)]), and (y, g−1(v)) is a
preimage.
To see finite, we consider the corresponding ring homomorphism

S ⊗R Bρ → S[W1, . . . ,Wm] .

The variablesWj fulfil an integral equation overK[W1, . . . ,Wm]
ρ, hence

also over Bρ. �

Lemma 23.3. Let the finite group G act freely on a K-scheme Y by
K-automorphisms with quotient scheme X = Y/G, and let ρ be a linear
representation of G with the corresponding action on Y ×Am and with
quotient scheme Zρ → X. Then, the natural G-equivariant morphism

Y × Am −→ Y ×X Zρ
from Lemma 23.2 is an isomorphism.

Proof. This is a special case of faithful flat descent. �

Theorem 23.4. Let the finite group G act faithfully on a normal affine
K-scheme Y by K-automorphisms with quotient scheme X = Y/G,
and let ρ be a linear representation of G with the corresponding action
on Y × Am and with quotient scheme Zρ → X. Then, the natural
G-equivariant finite surjective morphism

Y × Am −→ Y ×X Zρ
from Lemma 23.2 is the normalization. It is an isomorphism over the
points y where the action is free.

Proof. By Lemma 23.2, the morphism is finite and surjective. By the
surjectivity of the morphism, it follows that Y ×X Zρ is irreducible,
hence its reduction is integral. Let V ⊆ Y be the open subset where
the action is free with image set U . Then, by Lemma 23.3, the induced
morphism V ×Am −→ (Y ×X Zρ)|V ∼= V ×U (Zρ)|U is an isomorphism.
By Lemma 2.3, V is not empty; hence, the morphism is a birational
finite morphism between a normal scheme and an integral scheme, so
it is the normalization. �

Remark 23.5. If the basic action is not faithful, then Theorem 23.4
does not hold. If, looking at the extreme case, G acts trivially on a
point with quotient scheme the point itself, then Zρ = Am/ρ is the
quotient scheme over the base point, but pulling it back does not give
Am back. The natural morphism Am → Am/ρ will not be birational.
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Remark 23.6. On the algebra level, the relevant ring homomorphisms
are

S[W1, . . . ,Wm]
↑

S → S ⊗Sβ S[W1, . . . ,Wm]
β×ρ

↑ ↑
Sβ → S[W1, . . . ,Wm]

β×ρ .

Example 23.7. We consider Theorem 23.4 in Example 3.3, the rele-
vant rings are S = K[X ], R = K[Xk] = K[A], and ρ acts on K[X,W ]
by weight (1,−1), yielding the invariant algebra Bρ = K[A,B,C]/(AB−
Ck). The tensor product is

K[X ]⊗K[A] K[A,B,C]/(AB − Ck) ∼= K[X,B,C]/(XkB − Ck)

with the natural ring homomorphism

K[X,B,C]/(XkB − Ck) −→ K[X,W ], B 7→W k, C 7→ XW .

This is the normalization, as W = C/X fulfils an integral equation.
The points of the form (0, ζw) for ζ , a kth root of unity are mapped
to the same point; hence, the morphism on the spectra is not injective
everywhere.

Example 23.8. We continue with Example 23.7, but now we pull-
back the invariant algebra K[A] ⊆ K[A,B,C]/(AB − Cn) along the
ring homomorphism K[A] ⊆ K[X ]/(Xk − A). So we look at the same
basic action (determined by k) as before, but now we look at a module
scheme up to normalization on SpecK[A], which comes from a different
basic action. The tensor product is

K[X ]⊗K[A] K[A,B,C]/(AB − Cn) ∼= K[X,B,C]/(XkB − Cn) .

This ring is also not normal, but also its normalization is not nice
over K[X ]. For k = 3 and n = 2, we have the integral equation

XB = C2

X2 = D2, and the ring K[X,B,C,D]/(D2X2 − C2, XB −D2)
is its normalization. As a K[X ]-algebra, the fiber ring over X = 0 is
still not reduced.

In the situation of Theorem 23.4, it is indeed necessary to use the
reduction, as the following example shows.

Example 23.9. We look at Example 3.10, the invariant ring isK[X2, Y 2, XY ],
describing the A1-singularity, and the invariant algebra is

T = K[X2, Y 2, XY,W 2, XW, YW ] = K[A,B,C,D,E, F ]/(relations) ,
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which is the Veronese algebra in 3 variables of degree 2. The tensor
product of this algebra along K[X2, Y 2, XY ] ⊆ K[X, Y ] is

K[X, Y ][D,E, F ]/(E2−X2D,F 2−Y 2D,EF−DXY,XY E−X2F,XY F−Y 2E) ,

which describes the pull-back A2×X Zρ in Theorem 23.4. The element
Y E −XF is not 0 in this algebra, but its square is

(Y E−XF )2 = Y 2E2+X2F 2−2Y EXF = Y 2E2+X2F 2−Y 2E2−X2F 2 = 0 .

The reduction of the pull-back algebra is

K[X, Y ][D,E, F ]/(E2 −X2D,F 2 − Y 2D,EF −DXY, Y E −XF ) ,
its normalization is K[X, Y,W ] with W = E/X = F/Y .

Remark 23.10. If the group G acts on a normal affine scheme Y such
that the action is free on an open invariant subset V whose complement
has codimension ≥ 2 (e.g., if G acts in a small way on Ad) and U ⊆ X
denotes its image, then one can reconstruct the action on Y ×Am from
the restriction (Zρ)|U , which is a vector bundle by Corollary 5.13. This
is a special case of Lemma 23.3 that one gets back V × Am together
with the action. This action can be uniquely extended to an action on
Y × Am due to the codimension condition.

Remark 6.8 has already shown that one cannot reconstruct the orig-
inal linear action from the quotient without any condition.

Example 23.11. We look at the pull-back in the two cases of Example
4.6. The ring homomorphism from Lemma 23.2 in the first case is

K[X, Y, C,D]/(XY,D2−X2C) −→ K[X, Y ]/(XY )[W ] , C 7→W 2, D 7→ XW ,

and in the second case it is

K[X, Y, C,D]/(XY,D2) −→ K[X, Y ]/(XY )[W ] , C 7→W 2, D 7→ 0 .

It seems to be quite difficult to describe an algebraic construction that
yields from the left the right-hand side (even if we remember the group
action on the left). The normalization separates the two closed sub-
schemes V (X) and V (Y ), so this changes too much.

24. Correspondence

Let G be a finite group acting on a K-scheme Y by K-scheme auto-
morphisms and let ρ be a K-linear representation of G. This gives rise
to a G-equivariant action of G on the trivial vector bundle Y ×Am → Y ,
where the action on the second component is linear. This construction
may come with a loss of information. On the Y -side, it might be possi-
ble that two such actions ofG on Y×Am are equivalent asG-equivariant
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bundles over Y , although the representations are not equivalent, as the
following examples show.

Example 24.1. We consider the action ofG = Z/(k) on S = K[X,X−1]
by X 7→ ζX , i.e., the situation of Lemma 3.2, but restricted to the
punctured affine line, where the action is free. A representation of G
on K, where ζ acts by multiplication with ζℓ, gives the product ac-
tion on K[X,X−1,W ]. However, this action can be trivialized over
S, through the G-equivariant ring homomorphism K[X,X−1,W ] →
K[X,X−1, U ], W 7→ XℓU (trivial action on U).

Example 24.2. If G acts as a reflection group on Ad, and Y =
Ad \

⋃

Hi, where Hi denotes the mirror hyperplanes, then for any
representation ρ, the induced action of G on Y ×Am can be trivialized.
The action on Y is free by Corollary 21.3; hence, we can apply for
Y → Y/G faithful flat descent. As the quotient schemes Y ×Am/β×ρ
over Y/G are trivial (by Lemma 5.10 and since the invariant modules
are trivial), it follows that the action is also trivial.

Example 24.3. Let Y = G (a discrete scheme) and let G act naturally
on G. Then, every linear representation on G× Am can be trivialized
by the map

G× Am −→ G× Am, (g, v) 7→ (g, g−1(v)) .

Here, G acts on the left in both components, and on the right only onG.
The morphism isG-equivariant, as (hg, hv) is sent to (hg, (hg)−1(hv)) =
(hg, g−1(v)).

For a K-point Q ∈ Y fixed by the action of G, there is a natural can-
didate to reconstruct the linear representation, namely by the induced
action of G on the fiber (Y × Am)Q ∼= Am

K = Am
Q .

Lemma 24.4. Let G be a finite group, acting faithfully via β through
K-scheme automorphisms on a K-scheme Y , and let Q,P ∈ Y be
K-points that are fixed by the action. Let an action of G on Y ×
Am be given, compatible with the basic action and linear in the second
component. Suppose that there is a G-equivariant morphism of vector
bundles ψ : Y × Am → Y × Am over a G-equivariant morphism ϕ :
Y → Y sending P to Q. Then, the action of G on the fiber Am

P and
the action of G on the fiber Am

Q are equivalent.

Proof. We have a commutative diagram

Y × Am ψ−→ Y × Am

↓ ↓
Y

ϕ−→ Y
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of G-equivariant morphisms where ψ is also linear in the second com-
ponent. The morphism ψ induces a linear isomorphism ψ̃ : Am

P → Am
Q .

We have ψ̃(g(v)) = g(ψ̃(v)) for all g ∈ G and v ∈ Am
P by the equi-

variance of ψ. Hence, the representations induced on Am
P and Am

Q are

equivalent via ψ̃. �

Lemma 24.5. Let G be a finite group, acting faithfully via β through
K-scheme automorphisms on aK-scheme Y with a unique fixedK−point.
There is a correspondence between

(1) Linear representations of G of dimension m.
(2) Product actions of G on Y×Am, linear in the second component.

Proof. The linear action of G on Km extends to a product action of
G on Y × Am, which is linear in the second component. It is clear
that equivalent representations yield equivalent equivariant G-actions
on Y × Am (over Y ). Let Q be the unique fixed point of the action.
Then, a linear product action induces an action of G on the fiber Am

Q

and on its K-points Am
Q(K) ∼= Km. Suppose that we have two linear

product actions and that we have a G-equivariant diagram

Y × Am ψ−→ Y × Am

↓ ↓
Y

ϕ−→ Y

between these actions, where ψ is linear in the second component. Then
ϕ(Q) = Q, as this is the only fixed point, and the argument of Lemma
24.4 shows that the induced representations are the same. The two
constructions are inverse to each other. �

By Lemma 24.4, one could also have many fixed points if they are
always related by a G-automorphism of Y .

Corollary 24.6. Let G be a finite group, acting faithfully via β through
K-algebra automorphisms on a normal affineK-scheme Y with a unique
fixed K−point, and let X = Y/β. There is a correspondence between

(1) Linear representations of G of dimension m.
(2) Product actions of G on Y×Am, linear in the second component.
(3) Quotient schemes (module schemes up to normalization) of the

form (Y × Am)/β × ρ→ X.

Proof. The translation between (1) and (2) is Lemma 24.5. The corre-
spondence between (2) and (3) comes from Theorem 23.4. �

Remark 24.7. Theorem 23.4 and Corollary 24.6 tell us that we do
not lose information by going from ρ to Zρ. However, it does not say



MODULE SCHEMES IN INVARIANT THEORY 77

anything about what kind of objects do arise as Zρ. Note that in the
case generated by reflections, when X is itself an affine space, there
are many different Zρ which arise from different groups G and their
representations, as in Example 23.8.

25. Irreducibility

An important condition for a linear representation is its irreducibil-
ity. In the case of a small action, this property is reflected by the
corresponding module of covariants being indecomposable. We want
to find a notion of irreducibility for a fiberflat bundle Z → X . The non-

existence of a product representation Z 6= Z1×X Z2 (or Z 6= ˜Z1 ×X Z2

allowing normalization) within all schemes over X might in the end
be the right answer, but does not yield yet a workable definition, as
many basic cancellation problems are still open. We work instead with
decompositions within reflexive fiberflat bundles. Because of the re-
flexivity assumptions, the results of this section can only be applied in
the case of a small action.

Definition 25.1. Let X be a normal scheme and let Z → X be a
normal reflexive fiberflat bundle over X . Z is called irreducible if it
is not possible to write Z ∼= ˜Z1 ×X Z2 with normal reflexive fiberflat
bundles Z1 and Z2 of smaller rank (isomorphism of module schemes up
to normalization).

Lemma 25.2. Let X = SpecR be a normal affine scheme of finite
type over a field and let Z → X be a normal reflexive fiberflat bundle
over X. Let U ⊆ X denote an open subset containing all points of
codimension one such that the restriction Z|U is a vector bundle. Then,
the following are equivalent.

(1) Z is irreducible.
(2) The vector bundle Z|U is indecomposable.
(3) The reflexive R−module corresponding to Z is indecomposable.

Proof. Suppose that Z is reducible, say Z = ˜Z1 ×X Z2 as module
schemes up to normalization with normal reflexive fiberflat bundles Z1

and Z2. This induces over U an isomorphism Z|U ∼= (Z1)|U × (Z2)|U .
Shrinking U to a smaller open subset containing all points of codimen-
sion one, we may assume that (Z1)|U and (Z2)|U are vector bundles.
This implies that we get a decomposition for the corresponding mod-
ules, M = M1 ⊕M2, and so M̃ |U ∼= M̃1|U ⊕ M̃2|U . This implies that
M1 and M2 are already locally free on the original U .
Now assume that we have a module decomposition M = M1 ⊕M2.

By Lemma 18.10, also M1 and M2 are fiberflat R-modules. We set
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A1 =
⊕

k∈N(Sym
k(M1))

∗∗ and A2 =
⊕

ℓ∈N(Sym
ℓ(M2))

∗∗, and Zi =
SpecAi give the fiberflat bundle realization of Mi due to Lemma 18.7.
By Corollary 18.8, Z = SpecA, where A =

⊕

n∈N(Sym
n(M1 ⊕M2))

∗∗,
is the normalization of Z1 ×X Z2. �

Lemma 25.3. Let β be a linear faithful small representation of a finite
group G, and let X = Ad/G be the quotient. Let ρ be a linear repre-
sentation of G and let Zρ → X be the corresponding fiberflat bundle.
Then the following are equivalent.

(1) The representation ρ is irreducible.
(2) The fiberflat bundle Zρ is irreducible.

Proof. If the representation is reducible, say (V, ρ) = (V1, ρ1)⊕ (V2, ρ2),
both representations being nontrivial, then we get by Theorem 8.3 the

decomposition Zρ = ˜Zρ1 ×X Zρ2 .
Suppose that the bundle Zρ is reducible. Note that, due to the small-

ness assumption, Zρ is reflexive by Lemma 18.3. Hence, by Lemma
25.2, the corresponding module is decomposable. The corresponding
result for the invariant modules shows that the representation is re-
ducible. �

Corollary 25.4. Let β be a linear faithful small representation of a
finite group G, and let X = Ad/G be the quotient. There is a corre-
spondence between

(1) Linear irreducible representations of G.
(2) Irreducible quotient schemes (fiberflat bundles) of the form (Y ×

Am)/β × ρ→ X.

Proof. This follows from Corollary 24.6 and Lemma 25.3. �

26. Trivialization

Let β be a faithful action of a finite group on a normal scheme Y
with quotient scheme X . In Section 23, we have seen that we can
reconstruct from a quotient scheme Zρ → X the action ρ on Am. Here,
we ask the question under what conditions we can reconstruct, given a
fiberflat bundle Zρ→ X , the group G, the scheme Y and the actions
of G on Y and on Am, which have produced the given bundle. We
work over K = C. According to Lemma 22.1, the fundamental group
of the regular locus Xreg is G = G/Gβ refl. Due to the possible presence
of reflections, one cannot reconstruct the group G or the action β from
X alone without any further condition.
By [37, Théorème 5.1], for any scheme X ′ of finite type over C such

that X ′
C has a finite fundamental group, there exists a finite étale mor-

phism Y ′ → X ′ such that Y ′ is simply connected and such that π1(X
′)



MODULE SCHEMES IN INVARIANT THEORY 79

acts on Y ′ with quotient X ′. When X ′ ⊆ X is open and X = SpecR
is a normal domain, then this can be extended to a finite morphism
Y → X by going to the normalization of X inside Q(Y ′). The group
π1(X

′) also acts on Y with quotient X . It seems to be difficult to
characterize, starting from X ′ = Xreg ⊆ SpecR, whether Y is an affine
space. However, if we start with a groupG acting linearly and faithfully
on Ad with quotient X , then this construction gives back Ad/Gβ refl to-
gether with the action of G/Gβ refl on it, as was shown more generally
in Lemma 22.12.
If a module scheme p : Z → X up to normalization is given, then

we can use the fundamental group of the regular locus of X and of
the regular locus of Z to perform a similar construction, which, if the
data are of the form Ad+m/β × ρ → Ad/β, should return these data
as well as possible. The existence of reflections of β × ρ provides a
natural obstruction for a complete reconstruction, but according to
Section 20, there are many favorable situations, such as Corollary 20.2
and Corollary 20.3, where the product representation has no reflection.

Lemma 26.1. Let X = SpecR be a normal affine scheme of finite
type over C. Let p : Z → X be a normal fiberflat bundle. Then the
following hold.

(1) For every open subset U ⊆ X, there is a natural surjection
π1(Z|U)→ π1(U).

(2) There is a natural isomorphism π1(Zreg∩p−1(Xreg))→ π1(Zreg).
(3) There is a natural surjection π1(Zreg)→ π1(Xreg).

Proof. (1) is clear due to the existence of the zero section. (2) The
inclusion Zreg ∩ p−1(Xreg) ⊆ Zreg is an isomorphism in codimension
one, due to the condition on the fibers and the normality of X ; hence,
these spaces have the same fundamental group by [44, Satz 4.B.2]. (3).
The morphism p−1(Xreg)→ Xreg induces a surjection π1(p

−1(Xreg))→
π1(Xreg) by part (1). The inclusion Zreg∩p−1(Xreg) ⊆ p−1(Xreg) defines
a surjection π1(Zreg ∩ p−1(Xreg)) → π1(p

−1(Xreg)) by [44, Satz 4.B.2].
Hence, (2) gives the result. �

In view of Theorem 22.10, it is natural to impose the conditions that
the fundamental groups of the regular loci are finite.

Lemma 26.2. Let X = SpecR be a normal affine scheme of finite
type over C. Let p : Z → X be a normal fiberflat bundle such that
π1(Zreg) is finite. Then there exists a finite morphism X ′ → X such
that the regular locus of the normalization of Z ′ = X ′×XZ has a trivial
fundamental group.
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Proof. Let U ⊆ Xreg be nonempty such that Z|U is a vector bundle.
We look at the commutative diagram

Z|U −→ Zreg ∩ p−1(Xreg) −→ Zreg −→ Z
↓ ↓ ↓ ↓
U −→ Xreg −→ X −→ X .

Then, π1(U) is isomorphic to π1(Z|U) and π1(Zreg ∩ p−1(Xreg)) is iso-
morphic to π1(Zreg) by Lemma 26.1. The inclusions U ⊆ Xreg and
Z|U ⊆ Zreg define a surjective homomorphism π1(Z|U)→ π1(Zreg) = H
by [44, Satz 4.B.2]. Let I be the kernel of the second homomorphism,
considered as a subgroup of π1(U) ∼= π1(Z|U).
There exists a finite étale morphism U ′ → U with U ′ connected such

that H acts on U ′ with quotient U . One can look at the analytic
simply connected universal covering space Ũ → U , where π1(U) acts
on by deck transformations. The normal subgroup I ⊆ π1(U) acts on
Ũ as well with quotient space U ′ = Ũ/I → U , with H acting on U ′

and quotient U . By the existence theorem of Grothendieck-Riemann,
U ′ has the structure of an algebraic scheme, and U ′ → U is a finite
morphism.
Let L be the quotient field of U ′ and let X ′ be the spectrum of the

integral closure of R in L. The action of H on U ′ extends to an action
of H on X ′ with quotient X .
Set Z ′ = X ′×X Z. This contains the vector bundle Z ′|U ′ = U ′×U Z

as an integral open subscheme. Let Z̃ be the normalization of the
integral component of Z ′ containing Z ′|U ′, which is a fiberflat bundle
over X ′ by Lemma 17.3 (4). H is also acting on Z ′, on Z̃ and on

Z ′|U ′. The quotient of Z ′ is Z, and this is also the quotient of Z̃,
since Z̃/G→ Z is finite and birational and Z is normal. We have the

inclusions (ϕ : Z̃ → Z ′ → Z finite)

Z ′|U ′ ⊆ Z̃reg ∩ ϕ−1(Zreg) ⊆ Z̃reg ,

where the inclusion on the right is an isomorphism in codimension one,
by the finiteness of ϕ and the normality of Z. Hence, the upper right
arrow in the commutative diagram

π(U ′) = π1(Z
′|U ′) −→ π1(Z̃reg ∩ ϕ−1(Zreg))

∼=−→ π1(Z̃reg)
↓ ↓ ↓

π(U) = π1(Z|U) −→ π1(Zreg)

is an isomorphism. The horizontal homomorphisms in the middle are
surjective.
Let W → Zreg be the finite universal covering space. Then, we

can compare Z ′|U ′ and W |Z|U over Z|U . Both are covering spaces of
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the same degree |H|, H acts on both with Z|U as quotient, and the
fibers are in bijection to H with H acting on itself. Hence, there
exists a (not unique) isomorphism Z ′|U ′ → W |Z|U above Z|U . With

this identification, W and Z̃ have the same quotient field, and W
and ϕ−1(Zreg) are given by the integral closure of Zreg in the quo-
tient field. Hence, they coincide, ϕ−1(Zreg) → Zreg is a covering space
and π1(ϕ

−1(Zreg) = π1(W ) = 0. Also, ϕ−1(Zreg) is smooth, and so the
intersection above is just ϕ−1(Zreg). Therefore, the fundamental group

of Z̃reg is trivial. �

Example 26.3. Let X = A1 with Z → X a fiberflat bundle that is
a vector bundle above U = X \ {0}. The fundamental group of U is
Z, and the fundamental group of Zreg is Z/(k), as we have the natural
surjection π1(Z|U) ∼= Z→ π(Zreg) ∼= Z/(k). Then, the construction in
Lemma 26.2 yields U ′ = A1 \ {0} with the morphism z 7→ zk and the
corresponding extension to A1.
If Z = K[X,W ]ρℓ with ℓ coprime to k (else the fundamental group of

the regular locus of Z would not be Z/(k), see Example 22.5), then the
pull-back is Z ′ = SpecK[X,X iW j, i+ℓj ∈ Z(k)] and its normalization
is A2, the preimage of Zreg is the punctured affine plane, which is simply
connected.

Theorem 26.4. Let X be a normal affine scheme of finite type over
C and let p : Z → X be a normal fiberflat bundle. Suppose that
the fundamental group H = π1(Zreg) is finite. Then, there exists a
commutative diagram

Y ←− W
↓ ↓
X ←− Z ,

where

(1) Y → X is a normal scheme finite over X, with an action of H
on Y with quotient X.

(2) W → Y is a normal fiberflat bundle, finite over Z and étale in
codimension one, with an action of H on W with quotient Z.

(3) The actions of H on W and Y are compatible.
(4) Yreg and Wreg are simply connected.
(5) The corresponding diagram with the zero sections also com-

mutes.

The objects W → Y in the diagram are uniquely determined up to
an isomorphism over the base Z → X.

Proof. Let Y = X ′ and W = Z̃ as constructed in Lemma 26.2, which
gives the commutative diagram and the second part of (4). The proof
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of Lemma 26.2 shows that (1), (2), (3) hold. By Lemma 26.1, Yreg is
also simply connected. The inclusion Y → W is compatible with the
actions of H , and going to the quotients gives back X → Z. W is
uniquely determined by Z, as it is normal and as it contains the finite
universal covering space of Zreg. The uniqueness of Y follows from the
commutativity of the zero sections. �

Note that the morphism Y → X is in general not étale in codimen-
sion one.

Remark 26.5. If X has an isolated singularity with a trivial local
fundamental group and Z is a vector bundle over the regular locus,
then Theorem 26.4 does not do anything.

Theorem 26.6. Let K = C. Let G be a finite group, let β be a faith-
ful C-linear representation of G of dimension d with quotient scheme
X and let ρ be another linear representation of G with corresponding
quotient scheme p : Zρ → X. Suppose that the product representation
β × ρ is small. Then, the construction of Theorem 26.4 yields back G
together with the actions β and ρ on Ad and Am.

Proof. The condition means that the subgroup Gβ×ρ refl generated by
the reflections for the product representation β×ρ is trivial. By Lemma
22.1 and Theorem 22.10, we have the natural surjective group homo-
morphism

G = π1(Zreg) ∼= π1(Zreg \ p−1(Xreg)) −→ π1(Xreg) = G/Gβ refl .

In particular, all conditions to apply Theorem 26.4 are fulfilled. We
look at the quotient map ϕ : Y → X = Y/G.
Let U ⊆ Xreg be an open nonempty subset where Zρ is a vector

bundle. The morphism ϕ−1(U) → U is étale by Lemma 22.12. This
means that ϕ−1(U) → U is a covering space with acting group G and
with a surjection π1(U)→ G→ 0. In the construction of Lemma 26.2,
we construct U ′ starting with these data. Therefore, U ′ = ϕ−1(U) and
then also X ′ = Y , as this is the integral closure of X in the quotient
field of U ′. Therefore, the claim follows from uniqueness in Theorem
23.4. �

27. Questions

We close with some questions (Question 27.10, Question 27.11 and
Question 27.14 are rather projects).

Question 27.1. What is the most general situation where reconstruc-
tion in the sense of Theorem 23.4 and Corollary 24.6 holds? By Remark
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6.8, one needs to assume that Y is reduced, and for the equivalence be-
tween (1) and (2) in Corollary 24.6, one needs further conditions.

Question 27.2. More specifically, suppose that G is a reflection group
acting faithfully and linearly on Ad with mirror hyperplanesH1, . . . , Hn,
n ≥ 2. Let Y =

⋃

i∈I Hi with the induced (faithful) action. Can
one reconstruct a linear representation ρ from the quotient scheme
Zρ → Y/G?

Question 27.3. What is the exact relation between the general corre-
spondence developed here and the correspondence for (true) reflection
groups developed in [10, Theorem D]?

Question 27.4. Is it true as discussed in Remark 19.5 that for a regular
ring, a fiberflat bundle is free?

Question 27.5. Among the maximal Cohen-Macaulay modules of an
invariant ring of a linear action, is it true that the ones coming from a
linear representation are characterized by fiberflatnesss?

Question 27.6. What are the rings with only finitely many reflexive
fiberflat bundles?

Question 27.7. For an isolated singularity SpecR, when has the tan-
gent bundle of the punctured spectrum a fiberflat extension?

Question 27.8. When is the Frobenius pushforward F∗R for a normal
F -finite ring R in positive characteristic reflexive and fiberflat? Are
there other examples beyond invariant rings for finite groups?

Question 27.9. Do the results of Section 25 also hold without the
reflexive and smallness assumption?

Question 27.10. What does the multilinear theory of module schemes
up to normalization look like? It should be such that it respects the
correspondence in Corollary 24.6.

Question 27.11. In Sections 21, 22 and 26, we worked over the com-
plex numbers and with the topological fundamental group. What do
the corresponding results in positive characteristic look like?

Question 27.12. Suppose X = Y/G and let π : X̃ → X be a resolu-
tion of singularities. What is the correct pull-back of a quotient scheme
Zρ over X to X̃? As X might be smooth, any reasonable approach to
this question will have to take the singularities of Zρ into account.

Question 27.13. What does hold when G is not a finite, but a reduc-
tive group?
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Question 27.14. In the analytic context, what does the theory look
like if we replace the scheme Y with a (normal connected) complex
space?

Question 27.15. What about mixed characteristic?

References

[1] M. A. Armstrong. The fundamental group of the orbit space of a discontinuous
group. Proc. Camb. Philos. Soc., 64:299–301, 1968.

[2] M. Artin and J.-L. Verdier. Reflexive modules over rational double points.
Math. Ann., 270:79–82, 1985.

[3] Maurice Auslander. Rational singularities and almost split sequences. Trans.
Am. Math. Soc., 293:511–531, 1986.

[4] Maurice Auslander and Idun Reiten. The Cohen-Macaulay type of Cohen-
Macaulay rings. Adv. Math., 73(1):1–23, 1989.

[5] D. J. Benson. Polynomial invariants of finite groups, volume 190 of Lond.
Math. Soc. Lect. Note Ser. Cambridge: Cambridge University Press, 1993.

[6] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud. Néron models,
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(SGA 1), dirigé par Alexander Grothendieck. Augmenté de deux exposés de M.
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