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Abstract

We study the mixed ’t Hooft anomaly of the subsystem symmetries in the exotic
BF theory and the foliated BF theory in 2+1 dimensions, both of which are fractonic
quantum field theories describing the equivalent physics. In the anomaly inflow mecha-
nism, the ’t Hooft anomaly of the subsystem symmetries can be cancelled by combining
a subsystem symmetry-protected topological (SSPT) phase in one dimension higher.
In this work, we construct the exotic and foliated BF theories with background gauge
fields and the exotic and foliated forms of the SSPT phases using the foliated-exotic
duality. In the foliated form, we see that the non-topological operator can be viewed as
a symmetry-like operator. We also show that the SSPT phases with different foliation
structures cancel the same anomaly. This may provide a clue to the characterization
of the ’t Hooft anomaly of subsystem symmetries.
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1 Introduction

Certain new types of phases of matter have attracted much attention in recent years. The
phases have characteristic excitations that cannot move in space: fracton, or can only move
along a certain dimensional submanifold like a line: lineon, or a plane: planon. They are
called fracton phases (See for reviews [1–3]). Fracton phases were originally motivated by
quantum storage and glassy dynamics [4–6].

The excitations with characteristic mobility originate from subsystem global symmetry,
which is one of the generalized global symmetries [7], whose symmetry operator is supported
on a submanifold of a certain shape in spacetime. The submanifolds are partially topological;
that is, they can only be deformed in certain directions, and the symmetry operators on
different submanifolds that cannot be deformed to each other are independent [8]. Fracton
phases have been studied not only as lattice models (earlier studies are in [5,9–11]), but also
as effective continuum quantum field theories (QFTs) based on tensor gauge fields [12–29].
Such fractonic QFTs have discrete rotational symmetry and the tensor gauge fields respect
the rotational symmetry. Related to the lattice-like spatial symmetry, fractonic QFTs exhibit
UV/IR mixing; the low-energy IR physics depends on some microscopic quantities in short-
distance UV physics. As a result of this phenomenon, the tensor gauge fields can have
some singularities and discontinuities in certain directions [15–17]. Subsystem symmetry in
fractonic QFTs is studied in the context of generalized global symmetries, and also related
to multipole symmetry [30,31], non-invertible symmetry [32] and Symmetry TFT [33].

Although tensor gauge fields can describe some fracton phases, the QFTs constructed
from foliation structure also exhibit fractonic features, and such QFTs are called foliated
QFTs [30, 31, 33–41].1 A foliation is a decomposition of a manifold into an infinite number
of submanifolds: leaves. In the foliated QFT context, we consider foliations where the inter-
sections of leaves form a lattice-like structure. Foliated QFTs contain foliated gauge fields,
which are considered as lower form gauge fields on the leaves, and bulk gauge fields, which
interact with foliated gauge fields. In contrast to foliated QFTs, we call fractonic QFTs with
tensor gauge fields exotic QFTs. Some foliated QFTs are equivalent to the corresponding
exotic QFTs [30, 33, 36, 38, 39]: this is called the foliated-exotic duality. For example, the
low-energy theory of the X-cube model [11] is described by both of the exotic and foliated
BF theory in 3+1 dimensions [17, 35], and the tensor gauge fields in the exotic BF theory
explicitly correspond to the foliated and bulk gauge fields in the foliated BF theory [38].2
This structure is specific to fracton phases, and is considered as a new type of duality.

On another topic, consider a d-dimensional QFT with a global symmetry G. The global
symmetry acts on a charged object as a global transformation. Then, we can couple the
global symmetry to a background gauge field A for G, and replace the parameter of the global

1Some lattice models can also be constructed by using foliation structure. They describe the foliated
fracton phases [42–46].

2These fractonic BF theories are similar to the ordinary relativistic BF theory [47–49] and have several
analogies with it.
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transformation with a local parameter, which is absorbed in the gauge transformation of A.
In this situation, the partition function may not be invariant under the local transformation
A → Ag:

Z[Ag] = eiα(A,g)Z[A] . (1.1)

If the function α(A, g) cannot be canceled by a local counterterm of A and g, the QFT is said
to have an ’t Hooft anomaly [50]. Due to the non-invariance of the partition function, we
cannot sum over the background gauge field A; the global symmetry cannot be gauged. In the
anomaly inflow mechanism [51], an ’t Hooft anomaly in a d-dimensional QFT is captured by
a classical field theory in d+1 dimensions. In relativistic QFTs, the classical field theories are
called invertible field theories [52] or symmetry-protected topological (SPT) phases [53, 54].
In this case, the classification of anomalies is interpreted as the classification of SPT phases
in terms of generalized cohomology [55,56].

Then, what about the case of subsystem symmetry? In some exotic theories [25] and
simple foliated theories [36], anomalies of the subsystem symmetries are captured by clas-
sical field theories called subsystem symmetry-protected topological (SSPT) phases [57, 58].
However, the relation between ’t Hooft anomalies of subsystem symmetry and SSPT phases
is obscure. For example, the foliation structure of the bulk SSPT phase is not canonically
determined [25]. This fact obstructs the classification of anomalies of subsystem symmetry.

In this paper, we discuss the ZN ×ZN mixed ’t Hooft anomaly3 of subsystem symmetries
in the exotic and foliated BF theory in 2+1 dimensions [15,38]. Although they are equivalent,
it is easier to couple the exotic BF theory to background tensor gauge fields and construct
the 3+1d exotic SSPT phase with two simultaneous foliations that cancels the ’t Hooft
anomaly of it. After constructing them, we will assume field correspondences between the
exotic and foliated BF theories extending the previous result without background gauge
fields [38], and construct the 2+1d foliated BF theory coupled to background foliated and
bulk gauge fields. In the foliated BF theory, we find that the non-topological operator
is considered as a symmetry-like operator. Next, using the field correspondences, we will
construct the foliated form of the 3+1d SSPT phase with two foliations that cancels the
’t Hooft anomaly of the foliated BF theory. Finally, we will construct a bulk SSPT phase
with three simultaneous foliations. In the foliated form, it is simple to construct the SSPT
phase with three foliations from the SSPT phase with two foliations we have constructed.
In the exotic form, on the other hand, the relation between the two SSPT phases is not
manifest. Here we will construct the exotic form of the SSPT phase with three foliations
via the foliated-exotic duality. This can be seen as a systematic way to construct exotic
QFTs with different foliation structures. In addition, we will see that these two foliated
SSPT phases are connected via a smooth deformation. This fact is considered as a hint for
characterizing ’t Hooft anomalies of subsystem symmetry.

3If two global symmetries can be gauged respectively, but cannot be gauged simultaneously, the system
is said to have a mixed ’t Hooft anomaly.
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Organization

The organization of the rest of the paper is as follows.
In Section 2, we will consider the anomaly of the 2+1d exotic BF theory. In Section 2.1,

we review the the 2+1d exotic BF theory and its subsystem symmetries [15,38]. In Section
2.2, we consider the 2+1d exotic BF theory coupled to background tensor gauge fields. In
Section 2.3, we construct the exotic form of the 3+1d SSPT phase with two foliations that
cancels the anomaly of the 2+1d exotic BF theory.

In Section 3, we will consider the anomaly of the 2+1d foliated BF theory [38]. In Section
3.1, we review the 2+1d foliated BF theory and the foliated-exotic duality in the foliated and
exotic BF theories. In Section 3.2, we expand the field correspondences to the background
gauge fields and construct the 2+1d foliated BF theory coupled to background foliated and
bulk gauge fields. In Section 3.3, we convert the SSPT phase with two foliations from the
exotic form into the foliated form.

In Section 4, we will discuss changing the foliation structure from two foliations to three
foliations. The SSPT phase with three foliations also cancels the same anomaly of the 2+1d
exotic/foliated BF theory. In Section 4.1, we see the change is easily carried out in the
foliated SSPT phase. In Section 4.2, we convert the SSPT phase with three foliations from
the foliated form into the exotic form by assuming field correspondences.

2 Anomaly in the 2+1d Exotic BF Theory

In this section, we review the exotic BF theory in 2+1 dimensions [15, 38], which is the
low-energy effective QFT of the ZN plaquette Ising model [59], and consider the two types
of subsystem symmetries and their mixed ’t Hooft anomaly. Due to the anomaly, we cannot
gauge both of the subsystem symmetries simultaneously. This anomaly can be canceled
by a classical field theory in one dimension higher, which is called a subsystem symmetry-
protected topological (SSPT) phase [57, 58]. We will consider the mixed ’t Hooft anomaly
and the SSPT phase associated with the 2+1d exotic BF theory. In the literature [25], they
studied the mixed ’t Hooft anomaly and the SSPT phase associated with the 3+1d exotic
BF theory, and we basically proceed in parallel with that.

2.1 Exotic BF Theory and Symmetries

We take a three-torus of lengths l0, l1, l2 as a Euclidean spacetime and the coordinates
(x0, x1, x2) on it. We consider the exotic BF theory, whose rotational symmetry is only the
90 degree ones. Such a theory has tensor gauge fields, each of which is in a representation of
the 90 degree rotation group Z4. Irreducible representations of Z4 are one-dimensional ones
1n (n = 0, ±1, 2), where n is the spin. The 2+1d exotic BF theory contains a compact scalar
ϕ̂12 in the representation 12 and a U(1) tensor gauge fields (A0, A12) in the representations
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(10, 12). Their gauge transformations are

ϕ̂12 → ϕ̂12 + 2πm̂1 − 2πm̂2 , (2.1)
A0 → A0 + ∂0α , (2.2)

A12 → A12 + ∂1∂2α , (2.3)

where m̂k is an xk-dependent gauge parameter valued in integers, and α is a gauge parameter
in the representation 10. The gauge parameter α has its own gauge transformation: α →
α + 2πn1 + 2πn2, where nk is an xk-dependent gauge parameter valued in integers. Due to
constant parts of m̂k and nk, ϕ̂12 and α can be regarded as U(1)-valued: ϕ̂12 ∼ ϕ̂12 + 2π,
α ∼ α+2π. These tensor gauge fields and parameters can have particular types of singularities
and discontinuities [15,38].

The exotic BF Lagrangian is4

Le = iN

2π
ϕ̂12(∂0A12 − ∂1∂2A0) . (2.4)

The equations of motion are

N

2π
∂1∂2ϕ̂

12 = 0 , (2.5)
N

2π
∂0ϕ̂

12 = 0 , (2.6)
N

2π
(∂0A12 − ∂1∂2A0) = 0 . (2.7)

Let us discuss symmetries. The subsystem symmetries are described by the partially
topological gauge-invariant defects and operators. Since the fractonic theory is not fully
rotational invariant, the time and space directions must be treated in different manners even
in Euclidean spacetime. This fact implies that we have two types of symmetries: space-like
symmetry and time-like symmetry [27]. A space-like symmetry has a charged operator in
space, and the corresponding symmetry operator acts on the charged operator. On the other
hand, a time-like symmetry has a time-like charged defect, whose manifold is a trajectory of
an infinitely heavy particle, and the corresponding symmetry operator in space can remotely
detect the time-like defect.5

The exotic BF theory has two types of space-like subsystem symmetries. One is the ZN

electric global symmetry that is generated by the symmetry operator

Ṽ [x] = exp
[
iϕ̂12

]
. (2.8)

4The subscript e means that the theory is written by using tensor gauge fields, which we call the exotic
form. Also, the subscript f, which will appear later, means that the theory is written by using foliated gauge
fields and bulk gauge fields, which we call the foliated form.

5In relativistic Euclidean QFT, which has the full rotational spacetime symmetry, time-like symmetry and
space-like symmetry are not distinguished.
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The charged operators are the strip operators

W̃1
[
S1

2

]
= exp

[
i
∮

S1
2

dx2dx1A12

]
, (2.9)

W̃2
[
S2

2

]
= exp

[
i
∮

S2
2

dx1dx2A12

]
, (2.10)

where Sk
2 is a two-dimensional strip with a fixed width along the xk direction in the (x1, x2)-

plane. Ṽ [x] acts on W̃k

[
Sk

2

]
as

Ṽ [x]W̃k

[
Sk

2

]
Ṽ [x]−1 = e2πi/N W̃k

[
Sk

2

]
, if xk

1 < xk < xk
2 , (2.11)

where Sk
2 has the width of [xk

1, xk
2]. The ZN electric global symmetry is a space-like subsystem

symmetry on a zero-dimensional submanifold. For the action on the field, Ṽ [x] acts as

A12 → A12 + Λ12 , (2.12)

where Λ12 is a flat ZN field, which satisfies∮
Sk

2

dxjdxkΛ12 ∈ 2π

N
Z , ((k, j) = (1, 2), (2, 1)) , (2.13)

so then Λ12 can be written as Λ12 = 2π
N

(
1
l2

∂1n1(x1) + 1
l1

∂2n2(x2)
)
, where nk(xk) is an xk-

dependent single-valued function valued in integers.
The other space-like symmetries are the ZN dipole global symmetries that are generated

by the strip operators W̃k[Sk
2 ] in (2.9) and (2.10). The charged operator is Ṽ [x] in (2.8), and

the actions are

W̃k

[
Sk

2

]
Ṽ [x]W̃k

[
Sk

2

]−1
= e−2πi/N Ṽ [x] , if xk

1 < xk < xk
2 . (2.14)

For the action on the field, W̃k

[
Sk

2

]
acts as

ϕ̂12 → ϕ̂12 + Λ̂12 , (2.15)

where Λ̂12 is valued in 2πZ/N , so Λ̂12 can be written as Λ̂12 = 2π
N

(n1(x1) + n2(x2)), where
nk(xk) is an xk-dependent single-valued function valued in integers.

From the actions (2.11) and (2.14), each symmetry operator is the charged operator of
the other, which is similar to the symmetries in the ordinary BF theory [47–49]. From this
fact, we expect that the two types of subsystem symmetries have a mixed ’t Hooft anomaly.

We also have a time-like symmetry whose charged defect describes a fracton, which is
called the ZN tensor symmetry. The symmetry operator is a quadrupole operator:

T̃
[
C12,rect

1 (x1
1, x1

2, x2
1, x2

2)
]

= exp
[
−i∆12ϕ̂

12(x1
1, x1

2, x2
1, x2

2)
]

, (2.16)
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where ∆12ϕ̂
12(x1

1, x1
2, x2

1, x2
2) = ϕ̂12(x1

2, x2
2) − ϕ̂12(x1

2, x2
1) − ϕ̂12(x1

1, x2
2) + ϕ̂12(x1

1, x2
1), and

C12,rect
1 (x1

1, x1
2, x2

1, x2
2) is a rectangle whose vertices are the four points above. This operator

is a product of the operators Ṽ = exp
[
iϕ̂12

]
localized at the corners of the rectangle. The

charged defect is

F̃ [C0
1 ] = exp

[
i
∮

C0
1

dx0A0

]
, (2.17)

where C0
1 is a closed one-dimensional loop along the time x0 direction. The deformation of

C0
1 would break the gauge invariance of the defect, which means that this defect describes a

fracton that cannot move alone in space. The operator T̃
[
C12,rect

1 (x1
1, x1

2, x2
1, x2

2)
]

detects the
fracton defect F̃ [C0

1 ] as

T̃
[
C12,rect

1 (x1
1, x1

2, x2
1, x2

2)
]

· F̃ [C0
1 ] = e−2πi/N F̃ [C0

1 ] , (2.18)

when C12,rect
1 (x1

1, x1
2, x2

1, x2
2) surrounds C0

1 .6 For the action on the field, T̃
[
C12,rect

1 (x1
1, x1

2, x2
1, x2

2)
]

acts as

A0 → A0 + Λ0 , (2.19)

where Λ0 is a ZN field, which satisfies∮
C0

1

dx0Λ0 ∈ 2π

N
Z , (2.20)

so then Λ0 can be written as Λ0 = 2π
N

1
l0

(n1(x1) + n2(x2)), where nk(xk) is an xk-dependent
single-valued function valued in integers [27].

In addition, we can construct the defect that describes a dipole of fractons separated in
the xk direction. A dipole of fractons can be represented as

F̃ [C0
1(xk

1, xj)]F̃ [C0
1(xk

2, xj)]−1 = exp
[
i
∮

C0
1

∫ xk
2

xk
1

dx0dxk∂kA0

]
, (2.21)

where C0
1(x1, x2) is a closed loop along the x0 direction at a point (x1, x2) in space, and

(k, j) = (1, 2), (2, 1). This defect is partially topological, that is, it can be deformed to the
strip defect

W̃k,dip
[
Sk,dip

2

]
= exp

[
i
∮

Sk,dip
2

(dx0dxk∂kA0 + dxjdxkA12)
]

, (2.22)

where Sk,dip
2 is now a two-dimensional strip with a fixed width along the xk direction in

spacetime.
6The edges of a rectangle C12,rect

1 (x1
1, x1

2, x2
1, x2

2) cannot be remotely detected by other operators, but the
operator T̃ [C12,rect

1 (x1
1, x1

2, x2
1, x2

2)] is actually an operator on a rectangle. In fractonic theory, operators are
not necessarily remotely detectable unlike ordinary topological order or topological field theory [38]

7



2.2 Coupling to the Background Tensor Gauge Fields

In this section, we couple the subsystem symmetries to background gauge fields and replace
the parameters of the symmetry actions on the fields with local transformations. Then, the
local transformations are absorbed into the gauge transformations of the background gauge
fields. To gauge these symmetries, one has to sum over configurations of the gauge fields.
If the partition function is not invariant under the gauge transformations, we cannot gauge
all the symmetries at the same time, indicating a mixed ’t Hooft anomaly. We will see that
the partition function of the 2+1d exotic BF theory is indeed not gauge invariant and the
subsystem symmetries have a mixed ’t Hooft anomaly.

The tensor time-like symmetry T̃
[
C12,rect

1 (x1
1, x1

2, x2
1, x2

2)
]

and the electric space-like sym-
metry Ṽ [x] are coupled to the U(1) gauge field C012 in 12. The dipole symmetries W̃k are
coupled to the U(1) gauge fields (Ĉ12

0 , Ĉ) in (12, 10). We will see later that the background
gauge transformations of C012 and (Ĉ12

0 , Ĉ) are absorbed into the local transformations of
(A0, A12) and ϕ̂12. The tensor gauge fields (A0, A12) transform as

A0 → A0 + Λ0 , (2.23)
A12 → A12 + Λ12 , (2.24)

where Λ0 and Λ12 are background gauge parameters. Then, the background gauge transfor-
mations of C012 is

C012 → C012 + ∂0Λ12 − ∂1∂2Λ0 . (2.25)

The tensor gauge field ϕ̂12 transforms as

ϕ̂12 → ϕ̂12 + Λ̂12 , (2.26)

where Λ̂12 is a background gauge parameter. Then, the background gauge transformations
of (Ĉ12

0 , Ĉ) are

Ĉ12
0 → Ĉ12

0 + ∂0Λ̂12 , (2.27)
Ĉ → Ĉ + ∂1∂2Λ̂12 . (2.28)

The Lagrangian including the background gauge fields is

Le
[
C012, Ĉ12

0 , Ĉ
]

=iN

2π

[
ϕ̂12(∂0A12 − ∂1∂2A0 − C012) + A12Ĉ

12
0 + A0Ĉ

]
+ iN

2π
χ(∂0Ĉ − ∂1∂2Ĉ

12
0 ) + iN

2π
χ̂12C012 ,

(2.29)

Since the symmetries coupled to the U(1) gauge fields are ZN symmetries, we need terms
of χ and χ̂12 that are dynamical fields, so that the U(1) gauge fields C012 and (Ĉ12

0 , Ĉ) are
restricted to ZN gauge fields. χ is U(1)-valued, and χ̂12 is 2πZ-valued. Their dynamical
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gauge transformations are

χ → χ + α , (2.30)
χ̂12 → χ̂12 + 2πm̂1 − 2πm̂2 . (2.31)

Under the background gauge transformations, the Lagrangian transforms as

δgLe
[
C012, Ĉ12

0 , Ĉ
]

= iN

2π

[
Λ̂12(∂0A12 − ∂1∂2A0 − C012) + Λ12(Ĉ12

0 + ∂0Λ̂12)

+Λ0(Ĉ + ∂1∂2Λ̂12) + A12∂0Λ̂12 + A0∂1∂2Λ̂12
]

= iN

2π

[
−Λ̂12C012 + Λ12(Ĉ12

0 + ∂0Λ̂12) + Λ0(Ĉ + ∂1∂2Λ̂12)
]

.

(2.32)

If C012 and (Λ0, λ12) are absent or (Ĉ12
0 , Ĉ) and Λ̂12 are absent, the partition function is

invariant. So we can gauge the one side of the symmetry solely, but we cannot gauge both
of the symmetries simultaneously. It is a mixed ’t Hooft anomaly for subsystem symmetries
ZN × ZN [25].

2.3 Exotic SSPT Phase in 3+1 Dimensions

We saw the exotic BF theory in 2+1 dimensions has the mixed ’t Hooft anomaly. This
anomaly can be canceled by a classical field theory in one dimension higher, which is the
continuum description of what is called a SSPT phase. We consider the SSPT phase in 3+1
dimensions with the coordinates (x0, x1, x2, x3) (the range of x3 will be mentioned later). The
foliation structure [34–36] of the SSPT phase is x1 and x2 foliations, so it is a fractonic system
with two simultaneous foliations.7 The SSPT phase has the 90 degree discrete rotational
symmetry Z4 for (x1, x2) and the continuous rotational symmetry SO(2) for (x0, x1) as the
spacetime rotational symmetry. This theory has the background gauge fields (C012, C312, C[03])
and (Ĉ12

0 , Ĉ, Ĉ12
3 ), which are representations of Z4 × SO(2). C012, C312, Ĉ12

0 and Ĉ12
3 are in

12 of Z4, Ĉ is in 10 of Z4 and C[03] is an anti-symmetric tensor of SO(2). To restrict these
fields to ZN , we introduce dynamical gauge fields β̂12 in 12 and (β0, β12, β3) in (10, 12, 10).
The background gauge transformations of (C012, C312, C[03]) are

C012 → C012 + ∂0Λ12 − ∂1∂2Λ0 , (2.33)
C312 → C312 + ∂3Λ12 − ∂1∂2Λ3 , (2.34)
C[03] → C[03] + ∂0Λ3 − ∂3Λ0 . (2.35)

7The foliation structure is similar to the lattice. We will explain foliation in Section 3.1. For example, x1

foliation on a three dimensional space is a decomposition into an infinite number of planes orthogonal to the
x1 direction, so the space has lattice-like structure in the x1 direction.
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The background gauge transformations of (Ĉ12
0 , Ĉ, Ĉ12

3 ) are

Ĉ12
0 → Ĉ12

0 + ∂0Λ̂12 , (2.36)
Ĉ → Ĉ + ∂1∂2Λ̂12 , (2.37)

Ĉ12
3 → Ĉ12

3 + ∂3Λ̂12 , (2.38)

The background gauge transformations of β̂12 and (β0, β12, β3) are

β̂12 → β̂12 + Λ̂12 , (2.39)
β0 → β0 − Λ0 , (2.40)

β12 → β12 − Λ12 , (2.41)
β3 → β3 − Λ3 . (2.42)

In addition, β̂12 and (β0, β12, β3) have dynamical gauge transformations:

β̂12 → β̂12 + 2πŝ1 − 2πŝ2 , (2.43)
β0 → β0 + ∂0s , (2.44)

β12 → β12 + ∂1∂2s , (2.45)
β3 → β3 + ∂3s , (2.46)

where ŝk is an xk-dependent gauge parameter valued in integers, and s is a gauge parameter
in 10.

The SSPT phase is described by the Lagrangian

LSSPT,e
[
C012, C312, C[03], Ĉ12

0 , Ĉ, Ĉ12
3

]
= iN

2π
β̂12

(
∂3C012 − ∂0C312 − ∂1∂2C[03]

)
+ iN

2π

[
β0
(
∂3Ĉ − ∂1∂2Ĉ

12
3

)
+ β12

(
∂3Ĉ

12
0 − ∂0Ĉ

12
3

)
− β3

(
∂0Ĉ − ∂1∂2Ĉ

12
0

)]
+ iN

2π

(
C012Ĉ

12
3 − C312Ĉ

12
0 + C[03]Ĉ

)
.

(2.47)

If the theory is on spacetime without a boundary, it is gauge invariant. However if spacetime
has a boundary, the partition function of the 3+1d SSPT phase is not invariant. From the
anomaly inflow mechanism [51], this variation is expected to be canceled by the anomaly of
the 2+1d exotic BF theory on the boundary (2.32). To see this, we put the SSPT phase
on the region x3 ≥ 0 with the boundary x3 = 0. From the gauge invariance, the boundary
conditions of β̂12, β0 and β12 are

β̂12 |x3=0 = 0 , (2.48)
β0 |x3=0 = 0 , (2.49)

β12 |x3=0 = 0 . (2.50)
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On the boundary, we put the 2+1d exotic BF theory coupled to the background gauge fields
(2.29), and the background gauge fields in the 3+1d SSPT phase are related to those in the
2+1d exotic BF theory as

CSSPT,012 |x3=0 = CBF,012 , (2.51)
Ĉ12

SSPT,0 |x3=0 = Ĉ12
BF,0 , (2.52)

ĈSSPT |x3=0 = ĈBF . (2.53)

Note that while the background gauge fields in the 3+1d SSPT phase are restricted to ZN

tensor gauge fields by the dynamical fields β̂12 and (β0, β12, β3), those in the 2+1d exotic BF
theory are restricted by the dynamical fields χ and χ̂12. Then, under the background gauge
transformations, the Lagrangian transforms as

δgLSSPT,e = iN

2π
Λ̂12

(
∂3C012 − ∂0C312 − ∂1∂2C[03]

)
+ iN

2π

[
−Λ0

(
∂3Ĉ − ∂1∂2Ĉ

12
3

)
− Λ12

(
∂3Ĉ

12
0 − ∂0Ĉ

12
3

)
+ Λ3

(
∂0Ĉ − ∂1∂2Ĉ

12
0

)]
+ iN

2π

(
C012∂3Λ̂12 − C312∂0Λ̂12 + C[03]∂1∂2Λ̂12

+ (∂0Λ12 − ∂1∂2Λ0) Ĉ12
3 − (∂3Λ12 − ∂1∂2Λ3) Ĉ12

0 + (∂0Λ3 − ∂3Λ0) Ĉ

+ (∂0Λ12 − ∂1∂2Λ0) ∂3Λ̂12 − (∂3Λ12 − ∂1∂2Λ3) ∂0Λ̂12 + (∂0Λ3 − ∂3Λ0) ∂1∂2Λ̂12
)

= iN

2π
∂3
[
Λ̂12C012 − Λ0Ĉ − Λ12Ĉ

12
0 − Λ0∂1∂2Λ̂12 − Λ12∂0Λ̂12

]
.

(2.54)

Thus on the boundary x3 = 0, the term

δgSSSPT,e = −
∫

dx0dx1dx2 iN

2π

[
Λ̂12C012 − Λ12(Ĉ12

0 + ∂0Λ̂12) − Λ0(Ĉ + ∂1∂2Λ̂12)
]

x3=0
(2.55)

arises. This boundary term matches the ’t Hooft anomaly of the 2+1d exotic BF theory
(2.32) on the boundary x3 = 0. Therefore we can cancel the ’t Hooft anomaly of the 2+1d
exotic BF theory on the boundary by the gauge-variation of the 3+1d SSPT phase on the
bulk.8

3 Anomaly in the 2+1d Foliated BF Theory

In this section, we first review the foliated BF theory in 2+1 dimensions [38] and then
consider its mixed ’t Hooft anomaly. The mixed ’t Hooft anomaly is considered to be the
same one as the exotic BF theory in 2+1 dimensions in Section 2 from the foliated-exotic

8The anomaly (2.32) and the boundary term (2.55) have the same sign, so we have to consider the SSPT
partition function ZSSPT,e =

∫
dβdβ̂ eSSSPT,e .
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duality. To see this anomaly, we have to couple the subsystem symmetries of the foliated
BF theory to background gauge fields, but in the foliated form, its construction is non-
trivial. In Section 3.2, we will determine field correspondences between background tensor
gauge fields and background foliated gauge fields, and construct the foliated BF Lagrangian
coupled to the foliated background gauge fields. Along the way, we will discuss a new type of
symmetry-like operator. Next, in Section 3.3, we will construct the foliated SSPT phase in
3+1 dimensions from the exotic SSPT phase in Section 2.3 using the field correspondences.
The foliated SSPT phase is the foliated form of the exotic SSPT phase, so then we will have
established the foliated-exotic duality of the 3+1d SSPT phase.

3.1 Foliated BF Theory and Field Correspondences

Again we take a three-torus of lengths l0, l1, l2 as a Euclidean spacetime and the coordinates
(x0, x1, x2) on it. We consider a BF theory on the two-dimensional spatial manifold that
is regarded as a stack of an infinite number of one-dimensional spatial submanifolds. These
submanifolds are called leaves and such a structure of a decomposition of a manifold is called
a codimension-one foliation. A QFT on such a manifold is called a foliated QFT (FQFT)
[34–36]. A codimension-one foliation is characterized by a one-form foliation field e, which is
orthogonal to the leaves. Here we consider two simultaneous flat foliations ek = dxk (k = 1, 2),
where the indices k indicate the direction of the foliations.

The foliated BF theory in 2+1 dimensions contains two types of foliated gauge fields,
which are regarded as gauge fields on the leaves, and bulk gauge fields interacting with the
foliated gauge fields on each leaf [34–36,38]. The foliated gauge fields are U(1) foliated A-type
(1+1)-form gauge fields Ak ∧ dxk and U(1) foliated B-type zero-form gauge fields Bk.9 The
bulk gauge fields are U(1) one-form gauge fields a and b. The gauge transformations of the
foliated gauge fields are

Ak ∧ dxk → Ak ∧ dxk + dζk ∧ dxk , (3.1)
B̂k → B̂k + 2πt̂k − µ , (3.2)

where ζk ∧ dxk is a (0+1)-form gauge parameter, t̂k is an xk-dependent gauge parameter
valued in integers, and µ is a zero-form bulk gauge parameter. The gauge parameter ζk ∧dxk

has its own gauge transformation ζk ∧ dxk → ζk ∧ dxk + 2πdξk, where ξk is an xk-dependent
gauge parameter valued in integers. The gauge transformations of the bulk gauge fields are

a → a + dκ −
2∑

k=1
ζkdxk , (3.3a)

b → b + dµ , (3.3b)

where κ are zero-form bulk gauge parameters that have their own gauge transformations.
The gauge transformation of κ is κ → κ + 2πξ1 + 2πξ2, where ξk are the parameters for the

9We use the words A-type and B-type used in [38].
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transformation of ζk. Note that the constant modes of ξk make κ a U(1)-valued parameter.
These foliated gauge fields and bulk gauge fields can have particular types of singularities
and discontinuities. (See [38] for more details.)

The foliated BF Lagrangian is

Lf = iN

2π

2∑
k=1

(dB̂k + b) ∧ Ak ∧ dxk + iN

2π
b ∧ da , (3.4)

where N is an integer. Due to the BF couplings, these U(1) gauge fields are Higgsed down
to ZN .

The equations of motion are

N

2π
(dB̂k + b) ∧ dxk = 0 , (3.5)

N

2π
db = 0 , (3.6)

N

2π
dAk ∧ dxk = 0 , (3.7)

N

2π

( 2∑
k=1

Ak ∧ dxk + da

)
= 0 . (3.8)

This foliated BF theory is equivalent to the exotic BF theory under field correspondences,
which is called a foliated-exotic duality [38,39]. To show this duality, we must integrate out
the time component of the fields b0, A1

0 and A2
0 in the foliated BF theory, then solve the

equations of motion for b1 and b2, and plug them into the Lagrangian. However, from the
form of the couplings, this manipulation leads to the same result as integrating out b1 and
b2 instead of A1

0 and A2
0, then solving the equations for A1

0 and A2
0, and plugging them in.

Here we integrate out b for simplicity, and then we can use the equation of motion (3.8), or
in components,

N

2π
(A1

0 + ∂0a1 − ∂1a0) = 0 , (3.9)
N

2π
(A2

0 + ∂0a2 − ∂2a0) = 0 , (3.10)
N

2π
(A1

2 − A2
1 + ∂2a1 − ∂1a2) = 0 . (3.11)

The correspondences between the tensor gauge fields and the foliated and bulk gauge fields

13



are10

A0 ≃ a0 , (3.12)
∂kA0 ≃ Ak

0 + ∂0ak , (k = 1, 2) , (3.13)
A12 ≃ A1

2 + ∂2a1 = A2
1 + ∂1a2 , (3.14)

ϕ̂12 ≃ B̂1 − B̂2 . (3.15)

Note that the gauge transformations ζkdxk and µ in the right hand sides cancel out, so the
degrees of freedom of the fields are consistent. In addition, we have correspondences between
the gauge parameters

α ≃ κ , (3.16)
m̂k ≃ t̂k , (3.17)
nk ≃ ξk . (3.18)

Then, the exotic BF Lagrangian can be transformed to the foliated BF Lagrangian after
integrating out b:

Le = iN

2π
ϕ̂12(∂0A12 − ∂1∂2A0)

≃ iN

2π
(B̂1 − B̂2)(∂0A12 − ∂1∂2A0)

≃ iN

2π
B̂1

[
∂0(A1

2 + ∂2a1) − ∂2(A1
0 + ∂0a1)

]
− iN

2π
B̂2

[
∂0(A2

1 + ∂1a2) − ∂1(A2
0 + ∂0a2)

]
= iN

2π

[
−∂0B̂

1A1
2 + ∂2B̂

1A1
0 + ∂0B̂

2A2
1 − ∂1B̂

2A2
0

]
= iN

2π

2∑
k=1

dB̂k ∧ Ak ∧ dxk .

(3.19)

We return b, and then we get the foliated BF Lagrangian

Lf = iN

2π

2∑
k=1

dB̂k ∧ Ak ∧ dxk + iN

2π
b ∧

( 2∑
k=1

Ak ∧ dxk + da

)
. (3.20)

Using the field correspondences, we can also derive the gauge-invariant operators and
defects in the foliated BF theory. The symmetry operator associated with the ZN electric
global symmetry is

V [x] = exp
[
i(B̂1 − B̂2)

]
. (3.21)

10The symbol ≃ means that the correspondence between the gauge fields or parameters in the exotic theory
and the foliated theory.
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The strip operators associated with the ZN dipole global symmetries are

Wk[Sk
2 ] = exp

[
i
∮

Sk
2

(
Ak ∧ dxk + d(akdxk)

)]
, (k = 1, 2) . (3.22)

The quadrupole operator associated with the ZN tensor time-like symmetry is

T
[
C12,rect

1 (x1
1, x1

2, x2
1, x2

2)
]

= exp
[
−i∆12(B̂1 − B̂2)(x1

1, x1
2, x2

1, x2
2)
]

. (3.23)

The fracton defect is

F [C0
1 ] = exp

[
i
∮

C0
1

a

]
. (3.24)

3.2 Coupling to the Background Foliated Gauge Fields

In Section 2.2, we coupled the symmetries in the exotic BF theory to the background tensor
gauge fields. Since the foliated BF theory is equivalent to the exotic BF theory, it should
be possible to couple the foliated BF theory to the same set of the background gauge fields.
However, in the case of the foliated theory, the structure of symmetry operators seems to be
more complicated and it is non-trivial to find appropriate couplings. Here we construct the
foliated BF Lagrangian including background foliated and bulk gauge fields using the field
correspondences in the foliated-exotic duality.

The exotic BF Lagrangian coupled to background tensor gauge fields is

Le
[
C012, Ĉ12

0 , Ĉ
]

= Le,BF + Le,χ̂ + Le,χ , (3.25a)

Le,BF = iN

2π

[
ϕ̂12(∂0A12 − ∂1∂2A0 − C012) + A12Ĉ

12
0 + A0Ĉ

]
, (3.25b)

Le,χ̂ = iN

2π
χ̂12C012 , (3.25c)

Le,χ = iN

2π
χ(∂0Ĉ − ∂1∂2Ĉ

12
0 ) . (3.25d)

Firstly, we consider the BF part Le,BF . Under the equations of motion (3.9)–(3.11), the
exotic Lagrangian is equivalent to the foliated Lagrangian. When coupled to background
gauge fields, we assume that the background gauge transformations of the foliated gauge
fields are

Ak ∧ dxk → Ak ∧ dxk + λk ∧ dxk , (3.26)
a → a + λ , (3.27)

B̂k → B̂k + λ̂k , (3.28)

where λk ∧ dxk is a (1+1)-form gauge parameter, λ is a one-form gauge parameter and λ̂k is
a zero-form gauge parameter. For the background gauge invariance, we demand that the b
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equations of motion be

iN

2π
(A1

0 + ∂0a1 − ∂1a0 − c01) = 0 , (3.29)
iN

2π
(A2

0 + ∂0a2 − ∂2a0 − c02) = 0 , (3.30)
iN

2π
(A1

2 − A2
1 + ∂2a1 − ∂1a2 + c12) = 0 , (3.31)

instead of (3.9)–(3.11), or in the differential form,

iN

2π

( 2∑
k=1

Ak ∧ dxk + da − c

)
= 0 , (3.32)

where c is the two-form gauge field that has a background gauge transformation

c → c + dλ +
2∑

k=1
λk ∧ dxk . (3.33)

Then, we have the new field correspondences including c

A0 ≃ a0 , (3.34)
∂kA0 ≃ Ak

0 + ∂0ak − c0k , (k = 1, 2) , (3.35)
A12 ≃ A1

2 + ∂2a1 = A2
1 + ∂1a2 − c12 , (3.36)

ϕ̂12 ≃ B̂1 − B̂2 . (3.37)

Due to c12, the k = 1 and k = 2 foliated gauge fields are not treated symmetrically. From
(2.23), (2.24), (2.26), (3.26)–(3.28) and (3.33), we derive correspondences between the back-
ground gauge parameters

Λ0 ≃ λ0 , (3.38)
Λ12 ≃ λ1

2 + ∂2λ1 , (3.39)
Λ̂12 ≃ λ̂1 − λ̂2 . (3.40)

Note that λ2
1 and λ2 do not appear.

Using the field correspondences, Le,BF can be written as

Le,BF ≃ iN

2π

[
(B̂1 − B̂2)(∂0A

1
2 − ∂2A

1
0 + ∂2c01 − C012) + (A1

2 + ∂2a1)Ĉ12
0 + a0Ĉ

]
, (3.41)

where we can replace ∂0A
1
2 − ∂2A

1
0 + ∂2c01 and A1

2 + ∂2a1 with ∂0A
2
1 − ∂1A

2
0 + ∂1c02 − ∂0c12

and A2
1 + ∂1a2 − c12 respectively.

Since Ak ∧ dxk, B̂k and a are the foliated gauge fields and the bulk gauge fields in the
foliated theory, we want to substitute some background foliated and bulk gauge fields for the
background tensor gauge fields C012 and (Ĉ12

0 , Ĉ). Therefore we introduce a U(1) foliated A-
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type (2+1)-form background gauge field Ck ∧dxk (k = 1, 2), a U(1) foliated B-type one-form
background gauge field Ĉk (k = 1, 2) that obeys Ĉk

k = 0, and a bulk two-form background
gauge field ĉ12 dx1dx2. Then, we assume correspondences between the background gauge
fields including c as11

C012 ≃ C1
02 + ∂2c01 = C2

01 + ∂1c02 − ∂0c12 , (3.42)
Ĉ12

0 ≃ Ĉ1
0 − Ĉ2

0 , (3.43)
Ĉ ≃ ∂1Ĉ

1
2 − ∂2Ĉ

2
1 + ĉ12 . (3.44)

Note that the field correspondence of Ĉ is the same form as that of B̂ in the foliated BF
theory with two foliations in 3+1 dimensions [39]. To impose C1

02+∂2c01 = C2
01+∂1c02−∂0c12,

we must add to the Lagrangian the term iN
2π

h
∑2

k=1(Ck ∧ dxk − dc) where h is a zero-form
dynamical field, which has a dynamical gauge transformation

h → h + 2πw + µ , (3.45)

where w is a gauge parameter valued in an integer, which is canceled by the gauge transfor-
mation of χ̂k mentioned later. The background gauge transformations of Ck ∧ dxk, Ĉk and
ĉ12 are

Ck ∧ dxk → Ck ∧ dxk + dλk ∧ dxk , (3.46)
Ĉk → Ĉk + dλ̂k − ν̂ , (3.47)
ĉ12 → ĉ12 + (dν̂)12 , (3.48)

where ν̂ is a one-form gauge parameter. Under the assumption, Le,BF can be written as

Le,BF ≃iN

2π

[
B̂1(∂0A

1
2 − ∂2A

1
0 − C1

02) − B̂2(∂0A
2
1 − ∂1A

2
0 − C2

01)

+(A1
2 + ∂2a1)Ĉ1

0 − (A2
1 + ∂1a2 − c12)Ĉ2

0 + a0(∂1Ĉ
1
2 − ∂2Ĉ

2
1 + ĉ12)

]
.

(3.49)

Integrating the Ĉk
i term by parts, we substitute

a0(∂1Ĉ
1
2 − ∂2Ĉ

2
1) → −∂1a0 Ĉ1

2 + ∂2a0 Ĉ2
1

≃ −(A1
0 + ∂0a1 − c01)Ĉ1

2 + (A2
0 + ∂0a2 − c02)Ĉ2

1 .
(3.50)

11Under the 90 degree rotation x1 → x2, x2 → −x1, the C fields transform as C012 → −C012 and
C1

02 ↔ −C2
01, and the Ĉ fields transform as Ĉ12

0 → −Ĉ12
0 , Ĉ → Ĉ, Ĉ1

0 ↔ Ĉ2
0 , Ĉ1

2 → −Ĉ2
1 and Ĉ2

1 → Ĉ1
2 .

Thus the rotational transformations on the both sides are compatible.
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Then, we can obtain

Le,BF ≃iN

2π

2∑
k=1

[
−B̂k (dAk − Ck) ∧ dxk − Ĉk ∧

(
Ak ∧ dxk + d(akdxk)

)]
+ iN

2π
a0ĉ12 d3x + iN

2π
(c01Ĉ

1
2 − c02Ĉ

2
1 − c12Ĉ

2
0)d3x ,

(3.51)

where d3x = dx0dx1dx2. We will see later that the term
iN

2π

(
c01Ĉ

1
2 − c02Ĉ

2
1 − c12Ĉ

2
0

)
d3x (3.52)

can be dropped by combining the bulk SSPT phase as a counterterm, so we drop it here.
Restoring the b term and adding the h term, we get the foliated BF Lagrangian including
the background gauge fields:

Lf,BF =iN

2π

2∑
k=1

[
−B̂k (dAk − Ck) ∧ dxk − Ĉk ∧

(
Ak ∧ dxk + d(akdxk)

)]

+ iN

2π
a0ĉ12 d3x + iN

2π
b ∧

( 2∑
k=1

Ak ∧ dxk + da − c

)
+ iN

2π
h

( 2∑
k=1

Ck ∧ dxk − dc

)
,

(3.53)

or integrating it by parts,

Lf,BF =iN

2π

2∑
k=1

[
(dB̂k − Ĉk + b) ∧ Ak ∧ dxk + B̂k Ck ∧ dxk − Ĉk ∧ d(akdxk)

]

+ iN

2π
a0ĉ12 d3x + iN

2π
b ∧ (da − c) + iN

2π
h

( 2∑
k=1

Ck ∧ dxk − dc

)
.

(3.54)

Then, b has the background gauge transformation

b → b − ν̂ , (3.55)

which is canceled by the background gauge transformation ν̂ of Ĉk and ĉ up to a background
term as

δν̂

{ 2∑
k=1

[
(−Ĉk + b) ∧ Ak ∧ dxk − Ĉk ∧ d(akdxk)

]
+ a0ĉ12 d3x + b ∧ (da − c)

}

=
2∑

k=1
ν̂ ∧ d(akdxk) + a0(dν̂)12 d3x − ν̂ ∧ (da − c)

= ν̂ ∧ c .

(3.56)

The background foliated gauge fields Ck ∧dxk are coupled to the ZN electric symmetry (3.21),
the background bulk gauge field c is coupled to the ZN tensor time-like symmetry (3.23),
and the background foliated gauge fields Ĉk are coupled to the ZN dipole symmetries (3.22).
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From the term iN
2π

a0ĉ12 d3x, we can say the background gauge fields ĉ12 dx1dx2 is coupled
to the fracton defect F [C0

1 ] = exp
[
i
∮

C0
1

a
]
. In addition, the quadrupole operator associated

with the ZN tensor time-like symmetry (3.23) can be written as

T
[
C12,rect

1 (x1
1, x1

2, x2
1, x2

2)
]

= exp
[
−i∆12(B̂1 − B̂2)(x1

1, x1
2, x2

1, x2
2)
]

= exp
[
i
∮

C12,rect
1

b

] (3.57)

by using the equations of motion (3.5), and then the symmetry action (2.18) can be written
as

T
[
C12,rect

1 (x1
1, x1

2, x2
1, x2

2)
]

· F [C0
1 ] = e−2πi/NF [C0

1 ] (3.58)

in the foliated form [35,38]. Actually, T
[
C12,rect

1 (x1
1, x1

2, x2
1, x2

2)
]

acts on the gauge field b, but
we can formally interpret the background gauge transformation of b (3.55) as being passively
acted by the defect F [C0

1 ]. If ν̂ were not a local transformation, this transformation would not
be a symmetry transformation in the original 2+1d foliated BF theory (3.4). Moreover, the
fracton defect F [C0

1 ] is not topological, so the defect is not a symmetry operator. However,
this situation is similar to that of global symmetries, so we call the fracton defect a symmetry-
like passive action operator.

The remaining χ̂12 and χ terms can also be written as foliated forms. As for Le,χ̂, we
assume correspondences between the dynamical field χ̂12 as

χ̂12 ≃ χ̂1 − χ̂2 , (3.59)

where χ̂k (k = 1, 2) are xk-dependent dynamical fields valued in integers. Their dynamical
gauge transformations are

χ̂k → χ̂k + 2πt̂k + 2πw , (3.60)

where t̂k and w are canceled by the gauge transformations of B̂k and h respectively. Then,
we rewrite Le,χ̂ as

Le,χ̂ = iN

2π
χ̂12C012

≃ iN

2π

[
χ̂1(C1

02 + ∂2c01) − χ̂2(C2
01 + ∂1c02 − ∂0c12)

]
= −iN

2π

2∑
k=1

χ̂kCk ∧ dxk .

(3.61)

As for Le,χ, we use χ and introduce dynamical (0+1)-form fields χkdxk (k = 1, 2) as

∂kχ = χk . (3.62)
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Their dynamical gauge transformations are

χ → χ + κ , (3.63)
χk → χk + ∂kκ . (3.64)

Then, we can rewrite Le,χ as

Le,χ = iN

2π
χ(∂0Ĉ − ∂1∂2Ĉ

12
0 )

≃ iN

2π
χ
[
∂1(∂0Ĉ

1
2 − ∂2Ĉ

1
0) − ∂2(∂0Ĉ

2
1 − ∂1Ĉ

2
0) + ∂0ĉ12

]
= iN

2π

[
∂1χ(−∂0Ĉ

1
2 + ∂2Ĉ

1
0) + ∂2χ(∂0Ĉ

2
1 − ∂1Ĉ

2
0) + χ∂0ĉ12

]
= iN

2π

( 2∑
k=1

χkdxk ∧ dĈk + χ∂0ĉ12 d3x

)
.

(3.65)

To impose (3.62), we should add a term of dynamical bulk gauge fields ĉ01dx0dx1 and
ĉ02dx0dx2, and then we have the form

Lf,χ = iN

2π

( 2∑
k=1

χkdxk ∧ dĈk + χ∂0ĉ12 d3x

)

+ iN

2π

[
ĉ01(χ2 − ∂2χ) − ĉ02(χ1 − ∂1χ)

]
d3x

= iN

2π

2∑
k=1

[
χkdxk ∧ (dĈk + ĉ) + χ dĉ

]
,

(3.66)

where the background gauge transformations of ĉ01 and ĉ02 are

ĉ01 → ĉ01 + (dν̂)01 , (3.67)
ĉ02 → ĉ02 + (dν̂)02 . (3.68)

Note that we combine the background gauge field ĉ12 and the dynamical gauge fields ĉ01
and ĉ02 into ĉ. To obtain the exotic theory, we must integrate out ĉ01 and ĉ02.

After all, we have constructed the 2+1d foliated BF Lagrangian coupled to the back-
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ground gauge fields. The full Lagrangian is

Lf
[
Ck ∧ dxk, Ĉk, c, ĉ12

]
= iN

2π

2∑
k=1

[
(dB̂k − Ĉk + b) ∧ Ak ∧ dxk + B̂k Ck ∧ dxk − Ĉk ∧ d(akdxk)

]

+ iN

2π
a0ĉ12 d3x + iN

2π
b ∧ (da − c) + iN

2π
h

( 2∑
k=1

Ck ∧ dxk − dc

)

+ iN

2π

2∑
k=1

[
−χ̂kCk ∧ dxk + χkdxk ∧ (dĈk + ĉ) + χ dĉ

]
.

(3.69)

Under the background gauge transformations, it transforms as

δgLf =iN

2π

2∑
k=1

[
(dB̂k − Ĉk + b) ∧ λk ∧ dxk + B̂kdλk ∧ dxk + λ̂k(Ck + dλk) ∧ dxk

−Ĉk ∧ d(λkdxk) − (dλ̂k − ν̂) ∧ d(akdxk + λkdxk)
]

+ iN

2π
a0(dν̂)12 d3x + iN

2π
λ0(ĉ + dν̂)12 d3x

+ iN

2π
b ∧

(
−

2∑
k=1

λk ∧ dxk

)
− iN

2π
ν̂ ∧

(
da − c −

2∑
k=1

λk ∧ dxk

)

=iN

2π

2∑
k=1

[
λ̂k Ck ∧ dxk − (Ĉk + dλ̂k) ∧

{
λk ∧ dxk + d(λkdxk)

}]
+ iN

2π
λ0ĉ12 d3x

+ ν̂ ∧
(

c + dλ +
2∑

k=1
λk ∧ dxk

)
.

(3.70)

Note that to derive this formula from the exotic one (2.32) by using the field correspondences,
we have to take into account the dropped term iN

2π
(c01Ĉ

1
2 − c02Ĉ

2
1 − c12Ĉ

2
0).

3.3 Foliated SSPT Phase in 3+1 Dimensions

In Section 2.3, we saw that the mixed ’t Hooft anomaly in the 2+1d exotic BF theory are
canceled by the 3+1d exotic SSPT phase. In this section, we construct a description of the
foliated SSPT phase that is equivalent to the exotic one with two foliations by determining
field correspondences. Again we take the coordinates (x0, x1, x2, x3).

First, we introduce background foliated gauge fields Ck ∧dxk (k = 1, 2) and a background
bulk gauge field c, and assume correspondences between the background tensor gauge fields
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(C012, C312, C[03]) in the exotic SSPT phase and Ck ∧ dxk, c as

C012 ≃ C1
02 + ∂2c01 = C2

01 + ∂1c02 − ∂0c12 , (3.71)
C312 ≃ C1

32 + ∂2c31 = C2
31 + ∂1c32 − ∂3c12 , (3.72)

C[03] ≃ c03 , (3.73)
∂1C[03] ≃ C1

03 + ∂3c01 − ∂0c31 , (3.74)
∂2C[03] ≃ C2

03 + ∂3c02 − ∂0c32 , (3.75)

where Ck ∧dxk is a U(1) foliated A-type (2+1)-form gauge field and c is a U(1) bulk two-form
gauge field. These correspondences are consistent with the ones between the background
gauge fields in the 2+1d exotic and foliated BF theories. To impose the constraints for
Ck ∧ dxk and c, we add the term iN

2π
p ∧

(∑2
k=1 Ck ∧ dxk − dc

)
to the Lagrangian where p is

a dynamical one-form field. p has a dynamical gauge transformation p → p + dv̂, where v̂ is
a zero-form gauge parameter. The background gauge transformations of Ck ∧ dxk and c are

Ck ∧ dxk → Ck ∧ dxk + dλk ∧ dxk , (k = 1, 2) , (3.76)

c → c + dλ +
2∑

k=1
λk ∧ dxk , (3.77)

where λk ∧ dxk is a (1+1)-form gauge parameter and λ is a one-form gauge parameter. We
have correspondences between background gauge parameters:

Λ0 ≃ λ0 , (3.78)
Λ3 ≃ λ3 , (3.79)

Λ12 ≃ λ1
2 + ∂2λ1 . (3.80)

Next, we introduce background foliated gauge fields Ĉk (k = 1, 2) and a background
bulk gauge field ĉ, and assume correspondences between the background tensor gauge fields
(Ĉ12

0 , Ĉ, Ĉ12
0 ) in the exotic SSPT phase and Ĉk, ĉ12 as

Ĉ12
0 ≃ Ĉ1

0 − Ĉ2
0 , (3.81)

Ĉ ≃ ∂1Ĉ
1
2 − ∂2Ĉ

2
1 + ĉ12 , (3.82)

Ĉ12
3 ≃ Ĉ1

3 − Ĉ2
3 , (3.83)

where Ĉk is a U(1) foliated B-type one-form gauge field and ĉ12 dx1dx2 is a U(1) bulk two-
form gauge field. Their background gauge transformations are

Ĉk → Ĉk + dλ̂k − ν̂ , (3.84)
ĉ12 → ĉ12 + (dν̂)12 , (3.85)

where λ̂k is a zero-form gauge parameter and ν̂ is a one-form gauge parameter. Similarly, we
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can get correspondences between background gauge parameters:

λ̂12 ≃ λ̂1 − λ̂2 . (3.86)

To restrict C and Ĉ fields to ZN in the exotic SSPT phase, we have introduced the
dynamical gauge fields β̂12 and (β0, β12, β3). We also introduce dynamical gauge fields β̂k,
βk ∧ dxk, β, and assume correspondences

β̂12 ≃ β̂1 − β̂2 , (3.87)
∂kβ0 ≃ βk

0 + ∂0βk + c0k , (k = 1, 2) , (3.88)
∂kβ3 ≃ βk

3 + ∂3βk + c3k , (k = 1, 2) , (3.89)
β12 ≃ β1

2 + ∂2β1 = β2
1 + ∂1β2 + c12 , (3.90)

where β̂k is a foliated B-type zero-form gauge field, βk ∧ dxk is a foliated A-type (1+1)-form
gauge field and β is a bulk one-form gauge field. Moreover, to impose the constraint for
βk ∧ dxk, β and c, we introduce a bulk dynamical two-form gauge field ĉijdxidxj ((i, j) =
(0, 1), (0, 2), (0, 3), (2, 3), (3, 1)), and add the term iN

2π

(∑2
k=1 βk ∧ dxk + dβ + c

)
∧ ĉ |ĉ12=0 to

the Lagrangian. Their background gauge transformations are

β̂k → β̂k + λ̂k , (3.91)
βk ∧ dxk → βk ∧ dxk − λk ∧ dxk , (3.92)

β → β − λ , (3.93)
ĉij → ĉij + (dν̂)ij , ((i, j) ̸= (1, 2)) . (3.94)

They also have dynamical gauge transformations:

β̂k → β̂k + 2πûk − v̂ , (3.95)
βk ∧ dxk → βk ∧ dxk + duk ∧ dxk , (3.96)

β → β + du −
2∑

k=1
ukdxk , (3.97)

where ûk is an xk-dependent gauge parameter valued in integers, ukdxk is a (0+1)-form
gauge parameter, s is a zero-form gauge parameter, and v̂ is the gauge parameter of p. They
correspond to the dynamical gauge parameters of β̂12 and (β0, β12, β3) as

ŝk ≃ ûk , (3.98)
s ≃ u . (3.99)

Let us construct the foliated Lagrangian describing the 3+1d SSPT phase. The exotic

23



SSPT phase with two foliations is described by the Lagrangian (2.47)

LSSPT,e
[
C012, C312, C[03], Ĉ12

0 , Ĉ, Ĉ12
3

]
= LSSPT,e,β̂ + LSSPT,e,β + LSSPT,e,CĈ , (3.100a)

LSSPT,e,β̂ = iN

2π
β̂12

(
∂3C012 − ∂0C312 − ∂1∂2C[03]

)
, (3.100b)

LSSPT,e,β = iN

2π

[
β0
(
∂3Ĉ − ∂1∂2Ĉ

12
3

)
+ β12

(
∂3Ĉ

12
0 − ∂0Ĉ

12
3

)
− β3

(
∂0Ĉ − ∂1∂2Ĉ

12
0

)]
,

(3.100c)

LSSPT,e,CĈ = iN

2π

(
C012Ĉ

12
3 − C312Ĉ

12
0 + C[03]Ĉ

)
. (3.100d)

Using the correspondences above, we can rewrite it in terms of the foliated fields. As for
LSSPT,e,β̂ and LSSPT,e,β, we have

LSSPT,e,β̂ ≃iN

2π
β̂1
[
∂3(C1

02 + ∂2c01) − ∂0(C1
32 + ∂2c31) − ∂2(C1

03 + ∂3c01 − ∂0c31)
]

− iN

2π
β̂2
[
∂3(C2

01 + ∂1c02 − ∂0c12) − ∂0(C2
31 + ∂1c32 − ∂3c12)

−∂1(C2
03 + ∂3c02 − ∂0c32)

]
=iN

2π

2∑
k=1

β̂k dCk ∧ dxk ,

(3.101)

and

LSSPT,e,β

≃ iN

2π

[
β0
(
∂3∂1Ĉ

1
2 − ∂3∂2Ĉ

2
1 + ∂3ĉ12 − ∂1∂2Ĉ

1
3 + ∂1∂2Ĉ

2
3

)
+ β12

(
∂3Ĉ

1
0 − ∂3Ĉ

2
0 − ∂0Ĉ

1
3 + ∂0Ĉ

2
3

)
−β3

(
∂0∂1Ĉ

1
2 − ∂0∂2Ĉ

2
1 + ∂0ĉ12 − ∂1∂2Ĉ

1
0 + ∂1∂2Ĉ

2
0

)]
≃ iN

2π

[
−
(
β1

0 + ∂0β1 + c01
) (

∂3Ĉ
1
2 − ∂2Ĉ

1
3

)
−
(
β2

0 + ∂0β2 + c02
) (

−∂3Ĉ
2
1 + ∂1Ĉ

2
3

)
+ β0∂3ĉ12 +

(
β1

2 + ∂2β1
) (

∂3Ĉ
1
0 − ∂0Ĉ

1
3

)
+
(
β2

1 + ∂1β2 + c12
) (

−∂3Ĉ
2
0 + ∂0Ĉ

2
3

)
+
(
β1

3 + ∂3β1 + c31
) (

∂0Ĉ
1
2 − ∂2Ĉ

1
0

)
+
(
β2

3 + ∂3β2 + c32
) (

−∂0Ĉ
2
1 + ∂1Ĉ

2
0

)
− β3∂0ĉ12

]
= iN

2π

[ 2∑
k=1

βk ∧ dxk ∧ dĈk + (β0∂3ĉ12 − β3∂0ĉ12)d4x

]
+ d

[
iN

2π

2∑
k=1

(βk dxk) ∧ dĈk

]

+ iN

2π

[
−c01(∂3Ĉ

1
2 − ∂2Ĉ

1
3) + c02(∂3Ĉ

2
1 − ∂1Ĉ

2
3) − c12(∂3Ĉ

2
0 − ∂0Ĉ

2
3)

+c31(∂0Ĉ
1
2 − ∂2Ĉ

1
0) − c32(∂0Ĉ

2
1 − ∂1Ĉ

2
0)
]

d4x ,

(3.102)

where d4x = dx0dx1dx2dx3. For later convenience, we have left the total derivative term.
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For the constraints for Ck ∧ dxk and c, adding the term

iN

2π

( 2∑
k=1

βk ∧ dxk + dβ + c

)
∧ ĉ |ĉ12=0

= iN

2π

2∑
k=1

βk ∧ dxk ∧ ĉ + iN

2π
[β ∧ dĉ + c ∧ ĉ + d(β ∧ ĉ)]

∣∣∣∣
ĉ12=0

,

(3.103)

we have

LSSPT,f,β

= iN

2π

[ 2∑
k=1

βk ∧ dxk ∧ (dĈk + ĉ) + β ∧ dĉ + (c ∧ ĉ)|ĉ12=0

]

+ d

[
iN

2π

2∑
k=1

(βk dxk) ∧ (dĈk + ĉ)
]

+ iN

2π

[
−c01(∂3Ĉ

1
2 − ∂2Ĉ

1
3) + c02(∂3Ĉ

2
1 − ∂1Ĉ

2
3) − c12(∂3Ĉ

2
0 − ∂0Ĉ

2
3)

+c31(∂0Ĉ
1
2 − ∂2Ĉ

1
0) − c32(∂0Ĉ

2
1 − ∂1Ĉ

2
0)
]

,

(3.104)

where we dropped the x0-, x1- and x2-derivative term. Note that we combine the background
gauge field ĉ12 and the dynamical gauge fields ĉij ((i, j) = (0, 1), (0, 2), (0, 3), (2, 3), (3, 1))
into ĉ. To obtain the exotic theory, we must integrate out the dynamical parts ĉij ((i, j) =
(0, 1), (0, 2), (0, 3), (2, 3), (3, 1)).

The CĈ part is rewritten as

LSSPT,e,CĈ ≃iN

2π

[
(C1

02 + ∂2c01)Ĉ1
3 − (C2

01 + ∂1c02 − ∂0c12)Ĉ2
3

−(C1
32 + ∂2c31)Ĉ1

0 + (C2
31 + ∂1c32 − ∂3c12)Ĉ2

0 + c03(∂1Ĉ
1
2 − ∂2Ĉ

2
1 + ĉ12)

]
=iN

2π

[ 2∑
k=1

Ĉk ∧ Ck ∧ dxk + ĉ12c03 d4x

]

+ iN

2π

[
∂2c01 Ĉ1

3 − (∂1c02 − ∂0c12)Ĉ2
3 − ∂2c31 Ĉ1

0 + (∂1c32 − ∂3c12)Ĉ2
0

−(∂3c01 − ∂0c31)Ĉ1
2 + (∂3c02 − ∂0c32)Ĉ2

1

]
d4x .

(3.105)

Then, combining the last term with the last term of (3.104), we have

iN

2π

[
∂3
(
−c01Ĉ

1
2 + c02Ĉ

2
1 − c12Ĉ

2
0

)]
d4x . (3.106)

We will put the SSPT on the region x3 ≥ 0 and the foliated BF theory on the boundary
x3 = 0. Then, the x3-derivative term cancels out the boundary term (3.52), so we drop this
term.
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Finally, we obtain the foliated form of the SSPT phase with two foliations in 3+1 dimen-
sions:

LSSPT,f
[
Ck ∧ dxk, Ĉk, c, ĉ12

]
= iN

2π

{ 2∑
k=1

[
β̂k dCk ∧ dxk + βk ∧ dxk ∧ (dĈk + ĉ)

]
+ β ∧ dĉ

}

+ d

[
iN

2π

2∑
k=1

(βk dxk) ∧ (dĈk + ĉ)
]

+ iN

2π

[ 2∑
k=1

Ĉk ∧ Ck ∧ dxk + c ∧ ĉ

]

+ iN

2π
p ∧

( 2∑
k=1

Ck ∧ dxk − dc

)
.

(3.107)

As in the case of the exotic SSPT phase, if the theory is on spacetime without a boundary,
it is gauge invariant. However if spacetime has a boundary, the partition function of the
3+1d SSPT phase is not invariant. From the anomaly inflow mechanism [51], this variation
is expected to be canceled by the anomaly of the 2+1d foliated BF theory on the boundary
(3.70). To see this, we put the foliated SSPT phase on the region x3 ≥ 0 with the boundary
x3 = 0. From the gauge invariance, the boundary conditions of β̂k, βk ∧ dxk and β are

(β̂1 − β̂2)|x3=0 = 0 , (3.108)
β0 |x3=0 = 0 , (3.109)

(β1
2 + ∂2β1)|x3=0 = 0 , (3.110)

(β2
1 + ∂1β2 + c12)|x3=0 = 0 , (3.111)

which are consistent with the boundary conditions in the exotic SSPT phase. On the bound-
ary, we put the 2+1d foliated BF theory coupled to the background gauge fields (3.69), and
the background gauge fields in the 3+1d SSPT phase are related to those in the 2+1d foliated
BF theory as12

Ck
SSPT ∧ dxk |x3=0 = Ck

BF ∧ dxk , (3.112)
Ĉk

SSPT |x3=0 = Ĉk
BF , (3.113)

cSSPT |x3=0 = cBF , (3.114)
ĉSSPT,12 |x3=0 = ĉBF,12 . (3.115)

Note that while the background gauge fields in the 3+1d SSPT phase are restricted to ZN

tensor gauge fields by the dynamical fields β̂k, βk ∧dxk and β, those in the 2+1d foliated BF
theory are restricted by the dynamical fields χ̂k, χk dxk and χ. Then, under the background

12On the boundary, ĉSSPT,01 and ĉSSPT,02 do not arise. Then, these have no relation to ĉBF,01 and ĉBF,02.
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gauge transformations, the Lagrangian transforms as

δgLSSPT,f = iN

2π

2∑
k=1

[
λ̂k dCk ∧ dxk − λk ∧ dxk ∧ (dĈk + ĉ)

]
− iN

2π
λ ∧ dĉ

− d

[
iN

2π

2∑
k=1

(λk dxk) ∧ (dĈk + ĉ)
]

+ iN

2π

2∑
k=1

[
(dλ̂k − ν̂) ∧ Ck ∧ dxk + (Ĉk + dλ̂k − ν̂) ∧ dλk ∧ dxk

+
(

dλ +
2∑

k=1
λk ∧ dxk

)
∧ ĉ +

(
c + dλ +

2∑
k=1

λk ∧ dxk

)
∧ dν̂

]

= d

{
iN

2π

2∑
k=1

[
λ̂k Ck ∧ dxk − (Ĉk + dλ̂k) ∧ (λk ∧ dxk + d(λk dxk)

]

+iN

2π
λ0ĉ12d

3x + iN

2π
ν̂ ∧

(
c + dλ +

2∑
k=1

λk ∧ dxk

)}
,

(3.116)

Thus on the boundary, the term

δgSSSPT,e = −
∫

dx0dx1dx2 iN

2π

{ 2∑
k=1

[
λ̂k Ck ∧ dxk − (Ĉk + dλ̂k) ∧ (λk ∧ dxk + d(λk dxk)

]

+λ0ĉ12d
3x + ν̂ ∧

(
c + dλ +

2∑
k=1

λk ∧ dxk

)}
(3.117)

arises. Note the total derivative term in (3.107) contribute to the boundary x3 = 0 as a
counterterm, so that the boundary term of the 3+1d foliated SSPT phase matches the ’t
Hooft anomaly of the 2+1d foliated BF theory (3.70) on the boundary x3 = 0. Therefore
we can cancel the ’t Hooft anomaly of the 2+1d foliated BF theory on the boundary by the
gauge-variation of the 3+1d foliated SSPT phase on the bulk.

27



4 Change of Foliation Structure

In Section 3.3, we obtained the 3+1d foliated SSPT phase with two foliations:

L2
SSPT,f

[
Ck ∧ dxk, Ĉk, c, ĉ12

]
= iN

2π

{ 2∑
k=1

[
β̂k dCk ∧ dxk + βk ∧ dxk ∧ (dĈk + ĉ)

]
+ β ∧ dĉ

}

+ d

[
iN

2π

2∑
k=1

(βk dxk) ∧ (dĈk + ĉ)
]

+ iN

2π

[ 2∑
k=1

Ĉk ∧ Ck ∧ dxk + c ∧ ĉ

]

+ iN

2π
p ∧

( 2∑
k=1

Ck ∧ dxk − dc

)
.

(4.1)

Here we change the foliation structure from two foliations ek = dxk (k = 1, 2) to three
foliations ek = dxk (k = 1, 2, 3). By adding gauge fields with k = 3 and modifying the gauge
transformations, we can easily construct the 3+1d foliated SSPT phase with three foliations.
The SSPT phase with a boundary also cancels the mixed ’t Hooft anomaly of the 2+1d
foliated BF theory on the boundary. The situation where other (exotic) SSPT phases with
different foliations cancel the same anomaly appears in [25].

Then, we will assume field correspondences between the foliated and exotic SSPT phases
with three foliations, and convert from the foliated SSPT phase with three foliations to the
exotic one. While it is non-trivial to construct the exotic form of the 3+1d SSPT phase with
three foliations from the one with two foliations, we can construct it via the foliated form.
It is a systematic way to construct the exotic form using the foliated-exotic duality.

4.1 Foliated SSPT phase with three foliations

Firstly, we construct the 3+1d foliated SSPT phase with three foliations. We introduce a
U(1) background foliated A-type (2+1)-form gauge fields Ck ∧ dxk (k = 1, 2, 3) and a U(1)
background bulk two-form gauge field c with background gauge transformations

Ck ∧ dxk → Ck ∧ dxk + dλk ∧ dxk , (k = 1, 2, 3) , (4.2)

c → c + dλ +
3∑

k=1
λk ∧ dxk , (4.3)

where λk ∧ dxk is a (1+1)-form gauge parameter and λ is a one-form gauge parameter. As in
the case of two foliations, to impose the constraints for Ck ∧ dxk and c, we include the term
iN
2π

p∧
(∑3

k=1 Ck ∧ dxk − dc
)

in the Lagrangian, where p is a dynamical one-form field. p has a
dynamical gauge transformation p → p + dv̂, where v̂ is a zero-form gauge parameter. Next,
we introduce U(1) background foliated B-type one-form gauge fields Ĉk (k = 1, 2, 3) and
a U(1) background bulk gauge field ĉij dxidxj ((i, j) = (1, 2), (2, 3), (3, 1)) with background
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gauge transformations

Ĉk → Ĉk + dλ̂k − ν̂ , (4.4)
ĉij → ĉij + (dν̂)ij , ((i, j) = (1, 2), (2, 3), (3, 1)) , (4.5)

where λ̂k is a zero-form gauge parameter and ν̂ is a one-form gauge parameter. To restrict
Ck ∧ dxk, Ĉk and ĉij ((i, j) = (1, 2), (2, 3), (3, 1)) to ZN , we introduce a dynamical foliated
B-type zero-form gauge fields β̂k (k = 1, 2, 3), a dynamical foliated A-type (1+1)-form gauge
fields βk ∧dxk (k = 1, 2, 3) and a dynamical bulk one-form gauge field β. Moreover, to impose
the constraint for βk ∧ dxk and β, we introduce a bulk dynamical two-form gauge field
ĉijdxidxj ((i, j) = (0, 1), (0, 2), (0, 3)), and include the term iN

2π

(∑3
k=1 βk ∧ dxk + dβ + c

)
∧

ĉ |ĉ12=ĉ23=ĉ31=0 in the Lagrangian. Their background gauge transformations are

β̂k → β̂k + λ̂k , (4.6)
βk ∧ dxk → βk ∧ dxk − λk ∧ dxk , (4.7)

β → β − λ , (4.8)
ĉij → ĉij + (dν̂)ij , ((i, j) = (0, 1), (0, 2), (0, 3)) . (4.9)

They also have dynamical gauge transformations:

β̂k → β̂k + 2πûk − v̂ , (4.10)
βk ∧ dxk → βk ∧ dxk + duk ∧ dxk , (4.11)

β → β + du −
3∑

k=1
ukdxk , (4.12)

where ûk is a xk-dependent gauge parameter valued in integers, ukdxk is a (0+1)-form gauge
parameter, s is a zero-form gauge parameter, and v̂ is the gauge parameter of p. Then, the
3+1d foliated SSPT phase with three foliations is written as

L3
SSPT,f

[
Ck ∧ dxk, Ĉk, c, ĉ12, ĉ23, ĉ31

]
= iN

2π

{ 3∑
k=1

[
β̂k dCk ∧ dxk + βk ∧ dxk ∧ (dĈk + ĉ)

]
+ β ∧ dĉ

}

+ d

[
iN

2π

3∑
k=1

(βk dxk) ∧ (dĈk + ĉ)
]

+ iN

2π

( 3∑
k=1

Ĉk ∧ Ck ∧ dxk + c ∧ ĉ

)

+ iN

2π
p ∧

( 3∑
k=1

Ck ∧ dxk − dc

)
.

(4.13)

If the theory is on spacetime without a boundary, it is gauge invariant. As in the case
of the SSPT phase with two foliations, if spacetime has a boundary, the partition function
of the 3+1d SSPT phase with three foliations is not gauge invariant and the variation is
canceled by the anomaly of the 2+1d foliated BF theory on the boundary (3.70). To see
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this, we put the foliated SSPT phase on the region x3 ≥ 0 with the boundary x3 = 0. From
the gauge invariance, the boundary conditions of β̂k, βk ∧ dxk and β are

(β̂1 − β̂2)|x3=0 = 0 , (4.14)
β0 |x3=0 = 0 , (4.15)

(β1
2 + ∂2β1)|x3=0 = 0 , (4.16)

(β2
1 + ∂1β1 + c12)|x3=0 = 0 . (4.17)

On the boundary, we put the 2+1d foliated BF theory coupled to the background gauge
fields (3.69), and the background gauge fields in the 3+1d SSPT phase are related to those
in the 2+1d foliated BF theory as

Ck
SSPT ∧ dxk |x3=0 = Ck

BF ∧ dxk , (k = 1, 2) , (4.18)
Ĉk

SSPT |x3=0 = Ĉk
BF , (k = 1, 2) , (4.19)

cSSPT |x3=0 = cBF , (4.20)
ĉSSPT,12 |x3=0 = ĉBF,12 . (4.21)

Then, under the background gauge transformations, the Lagrangian transforms as

δgL3
SSPT,f = iN

2π

3∑
k=1

[
λ̂k dCk ∧ dxk − λk ∧ dxk ∧ (dĈk + ĉ)

]
− iN

2π
λ ∧ dĉ

− d

[
iN

2π

3∑
k=1

(λk dxk) ∧ (dĈk + ĉ)
]

+ iN

2π

3∑
k=1

[
(dλ̂k − ν̂) ∧ Ck ∧ dxk + (Ĉk + dλ̂k − ν̂) ∧ dλk ∧ dxk

]

+ iN

2π

(
dλ +

3∑
k=1

λk ∧ dxk

)
∧ ĉ + iN

2π

(
c + dλ +

3∑
k=1

λk ∧ dxk

)
∧ dν̂

= d

{
iN

2π

3∑
k=1

[
λ̂k Ck ∧ dxk − (Ĉk + dλ̂k) ∧ (λk ∧ dxk + d(λk dxk)

]

+iN

2π
λ0ĉ12d

3x + ν̂ ∧
(

c + dλ +
3∑

k=1
λk ∧ dxk

)}
.

(4.22)

On the boundary x3 = 0, the terms containing dx3, such as the foliated fields with k = 3, do
not appear, so we have

δgS3
SSPT,e = −

∫
dx0dx1dx2 iN

2π

{ 2∑
k=1

[
λ̂k Ck ∧ dxk − (Ĉk + dλ̂k) ∧ (λk ∧ dxk + d(λk dxk)

]

+λ0ĉ12d
3x + ν̂ ∧

(
c + dλ +

3∑
k=1

λk ∧ dxk

)}
.

(4.23)
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This expression is the same as the boundary term of the 3+1d foliated SSPT with two
foliations (3.117), and matches the ’t Hooft anomaly of the 2+1d foliated BF theory (3.70)
on the boundary x3 = 0. Therefore we can also cancel the ’t Hooft anomaly of the 2+1d
foliated BF theory on the boundary by the gauge variation of the 3+1d foliated SSPT phase
with three foliations on the bulk.

An ’t Hooft anomaly of an ordinary global symmetry in a relativistic QFT corresponds to
a field theory in one dimension higher from the anomaly inflow [51], and such field theories
are called invertible field theories [52]. Invertible field theories are the low-energy effective
field theories of the symmetry-protected topological (SPT) phases [53, 54], which cannot be
smoothly deformed into trivially gapped systems while preserving the symmetry.

In the case of the subsystem symmetries, the 3+1d SSPT phases with two foliations and
three foliations represent the same phases from an anomaly point of view. The rotational
symmetry of the SSPT phase with two foliations is the 90 degree rotation Z4 with respect to
(x1, x2) and the x3 direction has no foliation. On the other hand, the rotational symmetry of
the SSPT phase with three foliations is the 90 degree rotation S4 with respect to (x1, x2, x3).
On the boundary x3 = 0, both reproduce the 90 degree rotational symmetry Z4 in the
exotic/foliated BF theory in 2+1 dimensions. Furthermore, the SSPT phase with three
foliations (4.13) is smoothly deformed into the one with two foliations (4.1) while preserving
the rotational symmetry Z4 under the deformation e3 = dx3 → 0, that is β̂3, β3∧dx3, C3∧dx3

and Ĉ3 go to 0.13 Therefore, an ’t Hooft anomaly of a subsystem symmetry in a fractonic
QFT is considered to correspond to a certain deformation class of the SSPT phases and
foliation structures. This gives an implication for the characterization of ’t Hooft anomalies
of subsystem symmetry.

4.2 Exotic SSPT phase with three foliations

In Section 4.1, we derived the foliated SSPT phase with three foliations simply by adding
the k = 3 foliation terms. Here assuming field correspondences, we determine tensor gauge
fields of the SSPT phase with three foliations and construct the exotic Lagrangian describing
the SSPT phase with three foliations.

To derive the exotic form, we must integrate out ĉ01, ĉ02, ĉ03 and p in the foliated form,
and then we can use the equations of motion

iN

2π
(βi

j − βj
i + ∂jβi − ∂iβj − cij) = 0 , ((i, j) = (1, 2), (2, 3), (3, 1)) , (4.24)

iN

2π

( 3∑
k=1

Ck ∧ dxk − dc

)
= 0 . (4.25)

The fractonic theory with three simultaneous foliations ek = dxk (k = 1, 2, 3) has the
13Precisely, we must consider the version where the bulk gauge fields ĉ are not dynamical. This fact implies

that we cannot apply the same discussion cannot be applied to the exotic SSPT phases.
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90 degree rotational symmetry S4 in 3+1 dimensions. Then, tensor gauge fields of such a
theory are in representations of S4. Irreducible representations of S4 are 1, 1′, 2, 3 and 3′,
and we use the notation in [16]. Firstly, we introduce U(1) background tensor gauge fields
(C012, C023, C031) in 3′ and (C1(23), C2(31), C3(12)) in 2 satisfying C1(23) + C2(31) + C3(12) = 0,
and assume correspondences

C0ij ≃ Ci
0j + ∂jc0i = Cj

0i + ∂ic0j − ∂0cij , ((i, j) = (1, 2), (2, 3), (3, 1)) , (4.26)
Ci(jk) ≃ Ck

ij − Cj
ki − ∂icjk + ∂kcij , ((i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)) , (4.27)

or14

1
3
(
Ci(jk) − Cj(ki)

)
≃ Ck

ij − ∂icjk , ((i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)) , (4.28)

where we have used (4.25) and actually we have restricted c to zero. Their background gauge
transformations are

C0ij → C0ij + ∂0Λij − ∂i∂jΛ0 , ((i, j) = (1, 2), (2, 3), (3, 1)) , (4.29)
Ck(ij) → Ck(ij) + 2∂kΛij − ∂iΛjk − ∂jΛki , ((i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)) , (4.30)

where the background gauge parameters Λ0 and (Λ12, Λ23, Λ31) are in the representation 1
and 3′ respectively. Then, we have correspondences

Λ0 ≃ λ0 , (4.31)
Λij ≃ λi

j + ∂jλi , ((i, j) = (1, 2), (2, 3), (3, 1)) . (4.32)

Next, we introduce U(1) background tensor gauge fields (Ĉ1(23)
0 , Ĉ

2(31)
0 , Ĉ

3(12)
0 ) in 2 satisfy-

ing Ĉ1(23) + Ĉ2(31) + Ĉ3(12) = 0, (Ĉ12, Ĉ23, Ĉ31) in 3′ and (Ĉ1, Ĉ2, Ĉ3) in 3, and assume
correspondences

Ĉ
k(ij)
0 ≃ Ĉi

0 − Ĉj
0 , ((i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)) , (4.33)

Ĉij ≃ Ĉi
k − Ĉj

k , ((i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)) , (4.34)
Ĉk ≃ ∂iĈ

i
j − ∂jĈ

j
i + ĉij , ((i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)) . (4.35)

Note that the gauge transformations ν̂ in the right hand sides cancel out, so the degrees of
freedom of the fields are consistent. Their background gauge transformations are

Ĉ
k(ij)
0 → Ĉ

k(ij)
0 + ∂0Λ̂k(ij) , ((i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)) , (4.36)

Ĉij → Ĉij + ∂kΛ̂k(ij) , ((i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)) , (4.37)
Ĉk → Ĉk + ∂i∂jΛ̂k(ij) , ((i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)) , (4.38)

where the background gauge parameters (Λ̂1(23), Λ̂2(31), Λ̂3(12)) are in the representation 2
14We can use (C[12]3, C[23]1, C[31]2) in 2 satisfying C[ij]k = 1

3
(
Ci(jk) − Cj(ki)

)
and Ci(jk) = C[ij]k − C[ki]j .
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satisfying Λ̂1(23) + Λ̂2(31) + Λ̂3(12) = 0. Then, we have correspondences

Λ̂k(ij) ≃ λ̂i − λ̂j , ((i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)) . (4.39)

In addition, to restrict C and Ĉ fields to ZN , we introduce dynamical gauge fields
(β̂1(23), β̂2(31), β̂3(12)) in 2 satisfying β̂1(23) + β̂2(31) + β̂3(12) = 0, (β01, β02, β03) in 3 and
(β12, β23, β31) in 3′, and assume correspondences

β̂k(ij) ≃ β̂i − β̂j , ((i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)) , (4.40)
β0k ≃ βk

0 + ∂0βk + c0k , (k = 1, 2, 3) , (4.41)
βij ≃ βi

j + ∂jβi = βj
i + ∂iβj + cij , ((i, j) = (1, 2), (2, 3), (3, 1)) , (4.42)

and use β0 as a field in the representation 1. Their background gauge transformations are

β̂k(ij) → β̂k(ij) + Λ̂k(ij) , ((i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)) , (4.43)
β0 → β0 − Λ0 , (4.44)

β0k → β0k − ∂kΛ0 , (k = 1, 2, 3) , (4.45)
βij → βij − Λij , ((i, j) = (1, 2), (2, 3), (3, 1)) . (4.46)

They also have dynamical gauge transformations

β̂k(ij) → β̂k(ij) + 2πŝi − 2πŝj , ((i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)) , (4.47)
β0 → β0 + ∂0s , (4.48)

β0k → β0k + ∂k∂0s , (k = 1, 2, 3) , (4.49)
βij → βij + ∂i∂js , ((i, j) = (1, 2), (2, 3), (3, 1)) , (4.50)

where ŝk is a xk-dependent gauge parameter valued in integers, and s is a gauge parameter
in 1, and we have

ŝk ≃ ûk , (4.51)
s ≃ u . (4.52)

Using these field correspondences, we construct the exotic Lagrangian describing the 3+1d
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SSPT phase with three foliations. As for the L3
SSPT,f,β̂ part, we have

L3
SSPT,f,β̂ = iN

2π

3∑
k=1

β̂k dCk ∧ dxk

≃ iN

2π
β̂1
[
∂3C012 − ∂2C031 − 1

3∂0(C3(21) − C2(31))
]

− iN

2π
β̂2
[
∂3C012 − ∂1C023 − 1

3∂0(C3(12) − C1(23))
]

− iN

2π
β̂3
[
∂1C023 − ∂2C031 − 1

3∂0(C1(23) − C2(31))
]

≃ iN

2π

∑
(i,j,k)

β̂k(ij)
(

∂kC0ij − 1
3∂0Ck(ij)

)
,

(4.53)

where the sum for (i, j, k) is over (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2). Note that terms of the
gauge field c cancel out. As for the L3

SSPT,f,β part, we have

L3
SSPT,f,β

= iN

2π

[ 3∑
k=1

βk ∧ dxk ∧ (dĈk + ĉ) + β ∧ dĉ

]
+ d

[
iN

2π

3∑
k=1

(βk dxk) ∧ (dĈk + ĉ)
]

= iN

2π

[
(β1

2 + ∂2β1)(∂3Ĉ
1
0 − ∂0Ĉ

1
3) + (β2

1 + ∂1β2 + c12)(−∂3Ĉ
2
0 + ∂0Ĉ

2
3)

+(β2
3 + ∂3β2)(−∂0Ĉ

2
1 + ∂1Ĉ

2
0) + (β3

2 + ∂2β3 + c23)(∂0Ĉ
3
1 − ∂1Ĉ

3
0)

+(β3
1 + ∂1β3)(−∂0Ĉ

3
2 + ∂2Ĉ

3
0) + (β1

3 + ∂3β1 + c31)(∂0Ĉ
1
2 − ∂2Ĉ

1
0)

+(β1
0 + ∂0β1 + c01)(∂2Ĉ

1
3 − ∂3Ĉ

1
2 + ĉ23) + (β2

0 + ∂0β2 + c02)(∂3Ĉ
2
1 − ∂1Ĉ

2
3 + ĉ31)

+(β3
0 + ∂0β3 + c03)(∂1Ĉ

3
2 − ∂2Ĉ

3
1 + ĉ12) + β0(∂1ĉ23 + ∂2ĉ31 + ∂3ĉ12)

]
+ iN

2π

[
−c12(−∂3Ĉ

2
0 + ∂0Ĉ

2
3) − c23(∂0Ĉ

3
1 − ∂1Ĉ

3
0) − c31(∂0Ĉ

1
2 − ∂2Ĉ

1
0)

−c01(∂2Ĉ
1
3 − ∂1Ĉ

1
2 + ĉ23) − c02(∂3Ĉ

2
1 − ∂1Ĉ

2
3 + ĉ31) − c03(∂1Ĉ

3
2 − ∂2Ĉ

3
1 + ĉ12)

]
≃ iN

2π

∑
(i,j,k)

[
βij(∂kĈ

k(ij)
0 − ∂0Ĉ

ij) + β0k(∂iĈ
k
j − ∂jĈ

k
i + ĉij) + β0∂kĉij

]

+ iN

2π

[
−c12(−∂3Ĉ

2
0 + ∂0Ĉ

2
3) − c23(∂0Ĉ

3
1 − ∂1Ĉ

3
0) − c31(∂0Ĉ

1
2 − ∂2Ĉ

1
0)

−c01(∂2Ĉ
1
3 − ∂1Ĉ

1
2 + ĉ23) − c02(∂3Ĉ

2
1 − ∂1Ĉ

2
3 + ĉ31) − c03(∂1Ĉ

3
2 − ∂2Ĉ

3
1 + ĉ12)

]
.

(4.54)

In this formula, we can write

∂iĈ
k
j − ∂jĈ

k
i + ĉij = ∂i(Ĉk

j − Ĉi
j) + ∂j(Ĉj

i − Ĉk
i ) + ∂iĈ

i
j − ∂jĈ

j
i + ĉij

≃ ∂iĈ
ki + ∂jĈ

jk + Ĉk ,
(4.55)
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and ∑
(i,j,k)

∂kĉij =
∑

(i,j,k)

[
∂k(∂iĈ

i
j − ∂jĈ

j
i + ĉij) + ∂i∂j(Ĉi

k − Ĉj
k)
]

=
∑

(i,j,k)
(∂kĈk + ∂i∂jĈ

ij) ,
(4.56)

so we derive the L3
SSPT,e,β part

L3
SSPT,e,β = iN

2π

∑
(i,j,k)

[
βij(∂kĈ

k(ij)
0 − ∂0Ĉ

ij) + β0k(∂iĈ
ki + ∂jĈ

jk + Ĉk) + β0(∂kĈk + ∂i∂jĈ
ij)
]

+ iN

2π

[
−c12(−∂3Ĉ

2
0 + ∂0Ĉ

2
3) − c23(∂0Ĉ

3
1 − ∂1Ĉ

3
0) − c31(∂0Ĉ

1
2 − ∂2Ĉ

1
0)

−c01(∂2Ĉ
1
3 − ∂1Ĉ

1
2 + ĉ23) − c02(∂3Ĉ

2
1 − ∂1Ĉ

2
3 + ĉ31) − c03(∂1Ĉ

3
2 − ∂2Ĉ

3
1 + ĉ12)

]
.

(4.57)

Regarding the L3
SSPT,f,CĈ

part, we can write as

L3
SSPT,f,CĈ

= iN

2π

3∑
k=1

Ĉk ∧ Ck ∧ dxk + iN

2π
c ∧ ĉ

= iN

2π

(
C1

02Ĉ
1
3 − C1

03Ĉ
1
2 + C1

23Ĉ
1
0 − C2

01Ĉ
2
3 + C2

03Ĉ
2
1

+C2
31Ĉ

2
0 − C3

02Ĉ
3
1 + C3

01Ĉ
3
2 + C3

12Ĉ
3
0 + c01ĉ23 + c02ĉ31 + c03ĉ12

)
≃ iN

2π

∑
(i,j,k)

[
C0ij(Ĉi

k − Ĉj
k) + 1

3(Ci(jk) − Cj(ki))Ĉk
0

]

+ iN

2π

[
− ∂2c01 Ĉ1

3 + (∂3c01 − ∂0c31)Ĉ1
2 − (−∂2c31)Ĉ1

0 + (∂1c02 − ∂0c12)Ĉ2
3

− ∂3c02 Ĉ2
1 − (−∂3c12)Ĉ2

3 + (∂2c03 − ∂0c23)Ĉ3
1 − ∂1c03Ĉ

3
2 − (−∂1c23)Ĉ3

0

+ c01ĉ23 + c02ĉ31 + c03ĉ12
]

≃ iN

2π

∑
(i,j,k)

[
C0ijĈ

ij − 1
3Ck(ij)Ĉ

k(ij)
0

]

+ iN

2π

[
− ∂2c01 Ĉ1

3 + (∂3c01 − ∂0c31)Ĉ1
2 − (−∂2c31)Ĉ1

0 + (∂1c02 − ∂0c12)Ĉ2
3

− ∂3c02 Ĉ2
1 − (−∂3c12)Ĉ2

3 + (∂2c03 − ∂0c23)Ĉ3
1 − ∂1c03Ĉ

3
2 − (−∂1c23)Ĉ3

0

+ c01ĉ23 + c02ĉ31 + c03ĉ12
]

.

(4.58)

Combining the last terms of (4.57) and (4.58) and dropping the x0-, x1- and x3-derivative
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terms, we have

iN

2π
∂3
(
c01Ĉ

1
2 − c02Ĉ

2
1 + c12Ĉ

2
0

)
. (4.59)

As in the case of the SSPT phase with two foliations, we have to add the term (3.106) when
converting the SSPT phase from the foliated form to the exotic form, and this term cancels
out.

After all, we have constructed the exotic SSPT phase with three foliations in 3+1 dimen-
sions:

L3
SSPT,e

[
C0ij, Ck(ij), Ĉ

k(ij)
0 , Ĉij, Ĉk

]
= iN

2π

∑
(i,j,k)

β̂k(ij)
(

∂kC0ij − 1
3∂0Ck(ij)

)

+ iN

2π

∑
(i,j,k)

[
βij(∂kĈ

k(ij)
0 − ∂0Ĉ

ij) + β0k(∂iĈ
ki + ∂jĈ

jk + Ĉk) + β0(∂kĈk + ∂i∂jĈ
ij)
]

+ iN

2π

∑
(i,j,k)

[
C0ijĈ

ij − 1
3Ck(ij)Ĉ

k(ij)
0

]
.

(4.60)

As in the other cases, if the theory is on spacetime without a boundary, it is gauge
invariant. If spacetime has a boundary, the partition function is not gauge invariant and the
variation is canceled by the anomaly of the 2+1d exotic BF theory on the boundary (2.32).
To see this, we put the exotic SSPT phase with three foliations on the region x3 ≥ 0 with
the boundary x3 = 0. From the gauge invariance, the boundary conditions of β̂k(ij), β0k, βij

and β0 are

β̂3(12) |x3=0 = 0 , (4.61)
β12 |x3=0 = 0 , (4.62)
β0 |x3=0 = 0 . (4.63)

On the boundary, we put the 2+1d exotic BF theory coupled to the background gauge fields
(2.29), and the background gauge fields in the 3+1d SSPT phase with three foliations are
related to those in the 2+1d exotic BF theory as

CSSPT,012 |x3=0 = CBF,012 , (4.64)
Ĉ

3(12)
SSPT,0 |x3=0 = Ĉ12

BF,0 , (4.65)
Ĉ3

SSPT |x3=0 = ĈBF . (4.66)
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Then, under the background gauge transformations, the Lagrangian transforms as

δgL3
SSPT,e

= iN

2π

∑
(i,j,k)

Λ̂k(ij)
(

∂kC0ij − 1
3∂0Ck(ij)

)

+ iN

2π

∑
(i,j,k)

[
−Λij(∂kĈ

k(ij)
0 − ∂0Ĉ

ij) − ∂kΛ0(∂iĈ
ki + ∂jĈ

jk + Ĉk) − Λ0(∂kĈk + ∂i∂jĈ
ij)
]

+ iN

2π

∑
(i,j,k)

[
(∂0Λij − ∂i∂jΛ0)Ĉij + (C0ij + ∂0Λij − ∂i∂jΛ0)∂kΛ̂k(ij)

]

− iN

2π

∑
(i,j,k)

1
3
[
(2∂kΛij − ∂iΛjk − ∂jΛki)Ĉk(ij)

0 + (Ck(ij) + 2∂kΛij − ∂iΛjk − ∂jΛki)∂0Λ̂k(ij)
]

= iN

2π
∂3
[
Λ̂3(12)C012 − Λ12Ĉ

3(12)
0 − Λ0Ĉ

3 − Λ12∂0Λ̂3(12) − Λ0∂1∂2Λ̂3(12)
]

,

(4.67)

where we have used equations such as∑
(i,j,k)

(∂kΛij + ∂iΛjk + ∂jΛki)Ĉk(ij)
0 =

∑
(i,j,k)

∂kΛij(Ĉk(ij)
0 + Ĉ

j(ki)
0 + Ĉ

i(jk)
0 )

= 0 .

(4.68)

Thus, on the boundary x3 = 0, the term

δgS3
SSPT,e

= −
∫

dx0dx1dx2 iN

2π

[
Λ̂3(12)C012 − Λ12(Ĉ3(12)

0 + ∂0Λ̂3(12)) − Λ0(Ĉ3 + ∂1∂2Λ̂3(12))
]

x3=0
(4.69)

arises. From the boundary conditions (4.64)–(4.66), the background gauge parameters also
satisfy

ΛSSPT,0 |x3=0 = ΛBF,0 , (4.70)
ΛSSPT,12 |x3=0 = ΛBF,12 , (4.71)
Λ̂3(12)

SSPT,0 |x3=0 = Λ̂12
BF,0 (4.72)

on the boundary, and then it matches the ’t Hooft anomaly of the 2+1d exotic BF theory
(2.32). Therefore we can also cancel the ’t Hooft anomaly of the 2+1d exotic BF theory on
the boundary by the gauge-variation of the 3+1d exotic SSPT phase with three foliations on
the bulk.

In the foliated form, the SSPT phase with two foliations (4.1) are related to the one with
three foliations (4.60) in a rather simple way. On the other hand, in the exotic form, relation
between the SSPT phase with two foliations (2.47) and three foliations (4.60) is non-trivial.
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To convert the SSPT phase from the foliated form to the exotic form, we must integrate
out ĉ01, ĉ02, ĉ03 and p. However, in the case of the foliated SSPT phases, they are smoothly
deformed into each other preserving the 90 degree rotational symmetry Z4 provided that
the bulk gauge field ĉ is not dynamical. Thus we cannot naively deform the exotic SSPT
phase with two foliations into the one with three foliations. This is an obscure point of the
deformation.

5 Conclusion

In this work, we have discussed the mixed ’t Hooft anomaly of subsystem symmetry in the
exotic and foliated BF theories in 2+1 dimensions and the SSPT phases in 3+1 dimensions
that cancel it via the anomaly inflow. We have constructed the exotic and foliated SSPT
phases with two and three foliations respectively by using the foliated-exotic duality. Along
the way, we have shown the non-topological operator can be considered as a symmetry-like
operator. We have also seen that both of the SSPT phase with two foliations and three
foliations match the same ’t Hooft anomaly of the exotic/foliated BF theory, and have
pointed out that this fact may be a clue for characterizing ’t Hooft anomalies of subsystem
symmetry.

One of the future directions is to further investigate the anomaly inflow for subsystem
symmetries. In this paper, we have considered the 3+1d SSPT phase with two foliations
e1 = dx1 and e2 = dx2 with the 2+1d exotic/foliated BF theory with two foliations on
the boundary x3 = 0. If the boundary is x2 = 0, the boundary theory would be the 2+1d
exotic/foliated BF theory with one foliation. Furthermore, it is interesting to put the SSPT
phase on the region x2 ≥ 0 and x3 ≥ 0 with the boundary x2 = 0 and x3 = 0 with a
corner. This situation is related to higher-order SSPT phases [60–62], where the anomaly
theory would arise on the corners or hinges. Even if the SSPT phase we have considered
does not have the corner theory, there may be effective field theories of such higher-order
SSPT phases, and finding them is also an interesting topic. These studies will be connected
to larger goals, which are the characterization of the ’t Hooft anomaly and the classification
of SSPT phases.

The other direction is to expand the foliated-exotic duality. There are gapless fractonic
theories (e.g., the ϕ theory [15]) in the exotic form, but the corresponding foliated QFTs have
not yet been found. Moreover, it is interesting to consider relation between exotic/foliated
theories and other topics on fractonic theory, such as the boson-fermion duality with sub-
system symmetry [63], the infinite-component Chern-Simons-Maxwell theory [64, 65], and
the non-invertible duality interfaces with subsystem symmetries [66]. Since exotic form and
foliated form have different manifest structure, clarifying the correspondences will lead to a
deeper understanding of fractonic QFTs and subsystem symmetries.
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