
On Homomorphism Indistinguishability and
Hypertree Depth
Benjamin Scheidt #

Humboldt-Universität zu Berlin, Germany

Abstract
GCk is a logic introduced by Scheidt and Schweikardt (2023) to express properties of hypergraphs It
is similar to first-order logic with counting quantifiers (C) adapted to the hypergraph setting. It has
distinct sets of variables for vertices and for hyperedges and requires vertex variables to be guarded
by hyperedge variables on every quantification.

We prove that two hypergraphs G, H satisfy the same sentences in the logic GCk with guard depth
at most k if, and only if, they are homomorphism indistinguishable over the class of hypergraphs of
strict hypertree depth at most k. This lifts the analogous result for tree depth ≤ k and sentences
of first-order logic with counting quantifiers of quantifier rank at most k due to Grohe (2020)
from graphs to hypergraphs. The guard depth of a formula is the quantifier rank with respect to
hyperedge variables, and strict hypertree depth is a restriction of hypertree depth as defined by
Adler, Gavenčiak and Klimošová (2012). To justify this restriction, we show that for every H, the
strict hypertree depth of H is at most 1 larger than its hypertree depth, and we give additional
evidence that strict hypertree depth can be viewed as a reasonable generalisation of tree depth for
hypergraphs.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Mathematics of
computing → Hypergraphs

Keywords and phrases homomorphism indistinguishability, counting logics, guarded logics, hyper-
graphs, incidence graphs, tree depth, elimination forest, hypertree width

Acknowledgements We thank Nicole Schweikardt for helpful discussions.

1 Introduction

The (k-dimensional) Weisfeiler-Leman algorithm describes a technique to classify the vertices
(or k-tuples) of a graph, by iteratively computing a colouring (i.e., a classification) of the
vertices (or k-tuples), which gets refined each iteration until it stabilises. While it can
be used as a way to (imperfectly) test graphs for isomorphism, it has found many other –
seemingly very different – uses, e.g. reducing the cost of solving linear programs [14], as
graph kernels [28] or even as an architecture for graph neural networks [29, 22, 13, 12]. For
a more in-depth overview on the expressive power of the Weisfeiler-Leman algorithm itself,
consult [17] as a starting point. The success of the Weisfeiler-Leman algorithm can in part
be explained by its simplicity, but also by the fact that it appears to capture the structure of
a graph really well. This can be explained by its connection to first-order logic with counting
quantifiers and to homomorphism counts over graphs of bounded tree width. A classical
result due to Cai, Fürer and Immerman [5] and Immerman and Lander [16] says that two
graphs are indistinguishable by the k-dimensional Weisfeiler-Leman algorithm if, and only
if, they satisfy the same sentences of first-order logic with counting quantifiers (C) and k+1
variables (Ck+1).

Dvořák [9] and Dell, Grohe, Rattan [8] related the Weisfeiler-Leman algorithm to homo-
morphism counts over graphs of bounded tree width (this was subsequently generalised to
relational structures of bounded tree width by Butti and Dalmau [3]). They showed that
two graphs are homomorphism indistinguishable over the class TWk of graphs of tree width
at most k if, and only if, they are indistinguishable by the k-dimensional Weisfeiler-Leman

ar
X

iv
:2

40
4.

10
63

7v
1 

 [
cs

.L
O

] 
 1

6 
A

pr
 2

02
4

mailto:benjamin.scheidt@hu-berlin.de
https://orcid.org/0000-0003-2379-3675


2 On Homomorphism Indistinguishability and Hypertree Depth

algorithm. Here, two graphs G and H are homomorphism indistinguishable over a class C of
graphs, if the number of homomorphisms from F into G equals the number of homomorphisms
from F into H for all F ∈ C. Dvořák used the previously mentioned connection to Ck+1 and
an inductive characterisation of the graphs of bounded tree width to prove this result, while
Dell et al. used elaborate algebraic techniques on vectors containing homomorphism counts.

In recent years, a whole theory has emerged around homomorphism indistinguishability.
There are characterisations of homomorphism indistinguishability for classes of graphs other
than TWk (cf. [7, 10, 21, 25]), among which we would like to emphasise the following: A
classical result by Lovász [18], stating that two graphs are isomorphic if, and only if, they
are homomorphism indistinguishable over all graphs; a well-received result by Mančinska
and Roberson [20], stating that two graphs are homomorphism indistinguishable over the
class of planar graphs if, and only if, they are quantum isomorphic; and, of importance for
this paper, Grohe [11] showed that two graphs are homomorphism indistinguishable over
the graphs of tree depth at most m if, and only if, they satisfy the same sentences of C with
quantifier rank at most m (Cm). There is also work concerned with a more fundamental
analysis of homomorphism counting from restricted classes (cf. [2, 15, 23, 24, 27]).

Some real-world problems can be represented by hypergraphs in a much more natural
way than by graphs. The great track record of the Weisfeiler-Leman method poses the
question, whether a similar algorithm exists that works on hypergraphs. A direct application
of the Weisfeiler-Leman algorithm on the incidence structure of a hypergraph is sometimes
used. But Böker noted in [4], that this approach does not capture the hypergraph structure
well, since the algorithm will mix up hyperedges and vertices. Thus, a proper variant of the
Weisfeiler-Leman algorithm that works on hypergraphs is, to the best of our knowledge, still
missing. We believe that establishing results analogous to the ones mentioned so far can give
valuable insight on how the algorithm should operate on hypergraphs. A first step from this
angle is a result by Scheidt and Schweikardt [26], who lift Dvořák’s result to hypergraphs by
proving the following: two hypergraphs G, H are homomorphism indistinguishable over the
class GHWk of hypergraphs of generalised hypertree width at most k if, and only if, they
satisfy the same sentences of the logic GCk. GCk is a novel logic introduced in [26]. It has
distinct variables for vertices and for hyperedges and counting quantifiers for both variable
types. The main feature of GCk is that it bounds the number of variables for hyperedges
by k, and it requires that vertex variables are ‘guarded by’ (i.e., contained in) hyperedge
variables on every quantification.

Contributions As the main contribution of this work, we show that two hypergraphs
satisfy the same sentences of the logic GCk with guard depth at most k if, and only if,
they are homomorphism indistinguishable over the class of hypergraphs of strict hypertree
depth at most k (Theorem 6.1). The guard depth is the quantifier depth of the hyperedge
variables. This theorem follows from an inductive characterisation of the class of hypergraphs
of strict hypertree depth ≤ k, combined with the main technical lemmas of Scheidt and
Schweikardt [26]. We believe that this inductive characterisation is interesting on its own,
since the same technique combined with the core lemmata in Dvořák’s work [9] can be
used to give a concise proof of the analogous result on graphs due to Grohe [11], which was
independently recognised and shown by Fluck et al. [10] recently. Strict hypertree depth is a
mild restriction of hypertree depth as defined by Adler, Gavenčiak and Klimošová [1]. This
(as it turns out only slight) deviation from hypertree depth is surprising at first. Because of
the properties and relations between strict hypertree depth and hypertree depth we acquire in
this paper, we claim that strict hypertree depth can be viewed as a reasonable generalisation



B. Scheidt 3

of tree depth for hypergraphs too. In particular, we show that the strict hypertree depth
of a hypergraph is at most 1 larger than its hypertree depth (Theorem 2.5). Moreover, we
show that the distinguishing power of homomorphism counts from hypergraphs of hypertree
depth at most k is different from the distinguishing power of homomorphism counts from
their respective incidence graphs (Theorem 2.9). Compared to other hypergraph parameters,
this is very unexpected.

Organisation The remainder of the paper is organised as follows. Section 2 is dedicated
to the introduction of the necessary notation and definitions. In particular, we introduce
incidence graphs as representations of hypergraphs that will be used throughout the paper,
following Böker [4] and Scheidt and Schweikardt [26]. The notions of (strict) hypertree depth
are introduced in Section 2.1, followed by Section 2.2 where we handle the differences between
homomorphisms between hypergraphs and homomorphisms between incidence graphs. In
Section 3 we introduce k-labeled incidence graphs that were the principle tool used in [26] to
achieve their result. We utilise them in Section 4 to give an inductive characterisation of
the hypergraphs of strict hypertree depth at most k (Theorem 4.1). Section 5 is devoted to
the logic GCk. In Section 6 we combine the results from Section 4 and Section 2.2 with the
results from [26] to obtain Theorem 6.1. Section 7 concludes the paper with a summary of
the results obtained in this paper, as well as an outlook on further research directions.

2 Preliminaries

Since we heavily rely on the work by Scheidt and Schweikardt [26], we will keep our notation
close to theirs. We denote the set of natural numbers including 0 by N, the set of positive
natural numbers by N≥1, and we write [n] to denote the set {1, 2, . . . , n}. To denote
isomorphism of two objects, we use ∼=. A tuple is denoted using a bar, e.g. a. For a given
ℓ-tuple a, we use ai to denote the i-th element of a, i.e., a = (a1, a2, . . . , aℓ). For any set S,
let P(S) be the set of subsets of S and let Pk(S) be the subsets of cardinality exactly k. If
S is a set of sets, let

⋃
S =

⋃
s∈S s.

For a finite set S of cardinality ℓ ∈ N, a total order < on S and any number d ∈ N,
we say that ⟨id+1, id+2 . . . , id+ℓ⟩ is the <-enumeration of S, if id+1 < id+2 < · · · < id+ℓ

and {id+1, . . . , id+ℓ} = S. If the order < is clear from the context, we simply say that
⟨id+1, id+2 . . . , id+ℓ⟩ is the enumeration of S. Note that we usually let d = 0, i.e., we usually
write ⟨i1, . . . , iℓ⟩. Furthermore, the enumeration ⟨id+1, id+2 . . . , id+ℓ⟩ of S is empty if, and
only if, S is empty.

We denote a partial function f from A to B by f : A ⇀ B, and we let dom(f) := {a ∈ A :
f(a) is defined} and img(f) := {b ∈ B : ex. a ∈ A s.t. f(a) = b}. We say that two functions
f and g are compatible, if f(x) = g(x) for all x ∈ dom(f) ∩ dom(g). We identify a (partial)
function f with the set {(x, f(x)) : x ∈ dom(f)} whenever we are using set notation on
functions. For example, we write f ⊆ g to indicate dom(f) ⊆ dom(g) and f(x) = g(x) for all
x ∈ dom(f). In particular, by f ∪g we denote the function h with dom(h) = dom(f)∪dom(g)
and h(x) = f(x) for all x ∈ dom(f) and h(x) = g(x) for all x ∈ dom(g) \ dom(f). Note
that f has precedence over g, but this only matters if f and g are not compatible. For a
(partial) function f and a set S ⊆ dom(f) we write f(S) to denote {f(x) : x ∈ S}, and we
call the function g ⊆ f with dom(g) := S the restriction of f to S. Finally, we define partial
functions inline like this: {a → 3, b → 2, c → 5}. In particular, the empty set ∅ denotes a
partial function with empty domain.



4 On Homomorphism Indistinguishability and Hypertree Depth

Graphs, Trees and Forests An (undirected) graph is a tuple G = (V (G), E(G)), where
V (G) is a finite set and E(G) ⊆ P2(V (G)). For a set S ⊆ V (G), G[S] denotes the subgraph
induced by S, i.e., V (G[S]) := S and E(G[S]) := E(G) ∩ P2(S). A connected component of a
graph is a maximal induced subgraph that is connected. A tree is a connected acyclic graph
and a forest is a graph were each connected component is a tree. A rooted tree T is a tree
with some distinguished node that we call its root, which we denote by ωT . A rooted forest
F is the disjoint union of a collection of rooted trees. It therefore has a set of roots denoted
by ΩF . We may omit the index if it is clear from the context. Note that a rooted tree is also
a rooted forest and that every node n in a rooted forest is contained in a unique connected
component which is a tree that we call the tree for n and whose root is the root for n.

For a rooted forest F we let ≤F be the induced partial order on the nodes, i.e., the roots
are the minimal elements and s ≤F t if s is on the unique path from t to its root in Ω. By
P(s, t) we denote the set of nodes on the path from s to t (including s and t). In particular,
if no path from s to t exists, P(s, t) = ∅. By P(s) we denote the set of nodes on the path
from s to the root for s and by ∧(s, t) we denote the unique element, if it exists, where the
paths P(s), P(t) join, i.e., ∧(s, t) := max≤F

(P(s) ∩ P(t)). Notice that ∧(s, t) is undefined iff
s and t are not in the same tree, and that ∧(s, t) = s, iff s ≤F t (and conversely, ∧(s, t) = t

iff t ≤F s).
The subtree Tt induced by t ∈ V (F ) is the tree F [V ] with root t and V := {s ∈ V (T ) :

t ≤F s}. The level of a node s ∈ V (F ) is defined as the number of elements on the path
from s to its root, i.e., level(s) := | P(s)|. The height of a rooted tree T is the maximal level,
i.e., height(T ) := max{level(t) : t ∈ V (T )} and the height of a node t ∈ V (T ) is the height
of its induced subtree Tt, i.e., height(t) := height(Tt).

Hyper- and Incidence Graphs A hypergraph is a tuple H = (V,E, β), where V and E are
disjoint finite sets and β is a total function from E to P(V ) with V =

⋃
e∈E β(e). We call

the elements of V vertices and the elements of E hyperedges and for every e ∈ E, we call
β(e) its contents. We denote V by V (H), E by E(H) and β by βH, though we may omit the
index if there is no ambiguity. Notice that, in general, multiple hyperedges with the same
content and hyperedges without content are allowed. We call H simple if β is injective.

An incidence graph is a tuple I = (R,B,E) consisting of two disjoint finite sets R and B
of red and blue vertices and a relation E ⊆ B ×R. We denote R by R(I), B by B(I) and E
by E(I). For every e ∈ B(I), we let β(e) := {v ∈ R(I) : (e, v) ∈ E(I)}. Notice that β is
equivalent in its function to the map β for a hypergraph, hence we denote them similarly.
We only consider incidence graphs where for every v ∈ R(I) there is an e ∈ B(I) such that
(e, v) ∈ E(I).

It is easy to see that we can assign an incidence graph to every hypergraph and the other
way around: For every hypergraph H we let IH := (V (H), E(H), E) where E := {(e, v) : e ∈
E(H), v ∈ β(e)}. Conversely, for every incidence graph I we let HI := (R(I),B(I), β) where
β(e) := {v ∈ R(I) : (e, v) ∈ E(I)} for all e ∈ B(I).

For every set S ⊆ E(H) we define the induced subhypergraph H[S] as (V ′, S, β′
H) where

V ′ :=
⋃

e∈S β(e) and β′
H is the restriction of βH to S. We say that a hypergraph is connected

if its incidence graph is connected. An induced subhypergraph is a connected component, if
its corresponding incidence graph is a connected component.

By Pn we denote the path of n hyperedges, where each hyperedge contains 2 vertices.
I.e., we let V (Pn) = [n+1], E(Pn) = {ei : i ∈ [n]} and β(ei) = {i, i+1} for all i ∈ [n]. We
may use different names for the vertices if it is convenient.



B. Scheidt 5

v wz

u

x y

t

(a) The hypergraph H.

v wz

u

x y
e

f

g

h

t

(b) The IG IH for H.

b c

a

(c) The hypergraph G.

b c

a

i

j

k
ℓ

(d) The IG IG for G.

Figure 1 Examples for hypergraphs and their corresponding incidence graphs.

▶ Example 2.1. The hypergraph H illustrated in Figure 1a is defined as V (H) = {u, v, w, x,
y, z, t}, E(H) = {e, f, g, h} and βH = {e → {u, v, x}, f → {v, w, z}, g → {u,w, y}, h →
{t, x, y, z}}. Its incidence graph IH, depicted in Figure 1b, is defined by R(IH) = V (H),
B(IH) = E(H) and E(IH) = {(e, u), (e, v), (e, x), (f, v), (f, w), (f, z), (g, u), (g, w), (g, y),
(h, t), (h, x), (h, y), (h, z)}.

The hypergraph G depicted in Figure 1c is defined as V (G) = {a, b, c}, E(G) = {i, j, k, ℓ}
and βG := {i → {a, b}, j → {b, c}, k → {a, c}, ℓ → {a, b, c}}. Its incidence graph IG , depicted
in Figure 1d, is defined as R(IG) = V (G), B(IG) = E(G) and E(IG) = {(i, a), (i, b), (j, b), (j, c),
(k, a), (k, c), (ℓ, a), (ℓ, b), (ℓ, c)}.

2.1 Hypertree Depth
The following definition of elimination forest and hypertree depth is due to Adler, Gavenčiak
and Klimošová [1], though they refer to elimination forests as ‘decomposition forests’. We call
them elimination forests, since this reflects their conceptual similarity to elimination forests
for graphs and avoids confusion with hypertree decompositions. Further, we define this
notion in terms of incidence graphs, because we mainly work on those. Do notice however,
that this definition easily translates to hypergraphs and that it is equivalent to the one given
by Adler, Gavenčiak and Klimošová.

▶ Definition 2.2 (Hypertree Depth and Elimination Forests, [1]). Let I be an incidence graph.
An elimination forest (F,Γ) for I consists of a forest F and a mapping Γ: V (F ) → B(I) such
that conditions 1–3 hold. We write Γ̂(t) as shorthand for β(Γ(t)).
1. Completeness for vertices: For every red vertex v ∈ R(I), there is a t ∈ V (F ) such that

v ∈ Γ̂(t).
2. Hyperedge-Containment: For every blue vertex e ∈ B(I) there are nodes s, t ∈ V (F ) such

that s ≤F t and β(e) ⊆
⋃

Γ̂(P(s, t)).
3. Shared heritage: For all s, t ∈ V (F ), if Γ̂(s) ∩ Γ̂(t) ̸= ∅, then ∧(s, t) is defined and

Γ̂(s) ∩ Γ̂(t) ⊆
⋃

Γ̂(P(∧(s, t))).

The intuition behind condition 3 is that hyperedges can only share the vertices contained
in their common ancestors in the elimination forest. The height of an elimination forest (F,Γ)
is simply the height of F . The hypertree depth of I is defined as the minimal height over all
elimination forests for I, and we denote it by hd(I). Analogously, we let hd(H) := hd(IH) for
all hypergraphs. We write IHDk to denote the class of incidence graphs of hypertree depth
at most k and HDk to denote the corresponding class of hypergraphs. ⌟

We call an elimination forest (F,Γ) strict if Γ is bijective. It is easy to see that the first
and second condition are trivially satisfied when Γ is bijective, thus we can redefine the
notion of strict elimination forest in a more succinct manner.



6 On Homomorphism Indistinguishability and Hypertree Depth

{u, v, x}

{t, x, y, z}ω:

{v, w, z} {u,w, y}

(a) A (strict) EF for H.

{a, b, c}ω:

(b) An EF for G.

{b, c}

{a, b, c}ω:

{a, b} {a, c}

(c) A strict EF for G.

{8, 9}
ω:

{4, 5}

{2, 3}

{6, 7}

{1, 2}

{3, 4}

{5, 6}

{7, 8}

{12, 13}

{10, 11}

{14, 15}

{9, 10}{11, 12}

{13, 14}{15, 16}

(d) A (strict) elimination forest for P15.

Figure 2 Elimination forests for various (hyper)graphs.

▶ Definition 2.3 (Strict Elimination Forest). Let I be an incidence graph. A strict elimination
forest (F,Γ) for I consists of a forest F and a bijective function Γ: V (F ) → B(I) satisfying
condition 3 of Definition 2.2. The strict hypertree depth of I, denoted by shd(I), is defined as
the minimal height over all strict elimination forests for I. Again, we let shd(H) := shd(IH)
for every hypergraph H. We write ISHDk to denote the class of incidence graphs of strict
hypertree depth at most k and SHDk to denote the corresponding class of hypergraphs. ⌟

▶ Example 2.4. Consider the hypergraphs G and H as well as their incidence graphs IG ,
IH from Example 2.1 (see Figure 1). Let (F1,Γ1) be defined as follows. F1 is a tree defined
by V (F1) = {t1, t2, t3, t4} and E(F2) := {{t1, t2}, {t1, t3}, {t1, t4}} with root t1. Γ1 is a map
defined as {t1 → h, t2 → e, t3 → f, t4 → g}. (F1,Γ1) is an elimination forest of height 2
for IH. It is depicted in Figure 2a, where we labeled the node ti with Γ̂1(ti). Notice, that
(F1,Γ1) is strict.

Analogously, we depicted two elimination forests for IG of height 1 and 2 in Figures 2b
and 2c. Notice how the elimination forest depicted in Figure 2b, witnessing hd(G) = 1, is
not strict. It is easy to see that shd(G) ≥ 2 since a bijective map implies that there are as
many nodes in the forest as there are edges. Thus, Figure 2c witnesses that shd(G) = 2.

Finally, Figure 2d depicts a (strict) elimination forest for P15 witnessing shd(P15) ≤ 4.
Recall that P15 is defined by V (P15) = [16] and E(P15) = {{i, i+1} : i ∈ [15]}. ⌟

One can show that the strict hypertree depth of a hypergraph is at most its hypertree
depth increased by one. The main idea is that we can turn every elimination forest into a
strict one, if we add a leaf for every hyperedge that is currently not being mapped to below
the path that contains it according to condition 2 in Definition 2.2.

▶ Theorem 2.5. For all hypergraphs H, hd(H) ≤ shd(H) ≤ hd(H)+1.

Proof. Let I be an incidence graph. Since every strict elimination forest is also an elimination
forest, hd(I) ≤ shd(I) trivially holds.

To show shd(I) ≤ hd(I) + 1 it suffices to show that any elimination forest (F,Γ) of I can
be turned into a strict elimination forest (Fs,Γs) of I where height(Fs) ≤ height(F ) + 1. In
the following we make Γ bijective by inserting new nodes into F as children of leaves. Thus,
at the end, the height of Fs has increased by at most 1.

But first we show that we may assume that Γ is already injective. If it is not, then
there are distinct s, t ∈ V (F ) such that Γ(s) = Γ(t) and w.l.o.g. level(s) ≥ level(t) and



B. Scheidt 7

s is not the root. Let S := Γ̂(s) ∩ Γ̂(t) (= Γ̂(s) = Γ̂(t)). Since (F,Γ) is an elimination
forest, ∧(s, t) must be defined, ∧(s, t) ̸= s and S ⊆

⋃
Γ̂(P(∧(s, t))) must hold according to

condition 3. If we remove the node s from F by contracting the edge between s and its
parent p (which exists since s can not be the root) and assign Γ(p) to the resulting node, the
result (F ′,Γ′) is still an elimination forest. Condition 1 is still satisfied because Γ̂(s) = Γ̂(t).
It can easily be verified that condition 2 is satisfied: Let e ∈ B(I), let u, v ∈ V (F ) such
that u ≤F v and β(e) ⊆

⋃
Γ̂(P(u, v)). Obviously, β(e) ⊆

⋃
Γ̂(P(u, ω)) where ω is the root

for u. Since Γ̂(s) ⊆
⋃

Γ̂(∧(s, t)) and ∧(s, t) ∈ P(s, ω) \ {s}, P(u, ω) \ {s} is still a path in
F ′ and β(e) ⊆

⋃
Γ̂′(P(u, ω) \ {s}). Showing that condition 3 is still satisfied is not hard

either: Let u, v ∈ V (F ) such that Γ̂(u) ∩ Γ̂(v) is not empty. If ∧(u, v) ≤F s or ∧(u, v)
is not ≤F -comparable to s, then Γ̂(u) ∩ Γ̂(v) ⊆

⋃
Γ̂(P(∧(u, v))) obviously still holds. If

s ≤F ∧(u, v), then s ∈ P(∧(u, v)) and ∧(s, t) ∈ P(∧(u, v)). Using the same argument as
before we can show that Γ̂′(u) ∩ Γ̂′(v) ⊆

⋃
Γ̂′(P(∧(u, v))) still holds.

In total, we get that (F ′,Γ′) is still an elimination forest and height(F ′) ≤ height(F ).
We can repeat this procedure until the resulting Γ′ is injective.

Assume that Γ is already injective. If Γ is surjective, Γ is also bijective. Otherwise, let
{e1, e2, . . . , eℓ} := B(I) \ img(Γ) be the set of blue vertices that are not being mapped to.
Since (F,Γ) is an elimination forest, there exist si, ti for every i ∈ [ℓ] such that si ≤F ti
and β(ei) ⊆

⋃
Γ̂(P(si, ti)) and where | P(si, ti)| is minimal. We insert a fresh node s′

i as a
child of si for every ei and map s′

i to ei. In precise terms, we let Fs = (V (Fs), E(Fs)) with
V (Fs) = V (F ) ∪̇ {s′

1, s
′
2, . . . , s

′
ℓ} and E(Fs) = E(F ) ∪ {{si, s

′
i} : i ∈ [ℓ]}; and Γs(s′

i) := ei for
all i ∈ [ℓ] and Γs(t) = Γ(t) for all t ∈ V (F ).

Obviously, the height of the tree Fs did not increase by more than 1 relative to F and
the resulting Γs is bijective. Since R(I) =

⋃
β(B(I)) by definition, condition 1 is trivially

satisfied. Since Γs is bijective, condition 2 is trivially satisfied as well. It remains to verify
condition 3: Let u, v ∈ V (Fs) such that S := Γ̂s(u) ∩ Γ̂s(v) is not empty. If u, v ∈ V (F ) then
this still holds since (F,Γ) is an elimination forest and all s′

i are leaves. Thus assume w.l.o.g.
that u = s′

i for some i ∈ [ℓ]. Let n1, . . . , nı̂ be the nodes in P(si, ti) where S ∩ Γ̂s(nj) is not
empty.

Case 1 : If v ̸= s′
j for every j ∈ [ℓ], the nodes ∧(nj , v) must exist and ∅ ̸= Γ̂(nj) ∩ Γ̂(v) ⊆⋃

Γ̂(P(∧(nj , v))) holds. Thus, also ∧(u, v) must exist. Since F is a forest, all ∧(nj , v) must
lie on a path, since otherwise F would contain a cycle. This means that for the largest
∧(nj , v) according to ≤F , both ∧(nj , v) ≤Fs ∧(u, v) and S ⊆

⋃
Γ̂(P(∧(nj , v))) hold. Thus,

S ⊆
⋃

Γ̂s(P(∧(u, v))).
Case 2 : If v = s′

j for a j ∈ [ℓ], let m1, . . . ,mȷ̂ be the nodes in P(sj , tj) where S ∩ Γ̂s(mj′)
is not empty. Consider the set of pairs M := {(ni′ ,mj′) : Γ̂(ni′) ∩ Γ̂(mj′) ̸= ∅}. Again,
for all (ni′ ,mj′) ∈ M , ∧(ni′ ,mj′) must exist and Γ̂(ni′) ∩ Γ̂(mj′) ⊆

⋃
Γ̂(P(∧(ni′ ,mj′))).

Again, since F is a forest, they must all lie on a path and ∧(u, v) must exist. For the largest
∧(nı̃,mȷ̃) according to ≤F , it therefore holds that Γ̂(ni′)∩ Γ̂(mj′) ⊆

⋃
Γ̂(P(∧(nı̃,mȷ̃))) for all

(ni′ ,mj′) ∈ M . Since β(u) ⊆
⋃

Γ̂(P(si, ti)) and β(v) ⊆
⋃

Γ̂(P(sj , tj)) hold by construction,
it must also hold that S =

⋃
(ni′ ,mj′ )∈M Γ̂(ni′) ∩ Γ̂(mj′), and since ∧(nı̃,mȷ̃) ≤Fs ∧(u, v), we

are done. ◀

Before closing this section, it is easy to see that, due to condition 3 (shared heritage),
every elimination forest of a connected incidence graph is also an elimination tree.

▶ Lemma 2.6. Let I be a connected incidence graph. For every elimination forest (F,Γ) of
I, F is a tree.



8 On Homomorphism Indistinguishability and Hypertree Depth

2.2 Homomorphisms
While hypergraphs and incidence graphs are conceptually close, their ‘natural’ notions of
homomorphisms are not the same. Since our interest lies in hypergraphs, but we are mainly
working on incidence graphs in this paper, we have to relate these notions. Following Scheidt
and Schweikardt, we use the same definitions as Böker [4].

A homomorphism from a hypergraph H into another hypergraph G is a pair of func-
tions (hV : V (H) → V (G), hE : E(H) → E(G)) such that for every e ∈ E(H) the equality
hV (β(e)) = β(hE(e)) holds.

A homomorphism from an incidence graph I into another incidence graph J is a pair of
mappings (hV : R(I) → R(J), hE : B(I) → B(J)) such that (hE(e), hV (v)) ∈ E(J) holds for
every edge (e, v) ∈ E(I). This is equivalent to the requirement hV (β(e)) ⊆ β(hE(e)). Thus,
the equality that we require for a hypergraph homomorphism is relaxed to an inclusion for
incidence graphs.

Let A, B and C be two hypergraphs and a class of hypergraphs or two incidence graphs
and a class of incidence graphs. We denote the number of homomorphisms from A to B by
hom(A,B), and we let Hom(C, A) be the ‘vector’ that has a row for every F ∈ C containing
hom(F,A). We say that A and B are homomorphism indistinguishable over C (A ≡C B), if
Hom(C, A) = Hom(C, B), i.e., if hom(F,A) = hom(F,B) for all F ∈ C.

The following crucial theorem relates homomorphism indistinguishability over a class
of hypergraphs to homomorphism indistinguishability over the corresponding class CI of
incidence graphs. As noted in [26], this theorem is implicit in [4], consult Appendix A of the
full version of [26] for details.

▶ Theorem 2.7 ([4, 26]). Let C be a class of hypergraphs and let CI be its corresponding class
of incidence graphs. If C is closed under pumping and local merging, then Hom(C,G) =
Hom(C,H) if, and only if, Hom(CI, IG) = Hom(CI, IH) for all hypergraphs G and H.

C is closed under pumping, if H ′ ∈ C for every H ∈ C, where H ′ is created from H by
inserting a new vertex into one arbitrary hyperedge of H; and closed under local merging, if
H ′ ∈ C for every H ∈ C, where H ′ is created from H by choosing an arbitrary hyperedge e
and then merging two vertices u, v that are both contained in e.

It is easy to see that SHDk is closed under both pumping and local merging, whereas
HDk is only closed under local merging. See Appendix A for details.

▶ Proposition 2.8. Let k ∈ N≥1. The class SHDk is closed under pumping and local merging,
the class HDk is closed under local merging but not under pumping.

The following theorem shows that homomorphism indistinguishability over HDk is not
equal to homomorphism indistinguishability over SHDk. Because SHDk ⊆ HDk, counting
homomorphisms from HDk is more powerful in the sense that it distinguishes more hyper-
graphs. But we also show that it is unequal to homomorphism indistinguishability over IHDk,
which is unexpected. Since this prohibits us from relating HDk to any fragment of GC, it is
conceivable that this could pose a problem in other scenarios too. Thus, we argue that the
notion of strict hypertree depth can be viewed as a reasonable generalisation of tree depth,
especially when we recall that HDk−1 ⊆ SHDk ⊆ HDk.

▶ Theorem 2.9. For every k ∈ N≥1 there exist pairs of hypergraphs (Gk,Hk) and (G′
k,H′

k),
such that:
1. Hom(SHDk,Gk) = Hom(SHDk,Hk), but Hom(HDk,Gk) ̸= Hom(HDk,Hk);
2. Hom(HDk,G′

k) = Hom(HDk,H′
k), but Hom(IHDk, IG′

k
) ̸= Hom(IHDk, IH′

k
).



B. Scheidt 9

•

•

•

•

(a) G1

•

•

•

•

(b) H1

•

••

•

•

•

(c) G′
1

•

••

•

•

•

(d) H′
1

Figure 3 (G1, H1), (G′
1, H′

1) witness Theorem 2.9 for k = 1. Circles denote singleton hyperedges.

For k = 1 this is easy to see: A connected hypergraph has strict hypertree depth 1 iff
it consists of a single hyperedge, whereas a connected hypergraph has hypertree depth 1 if
one hyperedge contains all vertices. It is therefore not hard to see that the statement of the
theorem holds for k = 1 using the hypergraphs depicted in Figure 3. For k ≥ 2 a similar idea
for the construction of (Gk,Hk) and (G′

k,H′
k) works, but we defer the details to Appendix B

as keeping these (rather long) proofs in the main part would distract from the paper’s main
result.

3 k-Labeled Incidence Graphs

Our goal is to give an inductive characterisation of the incidence graphs of strict hypertree
depth at most k (and thus also of hypergraphs of strict hypertree depth at most k). The
concepts presented in this section were first defined in [26], and we adopt their notation
and phrasing for the most part. Note that the k-labeled incidence graphs defined here are
inspired by the concept of k-labeled graphs as they are used in [6, 9, 10, 19] and elsewhere.
In particular, k-labeled graphs are the main tool used by Dvořák [9] to prove his result.
In principle, a k-labeled incidence graph is an incidence graphs that has labels attached to
some of its red and blue vertices. We have an unbounded number of red labels that can be
attached to red vertices (though the number of labels actually used must always be finite),
but we only have k labels that we can attach to blue vertices. We are allowed to attach
multiple labels to the same vertex, but we are not required to use all of them. Every red
label has an assigned ‘guard’, which is a blue vertex with a label on it. In practice, we will
require every red labeled vertex to be a neighbour of its guard (i.e., we want it to have a real
guard, as defined in the next paragraphs), though it makes the proofs easier if we do not
enforce this in the definition itself. This idea is formalised as follows.

A k-labeled incidence graph is a tuple L = (I, r, b, g), where I is an incidence graph,
r : N≥1 ⇀ R(I), b : [k] ⇀ B(I) and g : N≥1 ⇀ [k] are partial mappings such that dom(r) is
finite and dom(g) = dom(r). We use IL, rL, . . . to denote the components of L. But to keep
the indices from getting overly complicated, we may write I ′, r′, . . . and Ii, ri, . . . instead of
IL′ , rL′ and ILi , rLi , . . . , respectively. If it is clear from the context, we may omit the index
altogether and simply write I, r, b, g.

We say that L has real guards (w.r.t. g), if for every i ∈ dom(r) we have g(i) ∈ dom(b)
and (b(g(i)), r(i)) ∈ E(I). A k-labeled incidence graph L is label-free if rL = bL = gL = ∅.
We call I the skeleton of L. Next, we define some operations on k-labeled incidence graphs.
For completeness, mathematically precise definitions can be found in Appendix C.

For any set Xr ⊆ N≥1 of finite size ℓ and any tuple v = (v1, v2, . . . , vℓ) ∈ R(IL)n we write
L[Xr→v] to denote a copy of L where we modified r such that r(ij) = vj for all j along the
enumeration ⟨i1, . . . , iℓ⟩ of Xr, i.e., we introduce, and change the placement of, some red
labels. Similarly, for any Xb = {i1, . . . , iℓ} ⊆ [k] and any e = (e1, e2, . . . , eℓ) ∈ B(IL)ℓ we
write L⟨Xb→e⟩ to denote a copy of L where we modified b accordingly. We write L[Xr→•]



10 On Homomorphism Indistinguishability and Hypertree Depth

(L⟨Xb→•⟩) to denote a copy of L where we removed the red (blue) labels in Xr (Xb). Note,
that we remove just the labels and not the vertices that carry them. Definition C.1 in
Appendix C gives mathematically precise definitions.

Intuitively, the ‘product’ (L1 · L2) or glueing of two k-labeled incidence graphs L1, L2
is the k-labeled incidence graph L that is created by first taking the disjoint union of L1
and L2, followed by repeatedly merging pairs of red (blue) vertices, that carry a shared red
(blue) label. By merging we mean that we replace these vertices by a single fresh vertex,
which inherits their neighbourhoods and labels. We apply this procedure until there are no
more such pairs. The guard function of (L1 · L2) is simply gL1 ∪ gL2 , i.e., in theory, gL1 has
precedence over gL2 . In practice, we will require that gL1 and gL2 are compatible, which
means the precedence of gL1 will be irrelevant. Note that the order in which we merge vertices
does not matter, and that if a vertex carries two or more labels, all vertices carrying any
one of these labels will be replaced by a single fresh vertex that carries all those labels and
inherits all neighbourhoods. Finally, for i ∈ [2] we define mappings succR

Li
: R(ILi

) → R(IL)
and succB

Li
: B(ILi) → B(IL) such that succR

Li
(v) is the red vertex of IL that corresponds to

v ∈ R(Ii), and succB
Li

(e) is the blue vertex of IL that corresponds to e ∈ B(Ii). Definition C.2
in Appendix C gives mathematically precise definitions.

▶ Example 3.1. Consider the k-labeled incidence graphs L1, L2 according to Figures 4a
and 4b. In particular, we have

i 1 2 3 5
r1(i) u w v w

r2(i) u – v w

i 1 2 3
b1(i) f g h

b2(i) f g h

and
i 1 2 3 5

g1(i) 2 1 1 1
g2(i) 2 – 1 1

.

The product (L1 · L2) is depicted in Figure 4c.

So far, we should not be allowed to remove a blue label from a vertex, if it serves as the
guard of a red label. But sometimes we want to transition from one (real) guard assignment
to another (real) guard assignment. I.e., we want to remove blue labels even if they still guard
some red labels, because we guarantee that we introduce new guards for these labels right
away. We formalise this operation as a special partial function, that assigns new guards to
existing red labels: We call f : N≥1 ⇀ [k] a transition for L (for g), if ∅ ̸= dom(f) ⊆ dom(g)
and for all i ∈ dom(g) we have that if g(i) ∈ img(f), then i ∈ dom(f). This means that if f
reassigns the blue label guarding the red label i, then f provides a new guard for i. Applying a
transition, denoted by L[⇝f ], means modifying a copy of L as follows: we want to insert fresh
vertices with these blue labels, thus we must first remove all blue labels, that are currently in
use, i.e., we must first remove the labels in the set Xb := img(f) ∩ dom(bL) ∩ img(gL) from b.
Notice that we have to intersect with dom(bL) since we do not require L to have real guards.
After removing the labels in Xb, we insert |Xb| new blue vertices into IL, each carrying one
of the blue labels in Xb, and introduce an edge between b(f(i)) and r(i) for all i ∈ dom(f).
Finally, we redefine the guard function as f ∪ gL.

Note that this procedure can be easily expressed as the product (Mf · L⟨Xb→•⟩) for
a suitably defined k-labeled incidence graph Mf . Definition C.4 in Appendix C gives a
mathematically precise definition.

▶ Example 3.2. Consider the k-labeled incidence graph from Example 3.1 and Figure 4a.
The partial function f = {1 → 2, 3 → 2} is a transition for L1. The result L1[⇝f ] of the
application of f on L1 is depicted in Figure 4d.

We define the class GLIik of k-labeled incidence graphs that can be constructed in a way
that at most i blue labels are removed ‘in series’.



B. Scheidt 11

v3 w2,5

u1

x
e

f1

g2

h3

t

(a) The 3-labeled incid-
ence graph L1.

v3 w5z

u1

y

f1

g2

h3

(b) The 3-labeled incid-
ence graph L2.

v3 w2,5z

u1

x y
e

f

g2

h3

t

(c) An example of glueing:
(L1 · L2).

v3 w5z

u1

y
e2

f1

g

h3

(d) An example of apply-
ing a transition: L1[⇝f ].

Figure 4 3-labeled incidence graphs and operations on them. Labels are encoded as exponents
and the guard function is encoded using thicker edges between the red vertex and its guard.

▶ Definition 3.3. For k ∈ N≥1 and i ∈ N we define the set GLIik inductively as follows.
Base case: L ∈ GLI0k for all k-labeled incidence graphs L with dom(r) = R(I), dom(b) = B(I)

and real guards.
For all i ∈ N, if L ∈ GLIik, then L ∈ GLIi+1

k .
Glueing Let L1 ∈ GLIi1

k , L2 ∈ GLIi2
k have compatible guard functions and L = (L1 · L2).

Then, L ∈ GLIik where i := max{i1, i2}.
Transitioning Let L ∈ GLIik, let f be a transition for L and L′ = L1[⇝f ].

Then, L′ ∈ GLIi
′

k where i′ := i+ | img(f) ∩ img(bL) ∩ img(gL)|.
Label-Removal Let L ∈ GLIik.

(a) For Xr ⊆ dom(r), L[Xr→•] ∈ GLIik.
(b) For Xb ⊆ dom(b) \ img(g), L⟨Xb→•⟩ ∈ GLIi

′

k where i′ := i+ |Xb|.
Finally, we let GLIk := GLIkk for every k ∈ N. ⌟

4 Characterising Hypergraphs of Strict Hypertree Depth at most k

In this section we prove that the inductively defined class GLIk corresponds precisely to the
class ISHDk.

▶ Theorem 4.1. An incidence graph J has strict hypertree depth at most k if, and only if,
there exists a label-free L ∈ GLIk such that IL

∼= J .

In the following, we first show how to construct an incidence graph of strict hypertree
depth at most k as the skeleton of a label-free k-labeled incidence graph in GLIk (Lemma 4.2).
Then we show that every label-free L ∈ GLIk has strict hypertree depth at most k (Lemma 4.3).
Theorem 4.1 follows directly from the combination of these two Lemmata.

For the rest of this section, let J ∈ ISHDk and let (T,Γ) be a strict elimination forest
of height ≤ k for J . We can w.l.o.g. assume that J is connected and that T is a tree
(Lemma 2.6). Let R(I) = {v1, v2, . . . , vm} where m ≥ 1.

(T,Γ) will help us decide when to remove (i.e., eliminate) which label from which blue
vertex in the following sense. The core idea is to start with a trivial k-labeled incidence graph
for every path from a leaf to the root in the elimination tree. Then we walk bottom-up along
these paths and whenever several paths join in a node, we apply red and blue vertex removals
in a suitable way on their k-labeled incidence graphs, such that afterwards we can glue them
together and receive a k-labeled incidence graph that is isomorphic to the incidence graph
induced by the union of said paths. This idea is illustrated in Example D.1 in Appendix D.



12 On Homomorphism Indistinguishability and Hypertree Depth

For this we need the following notions: for a k-labeled incidence graph L, we say that a
red vertex v ∈ R(IL) is unlabeled, if v ̸∈ img(rL). Analogously, a blue vertex e ∈ B(IL) is
unlabeled, if e ̸∈ img(bL). For a node n in a tree T , the subtree with stem induced by n is the
tree Ṫn induced on T by the set P(n) ∪ {t ∈ V (T ) : n ≤T t}. Recall that P(n) is the set of
nodes on the path from n to the root ω (including n and ω), and notice that the subtree
with stem induced by the root is T , i.e., Tω = T , and for every leaf n it is the path from the
root ω to n. For every node n ∈ V (T ) we define the set labels(n) := {i ∈ [m] : vi ∈ Γ̂(n)}.
To avoid an overload of notation, we will write labels(N) to denote the set

⋃
n∈N labels(n)

and write J [Ṫn] to abbreviate J [Γ̂(V (Ṫn))].

▶ Lemma 4.2. For every n ∈ V (T ) of level d where ⟨t1, . . . , td⟩ is a ≤T -enumeration of P(n)
(i.e., in particular t1 = ω, td = n), there exists an Ln ∈ GLIk−d

k of the form (I, r, b, g) such
that
(A) dom(b) = [d] and dom(r) = labels(P(n));
(B) g(i) := min{j ∈ [d] : vi ∈ Γ̂(tj)} for every i ∈ dom(g);
(C) There exists an isomorphism (πR, πB) between I and J [Ṫn] such that

(i) πR(r(i)) = vi for all i ∈ dom(r), and
(ii) πB(b(j)) = Γ(tj) for all j ∈ dom(b).

Notice that, in particular, this lemma states J ∼= ILω
for the root ω of T . But Lω

is not label-free, since dom(bLω
) = {1} and dom(rLω

) = labels(P(ω)) = labels(ω). But,
the lemma also states that Lω ∈ GLId−1

k , since level(ω) = 1. Thus, J ∼= IL′ for L′ =
Lω[labels(ω)→•]⟨{1}→•⟩, and in particular, L′ ∈ GLIkk is label-free. Thus, this lemma shows
the forward direction of Theorem 4.1.

Proof of Lemma 4.2. We prove this claim by (inverse) induction over the level of the node
n ∈ V (T ).

Base Case. Let n be a leaf, then Ṫn is simply the path from n to the root ω.
We let Ln = (J [Ṫn], r, b, g) where r(i) := vi and g(i) := min{j ∈ [k] : vi ∈ Γ̂(tj)} for all

i ∈ [m] and b(j) := tj for all j ∈ [d]. Ln ∈ GLI0k according to the base case of Definition 3.3,
and thus also Ln ∈ GLIk−d

k and conditions A–C are easily verified.

Inductive Step. Let n ∈ V (T ) be a node of level d that is not a leaf. Let n1, . . . , nℓ be the
children of n with ℓ ≥ 1 and assume that for every i ∈ [ℓ] there exist Li ∈ GLIk−(d+1)

k and
(πi

R, π
i
B) such that conditions A–C are satisfied.

For every child ni let Xi
r := labels(ni)\ labels(P(n)) and let L′

i := Li[Xi
r→•]⟨Xb→•⟩ with

Xb := {d+1}. We let Ln := L′
1 · L′

2 · · · · · L′
ℓ if ℓ ≥ 2, otherwise Ln := L1. We claim that

Ln ∈ GLIdk and that it satisfies conditions A–C.
Let ni be any child of n. Obviously, Li[Xi

r→•] ∈ GLIk−(d+1)
k . Let j ∈ dom(ri) such that

gi(j) = d+1. By induction hypothesis, this means that ni is the minimal node according
to ≤T where vj appears in Γ̂. Thus, j ∈ labels(ni) but j ̸∈ labels(P(n)). Therefore, j ∈ Xi

r.
Thus, d+1 ̸∈ img(gLi[Xi

r→•]). By Definition 3.3 this means that

Li[Xi
r→•]⟨Xb→•⟩ ∈ GLIk−d

k . (1)

By induction hypothesis, we have dom(bi) = [d+1]. Thus, dom(bL′
i
) = [d].

Since P(n) is a subset of P(ni), labels(P(n)) is also a subset of labels(P(ni)), which means
labels(P(n)) ⊆ dom(ri) by induction hypothesis. By definition of Xi

r, labels(P(n)) is also a
subset of dom(rL′

i
). Let j ∈ dom(rL′

i
) be any red label in L′

i. Since j ̸∈ Xi
r, j ̸∈ labels(ni) or

j ∈ labels(P(n)). In both cases, this implies j ∈ labels(P(n)).



B. Scheidt 13

Since all this holds for every child and their guard functions are compatible according to
the induction hypothesis, it is easy to see that Ln ∈ GLIk−d

k and that it satisfies condition A,
whereas condition B follows directly from the induction hypothesis.

It remains to verify condition C for n. For the following, keep in mind that IL′
i

= Ii for
all i ∈ [ℓ], since the operations we applied to create L′

i only changed the functions ri, bi, gi.
For every unlabeled vertex e ∈ B(I) or v ∈ R(I) we know that there is a unique child nie or

niv
of n and a unique e′ ∈ B(Iie

) or v′ ∈ R(Iiv
) such that succB

L′
ie

(e′) = e or succR
L′

iv

(v′) = v

and the other way around.
Let πR and πB be defined by

πB(b(j)) = Γ(tj) for all j ∈ dom(b), πB(e) = πie

B (e′) for all e ̸∈ img(b) and
πR(r(j)) = vj for all j ∈ dom(r), πR(v) = πiv

R (v′) for all v ̸∈ img(r).

Condition C is satisfied if (πR, πB) is indeed an isomorphism. We first show that πR and πB

are bijective. They clearly are total mappings, thus we have to show that they are surjective
and injective. Let vi ∈ R(J [Ṫn]) be a vertex. Then vi ∈ Γ̂(V (Ṫn)).
Case 1 : If vi ∈ R(J [Γ(P(n))]), then by definition, i ∈ labels(P(n)). I.e., πR(r(i)) = vi.
Assume there exists another v′ ∈ R(I) such that r(i) ̸= v′ but πR(v′) = vi. Then there must
be a unique child nj of n such that πR(v′) = πj

R(v′) = vi. Since vi ∈ labels(P(n)), vi is also in
labels(P(nj)). Thus, by induction hypothesis, v′ ∈ img(rj) and rj(i) = v′. Since v′ ̸∈ img(r),
the label must have been removed, i.e., i ∈ Xj

r . This means i ∈ labels(nj) \ labels(P(n)),
which contradicts the assumption that i ∈ labels(P(n)). Thus, v′ can not exist.
Case 2 : Otherwise, vi ∈ R(J [Ṫnj

]) for a unique child nj of n. If there were more than
one child containing vi, this would imply the first case, i.e., vi ∈ R(J [Γ(P(n))]), because
of condition 3 of Definition 2.2. By induction hypothesis, there exists a v′ ∈ R(Ij) such
that πj

R(v′) = vi. Since i ̸∈ labels(P(n)), either v′ ̸∈ img(rj) or i ∈ Xj
r . In both cases,

v′ ̸∈ img(rL′
j
). Thus, for v ∈ R(I) such that succR

L′
j
(v′) = v we get πR(v) = vi. Since

i ̸∈ labels(P(n)), this v is unique. Hence, in total, πR is bijective.
Analogously, it is easy to see that πB is bijective since every e ∈ B(J [Ṫn]) is either in the

stem or in B(J [Ṫni
]) for precisely one child ni of n. It remains to show that (e, v) ∈ E(I) iff

(πB(e), πR(v)) ∈ E(J [Ṫn]).
(e, v) ∈ E(I) holds, iff there is a (not necessarily unique) j ∈ [ℓ] and e′ ∈ B(Ij),

v′ ∈ R(Ij) such that succB
L′

j
(e′) = e, succR

L′
j
(v′) = v and (e′, v′) ∈ E(Ij). By induction

hypothesis, this is the case iff (πj
B(e′), πj

R(v′)) ∈ E(J [Ṫnj ]). It is easy to verify that,
(πj

B(e′), πj
R(v′)) ∈ E(J [Ṫnj

]) if, and only if, (πB(succB
Lj

(e′)), πR(succR
Lj

(v′))) ∈ E(J [Ṫn]).
Thus, (e, v) ∈ E(I) ⇐⇒ (πB(e), πR(v)) ∈ E(J [Ṫn]). ◀

The following lemma can be shown by induction. On a high level, the idea of the proof is
to only modify the elimination forest, if blue labels are removed. At that point, we prepend
a chain of new nodes to the root(s) of the elimination forest. If we take the product of two
k-labeled incidence graphs, we take the union of the forests, and if we remove red labels, we
do not alter the forest at all.

▶ Lemma 4.3. For every L ∈ GLIdk of the form (I, r, b, g) there is a tuple (F,Γ), where F
is a forest of height ≤ d and Γ is a bijective function from V (F ) to B(I) \ img(b) satisfying
condition A. We write Γ̂(t) as a shorthand for β(Γ(t)) and Γ̃(t) as a shorthand for Γ̂(t)\img(r).
(A) For all s, t ∈ V (F ), and all v ∈ Γ̃(s) ∩ Γ̃(t) ̸= ∅ it holds that:

v ∈ β(b(j)) for a j ∈ dom(b) or ∧(s, t) is defined and v ∈
⋃

Γ̃(P(∧(s, t))).



14 On Homomorphism Indistinguishability and Hypertree Depth

Notice that, if L ∈ GLIdk is label-free, this guarantees a strict elimination forest (F,Γ) of
height d for IL. This shows the backward direction of Theorem 4.1.

Proof of Lemma 4.3. We prove this by induction over the definition of GLIdk.
▷ Base Case Let L ∈ GLI0k. It is easy to see that the empty forest together with the empty

map proves the claim for L.

▷ Inductive Step Let L1 ∈ GLId1
k , L2 ∈ GLId2

k . For convenience, let Li = (Ii, ri, bi, gi).
Induction Hypothesis There exist (Fi,Γi) proving the lemma for Li with i ∈ [2]. We assume

for convenience, that F1 and F2 are disjoint.
Induction Claim There exists a tuple (F,Γ) proving the lemma for L = (I, r, b, g) constructed

according to the following cases.
Case Glueing If L = (L1 · L2), we let F be the disjoint union of F1, F2. For all t ∈ V (F1),
let Γ(t) := succB

L1
(Γ1(t)) and for all t ∈ V (F2), let Γ(t) := succB

L2
(Γ2(t)). It is easy to see

that F has height at most d = max{d1, d2} and that Γ is a bijective map from V (F ) to
B(I) \ img(b).

It remains to verify condition A: Let s, t ∈ V (F ), let v ∈ Γ̃(s) ∩ Γ̃(t) and let es = Γ(s)
and et = Γ(t). If v ∈ β(b(j)) for a j ∈ dom(b), there is nothing to show. Thus, assume that
all blue neighbours of v are unlabeled. Since v ̸∈ img(r), either succR

L1
(v′) = v holds for a

v′ ∈ R(I1), or succR
L2

(v′) = v holds for a v′ ∈ R(I2). We assume that the first is true, i.e.,
succR

L1
(v′) = v. The second case can be handled analogously.

All unlabeled blue vertices e ∈ B(I) \ img(b) that are neighbours of v must have come
from L1, because since they are unlabeled, the only way that (e, v) ∈ E(I) can hold is that
(e′, v′) ∈ E(I1) holds for e′ such that succB

L1
(e′) = e. Thus, there exist e′

s, e
′
t ∈ B(I1) such

that succB
L1

(e′
s) = es and succB

L1
(e′

t) = et. By definition of Γ we can infer that Γ1(s) = e′
s

and Γ1(t) = e′
t. I.e., s, t ∈ V (F1) and because of that, according to the induction hypothesis,

∧(s, t) is defined and v′ ∈
⋃

Γ̃1(P(∧(s, t))). Let p ∈ P(∧(s, t)) such that v′ ∈ Γ̃(p). This
means (e′, v′) ∈ E(I1) for e′ = Γ1(p) and thus also (succB

L1
(e′), succR

L1
(v′)) ∈ E(I). Since by

definition, Γ(p) = succB
L1

(e′), we get that v ∈
⋃

Γ̃(P(∧(s, t))).

Case Transitioning If L = L1[⇝f ] where f is a transition for L1, consider the enumeration
⟨j1, j2, . . . , jℓ⟩ of img(f) ∩ img(b1) ∩ img(g1). Let F be the tree constructed from F1, when
we insert a chain t1, . . . , tℓ into F1, connect all roots in ΩF1 with tℓ and let ωF = t1. I.e., let
F = (V (F ), E(F )) with V (F ) := V (F1) ∪̇ {t1, t2, . . . , tℓ}, ωF := t1 and

E(F ) := E(F1) ∪ {{ti, ti+1} : i ∈ [ℓ−1]} ∪ {{ω, tℓ} : ω ∈ ΩF1}.

Let Γ(ti) := succB
L1

(b1(ji)) for all i ∈ [ℓ] and let Γ(t) := succB
L1

(Γ1(t)) for all other t ∈ V (F )
(i.e., for t ∈ V (F1)). It is easy to see that F is a forest of height d = d1 + | img(f) ∩ img(b1) ∩
img(g1)|.
Verifying condition A: Let s, t ∈ V (F ), let v ∈ Γ̃(s) ∩ Γ̃(t). Let v′ ∈ R(I1) such that
succR

L1
(v′) = v. If s = ti for i ∈ [ℓ], then w.l.o.g. ∧(s, t) = s and condition A is trivially

true. The same holds if t = ti for i ∈ [ℓ]. Thus, it remains to consider that s, t ∈ V (F1).
Let e′

s, e′
t be the blue vertices such that Γ1(s) = e′

s and Γ1(t) = e′
t. By construction, they

are both unlabeled. If v ∈ β(b(j)) for a j ∈ dom(b) there is nothing left to show. Thus
assume that this is not the case. Because we assumed that v ∈ Γ̃(s) ∩ Γ̃(t), we know that
(succB

L1
(e′

s), v), (succB
L1

(e′
t), v) ∈ E(I). Hence, (e′

s, v
′), (e′

t, v
′) ∈ E(I1) and according to the

induction hypothesis, ∧(s, t) is defined and v′ ∈
⋃

Γ̃(P(∧(s, t))) unless v′ ∈ β(b1(j)) for a
j ∈ dom(b1). In the first case we get that v ∈

⋃
Γ̃(P(∧(s, t))) by the same reasoning we used



B. Scheidt 15

for glueing. If v′ ∈ b1(j) but v ̸∈ b(j′) for all j′ ∈ dom(b), then j ∈ img(f)∩ img(b1)∩ img(g1).
I.e., v′ ∈ β(b1(ji)) for some i ∈ [ℓ]. But this also means that v ∈ β(Γ(ti)) and since by
construction both s ≤F ti and t ≤F ti, ∧(s, t) is defined and ti ∈ P(∧(s, t)) and thus
v ∈

⋃
Γ̃(P(∧(s, t))).

Case Label-Removal
(a) If L = L1[Xr→•] for a set Xr ⊆ dom(r1), let F = F1 and let Γ(t) = succB

L1
(Γ1(t)) for

all t ∈ V (F ).
Verifying condition A: Let s, t ∈ V (F ), let v ∈ Γ̃(s) ∩ Γ̃(t). Remember that succR

L1
is the

identity in this case. If v ̸∈ img(r1), then it trivially follows from the induction hypothesis,
that condition A still holds for v. If v ∈ img(r1), then there exists an i ∈ Xr such that
r1(i) = v. Thus, v ∈ β(b1(g1(i))), since L1 has real guards. Thus, v ∈ β(b(j)) for j = g1(i)
still holds.

(b) If L = L1⟨Xb→•⟩ for Xb ⊆ dom(b1) \ img(g1), consider the enumeration ⟨j1, j2, . . . , jℓ⟩
of Xb. Let F be the tree constructed from F1, when we insert a chain t1, . . . , tℓ into
F1, connect all roots in ΩF1 with tℓ and let ωF = t1. I.e., let F = (V (F ), E(F )) with
V (F ) := V (F1) ∪̇ {t1, t2, . . . , tℓ}, ωF := t1 and

E(F ) := E(F1) ∪ {{ti, ti+1} : i ∈ [ℓ−1]} ∪ {{ω, tℓ} : ω ∈ ΩF1}.

Let Γ(ti) := succB
L1

(b1(ji)) for all i ∈ [ℓ] and let Γ(t) := succB
L1

(Γ1(t)) for all other t ∈ V (F )
(i.e., for t ∈ V (F1)).
Verifying condition A: If s = ti for i ∈ [ℓ], then w.l.o.g. ∧(s, t) = s and condition A is trivially
true. The same holds if t = ti for i ∈ [ℓ]. Thus, it remains to consider that s, t ∈ V (F1).
Let e′

s, e′
t be the blue vertices such that Γ1(s) = e′

s and Γ1(t) = e′
t. By construction, they

are both unlabeled. If v ∈ β(b(j)) for a j ∈ dom(b) there is nothing left to show. Thus
assume that this is not the case. Because we assumed that v ∈ Γ̃(s) ∩ Γ̃(t), we know that
(succB

L1
(e′

s), v), (succB
L1

(e′
t), v) ∈ E(I). Hence, (e′

s, v
′), (e′

t, v
′) ∈ E(I1) and according to the

induction hypothesis, ∧(s, t) is defined and v′ ∈
⋃

Γ̃(P(∧(s, t))) unless v′ ∈ β(b1(j)) for a
j ∈ dom(b1). In the first case we get that v ∈

⋃
Γ̃(P(∧(s, t))) by the same reasoning we used

for glueing. If v′ ∈ b1(j) but v ̸∈ b(j′) for all j′ ∈ dom(b), then j ∈ Xb. I.e., v′ ∈ β(b1(ji)) for
some i ∈ [ℓ]. But this also means that v ∈ β(Γ(ti)) and since by construction both s ≤F ti
and t ≤F ti, ∧(s, t) is defined and ti ∈ P(∧(s, t)) and thus v ∈

⋃
Γ̃(P(∧(s, t))). ◀

5 The Logic GCk

This section introduces the logic GCk as defined in [26] and its restricted fragment GCk,
consisting of all formulas of guard depth at most k. Let k be a positive natural number, that
is fixed for this section.

Variables GCk uses two different kinds of variables: VARv := {v1, v2, v3 . . . } to address
vertices and VARe := {e1, e2, . . . , ek} to address hyperedges. Notice that the number of
variables for hyperedges is bounded by k, but unbounded for vertices. We say that a tuple
of the form v = (vi1 , . . . , viℓ

) ∈ VARℓ
v or e = (ei1 , . . . , eiℓ

) ∈ VARℓ
e is a v- or e-tuple, if

i1 < i2 < · · · < iℓ. We let vars(v) := {vi1 , . . . , viℓ
} and vars(e) := {ei1 , . . . , eiℓ

} respectively.
We call {i1, . . . , iℓ} the index set of v and e, respectively.

Logical Guards The key idea behind GCk is that on quantification, vertex variables must be
guarded by hyperedge variables. This is formalised by a partial function g : N≥1 ⇀ [k] with
finite domain (similar to the guard function of a k-labeled incidence graph, cf. Section 3) and



16 On Homomorphism Indistinguishability and Hypertree Depth

its corresponding logical guard ∆g :=
∧

i∈dom(g) E(eg(i), vi). For the special partial function
g with empty domain, we let ∆g := ⊤, which is a special formula that always evaluates to
true.

▶ Definition 5.1. The logic GCk is inductively defined along with the free vertex variables,
the free hyperedge variables and the guard depth, as formalised by the functions

freev : GCk → P(VARv) , freee : GCk → P(VARe) , and gd: GCk → N.

Atomic Formulas For all i, i′ ∈ N≥1 and all j, j′ ∈ [k] the following formulas are in GCk:
φ = vi =vi′ with freev(φ) := {vi, vi′} and freee(φ) := ∅;
φ = ej =ej′ with freev(φ) := ∅ and freee(φ) := {ej , ej′};
φ = E(ej , vi) with freev(φ) := {vi} and freee(φ) := {ej}.

In all the above cases, gd(φ) := 0.
Inductive Rules Let χ, ψ be formulas of GCk. The following formulas are in GCk.

φ = ¬χ with freev(φ) := freev(χ) and freee(φ) := freee(χ),
and gd(φ) := gd(χ);

φ = (χ ∧ ψ) with freev(φ) := freev(χ)∪freev(ψ) and freee(φ) := freee(χ)∪freee(ψ),
and gd(φ) := max{ gd(χ), gd(ψ) }.

Note that by the rules defined so far, gd(∆g) = 0 for all logical guards ∆g.
We say that g : N≥1 ⇀ [k] is a guard function for φ if dom(g) = {i : vi ∈ freev(φ)}.
Let n ∈ N≥1, let g be a guard function for ψ and χ = (∆g ∧ ψ). The following
formulas are in GCk for every v-tuple v with vars(v) ⊆ freev(χ) and every e-tuple e with
vars(e) ⊆ freee(χ):

φ = ∃≥nv . χ with freev(φ) := freev(χ) \ vars(v) and freee(φ) := freee(χ),
and gd(φ) := gd(χ);

φ = ∃≥ne . χ with freev(φ) := freev(χ) and freee(φ) := freee(χ) \ vars(e),
and gd(φ) := gd(χ) + | vars(e)|. ⌟

For convenience, we let free(φ) := freev(φ) ∪ freee(φ) for all φ ∈ GCk. Formulas of
GCk are evaluated over a hypergraph H via interpretations I = (IH, νv, νe) that consist of
H’s incidence graph IH and assignments νv : VARv → R(IH) and νe : VARe → B(IH). The
semantics of GCk are as expected and a definition can be found in Section 6 of the full version
of [26], thus we do not give one here. A sentence is a formula φ ∈ GCk that has neither
free vertex, nor free hyperedge variables, i.e., free(φ) = ∅. By GCk

d we denote the fragment
{φ ∈ GCk : gd(φ) ≤ d}, and we let GCk := GCk

k. We write G ≡L H to denote that G and H
satisfy the same sentences in the fragment L ⊆ GCk.

For simplicity, we omit logical guards if they are empty or equal to the formula they are
guarding. I.e., we may abbreviate subformulas of the form (⊤ ∧ φ) or (φ ∧ φ) as φ. We
may also omit parentheses in the usual way. We write ∃=n(x) . (∆ ∧ φ) as shorthand for
∃≥n(x) . (∆ ∧φ)∧¬∃≥n+1(x) . (∆ ∧φ). Clearly, these shorthands change neither the semantics,
nor the free variables, nor the guard depth of a formula.

▶ Example 5.2. The sentence φG := ψ1 ∧ ψ2 ∧ ψ3 describes G from Example 2.1 up to
isomorphism, where

χn :=
∧

1≤i<j≤n ¬vi =vj ∧ ¬∃≥1(vn+1) .
(
E(e, vn+1) ∧

∧
i∈[n] ¬vn+1 = vi

)
,

ψ1 := ∃=4(e) . e=e ,

ψ2 := ∃=1(e) . ∃≥1(v1, v2, v3) .
(∧

i∈[3] E(e, vi) ∧ χ3 ∧
∧

i∈[3] ∃=3(e) . E(e, vi)
)
,

ψ3 := ∃=3(e) . ∃≥1(v1, v2) .
(∧

i∈[2] E(e, vi) ∧ χ2 ∧
∧

i∈[3] ∃=3(e) . E(e, vi)
)
.



B. Scheidt 17

It is easily verified that φG ∈ GC1
2. χn is a helper formula, describing that there are

precisely n vertices v1, . . . , vn in the hyperedge e. ψ1 describes that there are precisely four
hyperedges, ψ2 describes that precisely one hyperedge contains precisely three vertices, each
being contained in precisely 3 hyperedges. Finally, ψ3 describes that there are exactly 3
hyperedges containing precisely 2 vertices, each being contained in precisely 3 hyperedges. It
is not hard to see that, in total, this describes G up to isomorphism.

Scheidt and Schweikardt [26] prove their result only for the following restricted variant of
GCk, called RGCk. They mention in the conclusion, that RGCk and GCk are equivalent and
show in the full version of the paper (Theorem 7.2) how a formula in GCk can be translated
into one in RGCk. We still need RGCk since it is used in the formulation and the proof of
the two core lemmata of [26] that we want to borrow.

▶ Definition 5.3 ([26]). The restriction RGCk is inductively defined as follows:
Atomic Formulas (∆g ∧ φ) is in RGCk for all atomic formulas φ ∈ GCk and all guard

functions for φ, i.e., all g : N≥1 ⇀ [k] with dom(g) = {i : vi ∈ freev(φ)}.
Inductive Rules

For every formula (∆g ∧ φ) ∈ RGCk, the formula (∆g ∧ ¬φ) is also in RGCk.
For i ∈ [2] and formulas (∆gi ∧ ψi) ∈ RGCk, the formula (∆(g1∪g2) ∧ (ψ1 ∧ ψ2)) is in
RGCk, if g1 and g2 are compatible.

Let n ∈ N≥1, (∆g ∧ φ) ∈ RGCk.
For every v-tuple v with vars(v) ⊆ freev(φ) and index set S, the formula (∆g̃ ∧ χ) is
in RGCk, where

χ := ∃≥nv . (∆g ∧ φ) and g̃ is the restriction of g to dom(g) \ S.

For every e-tuple e with vars(e) ⊆ freee(∆g ∧ φ) and index set S, the formula

(∆g̃ ∧ ∃≥ne . (∆g ∧ φ))

is in RGCk, if dom(g̃) = dom(g) and all i ∈ dom(g) satisfy

g̃(i) = g(i) or g̃(i) ∈ S or g̃(i) ̸∈ img(g). (2)

Intuitively, formulas in RGCk always carry the information, which hyperedge variable currently
guards which vertex variable and the logical guards are in a certain sense ‘consistent’ (2)
along the syntax tree. ⌟

A simple inspection of the inductive proof for Theorem 7.2 in the full version of [26] shows
that the guard depth is unaffected by the translation, giving us the following refined result.

▶ Lemma 5.4. For every formula φ ∈ GCk and every guard function g for φ, there exists a
formula (∆g ∧ φg) ∈ RGCk such that
1. (∆g ∧ φ) ≡ (∆g ∧ φg),
2. free(φ) = free(φg), and gd(φ) = gd(φg).

6 Main Result

We are now ready to plug everything together, which yields our main result.

▶ Theorem 6.1. Let G and H be hypergraphs and let k ∈ N≥1.

G ≡GCk
H ⇐⇒ Hom(ISHDk, IG) = Hom(ISHDk, IH)

⇐⇒ Hom(SHDk,G) = Hom(SHDk,H).



18 On Homomorphism Indistinguishability and Hypertree Depth

We use the fact that the proofs for the core Lemmata 8.1 and 8.2 in the work by Scheidt
and Schweikardt [26] actually give us the following refined results. This is easy to see on
inspection of the original proofs (consult Appendix E in the full version of [26]), since there
is a one-to-one correspondence between the blue label i and the hyperedge variable ei in the
proofs for both lemmas: whenever a blue label i is removed, the corresponding variable ei is
quantified and vice-versa.

For a k-labeled incidence graph L of the form (I, r, b, g), we let IL := (I, νv, νe) be defined
by νv(vi) := r(i) for all i ∈ dom(r) and νe(ej) := b(j) for all j ∈ dom(b).

▶ Lemma 6.2 (implicit in [26]). Let L = (I, r, b, g) ∈ GLIik. For every m ∈ N there
is a formula φL,m with (∆g ∧ φL,m) ∈ RGCk, freev(∆g ∧ φL,m) = {vi : i ∈ dom(r)},
freee(∆g ∧ φL,m) = {ej : j ∈ dom(b)}, and gd(φL,m) ≤ i, such that for every k-labeled
incidence graph L′ with dom(bL′) ⊇ dom(b), dom(rL′) ⊇ dom(r), and with real guards w.r.t.
g we have: IL′ |= ∆g, and hom(L,L′) = m ⇐⇒ IL′ |= φL,m.

▶ Lemma 6.3 (implicit in [26]). Let χ := (∆g ∧ ψ) ∈ RGCk with gd(χ) = ℓ and let m, d ∈ N
with m ≥ 1. There exists a linear combination Q :=

∑
i∈[q] αiLi, and sets drQ = {i : vi ∈

freev(χ)} and dbQ = {i : ei ∈ freee(χ)}, where for all i ∈ [q]:

αi ∈ R, Li ∈ GLIℓk, gi = g, dom(bi) = dbQ, and dom(ri) = drQ;

such that for all k-labeled incidence graphs L′ with |B(I ′)| = m, max{|β(e)| : e ∈ B(I ′)} ≤ d

and dom(b′) ⊇ dbQ, dom(r′) ⊇ drQ, g′ ⊇ g, and with real guards w.r.t. g we have: IL′ |= ∆g,
and

∑
i∈[q]

αi · hom(Li, L
′) =

{
1, if IL′ |= χ

0, if IL′ ̸|= χ.

The proof of Theorem 6.1 works the same way as the one for Theorem 6.1 in [26, Section
8]: the second biimplication is provided by Theorem 2.7 and Proposition 2.8. The first
biimplication is shown via contraposition, where the contraposition of the forward direction
uses Lemma 6.2 and the one for the backward direction uses Lemma 6.3.

Proof of Theorem 6.1. Let I = IG and J = IH. If |B(I)| ≠ |B(J)| then hom(I ′, I) ̸=
hom(I ′, J) for the incidence graph I ′ ∈ ISHD1 that consists of a single blue vertex and no
red vertices. Similarly, I and J are distinguished by a suitable GC1-sentence of the form
∃≥ne . (e=e). If |B(I)| = |B(J)|, consider their corresponding label-free k-labeled incidence
graphs LI = (I,∅,∅,∅) and LJ = (J,∅,∅,∅).

Assume there is an I ′ ∈ ISHDk such that hom(I ′, I) = m1 ̸= m2 = hom(I ′, J). According
to Theorem 4.1, there is a label-free L ∈ GLIk such that I ′ ∼= IL, which means hom(L,LI) =
m1 ̸= m2 = hom(L,LJ). By Lemma 6.2 there exists a formula (⊤ ∧ φL,m1) ∈ RGCk with
gd(φL,m1) ≤ k such that ILI

|= (⊤ ∧ φL,m1) and ILJ
̸|= (⊤ ∧ φL,m1). Hence, ILI

|= φL,m1

and ILJ
̸|= φL,m1 , and since φL,m1 ∈ GCk, G ̸≡GCk

H.
Assume there is a sentence φ ∈ GLIk with gd(φ) = k such that ILI

|= φ and ILJ
̸|= φ. By

Lemma 5.4 there exists a formula (⊤ ∧ ψ) ∈ RGCk with gd(ψ) = k such that ILI
|= (⊤ ∧ ψ)

and ILJ
̸|= (⊤ ∧ ψ). Let m := |B(I)| = |B(J)| be the number of hyperedges and let n ∈ N

such that |β(e)| ≤ n for all e ∈ B(I) and all e ∈ B(J). According to Lemma 6.3 there
exists a linear combination Q =

∑
i∈[q] αiLi such that

∑
i∈[q] αi · hom(Li, LI) = 1 and∑

i∈[q] αi · hom(Li, LJ ) = 0 and Li ∈ GLIkk for all i ∈ [q]. This means there must be an i ∈ [q]
such that αi · hom(Li, LI) ̸= αi · hom(Li, LJ), which means hom(Li, LI) ̸= hom(Li, LJ).



B. Scheidt 19

Since drQ = dbQ = ∅, Li is label-free. According to Theorem 4.1, there exists an I ′ ∈ ISHDk

such that I ′ ∼= ILi
. Thus, hom(I ′, I) ̸= hom(I ′, J), i.e., Hom(ISHDk, I) ̸= Hom(ISHDk, J).

This finishes the proof for the first ‘iff’. The second is provided by the combination of
Theorem 2.7 and Proposition 2.8. ◀

7 Final Remarks

This paper solves one of the open questions of Scheidt and Schweikardt [26], who lift
a result by Dvořák [9] from graphs to hypergraphs. Dvořák shows that homomorphism
indistinguishability over the graphs of tree width at most k is equivalent to indistinguishability
over first-order logic with counting quantifiers (C) and k+1 variables (Ck+1). Scheidt
and Schweikardt show that homomorphism indistinguishability over the class GHWk of
hypergraphs of generalised hypertree width at most k is equivalent to indistinguishability
over the logic GC with k guards (GCk). Grohe [11] gave a result complementing Dvořák’s:
C with quantifier depth at most m (Cm) matches homomorphism indistinguishability over
graphs of tree depth at most m. An obvious expectation was that the distinguishing power
of GCm would match homomorphism indistinguishability over the class HDm of hypergraphs
of hypertree depth at most m as it is defined by Adler et al. [1]. However, this expectation
did not manifest in this exact way. Instead, we proved that the distinguishing power of GCm

matches homomorphism indistinguishability over hypergraphs of strict hypertree depth at
most m, which is a (mild) restriction of hypertree depth. Combining Theorem 6.1 with the
main result of [26] yields the following combined result.

▶ Theorem 7.1. For all hypergraphs G and H, the following equivalences hold:

G ≡GCk
H ⇐⇒ G ≡SHDk

H ⇐⇒ IG ≡ISHDk
IH and

G ≡GCk H ⇐⇒ G ≡GHWk
H ⇐⇒ IG ≡IGHWk

IH.

We took this unexpected mismatch between GCk and HDk as an opportunity to investigate
the relationship between HDk and SHDk. In Theorem 2.5 we showed that the strict hypertree
depth of a hypergraph is at most 1 larger than its hypertree depth.

▶ Theorem 2.5. For all hypergraphs H, hd(H) ≤ shd(H) ≤ hd(H)+1.

To show that homomorphism counts from the class SHDk are just as expressive as
homomorphism counts from the class ISHDk, which was necessary to prove Theorem 6.1,
we used an implicit result by Böker [4], who gives a sufficient set of properties for a class
C of hypergraphs, such that homomorphism indistinguishability over C is the same as
homomorphism indistinguishability over the corresponding class CI of incidence graphs. Since
HDk does not have these properties, Böker’s result cannot be applied with respect to HDk

and IHDk. In fact, we showed in Theorem 2.9 that homomorphism indistinguishability over
HDk is not the same as homomorphism indistinguishability over IHDk and furthermore, that
it is also not the same as homomorphism indistinguishability over SHDk.

▶ Theorem 2.9. For every k ∈ N≥1 there exist pairs of hypergraphs (Gk,Hk) and (G′
k,H′

k),
such that:
1. Hom(SHDk,Gk) = Hom(SHDk,Hk), but Hom(HDk,Gk) ̸= Hom(HDk,Hk);
2. Hom(HDk,G′

k) = Hom(HDk,H′
k), but Hom(IHDk, IG′

k
) ̸= Hom(IHDk, IH′

k
).



20 On Homomorphism Indistinguishability and Hypertree Depth

Further Research It would be very interesting to see if the result by Böker (Theorem 2.7)
is tight in the sense that closure under pumping and local merging are sufficient and required
properties. I.e., whether for every class C that misses one of these properties, homomorphism
counts over C differ from homomorphism counts over the corresponding class CI of incidence
graphs in their distinguishing power.

As mentioned in the introduction, this work can be seen as one more step in the search
of a ‘proper’ lifting of the k-dimensional Weisfeiler-Leman algorithm to hypergraphs. Given
the relationship between Weisfeiler-Leman, C and homomorphism indistinguishability on
graphs [5, 7, 8, 9, 10, 11], we believe that the proper lifting should admit a similar relationship
to the corresponding hypergraph parameters. Hence, we believe that the distinguishing power
of such an algorithm should match homomorphism indistinguishability over the class GHWk

of hypergraphs of generalised hypertree width at most k and thus also indistinguishability
by the logic GCk. Since we believe that GCk is the natural lifting of Ck in this setting, this
paper adds to this picture: The k-dimensional Weisfeiler-Leman algorithm restricted to
m iterations should have the same distinguishing power as the intersection of the classes
GHWk ∩ SHDm. Hence, the mismatch we uncovered in this work might propagate to the
Weisfeiler-Leman algorithm.

References
1 Isolde Adler, Tomáš Gavenčiak, and Tereza Klimošová. Hypertree-depth and minors in

hypergraphs. Theoretical Computer Science, 463:84–95, 2012. doi:10.1016/j.tcs.2012.09.
007.

2 Jan Böker, Yijia Chen, Martin Grohe, and Gaurav Rattan. The Complexity of Homomorphism
Indistinguishability. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen, editors,
44th International Symposium on Mathematical Foundations of Computer Science (MFCS
2019), volume 138 of Leibniz International Proceedings in Informatics (LIPIcs), pages 54:1–
54:13, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.MFCS.2019.54.

3 Silvia Butti and Víctor Dalmau. Fractional Homomorphism, Weisfeiler-Leman Invariance,
and the Sherali-Adams Hierarchy for the Constraint Satisfaction Problem. In Filippo Bonchi
and Simon J. Puglisi, editors, 46th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2021), volume 202 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 27:1–27:19, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.MFCS.2021.27.

4 Jan Böker. Color Refinement, Homomorphisms, and Hypergraphs. In Ignas Sau and Di-
mitrios M. Thilikos, editors, Graph-Theoretic Concepts in Computer Science, volume 11789 of
Lecture Notes in Computer Science, pages 338–350. Springer, Cham, 2019.

5 Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identification. Combinatorica, 12(4):389–410, December 1992. doi:
10.1007/BF01305232.

6 Bruno Courcelle. Graph Grammars, Monadic Second-Order Logic And The Theory Of Graph
Minors. In Neil Robertson and Paul Seymour, editors, Graph Structure Theory, number 147
in Contemporary Mathematics. American Mathematical Society, 1993.

7 Anuj Dawar, Tomáš Jakl, and Luca Reggio. Lovász-Type Theorems and Game Comonads. In
2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13,
June 2021. doi:10.1109/LICS52264.2021.9470609.

8 Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász meets Weisfeiler and Leman. In 45th
International Colloquium on Automata, Languages, and Programming, ICALP 2018, July
9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 40:1–40:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.40.

https://doi.org/10.1016/j.tcs.2012.09.007
https://doi.org/10.1016/j.tcs.2012.09.007
https://doi.org/10.4230/LIPIcs.MFCS.2019.54
https://doi.org/10.4230/LIPIcs.MFCS.2019.54
https://doi.org/10.4230/LIPIcs.MFCS.2021.27
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/BF01305232
https://doi.org/10.1109/LICS52264.2021.9470609
https://doi.org/10.4230/LIPIcs.ICALP.2018.40


B. Scheidt 21

9 Zdeněk Dvořák. On recognizing graphs by numbers of homomorphisms. Journal of Graph
Theory, 64(4):330–342, 2010. doi:10.1002/jgt.20461.

10 Eva Fluck, Tim Seppelt, and Gian Luca Spitzer. Going Deep and Going Wide: Counting Logic
and Homomorphism Indistinguishability over Graphs of Bounded Treedepth and Treewidth. In
Aniello Murano and Alexandra Silva, editors, 32nd EACSL Annual Conference on Computer
Science Logic (CSL 2024), volume 288 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 27:1–27:17, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.CSL.2024.27.

11 Martin Grohe. Counting Bounded Tree Depth Homomorphisms. In Proceedings of the 35th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’20, pages 507–520, New
York, NY, USA, July 2020. Association for Computing Machinery. doi:10.1145/3373718.
3394739.

12 Martin Grohe. Word2vec, Node2vec, Graph2vec, X2vec: Towards a Theory of Vector
Embeddings of Structured Data. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS’20, pages 1–16. ACM, 2020. doi:
10.1145/3375395.3387641.

13 Martin Grohe. The Logic of Graph Neural Networks. In 2021 36th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 1–17, June 2021. doi:10.1109/
LICS52264.2021.9470677.

14 Martin Grohe, Kristian Kersting, Martin Mladenov, and Erkal Selman. Dimension Reduction
via Colour Refinement. In Andreas S. Schulz and Dorothea Wagner, editors, Algorithms - ESA
2014, Lecture Notes in Computer Science, pages 505–516, Berlin, Heidelberg, 2014. Springer.
doi:10.1007/978-3-662-44777-2_42.

15 Martin Grohe, Gaurav Rattan, and Tim Seppelt. Homomorphism Tensors and Linear Equations.
In Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International
Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 70:1–70:20, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2022.70.

16 Neil Immerman and Eric Lander. Describing Graphs: A First-Order Approach to Graph
Canonization. In Alan L. Selman, editor, Complexity Theory Retrospective: In Honor of Juris
Hartmanis on the Occasion of His Sixtieth Birthday, July 5, 1988, pages 59–81. Springer, New
York, NY, 1990. doi:10.1007/978-1-4612-4478-3_5.

17 Sandra Kiefer. The Weisfeiler-Leman Algorithm: An Exploration of Its Power. ACM SIGLOG
News, 7(3):5–27, November 2020. doi:10.1145/3436980.3436982.

18 László Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum
Hungaricae, 18(3):321–328, 1967.

19 László Lovász and Balázs Szegedy. Contractors and connectors of graph algebras. Journal of
Graph Theory, 60(1):11–30, 2009. doi:10.1002/jgt.20343.

20 Laura Mančinska and David E. Roberson. Quantum isomorphism is equivalent to equality
of homomorphism counts from planar graphs. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 661–672, November 2020. doi:10.1109/
FOCS46700.2020.00067.

21 Yoàv Montacute and Nihil Shah. The Pebble-Relation Comonad in Finite Model Theory. In
Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’22, pages 1–11, New York, NY, USA, August 2022. Association for Computing Machinery.
doi:10.1145/3531130.3533335.

22 Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph
Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):4602–
4609, July 2019. doi:10.1609/aaai.v33i01.33014602.

23 Daniel Neuen. Homomorphism-Distinguishing Closedness for Graphs of Bounded Tree-Width,
July 2023. arXiv:2304.07011, doi:10.48550/arXiv.2304.07011.

https://doi.org/10.1002/jgt.20461
https://doi.org/10.4230/LIPIcs.CSL.2024.27
https://doi.org/10.1145/3373718.3394739
https://doi.org/10.1145/3373718.3394739
https://doi.org/10.1145/3375395.3387641
https://doi.org/10.1145/3375395.3387641
https://doi.org/10.1109/LICS52264.2021.9470677
https://doi.org/10.1109/LICS52264.2021.9470677
https://doi.org/10.1007/978-3-662-44777-2_42
https://doi.org/10.4230/LIPIcs.ICALP.2022.70
https://doi.org/10.1007/978-1-4612-4478-3_5
https://doi.org/10.1145/3436980.3436982
https://doi.org/10.1002/jgt.20343
https://doi.org/10.1109/FOCS46700.2020.00067
https://doi.org/10.1109/FOCS46700.2020.00067
https://doi.org/10.1145/3531130.3533335
https://doi.org/10.1609/aaai.v33i01.33014602
https://arxiv.org/abs/2304.07011
https://doi.org/10.48550/arXiv.2304.07011


22 On Homomorphism Indistinguishability and Hypertree Depth

24 Gaurav Rattan and Tim Seppelt. Weisfeiler-Leman and Graph Spectra. In Proceedings of the
2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Proceedings, pages
2268–2285. Society for Industrial and Applied Mathematics, January 2023. doi:10.1137/1.
9781611977554.ch87.

25 David E. Roberson. Oddomorphisms and homomorphism indistinguishability over graphs of
bounded degree, June 2022. arXiv:2206.10321, doi:10.48550/arXiv.2206.10321.

26 Benjamin Scheidt and Nicole Schweikardt. Counting Homomorphisms from Hypergraphs
of Bounded Generalised Hypertree Width: A Logical Characterisation. In Jérôme Leroux,
Sylvain Lombardy, and David Peleg, editors, 48th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2023), volume 272 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 79:1–79:15, Dagstuhl, Germany, 2023. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. Full version available at arXiv: arXiv:2303.10980 [cs.LO].
doi:10.4230/LIPIcs.MFCS.2023.79.

27 Tim Seppelt. Logical Equivalences, Homomorphism Indistinguishability, and Forbidden Minors.
In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2023), volume 272 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 82:1–82:15, Dagstuhl, Germany, 2023.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2023.82.

28 Nino Shervashidze. Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning Research,
12(77):2539–2561, 2011. URL: http://jmlr.org/papers/v12/shervashidze11a.html.

29 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In International Conference on Learning Representations, September 2018. URL:
https://openreview.net/forum?id=ryGs6iA5Km.

https://doi.org/10.1137/1.9781611977554.ch87
https://doi.org/10.1137/1.9781611977554.ch87
https://arxiv.org/abs/2206.10321
https://doi.org/10.48550/arXiv.2206.10321
https://arxiv.org/abs/2303.10980
https://doi.org/10.4230/LIPIcs.MFCS.2023.79
https://doi.org/10.4230/LIPIcs.MFCS.2023.82
http://jmlr.org/papers/v12/shervashidze11a.html
https://openreview.net/forum?id=ryGs6iA5Km


B. Scheidt 23

A Proof of Proposition 2.8

Closure under Pumping It is easy to see that a bijective elimination forest stays a bijective
elimination forest, when we add a fresh vertex to the neighbourhood of a single blue vertex,
since there already exists a node in the forest that maps to this blue vertex. Obviously
conditions 1 and 2 remain satisfied when the vertex is added. And since it is only contained
in this single edge, condition 3 remains satisfied as well.

On the other hand, if the elimination forest (F,Γ) is not bijective, problems arise when a
fresh vertex is added to a hyperedge e ̸∈ img(Γ), i.e., one that Γ does not map to. In this
case, condition 1 and condition 2 are no longer satisfied. To fix this, we have to map to e
and this may mean inserting a new node into F , which might increase its height. A simple
example where this happens is when we add a vertex to one of the singleton hyperedges of
Gk from Theorem 2.9.

Closure under Local Merging Let I be an incidence graph and let (F,Γ) be an elimination
forest for I. Let u, v ∈ R(I) be distinct vertices and let e ∈ B(I) such that u, v ∈ β(e). Let
π : R(I) → R(I) be defined by π(u) = v and π(w) = w for all w ∈ R(I) \ {u}. Let I ′ be the
projection of I that is defined as follows:

R(I ′) = π(R(I)), B(I ′) = B(I), and E(I ′) = {(e, π(v)) : (e, v) ∈ E(I)}.

Now we simply have to verify that (F,Γ) is still an elimination forest for I ′. In particular,
if (F,Γ) is a strict elimination forest, it will remain strict, since Γ is still bijective. To avoid
confusion, we write β′(e) to denote the set {v ∈ R(I ′) : (e, v) ∈ E(I ′)} and Γ̂′(t) to denote
the set β′(Γ(t)). We have to show that conditions 1–3 still hold with respect to β′ and Γ̂′.
Verifying condition 1. Since R(I ′) ⊆ R(I) we know that for every w ∈ R(I ′) there is a
t ∈ V (F ) such that w ∈ β(Γ(t)). Since by construction π(w) = w for all w ∈ R(I ′), we get
that (e, w) ∈ E(I) implies (e, w) ∈ E(I ′). Therefore, w ∈ β′(Γ(t)), i.e., w ∈ Γ̂′(t).
Verifying condition 2. Notice that B(I ′) = B(I). Let e ∈ B(I ′), let s, t ∈ V (F ) be the nodes
in V (F ) for e according to condition 2 with respect to I. Let w′ ∈ β′(e). Then there exists a
w ∈ R(I) such that (e, π(w)) ∈ E(I) and π(w) = w′. Since β(e) ⊆

⋃
Γ̂(P(s, t)), there exists

a p ∈ P(s, t) such that w ∈ Γ̂(p), i.e., (Γ(p), w) ∈ E(I). This implies by construction, that
(Γ(p), π(w)) ∈ E(I ′), i.e., (Γ(p), w′) ∈ E(I ′). Thus, w′ ∈ Γ̂′(p), i.e., w′ ∈ Γ̂′(P(s, t)). Since
we chose an arbitrary w′ ∈ β′(e), this yields β′(e) ⊆

⋃
Γ̂′(P(s, t)).

Verifying condition 3. Again, notice that B(I ′) = B(I). Let s, t ∈ V (F ) and let w′ ∈
Γ̂′(s) ∩ Γ̂′(t).

Case 1 : Assume there exists a w ∈ R(I) such that π(w) = w′, and (Γ(s), w), (Γ(t), w) ∈
E(I). Thus, w ∈ Γ̂(s) ∩ Γ̂(t). Since (F,Γ) is an elimination forest for I, according to
condition 3 the node ∧(s, t) exists and w ∈

⋃
Γ̂(P(∧(s, t))). I.e., there is a p ∈ P(∧(s, t))

such that w ∈ Γ̂(p), i.e., (Γ(p), w) ∈ E(I). Hence, by construction, (Γ(p), w′) ∈ E(I ′), i.e.,
w′ ∈ Γ̂′(p), which means w′ ∈

⋃
Γ̂′(P(∧(s, t))).

Case 2 : Otherwise, π(u) = w and π(v) = w, and w = v must hold. W.l.o.g. let
(Γ(s), u) ∈ E(I) and (Γ(t), v) ∈ E(I). Since u and v appear in a common hyperedge e ∈ B(I),
there are s′, t′ ∈ V (F ) such that u, v ∈

⋃
Γ̂(P(s′, t′)). I.e., there are pu, pv ∈ P(s′, t′) such

that u ∈ Γ̂(pu) and v ∈ Γ̂(pv). Thus, u ∈ Γ̂(pu) ∩ Γ̂(s) and v ∈ Γ̂(t) ∩ Γ̂(pv). This means
that u ∈

⋃
Γ̂(P(∧(s, pu))) and v ∈

⋃
Γ̂(P(∧(t, pv))). Since pu, pv ∈ P(s′, t′), either pu ≤F pv

or pv ≤F pu, and because of that also ∧(s, pu) ≤F ∧(t, pv) or ∧(t, pv) ≤F ∧(s, pu). Since F
is a forest, this means that ∧(s, t) exists and ∧(s, t) ≥F ∧(∧(s, pu)) or ∧(s, t) ≥F ∧(t, pv).
Therefore, u ∈

⋃
Γ̂(P(∧(s, t))) or v ∈

⋃
Γ̂(P(∧(s, t))), i.e., w′ ∈

⋃
Γ̂′(P(∧(s, t))).



24 On Homomorphism Indistinguishability and Hypertree Depth

B Proof of Theorem 2.9

▶ Observation B.1. Let H, G be graphs and let (hV , hE) be a homomorphism from H into
G. If H is connected, then the homomorphic image of H in G is also connected.

For every hypergraph H and e ∈ E(H), let H \ e be the hypergraph H′ with V (H′) =
V (H) \ βH(e), E(H′) = E(H) \ {e} and let βH′ be the corresponding restriction of βH.

▶ Lemma B.2. A connected hypergraph H ∈ SHDk cannot have a homomorphism (hV , hE)
into Pn for any n ≥ 2k, such that hV and hE are surjective.

Proof. Clearly this holds for k = 1 since all connected H ∈ SHD1 consist of a single hyperedge,
which cannot be mapped to two hyperedges.

Assume there is a k ≥ 2 for which the statement of the lemma does not hold. Consider
the smallest k, for which there is a connected hypergraph H ∈ SHDk and a homomorphism
(hV , hE) from H into Pn for n ≥ 2k. Let (T,Γ) be a strict elimination tree for H and let ω
be the root of T . Let H′ := H \ Γ(ω). Then the restriction (h′

V , h
′
E) of (hV , hE) to V (H′)

and E(H′) is still a homomorphism from H′ into Pn, but h′
V or h′

E (or both) may no longer
be surjective and shd(H′) = k − 1.

If H′ is not connected, consider the connected components C1, . . . , Cℓ of H′. The
restriction (hi

V , h
i
E) of (h′

V , h
′
E) to Ci is a homomorphism from Ci to Pn and according to

Observation B.1 it is connected, but since k is minimal, it covers a path of at most 2k−1 − 1
hyperedges. And since H was connected, these paths must all touch hE(Γ(ω)). Thus, the
number of hyperedges H covered could have been at most 1 + 2 · (2k−1 − 1) = 2k − 1, which
contradicts our assumption. Therefore, H′ must still be connected.

If h′
V and h′

E are surjective, k was not minimal, i.e., h′
V or h′

E must no longer be
surjective. Since H′ is still connected, the homomorphic image must be as well. Thus,
hE(Γ(ω)) must be the first or the last edge. I.e., H′ has a surjective homomorphism to Pn−1.
Since shd(H′) = k− 1 and n ≥ 2k and k was minimal, this means that n− 1 < 2k−1. This is
the case, iff n = 1 and k = 0, which contradicts k ≥ 2. ◀

Notice that this lemma only holds for SHDk. If we do not require (T,Γ) to be strict, the
proof fails since we can not be sure that the hypertree depth of H′ is smaller than that of H.
But since HDk ⊆ SHDk+1, we get the following corollary.

▶ Corollary B.3. A connected hypergraph H ∈ HDk cannot have a homomorphism (hV , hE)
into Pn for any n ≥ 2k+1, such that hV and hE are surjective.

For the proof of Theorem 2.9, we need to tighten this result a bit further.

▶ Lemma B.4. A connected hypergraph H ∈ HDk cannot have a homomorphism (hV , hE)
into Pn for any n ≥ 2k+1 − 2, such that hV and hE are surjective.

Proof. Assume for contradiction, that H ∈ HDk has a homomorphism (hV , hE) into Pn

for n ≥ 2k+1 − 2, such that hV and hE are surjective. Let E(Pn) = {e1, . . . , en} and
V (Pn) = {v1, . . . , vn+1}.

Let (T,Γ) be an elimination forest for H of height k. There are e, e′ ∈ E(H) and
v ∈ β(e), v′ ∈ β(e′) such that hE(e) = e1, hE(e′) = en, and hV (v) = v1, hV (v′) = vn+1.
Consider the hypergraph H′ with V (H′) = V (H) ∪̇ {u,w}, E(H′) = E(H) ∪̇ {f, g} and
βH′ = βH ∪ {f → {v, u}, g → {v′, w}}. It is easy to see that (T,Γ) can be turned into a
strict elimination tree for H′ of height k+1: First we apply the method presented in the
proof of Theorem 2.5. Then we insert two new nodes that map to f and g. It is not hard



B. Scheidt 25

to see that we can add these new nodes as children of inner nodes, which means the height
does not increase any further.

It is also not hard to see that (h′
V , h

′
E) is a homomorphism from H′ to Pn+2, where

(h′
V , h

′
E) are defined in the following way:

Let h′
V (u) = v1, h′

V (w) = vn+3 and for all v ∈ V (H), let h′
V (v) = vi+1, where i ∈ [n+1]

such that hV (v) = vi.
Let h′

E(f) = e1, h′
E(g) = en+2 and for all e ∈ E(H), let h′

E(e) = ei+1, where i ∈ [n] such
that hE(e) = ei.

This contradicts Lemma B.2. ◀

▶ Observation B.5. Inserting a hyperedge into H, whose contents are a subset of an already
existing hyperedge does not increase the hypertree depth.

▶ Observation B.6 (due to [1]). For all n ∈ N≥1, hd(Pn) = ⌊log(n+ 2)⌋.

▶ Theorem 2.9. For every k ∈ N≥1 there exist pairs of hypergraphs (Gk,Hk) and (G′
k,H′

k),
such that:
1. Hom(SHDk,Gk) = Hom(SHDk,Hk), but Hom(HDk,Gk) ̸= Hom(HDk,Hk);
2. Hom(HDk,G′

k) = Hom(HDk,H′
k), but Hom(IHDk, IG′

k
) ̸= Hom(IHDk, IH′

k
).

Proof. 1. For all k ≥ 2 let Gk and Hk be the hypergraphs with

V (Gk) = V (Hk) = V (P2k+1+1) = {u1, u2, . . . } ,
E(Gk) = E(Hk) = E(P2k+1+1) ∪̇ {e, f, g} , and
βGk

= {e → {u2k+1+2, u1}, f → {u1}, g → {u2k+1}} ∪ βP2k+1+1
,

βHk
= {e → {u2k+1+2, u1}, f → {u1}, g → {u2k+2}} ∪ βP2k+1+1

.

I.e., Gk and Hk both are circles of 2k+1 + 2 edges, with two additional singleton hyperedges.
The difference is in the distance between those: There are 2k hyperedges between them in
Gk, but 2k + 1 in Hk.

Gk and Hk are distinguished by P ′ with V (P ′) = V (P2k ) = {v1, v2, . . . }, E(P ′) =
E(P ′) ∪̇ {f ′, g′} and βP′ = {f ′ → v1, g

′ → v2k+1} ∪ βP2k
. Using Observations B.5 and B.6

we know that hd(P ′) = ⌊log(2k + 2)⌋ and since k ≥ 2, hd(P ′) = k. Thus, Gk and Hk are
homomorphism distinguishable over HDk.

To show that they are indistinguishable over SHDk we use Lemma B.2. Let H ∈ SHDk.
We may assume that H is connected. According to Observation B.1 and Lemma B.2 we know
that for every homomorphism (hV , hE) from H to Gk, either f ̸∈ img(hE) or g ̸∈ img(hE).
The same holds for the homomorphisms from H to Hk. It is easy to see that this means we
can give a bijective mapping between the homomorphisms into Gk and those into Hk. I.e.,
hom(H,Gk) = hom(H,Hk).

2. We use a similar construction and Lemma B.4. For all k ≥ 2 let G′
k and H′

k be the
hypergraphs with

V (G′
k) = V (H′

k) = V (P2k+2+1) ∪̇ {v, w} = {u1, u2, . . . } ∪̇ {v, w} ,
E(G′

k) = E(H′
k) = E(P2k+2+1) ∪̇ {e, f, g} , and

βGk
= {e → {u2k+2+2, u1}, f → {u1, v}, g → {u2k+1−2, w}} ∪ βP2k+1+1

,

βHk
= {e → {u2k+2+2, u1}, f → {u1, v}, g → {u2k+1−1, w}} ∪ βP2k+1+1

.



26 On Homomorphism Indistinguishability and Hypertree Depth

I.e., Gk and Hk both are circles of 2k+2 + 2 edges, with two additional hyperedges ‘sticking
out as handles’. Again, the only difference is in the distance between those handles: There
are 2k+1 − 3 hyperedges between them in Gk and 2k+1 − 2 in Hk.

With the same argument as before one can see that Hom(HDk,Gk) = Hom(HDk,Gk),
because this time the handles are not included in the outer edges of the path, rather they
are the outer edges of the path. Thus, the path a homomorphism would have to map to, to
distinguish Gk and Hk contains 2k+1 − 3 + 2 = 2k+1 − 1 edges.

Consider P ′ with V (P ′) = V (P2k+1−3) = {v1, v2, . . . }, E(P ′) = E(P2k+1−3) ∪̇ {f ′, g′}
and βP′ = {f ′ → v1, g

′ → v2k−1} ∪ βP2k+1−3
. Obviously, hd(P ′) = ⌊log(2k+1 − 3 + 2)⌋ = k

and P ′ is ‘too short’ to distinguish Gk and Hk. But we can map the singleton hyperedges f ′

and g′ of P ′ onto the handles if we consider homomorphisms from IP′ . Thus, hom(IP′ ,Gk) ̸=
hom(IP′ ,Hk). ◀

C Missing Definitions in Section 3

The following is taken almost verbatim from the full version of [26] to assure that we are
using the same definitions as them, so that we can also use their proofs.

▶ Definition C.1. Let L = (I, r, b, g) be a k-labeled incidence graph. Let Xr ⊆ N≥1 be finite,
and let Xb ⊆ [k].

Removing from the red vertices all the labels in Xr is achieved by the operation
L[Xr→•] := (I, r′, b, g′) where r′ is the restriction of r to dom(r) \ Xr and g′ is the
restriction of g to dom(g) \Xr.
Removing from the blue vertices all the labels in Xb is achieved by the operation
L⟨Xb→•⟩ := (I, r, b′, g) where b′ is the restriction of b to dom(b) \Xb.
Let ⟨i1, . . . , iℓ⟩ be the enumeration of Xr. For every v = (v1, . . . , vℓ) ∈ R(I)ℓ we let
L[Xr→v] := (I, r′, b, g) with dom(r′) = dom(r) ∪ Xr and r′(ij) = vj for all j ∈ [ℓ] and
r′(i) = r(i) for all i ∈ dom(r) \Xr.
Let ⟨i1, . . . , iℓ⟩ be the enumeration of Xb. For every e = (e1, . . . , eℓ) ∈ B(I)ℓ we let
L⟨Xb→e⟩ := (I, r, b′, g) with dom(b′) = dom(b) ∪ Xb and b′(ij) = ej for all j ∈ [ℓ] and
b′(i) = b(i) for all i ∈ dom(b) \Xb. ⌟

▶ Definition C.2 (Glueing k-labeled incidence graphs). Let Li := (Ii, ri, bi, gi) be a k-labeled
incidence graph for i ∈ [2]. The glueing operation produces the k-labeled incidence graph
(L1 · L2) := (I, r, b, g) in the following way.
Let I ′ := I1 ∪̇ I2 be the disjoint union of I1 and I2. Precisely, we let

R(I ′) :=
⋃

i∈[2](R(Ii) × {i}), B(I ′) :=
⋃

i∈[2](B(Ii) × {i}) and

E(I ′) :=
⋃

i∈[2]{
(
(e, i), (v, i)

)
: (e, v) ∈ E(Ii)}.

Let ∼R be the equivalence relation on R(I ′) obtained as the reflexive, symmetric, and
transitive closure of the relation {

(
(r1(j), 1), (r2(j), 2)

)
: j ∈ dom(r1) ∩ dom(r2)}. Let [v]∼R

denote the equivalence class of each v ∈ R(I ′).
Let ∼B be the equivalence relation on B(I ′) obtained as the reflexive, symmetric, and

transitive closure of the relation {
(
(b1(j), 1), (b2(j), 2)

)
: j ∈ dom(b1) ∩ dom(b2)}. Let [e]∼B

denote the equivalence class of each e ∈ B(I ′).
I is the incidence graph (R(I),B(I), E(I)) for

R(I) := {[v]∼R
: v ∈ R(I ′)}, B(I) := {[e]∼B

: e ∈ B(I ′)} and
E(I) := {

(
[(e, i)]∼B

, [(v, i)]∼R

)
: i ∈ [2], (e, v) ∈ E(Ii)}.



B. Scheidt 27

a b c d e f g

s t u v w x y z

(a) The path IP7 on 8 vertices.

t1:{v, w}ω:

t2:{t, u}

t4:{s, t} t5:{u, v}

t3:{x, y}

t6:{w, x} t7:{y, z}

(b) A (strict) elimination tree for IP7 .

Figure 5

Next we define the functions r, b, g.
(r) Let r : N≥1 ⇀ R(I) with dom(r) = dom(r1)∪dom(r2) be defined by r(j) := [(r1(j), 1)]∼R

for all j ∈ dom(r1) and r(j) := [(r2(j), 2)]∼R
for all j ∈ dom(r2) \ dom(r1).

(b) Let b : [k] ⇀ B(I) with dom(b) = dom(b1) ∪ dom(b2) be defined by b(j) := [(b1(j), 1)]∼B

for all j ∈ dom(b1) and b(j) := [(b2(j), 2)]∼B
for all j ∈ dom(b2) \ dom(b1).

(g) Let g := g1 ∪ g2 (recall from Section 2 that this means that g(j) = g1(j) for all
j ∈ dom(g1) and g(j) = g2(j) for all j ∈ dom(g2) \ dom(g1)).

Finally, for both i ∈ [2] we define mappings succR
Li

: R(Ii) → R(I) and succB
Li

: B(Ii) → B(I)
by

succR
Li

(v) := [(v, i)]∼R
for all v ∈ R(Ii) and

succB
Li

(e) := [(e, i)]∼B
for all e ∈ B(Ii).

Note that succR
Li

(v) is the red vertex of I(L1·L2) that corresponds to v ∈ R(Ii), and succB
Li

(e)
is the blue vertex of I(L1·L2) that corresponds to e ∈ B(Ii). ⌟

▶ Definition C.3. Let f : N≥1 ⇀ [k] with finite, non-empty dom(f). The k-labeled incidence
graph Mf defined by f is the k-labeled incidence graph L = (I, r, b, g) with g := f , where I
consists of a red vertex vi for every i ∈ dom(f), a blue vertex ej for every j ∈ img(f), and
an edge (ef(i), vi) for every i ∈ dom(f), and where dom(r) = dom(f) and r(i) = vi for all
i ∈ dom(r), and dom(b) = img(f) and b(j) = ej for all j ∈ dom(b). ⌟

▶ Definition C.4. Consider a partial function g : N≥1 ⇀ [k]. A transition for g is a partial
function f : N≥1 ⇀ [k] with ∅ ̸= dom(f) ⊆ dom(g) satisfying the following: for every
i ∈ dom(g) with g(i) ∈ img(f) we have i ∈ dom(f).

Let L = (I, r, b, g) be a k-labeled incidence graph. f is a transition for L, if it is a
transition for g. We can apply the transition f to L and obtain the k-labeled incidence graph
L[⇝f ] := (Mf · L⟨Xb→•⟩), where Xb := img(g) ∩ img(f) ∩ dom(b) and Mf is defined as in
Definition C.3. ⌟

D Exemplary Construction

▶ Example D.1. Consider the path P7 with V (P7) = {s, t, u, v, w, x, y, z} and E(P7) =
{{s, t}, {t, u}, {u, v}, {v, w}, {w, x}, {x, y}, {y, z}} and its incidence graph IP7 as depicted in
Figure 5a. We show how the method behind the proof of Lemma 4.2 applied on IP7 and
the elimination tree depicted in Figure 5b constructs a label-free L ∈ GLI33 whose skeleton is
isomorphic to IP7 .

We construct L bottom up along the elimination tree. In the following, we encode the
label of a vertex as its exponent and the guard function as thicker edges between the red
vertex and its guard. For every leaf t4, t5, t6, t7, we take the following k-labeled incidence
graphs Lti

∈ GLI03.



28 On Homomorphism Indistinguishability and Hypertree Depth

Lt4 : Lt5 :
a3 b2 d1

s1 t2 u3 v4 w5

b2 c3 d1

t2 u3 v4 w5

Lt6 : Lt7 :
d1 e3 f2

v4 w5 x6 y7

d1 f2 g3

v4 w5 x6 y7
z8

Lt2 is then constructed as (L′
t4

· L′
t5

), where

L′
t4 = Lt4 [{1}→•]⟨{3}→•⟩: L′

t5 = Lt5 ⟨{3}→•⟩:
a b2 d1

s t2 u3 v4 w5

b2 c d1

t2 u3 v4 w5

I.e., Lt2 ∈ GLI13 is the following k-labeled incidence graph:

a b2 c d1

s t2 u3 v4 w5

Analogously, Lt3 is constructed as (L′
t6

· L′
t7

), where

L′
t6 = Lt6 ⟨{3}→•⟩: L′

t7 = Lt7 [8→•]⟨{3}→•⟩:
d1 e f2

v4 w5 x6 y7

d1 f2 g

v4 w5 x6 y7 z

I.e., Lt3 ∈ GLI13 is the following k-labeled incidence graph:

d1 e f2 g

v4 w5 x6 y7 z

Now, Lt4 is (L′
t2

· L′
t3

) where

L′
t2 = Lt2 [{2, 3}→•]⟨{2}→•⟩: L′

t3 = Lt3 [{6, 7}→•]⟨{2}→•⟩:
a b c d1

s t u v4 w5

d1 e f g

v4 w5 x y z

I.e., Lt4 ∈ GLI23 is the following k-labeled incidence graph:

a b c d1 e f g

s t u v4 w5 x y z

Simply removing the remaining labels gives us L ∈ GLI33, i.e., L = L′
t4

= Lt4 [{4, 5}→•]⟨1→•⟩:

a b c d e f g

s t u v w x y z

Obviously, IL
∼= IP7 .


	1 Introduction
	2 Preliminaries
	2.1 Hypertree Depth
	2.2 Homomorphisms

	3 k-Labeled Incidence Graphs
	4 Characterising Hypergraphs of Strict Hypertree Depth at most k
	5 The Logic GCk
	6 Main Result
	7 Final Remarks
	A Proof of Proposition 2.8
	B Proof of Theorem 2.9
	C Missing Definitions in Section 3
	D Exemplary Construction

