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ABSTRACT

The general/finite PCTL satisfiability problem asks whether a

given PCTL formula has a general/finite model. We show that the

finite PCTL satisfiability problem is undecidable, and the general

PCTL satisfiability problem is even highly undecidable (beyond the

arithmetical hierarchy). Consequently, there are no sound deduc-

tive systems proving all generally/finitely valid PCTL formulae.
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1 INTRODUCTION

Probabilistic CTL (PCTL) [15] is a temporal logic interpreted over

states in discrete Markov chains. PCTL is obtained from the stan-

dard CTL (Computational Tree Logic, see, e.g., [12]) by replacing

the existential/universal path quantifiers with the probabilistic op-

erator % (Φ) ⊲⊳ A . Here, Φ is a path formula, ⊲⊳ is a comparison

such as ≥ or <, and A is a rational numerical constant. A formula

% (Φ) ⊲⊳ A holds in a state B if the probability of all runs initiated

in B satisfying Φ is ⊲⊳-bounded by A .

Unlike CTL and other non-probabilistic temporal logics, PCTL

does not have the small model property guaranteeing the existence

of a bounded-size model for every satisfiable formula. In fact, one

can easily construct satisfiable PCTL formulae without any finite

model (see, e.g., [7]). Hence, the PCTL satisfiability problem is stud-

ied in two basic variants: (1) finite satisfiability, where we ask about

the existence of a finite model, and (2) general satisfiability, where

we ask about the existence of an unrestricted model.

At first glance, the finite satisfiability problem appears simpler.

Let i be a PCTL formula. The existence of a model for i with a

given number of states is decidable by encoding the question into

first-order theory of the reals (see, e.g., [11]). Hence, the finite sat-

isfiability problem is at least semi-decidable. To prove its decidabil-

ity, it suffices to establish some computable upper bound on the

number of states of a model for a finite-satisfiable formula. One

is tempted to conjecture the existence of such a bound, because

there is no apparent way how a finite-satisfiable PCTL formula i

can “enforce” the existence of � ( |i |) distinct states in a model of i ,

where � grows faster than every computable function (such as the

Ackermann function). Despite numerous research attempts result-

ing in positive decidability results for various PCTL fragments (see

Related work), the decidability of general/finite PCTL satisfiability

has remained open for almost 30 years.

OurContribution. In this paper, we show that the general and

the finite PCTL satisfiability problems are undecidable.

The undecidability result for finite PCTL satisfiability holds

even for a simple PCTL fragment consisting of formulae of the

form i1 ∧ GGG=1 i2, where i1, i2 contain only the path connectives

XXX and FFF
2 (XXXk says that k holds in the next state, and FFF

2k says

thatk holds in a state reachable in at most two steps). An immedi-

ate consequence is that the finite validity problem for PCTL is not

even semi-decidable. Hence, there is no sound& complete deduc-

tive system proving all finitely valid PCTL formulae.

For general PCTL satisfiability, we show that the prob-

lem is even highly undecidable (Σ11-hard). This result holds

even for a PCTL fragment consisting of formulae of the form

i1 ∧ GGG=1 i2 ∧ GGG=1 FFF=1 i3, where i1, i2 contain only the path con-

nectivesXXX andFFF2, andi3 is a Boolean combination of atomic propo-

sitions. This implies that the (general) validity problem for PCTL

is also highly undecidable.

Paper Organization. The results are obtained by constructing

a formulaΨ simulating a computation of a given non-deterministic

two-counter Minsky machine. The construction of Ψ is based on

combining several novel techniques. To make the construction

comprehensible, we explain these techniques gradually and pro-

ceed in four main steps.

(1) In Section 3, we introduce characteristic vectors as a way of

representing counter values, and two transformations g, f

representing the decrement and increment operations on the

counter (due to the chosen encoding, testing the counter for

zero is trivial).

(2) In Section 4, we show that there exists a fixed PCTL formula

enforcing arbitrarily large finite models just by changing

numerical constants G and ~ in its subformulae XXX=G 0 and

XXX=~ 1. This result is perhaps interesting on its own because

it reveals a specific power of probability constraints. Intu-

itively, the constants G and ~ encode a characteristic vector

representing a counter value = (by choosing appropriate G

and ~, the = can be arbitrarily large), and the formula im-

plements the function g decrementing the counter. This en-

forces the existence of states whose characteristic vectors

represent the counter values ranging from = to 0, and such

states must be pairwise different.

(3) In Section 5, we extend the result of (2) by constructing a for-

mula k simulating the computation of a non-deterministic

one-counter Minsky machine. The crucial new ingredient is

the construction implementing the increment function f .

(4) Finally, in Section 6, we construct a formula Ψ simulating a

non-deterministic two-counterMinsky machineM . Techni-

cally,M is first “translated” into a synchronized product of
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two non-deterministic one-counter Minsky machines M1

and M2. Then, we use the formulae k1 and k2 constructed

for M1 and M2 by the method of Section 5 and “merge”

them into the formula Ψ.

In each step, we re-use the results of the previous steps, possibly af-

ter some necessary modifications. This leads to substantial simpli-

fications at the cost of frequent references to previous sections. We

compensate for this inconvenience by suggestive notation, writing

the re-used formulae consistently in boldface. The exact seman-

tics of this notation is explained at the beginning of Section 5 and

Section 6.

The presented constructions bring some additional conse-

quences formulated in Section 7.

Related Work. The probabilistic extension of CTL (and also

CTL∗) has been initially studied in its qualitative form, where

the range of admissible probability constraints is restricted to

{=0, >0,=1, <1} [17, 19, 22]. Both general and finite satisfiability

for qualitative PCTL are shown decidable in these works. A pre-

cise complexity classification of general and finite satisfiability for

qualitative PCTL, together with a construction of (a finite descrip-

tion of) a model, are given in [7]. In the same paper, it is also shown

that both general and finite satisfiability are undecidable when the

class of admissible models is restricted to Markov chains with a

:-bounded branching degree, where : ≥ 2 is an arbitrary constant

(this technique is not applicable to general Markov chains). A vari-

ant of the bounded satisfiability problem, where transition proba-

bilities are restricted to { 12 , 1}, is proven NP-complete in [3].

The decidability of finite satisfiability for various quantitative

PCTL fragments (with general probability constrains) is estab-

lished in [10, 11, 20]. More concretely, in [10], it is shown that ev-

ery formulai of the bounded fragment of PCTL, where the validity

of i in a state B depends only on a bounded prefix of a run initi-

ated in B , has a bounded-size tree model. In [20], several PCTL frag-

ments based on � and � operators are studied. For each of these

fragments, it is shown that every finite satisfiable formula has a

bounded-size model where every non-bottom SCC is a singleton.

In [11], a more abstract decidability result based on isolating the

progress achieved along a chain of visited SCCs is presented.

Themodel-checking problem for PCTL has been studied both for

finite Markov chains (see, e.g., [1, 2, 4, 18]) and for infinite Markov

chains generated by probabilistic pushdown automata and their

subclasses [9, 13, 14]. PCTL formulae have also been used as objec-

tives in Markov decision processes (MDPs) and stochastic games,

where the players controlling non-deterministic states strive to

satisfy/falsify a given PCTL formula. Positive decidability results

exist for finite MDPs and qualitative PCTL formulae [8]. For gen-

eral PCTL and finite MDPs, the problem becomes undecidable [6].

2 PRELIMINARIES

The sets of non-negative integers, rational numbers, and real num-

bers are denoted by N, Q, and R, respectively. The intervals of real

numbers are written in the standard way, e.g., [0, 1) is the set of all
A ∈ R such that 0 ≤ A < 1.

We use EEE,DDD, ^̂̂ , . . . to denote the elements of R ×R. The first and
the second components of EEE are denoted by EEE1 and EEE2, respectively.

The =-fold composition 5 ◦ · · · ◦ 5 of a function 5 : � → �

(where � is some set) is denoted by 5 = .

2.1 The Logic PCTL

The logic PCTL [15] is obtained from the standard CTL (Compu-

tational Tree Logic [12]) by replacing the existential and universal

path quantifiers with the probabilistic operator % (Φ) ⊲⊳ A , where

Φ is a path formula, ⊲⊳ is a comparison, and A ∈ [0, 1] is a rational
constant.

Definition 2.1 (PCTL). Let AP be a set of atomic propositions.

The syntax of PCTL state and path formulae is defined by the fol-

lowing abstract syntax equations:

i ::= 0 | ¬i | i1 ∧ i2 | % (Φ) ⊲⊳ A
Φ ::= XXXi | i1 UUUi2 | i1 UUU: i2

Here, 0 ∈ AP, ⊲⊳ ∈ {≥, >, ≤, <,=}, A ∈ [0, 1] is a rational constant,
and : ∈ N.

The formulae true, false and the other Boolean connectives are

defined using ¬ and ∧ in the standard way. We also use FFFi and

FFF
: i to abbreviate the formulae trueUUUi and trueUUU: i , respectively.

Furthermore, we often abbreviate a formula of the form % (Φ) ⊲⊳

A by omitting % and adjoining the probability constraint directly

to the topmost path operator of Φ. For example, we write XXX=1 i

instead of % (XXXi) = 1. We also write GGG=1 i instead of FFF=0 ¬i .
PCTL formulae are interpreted over Markov chains where every

state B is assigned a subset E (B) ⊆ AP of propositions valid in B .

Definition 2.2 (Markov chain). A Markov chain is a triple " =

((, %, E), where ( is a finite or countably infinite set of states,

% : ( × ( → [0, 1] is a function such that
∑
C∈( % (B, C) = 1 for ev-

ery B ∈ ( , and E : ( → 2AP is a valuation. We say that " is finite if

( is a finite set.

For B, C ∈ ( , we say that C is an immediate successor of B if

% (B, C) > 0. A path in" is a finite sequenceF = B0, . . . , B= of states

where = ≥ 0 and % (B8 , B8+1) > 0 for all 8 < =. We say that C is reach-

able from B if there is a path where the first and the last state is B

and C , respectively.

A run in " is an infinite sequence c = B0, B1, . . . of states such

that every finite prefix of c is a path in " . We also use c (8) to
denote the state B8 of c .

For every path F = B0, . . . , B= , let Run(F) be the set of all runs
starting with F , and let P(Run(F)) =

∏=−1
8=0 % (B8 , B8+1). To every

state B , we associate the probability space (Run(B),FB , PB ), where
FB is the f-field generated by all Run(F) where F starts in B , and

PB is the unique probability measure obtained by extending P in

the standard way (see, e.g., [5]).
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The validity of a PCTL state/path formula for a given state/run

of" is defined inductively as follows:

B |= 0 iff 0 ∈ E (B),
B |= ¬i iff B 6 |= i,

B |= i1 ∧ i2 iff B |= i1 and B |= i2,

B |= % (Φ) ⊲⊳ A iff PB ({c ∈ Run(B) | c |= Φ}) ⊲⊳ A,
c |= XXXi iff c (1) |= i for some 8 ∈ N,
c |= i1 UUUi2 iff there is 9 ≥ 0 such that c ( 9) |= i2

and c (8) |= i1 for all 0 ≤ 8 < 9,

c |= i1 UUU
: i2 iff there is 0 ≤ 9 ≤ : such that c ( 9) |= i2

and c (8) |= i1 for all 0 ≤ 8 < 9 .

We say that" is amodel of i if B |= i for some state B of" . The

general/finite PCTL satisfiability problem is the question of whether

a given PCTL formula has a general/finite model.

2.2 Parameterized PCTL Formulae

A parameterizedPCTL formula is a PCTL formulawhere some prob-

ability constraints are replaced with parameters ranging over ra-

tionals in [0, 1]. For example, b (G) ≡ FFF≥0.6 0 ∧ GGG=G ¬0 is a parame-

terized PCTL formula with one parameter G . For a parameterized

PCTL formula i (G1, . . . , G: ) and rational constants ?1, . . . , ?: in

the interval [0, 1], we use i [?1, . . . , ?: ] to denote the PCTL for-

mula obtained from i (G1, . . . , G: ) by substituting every G8 with ?8
(we say that i [?1, . . . , ?: ] is an instance of i (G1, . . . , G: )). For ex-
ample, b [0.1] is the formula FFF≥0.6 0 ∧ GGG=0.1 ¬0.

2.3 Minsky Machines

A non-deterministic Minsky machine M with : ≥ 1 counters is a

finite program

1 : Ins1; · · · < : Ins< ;

where < ≥ 1 and every 8 : Ins8 is a labeled instruction of one of

the following types:

I. 8 : inc 2 9 ; goto !;

II. 8 : if 2 9=0 then goto ! else dec 2 9 ; goto !
′

Here, 9 ∈ {1, . . . , :} is a counter index and !, !′ ⊆ {1, . . . ,<} are
sets of labels with one or two elements. We say thatM is determin-

istic if all !, !′ occurring in the instructions of M are singletons1 .

A configuration of M is a tuple (8, =1, . . . , =: ) of non-negative
integers where 1 ≤ 8 ≤ < represents the current control position

and =1, . . . , =: represent the current counter values. A configura-

tion (8′, =′1, . . . , =
′
:
) is a successor of a configuration (8, =1, . . . , =: ),

written (8, =1, . . . , =: ) ↦→ (8′, =′1, . . . , =
′
:
), if the tuple (=′1, . . . , =

′
:
)

is obtained from (=1, . . . , =: ) by performing Ins8 , and 8′ is an ele-

ment of the corresponding ! (or !′) in Ins8 . Note that every con-

figuration has either one or two successor(s). A computation ofM
is an infinite sequence of configurations l ≡ �0, �1, . . . such that

�0 = (1, 0, . . . , 0) and�8 ↦→ �8+1 for all 8 ∈ N. We say that l is peri-

odic if there are 8, 9 ∈ N such that 8 < 9 and the infinite sequences

�8 ,�8+1, . . . and � 9 ,� 9+1, . . . are the same.

1Our definition of non-deterministic Minsky machines is equivalent to the standard
one where the target sets of labels are singletons, and there is also a Type III instruc-
tion of the form 8 : gotoD or D′ . For purposes of this paper, the adopted definition is
more convenient.

Now, we recall the standard undecidability results for Minsky

machines. The symbols Σ01 and Σ
1
1 denote the corresponding levels

in the arithmetical and the analytical hierarchies, respectively.

(1) The boundedness problem for a given deterministic two-

counter Minsky machine M is undecidable and Σ
0
1-complete [21].

Here, M is bounded if the unique computation l contains only

finitely many pairwise different configurations (i.e., l is periodic).

(2) The recurrent reachability problem for a given non-

deterministic two-counter Minsky machine M is highly undecid-

able a Σ11-complete [16]. Here, the question is whether there exists

a recurrent computation l of M such that the instruction Ins1 is

executed infinitely often along l .

3 REPRESENTING A COUNTER

In this section, we introduce several “geometrical” concepts under-

pinning our results. Furthermore, we show how to represent a non-

negative counter value by a pair of quantities, and we design func-

tions modeling the decrement/increment operation on the counter.

Missing proofs are in the Appendix.

Let us fix a rational constant @ such that 3
4 < @ < 1 and

√
4@ − 3

is rational. For example, we can put@ =
13
16 . Furthermore, we define

�@ =

(
1 − √

4@ − 3

2
,
1 + √

4@ − 3

2

)

By our choice of @, we immediately obtain that �@ ⊆ (0, 1). Finally,
we fix ^̂̂ ∈ (0, 1)2 with rational components such that ^̂̂1 ∈ �@ and

^̂̂1 + ^̂̂2 ≤ 1.

The rational constants @, ^̂̂1, and ^̂̂2 are used as probability con-

straints in the PCTL formulae constructed in the next sections. The

defining properties of @ and �@ are explained in Lemma 3.3.

Definition 3.1 (characteristic vector, AC , BC , and CC sets). Let C be a

state of a Markov chain with transition function % . Let AC , BC , and

CC be the sets of all immediate successors of C satisfying the atomic

propositions 0, 1, and 2 , respectively.

The characteristic vector of C is the vector EEE [C] ∈ [0, 1]2 where

EEE [C]1 =
∑
D∈AC % (C, D) and EEE [C]2 =

∑
D∈BC % (C, D).

Observe that EEE [C]1 and EEE [C]2 is the probability of satisfying the

path formula XXX0 and XXX1 in C , respectively. Intuitively, we use char-

acteristic vectors to encode non-negative integers, where ^̂̂ repre-

sents zero, and the decrement/increment operations correspond to

performing the functions g/f introduced in our next definition.

Definition 3.2 (g , f , and, ). Let, = �@ × [0,∞). Furthermore,

let g, f :, → R2 be functions2 defined as follows:

• g (EEE) =
(
(@−1+EEE1)/EEE1, EEE2/EEE1

)
• f (EEE) =

(
(1−@)/(1−EEE1), (EEE2 (1−@))/(1−EEE1)

)
.

The slope of a line or a line segment in R2 is defined in the stan-

dard way. For all EEE,DDD ∈ R2 where EEE1 ≠ DDD1, we use slope(EEE,DDD) to
denote the slope of the line containing EEE,DDD.

In the next lemma, we use the defining properties of @ and �@
(this explains their purpose).

2g and f are not arbitrary; they must satisfy several properties simultaneously to
enable the presented constructions. There is no trivial intuition behind their design.
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0 1
1−√4@−3

2
1+√4@−3

2

f (EEE )

EEE

g (EEE )

g2 (EEE )

Area(EEE)

Figure 1: Points(EEE), LSegs(EEE), and Area(EEE).

Lemma 3.3. For every EEE ∈, , we have the following:

(a) g (EEE), f (EEE) ∈, ;

(b) g (EEE)1 > EEE1 and g (EEE)2 ≥ EEE2; if EEE2 > 0, then g (EEE)2 > EEE2;

(c) letDDD = (EEE1, 0); then slope(DDD, g (EEE)) = slope(g (EEE), g2 (EEE));
(d) let DDD = (EEE1, ~) where 0 ≤ ~ < EEE2. Then slope(DDD, g (DDD)) <

slope(EEE, g (EEE));
(e) f (g (EEE)) = g (f (EEE)) = EEE .

For every DDD ∈ , , let !(DDD) be the line segment between the

pointsDDD and g (DDD), including DDD and excluding g (DDD), i.e.,
!(DDD) = {FFF ∈ R2 | FFF = _DDD + (1−_)g (DDD) for some _ ∈ (0, 1]}.
We use Line(DDD) to denote the line obtained by prolonging the

line segment !(DDD), and � (DDD) to denote the closed half-space above
Line(DDD), i.e.,

� (DDD) = {DDD +UUU | UUU ∈ R2, (g (DDD2)−DDD2,DDD1−g (DDD)1) ·UUU ≤ 0}.

Definition 3.4. For every EEE ∈, where EEE2 > 0, let

Points(EEE) = {g: (EEE), f: (EEE) | : ∈ N},

LSegs(EEE) =

⋃
DDD∈Points(EEE)

!(DDD),

Area(EEE) = , ∩
⋂

DDD∈Points(EEE)
� (DDD).

The structure of Points(EEE), LSegs(EEE), and Area(EEE) is shown in Fig. 1,

where the dotted lines illustrate the property of Lemma 3.3 (c).

Now, we present a sequence of technical observations culminat-

ing with (crucial) Theorem 3.8.

A convex combination of vectorsD1D1D1,D2D2D2, . . . is positive if all coef-

ficients used in the combination are positive. The next lemma is a

trivial corollary to Lemma 3.3 (see Fig. 1).

0 1
1−√4@−3

2
1+√4@−3

2

fa+1 (^̂̂ )

fa (^̂̂ )

fa−1 (^̂̂ )

fa−2 (^̂̂ )

Line`

UUU

g (UUU )

UUU

g (UUU )

X

Figure 2: The construction proving Out = ∅.

Lemma 3.5. For every EEE ∈ , where EEE2 > 0 and every DDD ∈
Points(EEE), we have the following:

(a) If DDD is a positive convex combination of D1D1D1,D2D2D2, . . . where D8D8D8 ∈
Area(EEE) for all 8 ∈ N, thenD8D8D8 = DDD for all 8 ∈ N.

(b) If FFF ∈ !(DDD) is a positive convex combination of D1D1D1,D2D2D2, . . .

whereD8D8D8 ∈ Area(EEE) for all 8 ∈ N, thenD8D8D8 ∈ !(DDD) ∪ {g (DDD)} for
all 8 ∈ N.

Lemma 3.6. LetFFF ∈, andDDD ∈ !(FFF ). Then g (DDD) ∈ !(g (FFF)).

Lemma 3.7. For all EEE ∈, r Area(^̂̂) where EEE1 ≤ ^̂̂1, there exists

DDD ∈, rArea(^̂̂) such thatDDD1 = f: (^̂̂)1 for some : ≥ 0 and EEE ∈ !(DDD).

Now we prove the main result of this section.

Theorem 3.8. Let ) be a subset of states of some Markov chain

with transition function % such that for every C ∈ ) , we have that

EEE [C]1 ≤ ^̂̂1 and if EEE [C] ≠ ^̂̂ , then AC ⊆ ) and the following equations

are satisfied:

@ = 1 − EEE [C]1 +
∑
D∈AC

% (C,D) · EEE [D]1 (1)

@ = 1 − EEE [C]1 − EEE [C]2 +
∑
D∈AC

% (C,D) · (EEE [D]1 + EEE [D]2) (2)

Then EEE [C] ∈ Area(^̂̂) for every C ∈ ) . Furthermore, for every C ∈ )

such that EEE [C] ≠ ^̂̂ and every D ∈ AC , we have that EEE [D] = g (EEE [C]).

Proof. We start be proving the following claim: for every C ∈ )

such that EEE [C] ≠ ^̂̂ , the vector g (EEE [C]) is a positive convex combi-

nation of the vectors in {EEE [D] | D ∈ AC }.
By rewriting (1), we obtain

@ − 1 + EEE [C]1
EEE [C]1

=

∑
D∈*C

% (C,D)
EEE [C]1

EEE [D]1 (3)
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Note that the left-hand side of (3) is equal to g (EEE [C])1 . Furthermore,

by simplifying the right-hand side of (2) using (1), we obtain

@ = @ − EEE [C]2 +
∑
D∈*C

% (C,D) · EEE [D]2 (4)

Thus,
EEE [C]2
EEE [C]1

=

∑
D∈*C

% (C, D)
EEE [C]1

· EEE [D]2 (5)

Note that the left-hand side of (5) is equal to g (EEE [C])2 . By combin-

ing (3) and (5), we have that

g (EEE [C]) =

∑
D∈*C

% (C, D)
EEE [C]1

· EEE [D] (6)

which proves the claim.

Now we prove the first part of the theorem, i.e., EEE [C] ∈ Area(^̂̂)
for every C ∈ ) . Suppose the converse, i.e., the set Out consisting of

all C ∈ ) such that EEE [C] ∉ Area(^̂̂) is non-empty. We show that this

assumption leads to a contradiction. The arguments are illustrated

in Fig. 2.

Let EEE [Out] = {EEE [C] | C ∈ Out}, and let a be the minimal

: ∈ N such that EEE [Out] r � (f: (^̂̂)) ≠ ∅. Furthermore, for ev-

ery 0 ≤ ~ ≤ fa (^̂̂)2, let Line~ be the line with the same slope as

Line(fa (^̂̂)) containing the point (fa (^̂̂)1, ~). We use � (Line~ )
to denote the closed half-space above Line~ . Let ` be the supre-

mum of all ~ ≤ fa (^̂̂)2 such that EEE [Out] ⊆ � (Line~ ). Clearly,
0 ≤ ` < fa (^̂̂)2. Let

X = , ∩ � (Line` ) ∩
a−1⋂
:=0

� (f: (^̂̂))

Note X is a convex set and Area(^̂̂) ∪ EEE [Out] ⊆ X. We show that

there exists C ∈ Out such that g (EEE [C]) ∉ X. By the claim proven

above, g (EEE [C]) is a positive convex combination of the vectors in

{EEE [D] | D ∈ AC }. However, this is impossible because all these vec-

tors are in X, and X is a convex set; we have a contradiction.

The existence of C ∈ Out such that g (EEE [C]) ∉ X is proven as

follows. By the definition of `, there is an infinite sequence C1, C2, . . .

such that

• C8 ∈ Out and EEE [C8 ]1 ≤ ^̂̂1 for all 8 ∈ N,
• the distance of EEE [C8 ] from Line` approaches zero as 8 → ∞.

This sequence must contain an infinite subsequence converging to

some point UUU ∈ Line` ∩ X.

Since g is continuous, it suffices to show that g (UUU) ∉ X for every

UUU ∈ Line` ∩ X. So, let us fix some UUU ∈ Line` ∩ X. By Lemma 3.7,

there exists DDD ∈ , r Area(^) such that DDD1 = f: (^̂̂)1 for some

: ≥ 0 and UUU ∈ !(DDD). By the definition of Line` , we have that

: is either a+1 or a , depending on whether UUU1 < fa (^̂̂)1 or not,

respectively. In the first case, the slope of both !(DDD) and !(g (DDD))
is strictly smaller that the slope of Line` (see Lemma 3.3). This

implies g (DDD) ∉ X and !(g (DDD)) ∩ X = ∅, hence g (UUU) ∉ X because

g (UUU) ∈ !(g (DDD)) by Lemma 3.6. In the second case, the slope of !(DDD)
strictly smaller than the slope of Line` , which implies g (DDD) ∉ X.

Furthermore, the slope of !(g (DDD)) is strictly smaller than the slope

of !(fa−1 (^̂̂)), and hence !(g (DDD)) ∩ X = ∅. Since g (UUU) ∈ !(g (DDD))
by Lemma 3.6, we obtain g (UUU) ∉ X.

The second part of the theorem follows easily. Let C ∈ ) such

that EEE [C] ≠ ^̂̂ . By the above claim, g (EEE [C]) is a positive convex

combination of the vectors in {EEE [D] | D ∈ AC } and all of these

vectors belong to Area(^̂̂) by the first part of the theorem. Hence,

EEE [D] = g (EEE [C]) for all D ∈ AC by applying Lemma 3.5 (a) �

4 A PARAMETERIZED PCTL FORMULA
WITH ARBITRARILY LARGE MODELS

In this section, we prove the following result:

Theorem4.1. There exists a parameterizedPCTL formulak (G,~)
such that for every = ∈ N, there exists an instancek [2,3] satisfying
the following:

• every model ofk [2,3] has at least = states;

• k [2,3] has a finite-state model with O(=) states.

4.1 Constructingk (G, ~)
Let us fix @ and ^̂̂ in the same way as in Section 3. The set of atomic

propositions3 occurring in k (G,~) is � = {0,1, 2, ℎ, A0, A1, A2, A3, A4}.
For every � ⊆ �, we use 〈�〉 to denote the formula saying that

exactly the propositions of � are satisfied, i.e., 〈�〉 ≡ ∧
?∈� ? ∧∧

?∈�r� ¬? . Slightly abusing our notation, we write, e.g., 〈0, A8 〉
instead of 〈{0, A8 }〉. Furthermore, for every A8 ∈ �, we use ( (A8) to
denote the “successor” proposition A 9 ∈ � such that 9 = 8+1 mod 5.

For example, ( (( (A3)) = A0. Recall that (
: denotes the :-fold com-

position ( ◦ · · · ◦ ( .
We put

k (G,~) ≡ Init (G,~) ∧ GGG=1 Invariant

where

Init (G,~) ≡ 〈0, A0〉 ∧ XXX=G 0 ∧ XXX=~ 1

is a parameterized initial condition that has to be valid in a state B

satisfying an instance ofk (G,~), and
Invariant ≡ Fin ∨ Trans ∨ Free

is a formula (with no parameters) that must be valid in every state

reachable from B . The formula

Free ≡ ℎ ∧
∨
�⊆�

(〈�〉 ∧ XXX=1〈�〉)

ensures that every reachable state C satisfying the predicate ℎ has

only immediate successors satisfying the same subset of � as C .

This enforces that Free is valid in all states reachable from C (intu-

itively, these states are “free” in the sense that they do not require

further attention).

The formula Fin is defined as follows:

Fin ≡
∨

8∈{0,...,4}
〈0, A8〉 ∧ FSuc8 ∧ Zero

where

FSuc8 ≡ XXX=1 (〈ℎ,0, ( (A8)〉 ∨ 〈ℎ,1, (2 (A8)〉 ∨ 〈ℎ, 2, (2 (A8)〉),
Zero ≡ XXX=̂^̂1 0 ∧ XXX=̂^̂2 1 .

Finally, we put

Trans ≡
∨

8∈{0,...,4}
〈0, A8〉 ∧ Suc8 ∧ Interval ∧ Eq8

3For purposes of this section, it suffices to use only three A8 propositions instead of five
(this is apparent when inspecting Fig. 3). However, using five A8 ’s allows us to reuse
some of the constructed formulae in the next sections with only trivial modifications.
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•
〈0, A8 〉

C

〈ℎ, 1, (2 (A8 ) 〉 〈ℎ, 2, (2 (A8 ) 〉

• · · · •
D1 D:

〈0, ( (A8 ) 〉

〈0, (2 (A8 ) 〉 〈ℎ, 1, (3 (A8 ) 〉 〈ℎ, 2, (3 (A8 ) 〉 〈0, (2 (A8 ) ) 〉 〈ℎ, 1, (3 (A8 ) 〉 〈ℎ, 2, (3 (A8 ) 〉

EEE [C ]2 1−EEE[C ]1−EEE[C ]2EEE [C ]1

EEE [D: ]1 EEE [D: ]2EEE [D1 ]1 EEE [D1 ]2

Figure 3: The structure of transient states in a model ofk [2,3]

where

Suc8 ≡ XXX=1 (〈0, ( (A8)〉 ∨ 〈ℎ,1, (2 (A8)〉 ∨ 〈ℎ, 2, (2 (A8)〉)
Interval ≡ XXX

>(1−√4@−3)/2 0 ∧ XXX≤^̂̂2 0 ∧ XXX>0 1

Eq8 ≡ FFF
2
=@ (

2 (A8) ∧ FFF
2
=@ (((2(A8) ∧ ¬1) ∨ ((3(A8) ∧ 1))

This completes the definition ofk (G,~).

4.2 A Proof of Theorem 4.1

For a given = ∈ N, let 2 = f= (^̂̂)1, 3 = f= (^̂̂)2, and consider the

instance k [2,3] of k (G,~) (note that 2, 3 are rational). We show

that k [2,3] satisfies the two claims of Theorem 4.2.

To prove the first claim, let us fix a Markov chain " = ((, %, E)
such that B |= k [2,3] for some B ∈ ( . If ( is infinite, we are done

immediately. We show that if ( is finite, then ( contains at least

= states. Without restrictions, we assume that all states of ( are

reachable from B .

Note that for every C ∈ ( , we have that exactly one4 of the fol-

lowing possibilities holds: C |= Free, C |= Fin, or C |= Trans. Thus, (

is partitioned into three disjoint subsets of free, final, and transient

states, respectively.

Properties of free states. Observe that a state C is free iff C |= ℎ. The

formula Free ensures that all immediate successors of a free state C

(and consequently also all states reachable from C ) satisfy the same

set of atomic propositions as C .

Properties of final states. The formula Fin ensures that all immedi-

ate successors of every final state are free and the characteristic

vector of a final state is equal to ^̂̂ .

Properties of transient states. Let C be a transient state, i.e.,

C |= 〈0, A8〉 ∧ Suc8 ∧ Interval ∧ Eq8 for exactly one 8 ∈ {0, . . . , 4}.
The formula Suc8 says that C has precisely three types of imme-

diate successors:

I. transient or final states satisfying 〈0, ( (A8)〉,
II. free states satisfying 〈ℎ,1, (2 (A8)〉,
III. free states satisfying 〈ℎ, 2, (2 (A8)〉.

4In particular, note that assuming C |= Fin ∧ Trans implies C |= XXX>0 〈0, ( (A8 ) 〉 and
C |= XXX>0 〈ℎ, 0, ( (A8 ) 〉, hence C 6 |= FSuc8 and C 6 |= Suc8 (contradiction).

Note that the first/second component of EEE [C] is precisely the total

probability of entering an immediate successor of Type I/II from C ,

respectively (see Fig. 3, where D1, . . . , D: are Type I successors of C ,

and EEE [C]1 =
∑:

9=1 % (C, D8)).
Let ) be the set of all final and transient states. We show that )

satisfies the conditions of Theorem 3.8.

For every final state C ∈ ) we have that C |= Zero, and hence

EEE [C] = ^̂̂ . Now let C ∈ ) be a transient state. Since every state of AC
is transient or final, we have that AC ⊆ ) . Furthermore,

C |= 〈0, A8 〉 ∧ Suc8 ∧ Interval ∧ Eq8

for precisely one 8 ∈ {0, . . . , 4}. Since C |= Interval, we obtain

EEE [C]1 ≤ ^̂̂1. Now consider the formula

Eq8 ≡ FFF
2
=@ (

2 (A8) ∧ FFF
2
=@ (((2(A8) ∧ ¬1) ∨ ((3(A8) ∧ 1))

The first conjunct says that the probability of all runs initiated in C

satisfying the path formula FFF2 (2 (A8) is equal to @. By inspecting

the structure of transient states enforced by Suc8 (see Fig. 3), we

obtain

@ = 1 − EEE [C]1 +
∑
D∈AC

% (C,D) · EEE [D]1 .

The second conjunct of Eq8 says that the probability of satisfying

FFF
2 (((2 (A8) ∧ ¬1) ∨ ((3 (A8) ∧ 1)) in C is equal to @. Thus, we obtain

@ = 1 − EEE [C]1 − EEE [C]2 +
∑
D∈AC

% (C, D) · (EEE [D]1 + EEE [D]2) .

Since B |= k [2,3], we have that B is a transient state satisfying
EEE [B] = f= (^̂̂). By applying Theorem 3.8, we obtain that if C is a

transient state satisfying EEE [C] = f: (^̂̂) where 1 ≤ : ≤ =, then

every D ∈ AC satisfies EEE [D] = g (f: (^̂̂)) = f:−1 (^̂̂). Consequently,
for every 8 ∈ {0, . . . , =}, there must be a state of ( with character-

istic vector f8 (^̂̂). These states must be pairwise different because

f8 (^̂̂) ≠ f 9 (^̂̂) for 8 ≠ 9 (see Lemma 3.3).

To prove the second claim of Theorem 4.1, realize that k [2,3]
has a model with states C0, . . . , C= , 10, . . . , 1=−1, 20, . . . , 2=−1 where

• for all 1 ≤ 8 ≤ =, C8 |= 〈0, A 9 〉 where 9 = (=−8) mod 5;

• C0 |= 〈ℎ,0, A ( 9)〉 where 9 = = mod 5;

• for all 1 ≤ 8 ≤ =, we have that 18−1 |= 〈ℎ,1, (2 (A 9 ))〉 and
28−1 |= 〈ℎ, 2, (2 (A 9 )〉 where 9 = (=−8) mod 5;

• for all 0 ≤ 8 ≤ =−1, we have that % (18 , 18 ) = % (28 , 28 ) = 1;
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• for all 1 ≤ 8 ≤ =, we have that % (C8 , C8−1) = f8 (^̂̂)1,
% (C8 , 18−1) = f8 (^̂̂)2, and % (C8 , 28−1) = 1−f8 (^̂̂)1−f8 (^̂̂)2;

• % (C0, C0) = 1.

It is easy to check that C= |= k [2,3].

5 SIMULATING MINSKY MACHINES WITH
ONE COUNTER

For the rest of this section, we fix @, �@ , and ^̂̂ in the same way

as in Section 3, but we additionally require that ^̂̂1 + ^̂̂2 < @ − 1
2 .

Furthermore, we fix a rational constant W such that (1−@)^̂̂2 < W <

3
4@ − 5

4@ + 1
2@

2. For example, we can put @ =
13
16 , ^̂̂ = ( 1764 ,

1
32 ), and

W = 0.06. These additional assumptions are used in the proof of

Theorem 5.1.

Let M be a non-deterministic one-counter Minsky machine

with < instructions, and let Labels = {ℓ8 | 1 ≤ 8 ≤ <} be a set

of fresh atomic propositions. Let " = ((, %, E) be a Markov chain.

We say that a state C ∈ ( represents a configuration (8, =) of M iff

C |= ℓ8 , C 6 |= ℓ9 for all 9 ≠ 8 , and EEE [C] = f= (^̂̂). Furthermore, we say

that a state B ∈ ( simulatesM if B represents (1, 0) and every state

C reachable from B satisfies the following condition: If C represents

a configuration� ofM , then at least one immediate successor of C

represents a successor configuration of � . Furthermore, for every

immediate successor C ′ of C that does not represent a successor of
� we have that C ′ |= GGG=1

∧<
8=1 ¬ℓ8 .

Let B ∈ ( be a state simulatingM , and let B0, B1, . . . be a run such

that B0 = B and every B8 represents a configuration �8 of M . Then

�0,�1, . . . is a computation ofM covered by B . Note that B covers at

least one but not necessarily all computations ofM . In this section,

we prove the following theorem:

Theorem 5.1. LetM be a non-deterministic one-counter Minsky

machine. Then there is an effectively constructible PCTL formula k

satisfying the following conditions:

(A) For every Markov chain " and every state B of " , we have

that if B |= k , then B simulatesM .

(B) For every computationl ofM , there exists a Markov chain"

and a state B of" such that B |= k and B coversl . Furthermore,

if l is periodic, then" has finitely many states.

5.1 Constructingk

For the rest of this section, we fix a non-deterministic one-counter

Minsky machine M ≡ 1 : Ins1; · · · < : Ins< . We show how to

construct the formulak of Theorem 5.1.

Recall that the counter values 0, 1, 2, . . . are represented by char-

acteristic vectors ^̂̂ , f (^̂̂ ), f2 (^̂̂), . . .. Hence, decrementing and in-

crementing the counter corresponds to performing the functions

g and f , respectively. Testing the counter for zero is no issue be-

cause both components of ^̂̂ are rational and can be directly used

as probability constraints. The function g is implemented in the

same way as in the parameterized formula k (G,~) constructed in

Section 4. Consequently, some subformulae of k (G,~) are re-used
in k , possibly after small adjustments. The main challenge is to

implement the function f and orchestrate everything so that The-

orem 3.8 is still applicable.

The set of propositions used in k is A = � ∪ Labels ∪ {3, 4}
where � is the set of propositions occurring in k (G,~) (see Sec-

tion 4), and 3, 4 are fresh propositions used for implementing the

function f . For every � ⊆ A, we use 〈〈�〉〉 to denote the formula∧
?∈� ? ∧∧

?∈Ar� ¬? . The intuitive meaning of 〈〈�〉〉 is the same

as of 〈�〉 defined in Section 4.1. The only difference is that the set

� is replaced with the richer set A.

The structure ofk closely resembles the structure ofk (G,~), and
the overall intuition behind the subformulae stays essentially the

same. We use the same identifiers for denoting adjusted versions

of subformulae defined in Section 4.1. If a subformula does not re-

quire any adjustment except for replacing every occurrence of 〈·〉
with 〈〈·〉〉, then we re-use this formula and write its identifier in

boldface. For example, FSuc8 denotes the formula

XXX=1 (〈〈ℎ,0, ( (A8)〉〉 ∨ 〈〈ℎ,1, (2 (A8)〉〉 ∨ 〈〈ℎ, 2, (2 (A8)〉〉) .
We put

k ≡ Init ∧ GGG=1 Invariant

where

Init ≡ 〈〈0, A0, ℓ1〉〉 ∧ Zero

Invariant ≡ Fin ∨ Transient ∨ Free

Note that if B |= k , then every state C reachable form B can again be

classified as either final, transient, or free, depending on whether

C satisfies Fin, Transient, or Free, respectively.

Furthermore, we put

Transient ≡ Trans ∨ CTrans ∨ LTrans .

As we shall see, every transient state C satisfies precisely one of

the formulae 〈〈0, A8 〉〉, 2∧A8∧¬ℎ, or 〈〈G, A8 , ℓ〉〉, where 8 ∈ {0, . . . , 4},
ℓ ∈ Labels, and G ∈ {0,1}. The formulaeTrans,CTrans, and LTrans

define the properties of C in the three respective cases. We define

CTrans ≡
∨

8∈{0,...,4}
2 ∧ A8 ∧ ¬ℎ ∧ CSuc8 ∧ Interval ∧ Eq8

where

CSuc8 ≡ XXX=1
(
〈〈0, ( (A8)〉〉∨〈〈ℎ,1, (2 (A8)〉〉∨ 〈〈ℎ, 2, (2 (A8)〉〉∨〈〈ℎ, 2, (2 (A8), 3〉〉

)
Furthermore, we define

LTrans ≡
∨

8∈{0,...,4}

∨
ℓ∈Labels

∨
G ∈{0,1 }

(〈〈G, A8 , ℓ〉〉 ∧ Step8,ℓ)

where the formula Step8,ℓ is constructed as follows. Let Ins 9 be the

instruction associated with ℓ , i.e., ℓ = ℓ9 . We distinguish two cases.

(A) If Ins 9 ≡ if 2=0 then goto ! else dec 2; goto !′ , then

Step8,ℓ ≡
(
Zero ⇒ (ZSuc8,ℓ ∧ XXX=1 (1 ⇒ Zero))

)
∧
(
¬Zero ⇒ (PSuc8,ℓ ∧ Interval ∧ Eq8)

)
where

ZSuc8,ℓ ≡
∨
ℓ ′∈!

XXX=1
(
〈〈ℎ,0, ( (A8)〉〉 ∨ 〈〈ℎ, 2, (2 (A8)〉〉 ∨ 〈〈ℎ, 2, (2 (A8), 4〉〉
∨ 〈〈1, (2 (A8), ℓ′〉〉

)
∧ XXX=1−@ 〈〈ℎ, 2, (2 (A8), 4〉〉

PSuc8,ℓ ≡
∨
ℓ ′∈!′

XXX=1
(
〈〈ℎ,1, (2 (A8)〉〉 ∨ 〈〈ℎ, 2, (2 (A8)〉〉 ∨ 〈〈ℎ, 2, (2 (A8), 4〉〉
∨ 〈〈0, ( (A8), ℓ′〉〉

)
∧ XXX=1−@ 〈〈ℎ, 2, (2 (A8), 4〉〉
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(B) If Ins 9 ≡ inc 2; goto !, then

Step8,ℓ ≡ (Zero ⇒ IZSuc8,ℓ)
∧ (¬Zero ⇒ (IPSuc8,ℓ ∧ Interval ∧ Eq8)
∧ FFF

2
=1−@ (0 ∧ (3 (A8))

∧ FFF
2
=W

(
(1 ∧ (4 (A8)) ∨ 3

)
∧ FFF

2
=W

(
(2 ∧ (4 (A8) ∧ 4) ∨ 3

)
where W is the constant fixed at the beginning of Section 5 and

IZSuc8,ℓ ≡
∨
ℓ ′∈!

XXX=1
(
〈〈ℎ,0, ( (A8)〉〉 ∨ 〈〈2, (2 (A8)〉〉 ∨ 〈〈2, (2 (A8), 4〉〉
∨ 〈〈1, (2 (A8), ℓ′〉〉

)
∧ XXX=1−@ 〈〈2, (2 (A8), 4〉〉

IPSuc8,ℓ ≡
∨
ℓ ′∈!

XXX=1
(
〈〈0, ( (A8)〉〉 ∨ 〈〈2, (2 (A8)〉〉 ∨ 〈〈2, (2 (A8), 4〉〉
∨ 〈〈1, (2 (A8), ℓ′〉〉

)
∧ XXX=1−@ 〈〈2, (2 (A8), 4〉〉

This completes the construction ofk .

Intuitively, if C |= 〈〈G, A8 , ℓ9 〉〉 andEEE [C] encodes the current counter
value, then Step8,ℓ9 enforces the simulation of Ins 9 . More con-

cretely,

• if Ins 9 ≡ if 2=0 then goto ! else dec 2; goto !′ , then
– if EEE [C] = ^̂̂ encodes zero, then each C ′ ∈ BC satisfies some

ℓ′ ∈ ! and EEE [C ′] = ^̂̂ . The simulation continues in the

states of BC .

– if EEE [C] encodes a positive value, then each C ′ ∈ AC satisfies

some ℓ′ ∈ !′ and EEE [C ′] = g (EEE [C]). The counter is decre-

mented, and the simulation continues in the states of AC .

• If Ins 9 ≡ inc 2; goto !, then each C ′ ∈ BC satisfies some ℓ′ ∈ !.

Furthermore, EEE [C ′] = f (EEE [C]) for all C ′ ∈ BC ∪ CC (this part

is tricky). The counter is incremented and the simulation

continues in the states of BC .

Furthermore, all transient states C where EEE [C] ≠ ^̂̂ satisfy the for-

mula Interval∧Eq8 (for an appropriate 8) so that the conditions of

Theorem 3.8 are fulfilled for the set of all transient and final states.

5.2 A Proof of Theorem 5.1

Let M ≡ 1 : Ins1; · · · < : Ins< be a non-deterministic one-

counter Minsky machine, and letk be the formula constructed for

M in Section 5.1. The two claims of Theorem 5.1 are proven sepa-

rately in the following subsections.

5.2.1 A Proof of Theorem 5.1 (A). Let " = ((, %, E) be Markov

chain and B ∈ ( such that B |= k . Let ) be the set of all transient

states and all final states of " . One can easily verify that the con-

ditions of Theorem 3.8 are satisfied for ) by inspecting the struc-

ture of transient states similarly as in Section 4.2 (in particular, the

formula Eq8 still implies Equalities (1) and (2)). Thus, by applying

Theorem 3.8, we obtain

I. For every C ∈ ) , we have that EEE [C] ∈ Area(^̂̂).
II. For every C ∈ ) where EEE [C] ≠ ^̂̂ and every C ′ ∈ AC , we have

that EEE [C ′] = g (EEE [C]).
We show that B simulatesM . Since B |= Init, we have that B rep-

resents the configuration (1, 0). Let C be a state reachable from B

such that C represents a configuration ( 9, =) of M , i.e., C |= ℓ9 and

EEE [C] = f= (^̂̂). Then C |= LTrans and hence also C |= Step8,ℓ9 . We

distinguish two cases.

(A) Ins 9 ≡ if 2=0 then goto ! else dec 2; goto !′ . Then,

Step8,ℓ ≡
(
Zero ⇒ (ZSuc8,ℓ ∧ XXX=1 (1 ⇒ Zero))

)
∧
(
¬Zero ⇒ (PSuc8,ℓ ∧ Interval ∧ Eq8)

)
and there are two subcases.

• = = 0. Since EEE [C] = f= (^̂̂), we obtain C |= Zero. Hence,

C |= ZSuc8,ℓ∧XXX=1 (1 ⇒ Zero). This implies that every C ′ ∈ BC

satisfies C ′ |= 〈〈1, (2 (A8), ℓ′〉〉∧Zero for some ℓ′ ∈ !. Hence, C ′

represents a successor configuration of ( 9, 0). Since EEE [C]2 =
^̂̂2 > 0, we have BC ≠ ∅, and hence at least one such C ′

exists. Furthermore, all states of AC ∪ CC are free and hence

they satisfy the formula GGG=1
∧<

8=1 ¬ℓ8 .
• = > 0. Since EEE [C] = f= (^̂̂), we obtain C |= ¬Zero and hence

C |= PSuc8,ℓ∧Interval∧Eq8 . The formula PSuc8,ℓ ensures that

every C ′ ∈ AC satisfies C ′ |= 〈〈0, ( (A8), ℓ′〉〉 for some ℓ′ ∈ !′ .
Furthermore, we have that EEE [C ′] = g (f= (^̂̂)) = f=−1 (^̂̂)
by Observation II. above. Hence, C ′ represents a successor

configuration of ( 9, =). Since EEE [C]1 = f= (^̂̂)1 > 0, at least

one such C ′ must exist. Note that all states of BC ∪ CC satisfy

the formula GGG=1
∧<

8=1 ¬ℓ8 .

(B) Ins 9 ≡ inc 2; goto !. Then,

Step8,ℓ ≡ (Zero ⇒ IZSuc8,ℓ)
∧ (¬Zero ⇒ (IPSuc8,ℓ ∧ Interval ∧ Eq8 )
∧ FFF

2
=1−@ (0 ∧ (3 (A8))

∧ FFF
2
=W

(
(1 ∧ (4 (A8)) ∨ 3

)
∧ FFF

2
=W

(
(2 ∧ (4 (A8) ∧ 4) ∨ 3

)
The structure of immediate successors of C enforced by this for-

mula is shown in Fig. 4. The formulae IZSuc8,ℓ and IPSuc8,ℓ ensure

that for every C ′ ∈ BC , we have that C
′ |= 〈〈1, (2 (A8), ℓ′〉〉where ℓ′ ∈ !.

Observe that BC ≠ ∅ and all states of AC ∪ CC satisfy the formula

GGG=1
∧<

8=1 ¬ℓ8 . Hence, it remains to show that EEE [C ′] = f (EEE [C]) for all
C ′ ∈ BC . We prove a stronger result saying that EEE [C ′] = f (EEE [C]) for
all C ′ ∈ BC ∪ CC .

Due to Observation I above and Lemma 3.5.A, it suffices to prove

that f (EEE [C]) is a positive convex combination of the vectors in

{EEE [C ′] | C ′ ∈ BC ∪ CC }. For a path formula Φ, we use '[Φ] to de-

note the set of allF ∈ Run(C) such thatF |= Φ.

Since C |= FFF
2
=1−@ (0 ∧ (3 (A8)), we have PC ('[FFF2 (0 ∧ (3 (A8))]) =

1−@. By inspecting the structure of immediate successors of C (see

Fig. 4), we obtain

1−@ = PC ('[FFF2 (0 ∧ (3 (A8))]) =

∑
C ′∈BC∪CC

% (C, C ′) · EEE [C ′]1 . (7)

Observe that
∑
C ′∈BC∪CC % (C, C ′) = 1−EEE [C]1 . Hence, (7) implies

1−@
1−EEE [C]1

=

∑
C ′∈BC∪CC

% (C, C ′)
1−EEE [C]1

· EEE [C ′]1 . (8)

Note that the left-hand side of (8) is equal to f (EEE [C])1 .
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•
〈〈G, A8 , ℓ9 〉〉
C

• · · · •
AC

C ′0

〈〈0, ( (A8 ) 〉〉

0, (2 (A8 ) 〈〈ℎ, 1, (3 (A8 ) 〉〉 〈〈ℎ, 2, (3 (A8 ) 〉〉

EEE [C ]1

EEE [C ′0 ]1 EEE [C ′0 ]2

• · · · •
BC

C ′
1

〈〈1, (2 (A8 ), ℓ ′〉〉

0, (3 (A8 ) 1, (4 (A8 ) 2, (4 (A8 ),¬4 2, (4 (A8 ), 4

EEE [C ]2

EEE [C ′
1
]1 EEE [C ′

1
]2 1−@

• · · · •
C ′2

〈〈2, (2 (A8 ) 〉〉

〈〈0, (3 (A8 ) 〉〉 〈〈ℎ, 1, (4 (A8 ) 〉〉 〈〈ℎ, 2, (4 (A8 ) 〉〉〈〈ℎ, 2, (4 (A8 ), 3 〉〉

EEE [C ′2 ]1 EEE [C ′2 ]2

• · · · •
C ′′2

〈〈2, (2 (A8 ), 4〉〉

〈〈0, (3 (A8 ) 〉〉 〈〈ℎ, 1, (4 (A8 ) 〉〉 〈〈ℎ, 2, (4 (A8 ) 〉〉〈〈ℎ, 2, (4 (A8 ), 3 〉〉

1 − @

EEE [C ′′2 ]1 EEE [C ′′2 ]2

Figure 4: The structure of transient states satisfying 〈〈G, A8 , ℓ9 〉〉 where G ∈ {0,1} and Ins 9 ≡ inc 2; goto D

Furhermore, C |= FFF
2
=W

(
(1 ∧ (4 (A8)) ∨3

)
. By inspecting the struc-

ture of immediate successors of C (see Fig. 4), we obtain5

W = PC ('[FFF2 ((1 ∧ (4 (A8)) ∨ 3)])
= PC ('[FFF2 (1 ∧ (4 (A8))] ⊎ '[FFF2 (3)])
= PC ('[FFF2 (1 ∧ (4 (A8))]) + PC ('[FFF2 (3)])
=

∑
C ′∈BC∪CC

% (C, C ′) · EEE [C ′]2 + PC ('[FFF2 (3)]) (9)

Similarly, C |= FFF
2
=W

(
(2 ∧ (4 (A8) ∧ 4) ∨ 3

)
implies

W = PC ('[FFF2 ((2 ∧ (4 (A8) ∧ 4) ∨ 3)])
= PC ('[FFF2 (2 ∧ (4 (A8) ∧ 4)] ⊎ '[FFF2 (3)])
= PC ('[FFF2 (2 ∧ (4 (A8) ∧ 4)]) + PC ('[FFF2 (3)])
=

∑
C ′∈BC

% (C, C ′) · (1−@) + PC ('[FFF2 (3)])

= EEE [C]2 · (1−@) + PC ('[FFF2 (3)]) (10)

Since the right-hand sides of (9) and (10) are equal, we have that

EEE [C]2 · (1−@) =
∑

C ′∈BC∪CC
% (C, C ′) · EEE [C ′]2

Hence,

EEE [C]2 · (1−@)
1−EEE [C]1

=

∑
C ′∈BC∪CC

% (C, C ′)
1−EEE [C]1

· EEE [C ′]2 (11)

5Here, by writing� = � ⊎ � we mean that� = � ∪ � and� ∩ � = ∅.

Observe that the left-hand side of (11) is equal to f (EEE [C])2 . By com-

bining (8) and (11), we finally obtain

f (EEE [C]) =

∑
C ′∈BC∪CC

% (C, C ′)
1−EEE [C]1

· EEE [C ′] .

5.2.2 A Proof of Theorem 5.1 (B). For the rest of this proof, we

fix a computation l = �0,�1, . . . of M . Furthermore, if l is pe-

riodic, we fix U, V such that U < V and the infinite sequences

�U−1,�U , �U+1, . . . and �V−1, �V, �V+1, . . . are the same. If l is not

periodic, we put V = ∞ and leave U undefined.

Observe that ifl is periodic, then our choice of U and V ensures

that the infinite sequences �U ,�U+1, . . . and �V , �V+1, . . . are also

the same, and the compuational steps�U−1 ↦→ �U and�V−1 ↦→ �V

are generated by the same instruction of M . As we shall see, this

ensures that �U and �V are represented by the same state in the

constructed model ofk .

We show that there exist a Markov chain " = ((, %, E) and a

state B ∈ ( such that B |= k and B covers l . Furthermore, if V < ∞,

then ( is finite.

Every state of ( is a triple of the form [],L, =] where ] is an index
ranging over {8 ∈ N | 0 ≤ 8 < V} ∪ {★},L ⊆ A is the set of atomic

propositions satisfied in the state, and = ∈ N ∪ {★} is a counter

value. The ★ symbol is used when the index or the counter value

(or both) are not relevant.

The Markov chain " is the least Markov chain "′ such that

B ≡ [0, {0, A0, ℓ1}, 0] is a state of "′ , and if C is a state of "′ then
"′ contains all immediate successors of C defined by the following

rules:
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Rule I. If C = [:, {G, A8 , ℓ9 }, =] where G ∈ {0,1}, �: = ( 9, =), and
: < V , then the immediate successors of C are determined as fol-

lows. First, let :′ be either U or:+1 depending onwhether : = V−1
or : < V − 1, respectively. Furthermore, let �:′ = ( 9 ′, =′), and let

C ′ be either [:′, {0, ( (A8), ℓ9 ′ }, =′] or [:′, {1, (2 (A8), ℓ9 ′ }, =′], depend-
ing on whether =′ = = − 1 or =′ ≥ =, respectively.

Now we distinguish four possibilities (the cases when Ins 9 is

a Type II and Type I instruction are covered by (A)–(B) and (C)–

(D), respectively. In each case, we distinguish between zero and

positive counter values represented by the =).

(A) =′ = = = 0. Then,

% (C, [★, {ℎ,0, ( (A8)},★]) = ^̂̂1,

% (C, C ′) = ^̂̂2,

% (C, [★, {ℎ, 2, (2 (A8), 4},★]) = 1−@,
% (C, [★, {ℎ, 2, (2 (A8)},★]) = @−^̂̂1−^̂̂2 .

(B) =′ = = − 1. We put

% (C, C ′) = f= (^̂̂)1,
% (C, [★, {ℎ,1, (2 (A8)},★]) = f= (^̂̂)2,

% (C, [★, {ℎ, 2, (2 (A8), 4},★]) = 1−@,
% (C, [★, {ℎ, 2, (2 (A8)},★]) = @−f= (^̂̂)1−f= (^̂̂)2 .

(C) =′ = 1 and = = 0. Then,

% (C, [★, {ℎ,0, ( (A8)},★]) = ^̂̂1,

% (C, C ′) = ^̂̂2,

% (C, [★, {2, (2 (A8), 4}, 1]) = 1−@,
% (C, [★, {2, (2 (A8)}, 1]) = @−̂^̂1−^̂̂2

(D) =′ = = + 1 and = > 0. Then,

% (C, [★, {0, ( (A8)}, =−1]) = f= (^̂̂)1,
% (C, C ′) = f= (^̂̂)2,

% (C, [★, {2, (2 (A8), 4}, =+1]) = 1−@,
% (C, [★, {2, (2 (A8)}, =+1]) = @−f= (^̂̂)1−f= (^̂̂)2

Rule II. If C = [★, {0, A8 }, =] where = ≥ 0, we have the following:

if = = 0, then % (C, [★, {ℎ,0, ( (A8)},★]) = f= (^̂̂)1 = ^̂̂1,

if = > 0, then % (C, [★, {0, ( (A8)}, =−1]) = f= (^̂̂)1,
% (C, [★, {ℎ,1, (2 (A8)},★]) = f= (^̂̂)2,
% (C, [★, {ℎ, 2, (2 (A8)},★]) = 1−f= (^̂̂)1−f= (^̂̂)2

Rule III. If C = [★,L, =] where = > 0 and L is {2, A8 } or {2, A8 , 4},
then

% (C, [★, {0, ( (A8)}, =−1)) = f= (^̂̂)1,
% (C, [★, {ℎ,1, (2 (A8)},★) = f= (^̂̂)2,

% (C, [★, {ℎ,2, (2 (A8), 3},★) = ?=,

% (C, [★, {ℎ, 2, (2 (A8)},★) = 1 − f= (^̂̂)1 − f= (^̂̂)2 − ?=

where

?= =
W − (1−@)f=−1 (^̂̂)2
1 − f= (^̂̂)1 − f= (^̂̂)2

Note that 0 < ?= < 1 − f= (^̂̂)1 − f= (^̂̂)2 due to the constraints

imposed on W and ^̂̂ at the beginning of Section 5. More precisely,

the constraint W > (1−@)^̂̂2 ensures that ?= > 0, and the constraint

W <
3
4@ − 5

4@ + 1
2@

2 ensures that 2?= < 1 − (2(@− 1
2 ) + (1−@))

(recall that ^̂̂1 + ^̂̂1 < @ − 1
2 and f< (^̂̂) is strictly less than ^̂̂ in

both components for every < ≥ 0). This is more than we need

here; the constraints are chosen so that they also satisfy stronger

requirements needed in the proof of Theorem 6.2.

Rule IV. If C = [★,L,★], then % (C, C) = 1.

Note that if l is periodic, then " has finitely many states. It is

easy to check that B |= k by verifying that every state of" satisfies

either Fin, Transient, or Free. In particular, every state of the form

[], {1, A8 , ℓ9 }, =] where Ins 9 is a Type I instruction satisfies FFF2=W
(
(1∧

(4 (A8))∨3
)
andFFF2=W

(
(2∧(4 (A8)∧4)∨3

)
. This is where we need the

constant ?= of Rule III. Clearly, B covers the computation l (and

no other computation).

6 SIMULATING MINSKY MACHINES WITH
TWO COUNTERS

In this section, we show how to simulate non-deterministic two-

counter Minsky machines by PCTL formulae. Technically, we con-

struct a PCTL formula simulating a synchronized products of two

non-deterministic one-counter Minsky machines defined in the

next paragraph.

Let

M1 ≡ 1 : Ins11; · · ·< : Ins1< ;

M2 ≡ 1 : Ins21; · · ·< : Ins2< ;

be nondetermnistic one-counter Minsky machines with< instruc-

tions and � = (�1, �2) a partition of {1, . . . ,<}, i.e., �1 ∪ �2 =

{1, . . . ,<} and �1 ∩ �2 = ∅. An � -synchronized product of M1,M2,

denoted byM1×� M2, is an automaton6 operating over two coun-

ters in the following way.

A configuration of M1 ×� M2 is a triple ( 9, =1, =2) where

9 ∈ {1, . . . ,<} and =1, =2 ∈ N are counter values. For every

configuration ( 9, =1, =2) of M1 ×� M2, the successor configura-

tions ( 9 ′, =′1, =
′
2) are determined as follows (recall that ↦→ denotes

the “standard” computational step of a Minsky machine, see Sec-

tion 2.3):

• If 9 ∈ �1, then 9 ′, =′1, =
′
2 are integers satisfying ( 9, =1) ↦→

( 9 ′, =′1) inM1 and ( 9, =2) ↦→ ( 9 ′′, =′2) inM2 (for some 9 ′′ ∈
{1, . . . ,<}).

• If 9 ∈ �2, then 9 ′, =′1, =
′
2 are integers satisfying ( 9, =1) ↦→

( 9 ′′, =′1) inM1 and ( 9, =2) ↦→ ( 9 ′, =′2) inM2 (for some 9 ′′ ∈
{1, . . . ,<}).

In other words,M1×� M2 simultaneously executes the instruc-

tions Ins19 and Ins29 operating on the first and the second counter,

and the next 9 ′ is determined by either Ins19 or Ins29 , depending

on whether 9 ∈ �1 or 9 ∈ �2, respectively. Note that the counter

values =′1 and =
′
2 are the same in every successor configuration of

( 9, =1, =2).
We write ( 9, =1, =2) { ( 9 ′, =′1, =

′
2) when ( 9 ′, =′1, =

′
2) is a succes-

sor of ( 9, =1, =2). A computation of M1 ×� M2 is an infinite se-

quence of configurations l ≡ �0, �1, . . . such that �8 { �8+1
for all 8 ∈ N. The boundedness and the recurrent reachability

6M1 ×� M2 is a non-standard computational model introduced specifically for pur-
poses of this paper. Encoding the computation of M1 ×� M2 by a PCTL formula is
substantially easier than encoding the computation of a two-counterMinskymachine.
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problems for M1 ×� M2 are defined in the same way as for non-

deterministic Minsky machines (see Section 2.3).

A synchronized product of two one-counter Minsky machines

can faithfully simulate a two-counter Minsky machine. Thus, we

obtain the following:

Proposition 6.1. The boundedness problem for a synchronized

product of two deterministic one-counter Misky machines is Σ01-hard.

The recurrent reachability problem for a synchronized product of two

non-deterministic one-counter Misky machines is Σ11-hard.

Let M1 ×� M2 be a synchronized product of two non-

deterministic one-counter Misky machines with < instructions.

Recall the set A defined in Section 5.1. For : ∈ {1, 2}, let A:
=

{?: | ? ∈ A} be a set of atomic propositions such thatA1 ∩A2
=

∅.
Let " = ((, %, E) be a Markov chain. For all C ∈ ( and : ∈ {1, 2},

we use EEE: [C] ∈ [0, 1]2 to denote the :-th characteristic vector of C

where

• EEE: [C]1 is the probability of satisfying the path formula XXX0:

in the state C ;

• EEE: [C]2 is the probability of satisfying the path formula XXX1:

in the state C .

A state C ∈ ( represents a configuration (8, =1, =2) of M1 ×� M2

iff C |= ℓ18 ∧ ℓ28 , C 6 |= ℓ19 ∧ ℓ29 for all 9 ≠ 8 , EEE1 [C] = f=1 (^̂̂), and
EEE2 [C] = f=2 (^̂̂). Furthermore, we say that a state B ∈ ( simulates

M1×�M2 if B represents (1, 0, 0) and every state C reachable from B

satisfies the following condition: If C represents a configuration �

ofM1×�M2, then at least one immediate successor of C represents

a successor configuration of � . Furthermore, for every immediate

successor C ′ of C that does not represent a successor of � we have

that C ′ |= GGG=1
∧<

8=1 ¬(ℓ18 ∧ ℓ28 ).
Let B ∈ ( be a state simulatingM1 ×� M2, and let B0, B1, . . . be a

run of " such that B0 = B and every B8 represents a configuration

�8 of M1 ×� M2. Then �0, �1, . . . is a computation of M1 ×� M2

covered by B .

Now, we formulate the main technical result of this paper.

Theorem 6.2. Let M1 ×� M2 be a synchronized product of two

non-deterministic one-counter Minsky machines. Then there is an ef-

fectively constructible PCTL formula Ψ satisfying the following con-

ditions:

(A) For every Markov chain " and every state B of " , we have

that if B |= Ψ, then B simulatesM1 ×� M2.

(B) For every computation l ofM1 ×� M2, there exists a Markov

chain " and a state B of " such that B |= Ψ and B covers l .

Furthermore, if l is periodic, then" has finitely many states.

Observe the following:

• Let M1 ×� M2 be a synchronized product of two deter-

ministic one-counter Minsky machines. Then, M1 ×� M2

is bounded iff the only computationl ofM1 ×� M2 is peri-

odic. By Theorem 6.2, we obtain thatM1×� M2 is bounded

iff Ψ is finite-satisfiable.

• Let M1 ×� M2 be a synchronized product of two

non-deterministic one-counter Minsky machines. Then

M1 ×� M2 has a recurrent computation iff the formula

Ψ ∧ GGG=1

(
(ℓ11 ∧ ℓ21 ) ⇒ FFF>0 (ℓ11 ∧ ℓ21 )

)

is (generally) satisfiable.

Thus, we obtain the following corollary to Theorem 6.2:

Corollary 6.3. The finite satisfiability problem for PCTL is

Σ
0
1-hard, and the general satisfiability problem pro PCTL is Σ11-hard.

6.1 Constructing Ψ

For the rest of this section, we fix the following non-deterministic

one-counter Minsky machines:

M1 ≡ 1 : Ins11; · · ·< : Ins1< ;

M2 ≡ 1 : Ins21; · · ·< : Ins2< ;

Furthermore, we fix a partition � = (�1, �2) of {1, . . . ,<}.
Roughly speaking, the formula Ψ is obtained by “merging” the

formulaek1 andk2 of Section 5 constructed forM1 andM2 using

the disjoint sets of atomic propositionsA1 andA2. The main mod-

ification is in the subformulae LTrans ofk1 andk2, where we need

to adjust the way of selecting the propositions of Labels passed

to the successors so that the operational semantics of M1 ×� M2

is reflected properly. When constructingk1 andk2, we assume the

constants @, ^̂̂ , and W satisfying the same constraints as in Section 5

(these constants are used in bothk1 and k2).

The set of atomic propositions used in Ψ is A1 ∪ A2. For ev-

ery formula Form constructed in Section 5 and : ∈ {1, 2}, we use
Form: to denote the formula obtained from Form by replacing all

propositions of A with A: . For example, C |= 〈〈0, A8〉〉〈〈0, A8 〉〉〈〈0, A8 〉〉1 if C satisfies
both 01 and A18 , and no other proposition of A1. The formula does

not say anything about the validity of the propositions of A2 in C .

Whenwe need to define new formulae overA1 andA2 with the

same structure up to the upper indexes of atomic propositions, we

write a definition of Form: parameterized by the : . For example,

by stipulating Form: ≡ ℎ: ∨ 〈〈0, A8〉〉〈〈0, A8 〉〉〈〈0, A8〉〉: , we simultaneously define

Form1 ≡ ℎ1 ∨ 〈〈0, A8〉〉〈〈0, A8 〉〉〈〈0, A8〉〉1 and Form2 ≡ ℎ2 ∨ 〈〈0, A8 〉〉〈〈0, A8〉〉〈〈0, A8〉〉2. Furthermore,

for : ∈ {1, 2}, the other element of {1, 2} is denoted by :′, i.e.,
{:,:′} = {1, 2}.

We put

Ψ ≡ Init1 ∧ Init2 ∧ GGG=1 (Invariant ∧ LPass)

where

LPass ≡ ©­
«
<∨
9=1

(ℓ19 ∧ ℓ29 )
ª®
¬
⇒ XXX>0

©­
«
<∨
9=1

(ℓ19 ∧ ℓ29 )
ª®
¬

Invariant ≡ (Fin1 ∨ Transient1 ∨ Free1)
∧ (Fin2 ∨ Transient2 ∨ Free2)

Intuitively, if C |= ℓ19 ∧ ℓ29 , then the instructions Ins19 and Ins29 are

“simulated in parallel” in C . The formula LPass enforces the exis-

tence of at least one immediate successor C ′ of C where the succes-
sor instructions Ins19 ′ and Ins29 ′ are again simulated jointly. For all

: ∈ {1, 2}, we put

Transient: ≡ Trans: ∨ CTrans: ∨ LTrans:
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where

LTrans: ≡
( <∨
9=1

(ℓ:9 ∧ ℓ:
′

9 )
)
⇒ Sim:

∧
( <∨
9=1

(ℓ:9 ∧ ¬ℓ:′9 )
)
⇒ Abandon:

Aswe shall see, for every state C reachable from a state satisfying

Ψ we have that C |= ℓ:9 for at most one ℓ9 ∈ Labels. Intuitively, the

formula LTrans: says that when C |= ℓ:9 ∧ℓ
:′
9 , we continuewith sim-

ulating the instruction Ins:9 . If C satisfies a proposition ℓ
:
9 ∈ Labels:

but not the matching proposition ℓ:
′

9 ∈ Labels:
′
, we “abandon” the

simulation. In the latter case, the immediate successors of C must

still have an appropriate structure so that no formula is “spoilt” in

the immediate predecessor of C . This is enforced by the formula

Abandon: . More precisely, we put

Abandon: ≡ (Zero: ⇒ OZer: ) ∧ (¬Zero: ⇒ OPos: ) .
The formulae OZer: and OPos: are defined as follows:

OZer: ≡
∨

8∈{0,...,4}
(A:8 ∧ OZSuc:8 )

OPos: ≡
∨

8∈{0,...,4}
(A:8 ∧ OPSuc:8 ∧ Interval: ∧ Eq:8 )

where

OZSuc:8 ≡ XXX=1
(
〈〈ℎ,0, ( (A8)〉〉〈〈ℎ,0, ( (A8)〉〉〈〈ℎ, 0, ( (A8)〉〉: ∨ 〈〈ℎ,1, (2 (A8)〉〉〈〈ℎ,1, (2 (A8)〉〉〈〈ℎ,1, (2 (A8 )〉〉: ∨ 〈〈ℎ, 2, (2 (A8)〉〉〈〈ℎ, 2, (2 (A8)〉〉〈〈ℎ, 2, (2 (A8)〉〉:

∨ 〈〈ℎ, 2, (2 (A8), 4〉〉〈〈ℎ, 2, (2 (A8), 4〉〉〈〈ℎ, 2, (2 (A8), 4〉〉:
)
∧ XXX=1−@ 〈〈ℎ, 2, (2 (A8), 4〉〉〈〈ℎ, 2, (2 (A8), 4〉〉〈〈ℎ, 2, (2 (A8), 4〉〉:

OPSuc:8 ≡ XXX=1
(
〈〈0, ( (A8)〉〉〈〈0, ( (A8)〉〉〈〈0, ( (A8)〉〉: ∨ 〈〈ℎ,1, (2 (A8)〉〉〈〈ℎ,1, (2 (A8)〉〉〈〈ℎ,1, (2 (A8)〉〉: ∨ 〈〈ℎ, 2, (2 (A8)〉〉〈〈ℎ, 2, (2 (A8)〉〉〈〈ℎ, 2, (2 (A8)〉〉:

∨ 〈〈ℎ, 2, (2 (A8), 4〉〉〈〈ℎ, 2, (2 (A8), 4〉〉〈〈ℎ, 2, (2 (A8), 4〉〉:
)
∧ XXX=1−@ 〈〈ℎ, 2, (2 (A8), 4〉〉〈〈ℎ, 2, (2 (A8), 4〉〉〈〈ℎ, 2, (2 (A8), 4〉〉:

The formulae Sim: , where : ∈ {1, 2}, enforce the simulation of

one computational step ofM1 ×� M2. We put

Sim: ≡
∨

8∈{0,...,4}

∨
ℓ∈Labels

∨
G ∈{0,1 }

(
〈〈G, A8 , ℓ〉〉〈〈G, A8 , ℓ〉〉〈〈G, A8 , ℓ〉〉: ∧ STEP:8,ℓ

)

where the formula STEP:8,ℓ is constructed as follows. Let Ins
:
9 be the

instruction associated with ℓ , i.e., ℓ = ℓ9 . If 9 ∈ �: , then

STEP:8,ℓ ≡ Step:8,ℓ

Now let 9 ∉ �: . For every ! ⊆ Labels where ! has one or two

elements, let Step:8,ℓ [!] be the formula obtained from Step:8,ℓ by

substituting every occurrence of every set of target labels with

!: = {?: | ? ∈ !}. Note that this substitution affects only the

“big disjunction” in the subformulae ZSuc:8,ℓ , PSuc
:
8,ℓ , IZSuc

:
8,ℓ , and

IPSuc:8,ℓ . Now, we distinguish two cases (recall that :′ ≠ : is “the

other index” of {1, 2}).
(A) Ins:

′
9 ≡ if 2=0 then goto ! else dec 2; goto !′ . Then,

STEP:8,ℓ ≡
(
Zero:

′ ⇒ Step:8,ℓ [!]
)
∧

(
¬Zero:′ ⇒ Step:8,ℓ [!

′]
)

(B) Ins:
′
9 ≡ inc 2; goto !. Then,

STEP:8,ℓ ≡ Step:8,ℓ [!]
This completes the construction of Ψ.

6.2 A Proof of Theorem 6.2

Theorem 6.2 is proven by reusing the arguments used in the

proof of Theorem 5.1 with some modifications and extensions. Let

M1 ×� M2 be a synchronized product of two non-deterministic

one-counter Minsky machines with < instructions, and let Ψ be

the formula constructed for M1 ×� M2 in Section 6.1. The two

claims of Theorem 6.2 are proven separately in the following sub-

sections.

6.2.1 A Proof of Theorem 6.2 (A). Let " = ((, %, E) be a Markov

chain such that B |= Ψ for some B ∈ ( . For every : ∈ {1, 2}, let ):

be the set of all C ∈ ( reachable from B such that C 6 |= ℎ: . It is easy

to verify that the conditions of Theorem 3.8 are satisfied for both

) 1 and) 2, where EEE1 [C] and EEE2 [C] play the role of EEE [C], respectively.
We show that B simulates M1 ×� M2. Clearly, B represents the

configuration (1, 0, 0) because B |= Init1 ∧ Init2. Let C be a state

reachable from B such that C represents a configuration ( 9, =1, =2).
Let =′1, =

′
2 ∈ N be the (unique) counter values in a successor con-

figuration of ( 9, =1, =2), and let ! be the set of all 9 ′ such that

( 9, =1, =2) { ( 9 ′, =′1, =
′
2).

Observe that C |= Sim1∧Sim2 and hence C |= STEP18,ℓ9
∧STEP28 ′,ℓ9

for some 8, 8′ ∈ {0, . . . , 4}. Let C ′ be an immediate successor of C

such that C ′ |= ℓ19 ′ ∧ ℓ29 ′ for some 9 ′ ≤ <. Then 9 ′ ∈ ! by the

definition of STEP:8,ℓ . Furthermore, at least one such C ′ must exist

because C |= LPass. By using the arguments of Section 5.2.1, we ob-

tain that EEE1 [C ′] = f=
′
1 (^̂̂) and EEE2 [C ′] = f=

′
2 (^̂̂). Hence, C ′ represents

a successor configuration of ( 9, =1, =2). Also observe that if C ′′ is an
immediate successor of C satisfying the formula

∧<
9=1 ¬(ℓ19 ∧ ℓ29 ),

then all states reachable from C ′′ also satisfy this formula.

6.2.2 A Proof of Theorem 6.2 (B). Let l = �0, �1, . . . be a compu-

tation of M1 ×� M2. If l is periodic, we fix U, V such that U < V

and the computations �U−1, �U , �U+1, . . . and �V−1, �V , �V+1, . . .
are the same. If l is not periodic, then V = ∞ and U is undefined.

For every configuration�8 = ( 9, =1, =2) ofl , let�1
8 = ( 9, =1) and

�2
8 = ( 9, =2) be the corresponding configurations of M1 and M2.

Furthermore, we define the infinite sequences l1
= �1

0,�
1
1, �

1
2, . . .

and l2
= �2

0,�
2
1, �

2
2, . . .. Note that l1 and l2 are not necessarily

computations ofM1 andM2. However, for all : ∈ {1, 2} and 8 ∈ N,
we have that if�:

8 = ( 9, =) and�:
8+1 = ( 9 ′, =′), then there is 9 ′′ ≤<

such that ( 9, =) ↦→ ( 9 ′′, =′) is a computational step ofM: . In other

words, =′ is obtained from = by executing Ins 9 in M: .

We construct a Markov chain " = ((, %, E) and a state B ∈ (

such that B |= Ψ and B covers l . If V < ∞, then ( is finite.

The states of( are tuples of the form C = [],L1,L2, =1, =2] where
] ∈ {8 ∈ N | 0 ≤ 8 < V} ∪ {★}, L1,L2 ⊆ A, and =1, =2 ∈ N ∪ {★}.
The set E (C) of atomic propositions satisfied in C is {?1 | ? ∈ L1} ∪
{?2 | ? ∈ L2}.

Each state C = [],L1,L2, =1, =2] of ( determines two projec-

tions C1 = [],L1, =1] and C2 = [],L2, =2]. Conversely, for all

D1 = [],L1, =1] and D2 = [],L2, =2] where ],L1,L2, =1, =2 sat-

isfy the conditions of the previous paragraph we define a tuple

D1 ⊎ D2 = [],L1,L2, =1, =2].
The Markov chain" is the least Markov chain"′ such that B =

[0, {0, A0, ℓ1}, {0, A0, ℓ1}, 0, 0] is a state of"′ , and if C is a state of"′ ,
then"′ contains all immediate successors of C defined by the rules



PCTL Satisfiability is Undecidable , ,

given below. The rules are designed so that for every C ∈ ( , the

immediate successors of the projections C1 and C2 are defined by the

rules of Section 5.2.2 whereM1 andM2 are used as the underlying

one-counter Minsky machines, the infinite sequences l1 and l2

play the role of the fixed computation l , and the constants U and

V refer to the constants fixed above. Recall that l is used only in

Rule I of Section 5.2.2, and this rule makes a clear sense also for l1

andl2. Also recall that the set succ(C: ) of all immediate successors

of C: (where : ∈ {1, 2}) satisfies precisely one of the following

conditions:

• succ(C: ) = {C: }. This happens iff C: |= ℎ.

• succ(C: ) contains precisely three states satisfying the propo-
sitions 0, 1, and 2 , respectively, such that the last state does

not satisfy 3 ∨ 4 . These states are denoted by ta: , tb: , and

tc: , respectively.

• succ(C: ) has precisely four states; apart of ta: , tb: , and tc: ,

there is also the fourth state satisfying 3 or 4 . This fourth

state is denoted by tx: .

Now we can define the closure rules.

Rule A. If C = [:, {G, A8 , ℓ9 }, {G′, A8 ′ , ℓ9 }, =1, =2] where G, G′ ∈ {0,1},
8, 8′ ∈ {0, . . . , 4}, then the immediate successors of C are defined as

follows. Let C ′1 ∈ succ (C1) and C ′2 ∈ succ(C2) be the unique states sat-
isfying some proposition of Labels. Observe that C ′1 = [:′,L1, =1]
and C ′2 = [:′,L2, =2] where L1 and L2 contain the same propo-

sition of Labels (this follows immediately by inspecting Rule I of

Section 5.2.2 and the definitions of l1 and l2). We put

% (C, C ′1 ⊎ C ′2) = min{% (C1, C ′1), % (C2, C
′
2)} .

Furthermore,

• if % (C1, C ′1) > % (C2, C ′2), then

% (C, C ′1 ⊎ tc2) = % (C1, C ′1) − % (C2, C ′2);
• if % (C2, C ′2) > % (C1, C ′1), then

% (C, tc1 ⊎ C ′2) = % (C2, C ′2) − % (C1, C ′1);
• for all C ′′1 ∈ succ(C1) where C ′′1 ≠ C ′1 and C

′′
1 ∈ {ta1, tb1, tx1},

% (C, C ′′1 ⊎ tc2) = % (C1, C ′′1 );
• for all C ′′2 ∈ succ(C2) where C ′′2 ≠ C ′2 and C

′′
2 ∈ {ta2, tb2, tx2},

% (C, tc1 ⊎ C ′′2 ) = % (C2, C ′′2 );
• finally, we put % (C, tc1 ⊎ tc2) = 1 − B where B is the sum of

all % (C, ·) defined above.

Note that B < 1 due to the constraints on @ and ^̂̂ adopted in Sec-

tion 5.

Rule B. If C = [:,L1,L2, =1, =2] where L1 ∩ Labels ≠ ∅,
L2 ∩ Labels = ∅, and ℎ ∉ L2 , then L1 contains precisely one

A8 ∈ {A0, . . . , A4}, and we distinguish two subcases.

=1 = 0=1 = 0=1 = 0. Then

% (C, [★, {ℎ,0, ( (A8)},★] ⊎ tc2) = ^̂̂1,

% (C, [★, {ℎ,1, (2 (A8)},★] ⊎ tc2) = ^̂̂2,

% (C, [★, {ℎ, 2, (2 (A8), 4},★] ⊎ tc2) = 1 − @ .

Furthermore, for every C ′′2 ∈ {ta2, tb2, tx2}, we put

% (C, [★, {ℎ,2, (2 (A8)},★] ⊎ C ′′2 ) = % (C2, C ′′2 ) .

Finally, we put % (C, [★, {ℎ, 2, (2 (A8)},★] ⊎ tc2) = 1−B where B is the
sum of all % (C, ·) defined above.

= > 0= > 0= > 0. Then

% (C, [★, {0, ( (A8)}, =−1] ⊎ tc2) = f= (^̂̂)1,
% (C, [★, {ℎ,1, (2 (A8)},★] ⊎ tc2) = f= (^̂̂)2,

% (C, [★, {ℎ,2, (2 (A8), 4},★] ⊎ tc2) = 1 − @ .

Furthermore, for every C ′′2 ∈ {ta2, tb2, tx2},

% (C, [★, {ℎ, 2, (2 (A8)},★] ⊎ C ′′2 ) = % (C2, C ′′2 ) .
Finally, we put % (C, [★, {ℎ, 2, (2 (A8)},★] ⊎ tc2) = 1−B where B is the
sum of all % (C, ·) defined above.

Rule C. If C = [:,L1,L2, =1, =2] where L2 ∩ Labels ≠ ∅,
L1 ∩ Labels = ∅, and ℎ ∉ L1, then the immediate successors of

C are defined similarly as in Rule B (Rule C is fully symmetric to

Rule B).

Rule D. If C = [:,L1,L2, =1, =2] where L1 ∩ Labels = ∅, L2 ∩
Labels = ∅, ℎ ∉ L1 , and ℎ ∉ L2, then the immediate successors or

C are defined as follows. For every C ′′1 ∈ {ta1, tb1, tx1},
% (C, C ′′1 ⊎ tc2) = % (C1, C ′′1 ) .

Similarly, for all C ′′2 ∈ {ta2, tb2, tx2},
% (C, tc1 ⊎ C ′′2 ) = % (C2, C ′′2 ) .

Finally, % (C, tc1⊎ tc2) = 1−B , where B is the sum of all % (C, ·) above.

Rule E. If C = [:,L1,L2, =1,★] where ℎ ∉ L1 and ℎ ∈ L2, then

% (C, C ′1 ⊎ C2) = % (C1, C ′1) for all C
′
1 ∈ succ(C1).

Rule F. If C = [:,L1,L2, =1,★] where ℎ ∈ L1 and ℎ ∉ L2 , then

% (C, C1 ⊎ C ′2) = % (C2, C ′2) for all C
′
2 ∈ succ(C2).

Rule G. If C = [:,L1,L2, =1,★] where ℎ ∈ L1 and ℎ ∈ L2 , then

% (C, C) = 1.

If the computation l is periodic, then the constructed Markov

chain " has finitely many states. A routine check (similar to the

one performed in the proof of Theorem 5.1 (B)) reveals that the

state B = [0, {0, A0, ℓ1}, {0, A0, ℓ1}, 0, 0] satisfies Ψ and covers the

computation l .

7 CONCLUSIONS

We have shown that the general/finite PCTL satisfiability prob-

lems are undecidable. Note that the formula Ψ constructed in the

proof of Theorem 6.2 is always generally satisfiable, which implies

that the finite satisfiability problem for PCTL is undecidable even

for the subset of generally satisfiable PCTL formulae. Furthermore,

the undecidability result remains valid even if the set of eligible fi-

nite models is restricted to tree-like models, where the underlying

graph of a Markov chain is a tree with self-loops on all leaves (this

requires a slight modification of our construction). Finally, let us

note that the construction of Theorem 6.2 applies also to a univer-

sal Minsky machine. Hence, fixed parameterized PCTL formulae

exist such that the general/finite satisfiability of their instances is

undecidable.
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Appendix
Here, we provide the proofs omitted in the main body of the

paper due to space constraints.

Lemma 3.3. For every EEE ∈, , we have the following:

(a) g (EEE), f (EEE) ∈, ;

(b) g (EEE)1 > EEE1 and g (EEE)2 ≥ EEE2; if EEE2 > 0, then g (EEE)2 > EEE2;

(c) letDDD = (EEE1, 0); then slope(DDD, g (EEE)) = slope(g (EEE), g2 (EEE));
(d) let DDD = (EEE1, ~) where 0 ≤ ~ < EEE2. Then slope(DDD, g (DDD)) <

slope(EEE, g (EEE));
(e) f (g (EEE)) = g (f (EEE)) = EEE .

Proof. Recall that

�@ =

(
1 − √

4@ − 3

2
,
1 + √

4@ − 3

2

)
, = �@ × [0,∞)

g (EEE) =

(
@−1+EEE1

EEE1
,
EEE2

EEE1

)

f (EEE) =

(
1−@
1−EEE1

,
EEE2 (1−@)
1−EEE1

)

Item (a). Let EEE ∈, . We show that g (EEE) ∈, . Observe

g (EEE)1 = 1 − 1 − @

EEE1

< 1 − 2(1 − @)
1 − √

4@ − 3

= 1 − (2 − 2@)
1 − √

4@ − 3
· 1 +

√
4@ − 3

1 + √
4@ − 3

= 1 − (2 − 2@)(1 + √
4@ − 3)

4 − 4@

=
1 + √

4@ − 3

2

Similarly, we obtain g (EEE)1 >
1−√4@−3

2 , and hence g (EEE)1 ∈ �@ . Since

g (EEE)2 = EEE2/EEE1 > 0, we have that g (EEE) ∈, as required.

Now we show that f (EEE) ∈, . Observe

f (EEE)1 =
1 − @

1 − EEE1

<
1 − @

1 − 1+√4@−3
2

=
2(1 − @)

1 − √
4@ − 3

· 1 +
√
4@ − 3

1 + √
4@ − 3

=
1 + √

4@ − 3

2

Similarly, we obtain f (EEE )1 >
1−√4@−3

2 . Since f (EEE )2 = EEE2 (1−@)
1−EEE1 > 0,

we have that f (EEE) ∈, .

Item (b). Let EEE ∈ , . Observe that g (EEE)1 > EEE1 iff (@−1+EEE1)/EEE1 >

EEE1 iff EEE21 − EEE1 − @ + 1 < 0 iff EEE1 ∈ �@ . This explains our choice of �@ .

Furthermore, g (EEE)2 = EEE2/EEE1 ≥ EEE2; if EEE2 > 0, then g (EEE)2 > EEE2.

Item (c). Let EEE ∈, . Observe

slope(DDD, g (EEE)) =
g (EEE)2

g (EEE)1 − EEE1
=

EEE2

@ − 1 + EEE1 (1 − EEE1)
Similarly,

slope(g (EEE), g2 (EEE)) =
g (EEE)2 (1 − g (EEE)1)

@ − 1 + g (EEE)1 (1 − g (EEE1))

=

EEE2
EEE1

(
1 − @−1+EEE1

EEE1

)
@ − 1 + @−1+EEE1

EEE1

(
1 − @−1+EEE1

EEE1

)

=

EEE2
EEE1

(
1−@
EEE1

)
@ − 1 + @−1+EEE1

EEE1

(
1−@
EEE1

)

=
EEE2

@ − 1 + EEE1 (1 − EEE1)

Hence, slope(DDD, g (EEE)) = slope(g (EEE), g2 (EEE)).
Item (d). Realize that

slope(DDD, g (DDD)) =
~ (1 − EEE1)

@ − 1 + EEE1 (1 − EEE1)

slope(EEE, g (EEE)) =
EEE2 (1 − EEE1)

@ − 1 + EEE1 (1 − EEE1)
SInce 0 ≤ ~ < EEE2, we have that slope(DDD, g (DDD)) < slope(EEE, g (EEE)).

Item (e). It is trivial to verify that f (g (EEE)) = g (f (EEE) = EEE for every

EEE ∈, . �

Lemma 3.5. For every EEE ∈ , where EEE2 > 0 and every DDD ∈
Points(EEE), we have the following:

(a) If DDD is a positive convex combination of D1D1D1,D2D2D2, . . . where D8D8D8 ∈
Area(EEE) for all 8 ∈ N, thenD8D8D8 = DDD for all 8 ∈ N.

(b) If FFF ∈ !(DDD) is a positive convex combination of D1D1D1,D2D2D2, . . .

whereD8D8D8 ∈ Area(EEE) for all 8 ∈ N, thenD8D8D8 ∈ !(DDD) ∪ {g (DDD)} for
all 8 ∈ N.

Proof. Let EEE ∈ , . All claims follow directly from Lemma 3.3.

More concretely, for every DDD ∈ Points(EEE), we have that both DDD

and !(DDD) are faces of the convex set Area(EEE) (see, e.g., Section 2.6

in [23]), and the claims (A) and (B) are just instances of the defining

property of a face. �

Lemma 3.6. LetFFF ∈, andDDD ∈ !(FFF ). Then g (DDD) ∈ !(g (FFF)).

Proof. It is easy to verify that for all GGG,~~~ ∈, and all _ ∈ (0, 1]
we have that

g (_GGG + (1−_)~~~) = _′g (GGG) + (1−_′)g (~~~)

where

_′ =
_GGG1

_GGG1 + (1−_)~~~1
Observe that _′ ∈ (0, 1]. The lemma follows by putting GGG = FFF ,

~~~ = g (FFF) and choosing _ so thatDDD = _FFF + (1−_)g (FFF ). �

Lemma 3.7. For all EEE ∈, r Area(^̂̂) where EEE1 ≤ ^̂̂1, there exists

DDD ∈, rArea(^̂̂) such thatDDD1 = f: (^̂̂)1 for some : ≥ 0 and EEE ∈ !(DDD).
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Proof. First, we show that

lim
:→∞

f: (^̂̂)1 =
1 − √

4@ − 3

2
(12)

Let

�@ =

[
1 − √

4@ − 3

2
, ^̂̂1

]

By Lemma 3.3, the infinite sequence ^̂̂1, f (^̂̂ )1, f2 (^̂̂)1, . . . is de-

creasing and bounded from below by (1 − √
4@ − 3)/2. Conse-

quently, the sequence has a limit U ∈ �@ , and hence it is also a

Cauchy sequence, i.e.,

lim
:→∞

f:+1 (^̂̂)1 − f: (^̂̂)1 = 0 .

Consider the function 5 : �@ → R where

5 (G) =
1 − @ − G (1 − G)

1 − G

Observe that 5 is non-negative and continuous. Furthermore,

5 (G) = 0 iff G = (1−√
4@ − 3)/2. Observe that for every : ∈ N, we

have that

f:+1 (^̂̂)1 − f: (^̂̂)1 = 5 (f: (^̂̂)1) .
Hence,

0 = lim
:→∞

f:+1 (^̂̂)1 − f: (^̂̂)1 = lim
:→∞

5 (f: (^̂̂)1) = 5 (U)

which implies U = (1 − √
4@ − 3)/2.

Now let EEE ∈ , r Area(^̂̂) where EEE1 ≤ ^̂̂1. By (12), there exist

: ∈ N such that f: (^̂̂)1 ≤ EEE1 < f:−1 (^̂̂)1. We putDDD1 = f: (^̂̂)1 and
chooseDDD2 so that

slope(DDD, g (DDD)) = slope(DDD,EEE) .
Hence, we require that

DDD2 (1 −DDD1)
@ − 1 +DDD1 (1 −DDD1)

=
EEE2 −DDD2

EEE1 −DDD1

From this, we obtain

DDD2 =
EEE2 (@ − 1 +DDD1 (1 −DDD1))

EEE1 −DDD1 + @ − 1 +DDD1 (1 −DDD1)
and the proof is finished. �

Proposition 6.1. The boundedness problem for a synchronized

product of two deterministic one-counter Misky machines is Σ01-hard.

The recurrent reachability problem for a synchronized product of two

non-deterministic one-counter Misky machines is Σ11-hard.

Proof. Let M ≡ 1 : Ins1; · · ·< : Ins< ; be a non-deterministic

two-counterMinskymachine. We start by transformingM into an-

other two-counter Minsky machine M̂ with 3< instructions con-

structed as follows:

• The first < instructions of M̂ are the same as the instruc-

tions ofM .

• For every 9 ∈ {1, . . . ,<}, the machine "̂ contains the fol-

lowing labeled instructions:

– <+9 : if 21=0 then goto {1} else dec 21; goto { 9}
– 2<+ 9 : if 22=0 then goto {1} else dec 22; goto { 9}
As we shall see, the target labels in the then branches are

insignificant and can be chosen arbitrarily.

Observe that M̂ has the same set of computations as M , because

the newly added instructions are not reachable from the initial con-

figuration. Furthermore, if M is deterministic, then M̂ is also de-

terministic.

Let !1, !2 ⊆ {1, . . . , 3<} be the sets of labels of all instructions of
M̂ operating on 21 and 22, respectively. Now,we construct two one-

counter Minsky machines M1,M2 whose synchronized product

simulates M̂ .

Both M1 and M2 have 6< instructions. For notation conve-

nience, the labels of M1,M2 are written as pairs (ℓ, 0), (ℓ,+),
where ℓ ∈ {1, . . . , 3<}.

For every ℓ ∈ {1, . . . , 3<}, the instructions labeled by (ℓ, 0) and
(ℓ,+) are constructed as follows: Let Insℓ be the instruction of M̂
with label ℓ . If ℓ ∈ !1, then

• M1 contains the instruction (ℓ, 0) : Ins, where Ins is ob-

tained from Insℓ as follows:

– 21 is replaced with 2;

– each set of target labels ! occurring in Insℓ is replaced

with ! obtained from ! by replacing every D ∈ ! with

either (D,+) or (2<+D, 0), depending on whether D ∈ !1
or D ∈ !2, respectively.

• M2 contains the instruction (ℓ, 0) : inc 2; goto {1}
• M1 contains the instruction (ℓ,+) : Ins, where Ins is ob-

tained from Insℓ as follows:

– 21 is replaced with 2;

– each set of target labels ! occurring in Insℓ is replaced

with ! obtained from ! by replacing every D ∈ ! with

(D, 0).
• M2 contains the instruction

(ℓ,+) : if 2=0 then goto {1} else dec 2; goto {1}

If ℓ ∈ !2, then

• M2 contains the instruction (ℓ, 0) : Ins, where Ins is ob-

tained from Insℓ as follows:

– 22 is replaced with 2;

– each set of target labels ! occurring in Insℓ is replaced

with ! obtained from ! by replacing every D ∈ ! with

either (D,+) or (<+D, 0), depending on whether D ∈ !2 or

D ∈ !1, respectively.

• M1 contains the instruction (ℓ, 0) : inc 2; goto {1}
• M2 contains the instruction (ℓ,+) : Ins, where Ins is ob-

tained from Insℓ as follows:

– 22 is replaced with 2;

– each set of target labels ! occurring in Insℓ is replaced

with ! obtained from ! by replacing every D ∈ ! with

(D, 0).
• M1 contains the instruction

(ℓ,+) : if 2=0 then goto {1} else dec 2; goto {1}

Furthermore, we put � = (�1, �2), where �1 is the set of all

(ℓ, 0), (ℓ, +) such that ℓ ∈ !1, and �2 contains the other labels. The

computation ofM1×�M2 starts by executing the instructionswith

label (1, 0).
Intuitively, M1 ×� M2 simulates M̂ where the instructions

on 21 and 22 are performed by M1 and M2, respectively. As



PCTL Satisfiability is Undecidable , ,

long as M1 performs instructions on 21, M2 keeps increment-

ing/decrementing 22 alternately (the flags + and 0 in the label in-

dicate whether the “inactive” counter should be decremented or

incremented; note that we only decrement the inactive counter

when it was incremented before, and hence its value is certainly

positive). When an instruction operating on 22 is reached, the con-

trol is passed to M2. Before executing the instruction on 22, M2

possibly decrements 22 to restore its value. It is easy to check that

M is deterministic and bounded iffM1×� M2 is deterministic and

bounded, andM has a recurrent computation iffM1 ×� M2 has a

recurrent computation.

�
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