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RINGS WHOSE NON-INVERTIBLE ELEMENTS ARE

STRONGLY NIL-CLEAN

PETER DANCHEV, OMID HASANZADEH, ARASH JAVAN, AND AHMAD MOUSSAVI

Abstract. We consider in-depth and characterize in certain aspects those rings
whose non-units are strongly nil-clean in the sense that they are a sum of com-
muting nilpotent and idempotent. In addition, we examine those rings in which
the non-units are uniquely nil-clean in the sense that they are a sum of a nilpotent
and an unique idempotent. In fact, we succeeded to prove that these two classes
of rings can completely be characterized in terms of already well-studied and fully
described sorts of rings.

1. Introduction and Basic Concepts

Everywhere in the current paper, let R be an associative but not necessarily
commutative ring having identity element, usually stated as 1. Standardly, for such
a ring R, the letters U(R), Nil(R) and Id(R) are designed for the set of invertible
elements (also termed as the unit group of R), the set of nilpotent elements and the
set of idempotent elements in R, respectively. Likewise, J(R) denotes the Jacobson
radical of R, and Z(R) denotes the center of R. The ring of n× n matrices over R
and the ring of n× n upper triangular matrices over R are denoted by Mn(R) and
Tn(R), respectively. Standardly, a ring is said to be abelian if each of its idempotents
is central, that is, Id(R) ⊆ Z(R).

In order to present our achievements here, we now need the necessary background
material as follows: Mimicking [14], an element a from a ring R is called clean if
there exists e ∈ Id(R) such that a− e ∈ U(R). Then, R is said to be clean if each
element of R is clean. In addition, a is called strongly clean provided ae = ea and,
if each element of R are strongly clean, then R is said to strongly clean too. On the
other hand, imitating [24], a ∈ R is called uniquely clean if there exists a unique
e ∈ Id(R) such that a − e ∈ U(R). In particular, a ring R is said to be uniquely
clean (or just UC for short) if every element in R is uniquely clean. Generalizing
these notions, in [5] was defined an element a ∈ R to be uniquely strongly clean if
there exists a unique e ∈ Id(R) such that a− e ∈ U(R) and ae = ea. In particular,
a ring R is uniquely strongly clean (or just USC for short) if each element in R is
uniquely strongly clean. A ring R is generalized uniquely clean (or just GUC for
short) if every non-invertible element of R is uniquely clean, which was introduced
in [13]. A ring is called a generalized uniquely strongly clean ring (or just GUSC
for short) if every non-invertible element is uniquely strongly clean. These rings are
generalization of USC rings, which was introduced in [10].
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Let R be a ring. An element r ∈ R is said to be nil-clean if there is an idempotent
e ∈ R and a nilpotent b ∈ R such that r = e+ b. Such an element r is further called
strongly nil-clean if the existing idempotent and nilpotent can be chosen such that
be = eb. A ring is called nil-clean (respectively, strongly nil-clean) if each of its
elements is nil-clean (respectively, strongly nil-clean). Nil-clean and strongly nil-
clean rings was introduced by Diesl in [12]. An element a in a ring R is called
uniquely nil-clean (or just UNC for short) if there is a unique idempotent e such
that a−e is nilpotent. We will say that a ring is uniquely nil-clean (or just UNC for
short) if each of its elements is uniquely nil-clean. These rings were also introduced
by Diesl in [12]. A ring R is called a UU ring if U(R) = 1 + Nil(R), which was
introduced by Calugareanu [1] and studied in more details by Danchev and Lam
in [?]. Diesl in [12] proved that a unit u of R is strangly nil-clean if and only if
u ∈ 1 + Nil(R). In particular, R is a UU ring if and only if every unit of R is
strongly nil-clean. It is clear that the UU rings are generalization of strongly nil-
clean rings. Also, Karimi-Mansoub et al in [16] proved that a ring R is a UU if
and only if every unit of R is uniquely nil-clean. It is also clear that UU rings are
generalization of uniquely nil-clean rings. So, this idea comes to mind that what
can be said about rings whose non-invertible elements are strongly nil-clean and
rings whose non-invertible elements are uniquely nil-clean. Also we know that UU
ring need not be strongly clean. Thus, a natural problem is what generalizations of
strongly nil-clean and uniquely nil-clean rings can be found that are strongly clean.
In this paper, we introduce two families of rings. The first one is a generalization of
uniquely nil-clean rings which is a subclass of strongly clean rings and, the second
one is a generalization of strongly nil-clean rings which are strongly π-regular and
strongly clean. These families include rings in which each non-invertible element is
uniquely nil-clean (or just GUNC for short) and rings in which every non-invertible
element is strongly nil-clean (or just GSNC for short). Various extensions of these
rings will be studied.

We are now planning to give a brief program of our results established in the
sequel: In the next second section, we establish some fundamental characterization
properties of GUNC rings – for instance, we succeeded to establish a valuable nec-
essary and sufficient condition, which totally classifies any ring to be GUNC (see
Theorem ??). In the subsequent third section, we explore GUNC group rings and
obtain a good criterion for a group ring of a locally finite p-group, with p a prime,
over an arbitrary ring to be GUNC. In the next fourth section, we give a compre-
hensive investigation of GSNC rings and characterize them in several ways (see,
e.g., Theorems 4.9, 4.12, 4.34 and 4.36, respectively). Our fifth section is devoted
to the examination in-depth of GSNC group rings and we receive some satisfactory
characterization of their structure. We finish our study in the sixth section with two
intriguing left-open questions that are of some interest and importance.

2. GUNC rings

We start here with the following key notion.

Definition 2.1. A ring R is called generalized uniquely nil-clean (or just GUNC for
short) if every non-invertible element in R is uniquely nil-clean.

We now have the following diagram:
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UNC GUNC

GUC

Strongly
clean

UC

The next example gives us the opportunity to discover the complicate structure
of these rings.

Example 2.2. (i) Any UNC ring is GUNC, but the converse is not true in general.
In fact, a simple check shows that the ring Z3 is GUNC that is not UNC.

(ii) Any UNC ring is UC, but the converse is not true in general. In fact, a plain
verification shows that the ring Z4[[x]] is UC that is not UNC.

(iii) Any UC ring is GUC, but the converse is not true in general. Indeed, an
easy inspection shows that the ring Z5 is GUC that is not UC.

(iv) Any GUC ring is strongly clean, but the converse is not true in general. In-

deed, a quick trick shows that the ring M2(R), where R =

{(
a b
0 a

) ∣
∣
∣a ∈ Z2, b ∈ Z(2)[x]

}

,

is strongly clean that is not GUC.
This substantiates our argumentation.

WE now need a series of preliminary technicalities.

Lemma 2.3. Let R be a ring and a ∈ R. Then, a is UNC if, and only if, 1 − a is
UNC.

Proof. Given a ∈ R is UNC. Then, there exists e2 = e ∈ R and q ∈ Nil(R) such
that a = e + q. Hence, 1 − a = (1 − e) + (−q). Suppose 1 − a = f + q′, where
f 2 = f ∈ R and q′ ∈ Nil(R). Thus, a = (1 − f) + (−q′). Since a is UNC, one sees
that 1 − f = e whence 1 − e = f , so 1 − a is too UNC. The converse is similar, so
we omit the details. �

Lemma 2.4. Let R be a GUNC ring. Then, R is abelian.

Proof. Given e ∈ Id(R). If e ∈ U(R), it must be that e = 1 and hence e is central.
If, however, e /∈ U(R), it follows that e is UNC and, therefore, we find that e is
central by [8, Corollary 2.4], as required. �

Lemma 2.5. If the direct product
∏n

i=1Ri is a GUNC ring, then each direct com-
ponent Ri is a GUNC ring.

Proof. Given a ∈ Ri, where a /∈ U(Ri), so one sees that the vector (1, . . . , a, 1, . . . , 1)
is not a unit in

∏n

i=1Ri. However, as
∏n

i=1Ri is GUNC, the element (1, . . . , a, 1, . . . , 1)
is UNC, so that a is UNC as well; for otherwise, if a has two different nil-clean
decompositions, then (1, . . . , a, 1, . . . , 1) will also have two different nil-clean decom-
positions, which is a contradiction, as pursued. �

It is worthy of noticing that the converse claim of Lemma 2.5 is not true. For
instance, the ring Z3 is obviously GUNC, but however the direct product Z3 × Z3

is not GUNC.
Nevertheless, we can offer the following.
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Proposition 2.6. Let Ri be rings for all 1 6 i 6 n. Then, the product
∏n

i=1Ri is
a GUNC ring if, and only if, each direct factor Ri is a UNC ring.

Proof. Assuming every Ri is UNC, so
∏n

i=1Ri is UNC using [12, Proposition 5.2]
and hence

∏n

i=1Ri is necessarily GUNC.
Conversely, assume that

∏n

i=1Ri is GUNC and, in a way of contradiction, that
Rj is not UNC for some index j. Then, there exists a ∈ Rj which is not UNC, so
the vector (0, . . . , 0, a, 0, . . . , 0) is not UNC in

∏n

i=1Ri too. But, one verifies that

(0, . . . , 0, a, 0, . . . , 0) /∈ U(
n∏

i=1

Ri)

and, by hypothesis, (0, . . . , 0, a, 0, . . . , 0) is UNC contradicting our assumption. There-
fore, every Ri is UNC, as claimed. �

A ring R is called division, if every non-zero element of R is invertible. Also, a
ring R is called local if R/J(R) is a division ring. thereby, as a consequence, we
yield:

Corollary 2.7. Let R be a ring, and e2 = e ∈ Z(R). If R is GUNC, then eRe is
GUNC. In particular, if e is non-trivial, then eRe is UNC.

Proof. If, for a moment, a GUNC ring R is not a local ring, then there exists an
idempotent e which is not trivial such that R = eRe ⊕ (1 − e)R(1 − e). As R is
GUNC, the corner eRe is GUNC in accordance with Lemma 2.5. In addition, if e
is non-trivial, then the subring eRe is UNC in view of Proposition 2.6. �

Recall that a ring R is directly finite, provided that ab = 1 implies ba = 1 for
all a, b ∈ R (or, equivalently, aR = R implies Ra = R). We, thus, arrive at the
following interesting property of GUNC rings.

Proposition 2.8. Every GUNC ring is directly finite.

Proof. Letting ab = 1, it must be that (ba)2 = baba = ba. So, ba is an idempotent
in R, and hence it is central by Lemma 2.4. Therefore,

ba = ba(ab) = a(ba)b = (ab)(ab) = 1,

as required. �

Our next machinery, necessary to establish the global results, is the following.

Proposition 2.9. Let R be a ring. If R is local with J(R) nil, then R is GUNC.

Proof. Supposing a ∈ R, where a /∈ U(R), so a ∈ J(R) ⊆ Nil(R). Then, a has the
only nil-clean expression like this a = 0 + a. Hence, a is UNC, as needed. �

Lemma 2.10. Let R be a ring. Then, the following are equivalent:
(i) R is either local with J(R) nil, or R is UNC.
(ii) R is a GUNC ring.

Proof. (i) ⇒ (ii). It is straightforward bearing in mind Proposition 2.9.
(ii) ⇒ (i). Assuming that R is a GUNC ring which is not local, then there exists an
idempotent e that is not trivial such that R = eRe⊕ (1− e)R(1 − e). Hence, both
eRe and (1− e)R(1− e) are UNC taking into account Corollary 2.7. Consequently,
R is UNC in virtue of [12, proposition 5.2]. �
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Corollary 2.11. A ring R is GUNC if, and only if, R is GUC and J(R) is nil.

Proof. It follows combining Lemma 2.10, [13, Theorem 2.10 ] and [2, Lemma 5.3.7].
�

Corollary 2.12. If R is GUNC, then J(R) is nil.

Proof. It is immediate by combination of Lemma 2.10 and [12, Theorem 5.9]. �

A ring R is called boolean if every element of R is an idempotent.

Corollary 2.13. If R is GUNC, then J(R) = Nil(R).

Proof. Consulting with Corollary 2.12, we know that J(R) ⊆ Nil(R). Now, assume

that x ∈ Nil(R). Then, x̄ ∈ R̄ =
R

J(R)
is nilpotent. Exploiting [13, Corollary 2.11],

the quotient-ring R̄ is either boolean or division. If, foremost, R̄ is boolean, thus x̄
has to be an idempotent, whence x̄ = 0̄. So, x ∈ J(R).

If, however, R̄ is a division factor-ring, we have again x̄ = 0̄ and x ∈ J(R). Thus,
in both cases, x ∈ J(R) and hence J(R) = Nil(R), as stated. �

The following property sounds somewhat curiously.

Corollary 2.14. If R is GUNC, then R is strongly clean.

Proof. It follows at once applying Corollary 2.11 and [13, Lemma 2.3]. �

The next statement is pivotal for our further presentation.

Proposition 2.15. Let R be a ring and I is a nil-ideal of R. Then, the following
two equivalencies hold:

(i) R is GUNC if, and only if,
R

J(R)
is GUNC, J(R) is nil, and R is abelian.

(ii) R is GUNC if, and only if,
R

I
is GUNC and R is abelian.

Proof. (i). Given R is GUNC and ā ∈ R̄ =
R

J(R)
, where ā /∈ U(R). So, one sees

that a /∈ U(R), as for otherwise, if a ∈ U(R), then it must be that ā ∈ U(R̄) and
this is a contradiction. Henceforth, we must show that ā is UNC. To this goal,
write ā = ē + q̄1 = f̄ + q̄2, where ē, f̄ ∈ Id(R̄) and q̄1, q̄2 ∈ Nil(R̄). Thus, we have
a − (e + q1), a − (f + q2) ∈ J(R) and hence a = e + (q1 + j1) = f + (q2 + j2) for
some j1, j2 ∈ J(R), where e, f ∈ Id(R), because idempotents lift modulo J(R), and
(q1 + j1), (q2 + j2) ∈ Nil(R). But we know that a is UNC, and so e = f whence
ē = f̄ . Therefore, ā is UNC. Moreover, J(R) is nil owing to Corollary 2.12, and R
is abelian according to Lemma 2.4, as formulated.

Conversely, let a ∈ R, where a /∈ U(R). So, one observes that ā /∈ U(R̄), as
for otherwise, if ā ∈ U(R̄), then it must be that a ∈ U(R), because units lift
modulo J(R) and this is a contradiction. Now, writing a = e + q1 = f + q2, where
e, f ∈ Id(R) and q1, q2 ∈ Nil(R), so we have ā = ē+ q̄1 = f̄ + q̄2, where ē, f̄ ∈ Id(R̄)
and q̄1, q̄2 ∈ Nil(R̄). But, the element ā is UNC, so that ē = f̄ and, consequently,
e − f ∈ J(R). As R is abelian, (e − f)3 = (e − f), and thus e − f = 0 implying
e = f . Finally, a is UNC, as expected.
(ii). The proof is quite similar to the preceding point (i), so we omit the details. �
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Proposition 2.16.

(i) For any ring R, the power series ring R[[x]] is not GUNC.
(ii) If R is any commutative ring, then R[x] is not GUNC.
(iii) The matrix rings Mn(R) and Tn(R) are never GUNC for any n > 2.

Proof. (i). Note the principal fact that the Jacobson radical of R[[x]] is not nil.
Thus, invoking Corollary 2.12, R[[x]] is really not a GUNC ring.
(ii). If we assume the contrary that R[x] is GUNC, then Corollary 2.14 gives that
R[x] is clean. This, however, is impossible in conjunction with [14, Example 2].
(iii). It is pretty obvious referring to Lemma 2.4. �

The next constructions are worthwhile.

Example 2.17.

(i). Any field and even any division ring is GUNC.
(ii). Any GUNC ring is strongly clean but, the converse is manifestly not true in

general. Indeed, the ring M2(Ẑp) is strongly clean, but is definitely not GUNC.
(iii). Any GUNC ring is GUC but, the converse is not true in general. In fact, it is
not too hard to see that the ring Z2[[x]] is GUC but is not GUNC.

Proof. (i). It is evident by the definition of a GUNC ring.

(ii). Note that, adapting [4, Theorem 2.4], the ring M2(Ẑp) is strongly clean. How-
ever, it is not GUNC, because all GUNC rings are always abelian.
(iii). Note that the ring Z2[[x]] is uniquely clean, and hence is GUC, but it is not
GUNC as Proposition 2.16 tell us. �

We now come to the following necessary and sufficient condition.

Proposition 2.18. A ring R is UNC if, and only if, R is simultaneously GUNC
and UU.

Proof. Given R is UNC and u ∈ U(R), so one may write that u = e + q, where
e ∈ Id(R) and q ∈ Nil(R). Thus, e = u − q. But [2, Theorem 5.3.3] informs us
that every UNC ring is abelian. Therefore, e ∈ U(R) and hence e = 1. Then,
u ∈ 1 + Nil(R) and R is a UU ring.

For the converse implication, it suffices to show that R is UU if, and only if, every
unit of R is UNC. However, this has been proven in [16, Theorem 2.23]. �

Recall that a ring is called reduced if it has no non-zero nilpotent elements.

Lemma 2.19. Let R be a GUNC ring and J(R) = {0}. Then, R is reduced.

Proof. Assume that x2 = 0, where 0 6= x ∈ R. Since R is GUNC, we know that R is
clean, and hence R is semi-potent thanks to [13, Proposition 2.16]. Thus, consulting
with [20, Theorem 2.1], there exists 0 6= e2 = e ∈ R such that eRe ∼= M2(S) for
some non-trivial ring S. But, in regard to Proposition 2.16, M2(S) is not a GUNC
ring. That is why, eRe is not GUNC, and this contradicts Corollary 2.7. Finally, R
is reduced, as promised. �

Our final assertion for this section, which states an interesting criterion for a ring
to be GUNC, is the following one.
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Proposition 2.20. A ring R is GUNC if, and only if, all next three conditions are
fulfilled:
(i) Nil(R) is an ideal of R;
(ii) R

Nil(R)
is either a boolean ring, or a division ring;

(iii) R is an abelian ring.

Proof. ”⇒”. With Corollary 2.13, Corollary 2.11, [13, Corollary 2.11] and Lemma
2.4 at hand, all things are rather easy.
”⇐”. Firstly, letting R

Nil(R)
is a boolean ring, we show that R is UNC. To this

purpose, chosen a ∈ R, so a − a2 ∈ Nil(R). By hypothesis, there exists a unique
idempotent, e ∈ R say, such that q := a− e ∈ Nil(R). Hence, a = e+ q. Also, write
a = f + q, where f ∈ Id(R) and q′ ∈ Nil(R). However, treating the uniqueness, we
get e = f . Therefore, R is UNC, and so GUNC.

Now, let R
Nil(R)

is a division ring, it is readily to see that R
Nil(R)

is GUNC. Then,

R is GUNC using Proposition 2.15, as wanted. �

3. GUNC group rings

We know with the help of Lemma 2.10 that GUNC rings include both UNC rings
and local rings, and vice versa. In addition, there are some results on UC group
rings and local group rings proved in [6] and [25], respectively. Correspondingly, we
can also obtain some achievements about GUNC group rings that could be of some
interest and importance. To this aim, we recall that a group G is a p-group if every
element of G is a power of p, where p is a prime. Likewise, a group G is called locally
finite if every finitely generated subgroup is finite.

Suppose now that G is an arbitrary group and R is an arbitrary ring. As usual,
RG stands for the group ring of G over R. The homomorphism ε : RG → R,

defined by ε(
∑

g∈G

agg) =
∑

g∈G

ag, is called the augmentation map of RG and its kernel,

denoted by ∆(RG), is called the augmentation ideal of RG.
Our two affirmations, motivated us in writing this section, are these:

Proposition 3.1. Let R be a ring and let G be a group. If RG is a GUNC ring,
then R is GUNC, G is a p-group and p ∈ Nil(R).

Proof. Assume RG is GUNC. Then, exploiting Lemma 2.10, either RG is local with
J(RG) nil, or RG is an UNC ring. We consider these two possibilities in the sequel:

(1) If RG is a local ring with J(RG) nil, then [25, Corollary] guarantees that
∆(RG) ⊆ J(RG). Hence, ∆(RG) is a nil-ideal. Therefore, with [7, Proposition
16] at hand, one deduces that G is a p-group, where p ∈ Nil(R). Moreover, since
RG/∆(RG) ∼= R, the application of Proposition 2.15 ensures that R is a GUNC
ring, as desired.

(2) If RG is a UNC ring, then RG is obviously uniquely clean. Applying [6,
Theorem 5], one infers that G is a 2-group, and employing [2, Corollary 5.3.5],
one finds that R is an UNC ring. Furthermore, [12, Proposition 3.14] assures that
2 ∈ Nil(R), as asked for. �

Proposition 3.2. Let R be a ring and let G be a locally finite p-group. Then, RG
is GUNC if, and only if, R is GUNC and p ∈ Nil(R).
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Proof. Assume R is a GUNC ring and p ∈ Nil(R). Then, utilizing [7, Proposition
16], one derives that ∆(RG) is a nil-ideal. Furthermore, Lemma 2.10 insures that
either R is local with nil Jacobson radical, or R is an UNC ring.

If, firstly, R is local with nil Jacobson radical, then [25, Corollary] is a guarantor
that RG is local. Thus, ε(J(RG)) ⊆ J(R), because ε is an onto ring homomorphism.
Since J(R) is nil, for every f ∈ J(RG), there exists k ∈ N such that fk ∈ ∆(RG).
Likewise, since ∆(RG) is nil, we have f is nil. Hence, RG is a local ring with nil
Jacobson radical, and forcing Lemma 2.10, we conclude that RG is a GUNC ring.

If now R is an UNC ring, then [12, Proposition 3.14] yields that 2 ∈ Nil(R), and
so p = 2. Therefore, [6, Theorem 12] reflects to get that RG is an UNC ring, as
pursued. �

4. GSNC rings

We begin here with the following key concept.

Definition 4.1. A ring R is called generalized strongly nil-clean (or just GSNC for
short) if every non-invertible element in R is strongly nil-clean.

We now have the following diagram:

GUNC GSNC

Strongly
nil-clean

Strongly
π-

regular

Strongly
clean

Uniquely
nil-clean

We continue here with a series of technicalities as follows.

Lemma 4.2. Every GSNC ring is strongly clean.

Proof. Let a ∈ R. Then, either a ∈ U(R) or a /∈ U(R). If, firstly, a ∈ U(R), then
a is a strongly clean element. Now, if a /∈ U(R), so a is strongly nil-clean element,
and hence a is strongly clean by [12, Corollary 3.6]. �

Lemma 4.3. Let Ri be a ring for all i ∈ I. If
∏n

i=1Ri is GSNC, then each Ri is
GSNC.

Proof. Let ai ∈ Ri, where ai /∈ U(Ri), whence (1, 1, . . . , ai, 1, . . . , 1) /∈ U(
∏n

i=1Ri).
So, (1, 1, . . . , ai, 1, . . . , 1) is strongly nil-clean, and hence ai is strongly nil-clean. If,
however, ai is not strongly nil clean, we clearly conclude that (1, 1, . . . , ai, 1, . . . , 1)
is not strongly nil-clean and this is a contradiction. �

We note that the converse of Lemma 4.3 is manifestly false. For example, Z3 is
GSNC. But the direct product Z3 × Z3 is not GSNC, because the element (2, 0) is
not invertible in Z3 × Z3 and (0, 2) is really not strongly nil- clean element.

Lemma 4.4. If R is GSNC, then J(R) is nil.

Proof. If we have a ∈ J(R), then a /∈ U(R), so a = e + q, where e = e2 ∈ R,
q ∈ Nil(R) and eq = qe. Therefore,

1− e = (1 + q)− a ∈ U(R) + J(R) ⊆ U(R),
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implying e = 0. This, in turn, implies that a = q ∈ Nil(R). �

Proposition 4.5. Let R be a ring, and let a ∈ R. Then, the following are equivalent:
(i) R is a GSNC ring.
(ii) For any a ∈ R, where a /∈ U(R), a− a2 ∈ Nil(R).
(iii) For any a ∈ R, where a /∈ U(R), there exists x ∈ R such that a− ax ∈ Nil(R),
ax = xa and x = x2a.

Proof. The proof is similar to [2, Theorem 5.1.1]. �

Corollary 4.6. Every GSNC ring is strongly π-regular.

Proof. Let R be a GSNC ring. Choose a ∈ R. If a ∈ U(R), then a is a strongly
π-regular element. If, however, a /∈ U(R), then, by Proposition 4.5, there exists
k ∈ N such that (a− a2)k = 0, so we have ak = ak+1r for some r ∈ R. Thus, R is a
strongly π-regular ring, as claimed. �

Proposition 4.7. (i) For any nil-ideal I ⊆ R, R is GSNC if, and only if, R/I is
GSNC.

(ii) A ring R is GSNC if, and only if, J(R) is nil and R/J(R) is GSNC.
(iii) The direct product

∏n

i=1Ri is GSNC if, and only if, each Ri is strongly
nil-clean.

Proof. (i) Assume R is a GSNC ring and R := R/I, where ā /∈ U(R). Then,
a /∈ U(R), which insures, in view of Proposition 4.5, that a − a2 ∈ Nil(R), so
ā− ā2 ∈ Nil(R).

Conversely, suppose R is a GSNC ring. If a /∈ U(R), then ā /∈ U(R), and
Proposition 4.5 yields that ā− ā2 ∈ Nil(R). Therefore, there exists k ∈ N such that
(a− a2)k ⊆ I ⊆ Nil(R).

(ii) Using Lemma 4.4 and part (i) of the proof, the proof is clear.
(iii) Letting each Ri be strongly nil-clean, then

∏n

i=1Ri is strongly nil-clean em-
ploying [12, Proposition 3.13]. Hence,

∏n

i=1Ri is GSNC.
Conversely, assume that

∏n

i=1Ri is GSNC and that Rj is not strongly nil-clean
for some index 1 6 j 6 n. Then, there exists a ∈ Rj which is not strongly nil-
clean. Consequently, (0, . . . , 0, a, 0, . . . , 0) is not strongly nil-clean in

∏n

i=1Ri. But,
it is readily seen that (0, . . . , 0, a, 0, . . . , 0) is not invertible in

∏n

i=1Ri and thus, by
hypothesis, (0, . . . , 0, a, 0, . . . , 0) is not strongly nil-clean, a contradiction. Therefore,
each Ri is strongly nil-clean, as needed. �

As a consequence, we derive:

Corollary 4.8. Let R be a ring and 0 6= e ∈ Id(R). If R is GSNC, then so is eRe.

Proof. Assuming a ∈ eRe \ U(eRe), we have a = ea = ae = eae. If a ∈ U(R),
then there exists b ∈ R such that ab = ba = 1, which implies a(ebe) = (ebe)a = e,
leading to a contradiction. Therefore, a /∈ U(R). Hence, by Proposition 4.5, we
have a− a2 ∈ Nil(R) ∩ eRe ⊆ Nil(eRe), as required. �

We now possess all the machinery necessary to establish the following assertion.

Theorem 4.9. For any ring S 6= 0 and any integer n ≥ 3, the ring Mn(S) is not
GSNC.
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Proof. Since it is well known that M3(S) is isomorphic to a corner ring of Mn(S)
(for n ≥ 3), it suffices to show that M3(S) is not a GSNC ring by virtue of Corollary
4.8. To this target, consider the matrix

A =





1 1 0
1 0 0
0 0 0



 /∈ U(M3(S)).

But a plain inspection gives us that

A− A2 /∈ Nil(M3(S)),

as expected. Therefore, Proposition 4.5 guarantees that R cannot be a GSNC ring,
as asserted. �

The following is worthwhile to be recorded.

Example 4.10. The ring M2(Z2) is a GSNC ring but is not strongly nil-clean. In
fact, according to [9, Theorem 2.7], for any arbitrary ring R, the ring M2(R) cannot
be strongly nil-clean. However, from the obvious equality

M2(Z2) = U(M2(Z2)) ∪ rmId(M2(Z2)) ∪Nil(M2(Z2)),

, it is evident that M2(Z2) is a GSNC ring in conjunction with Proposition 4.5.

Corollary 4.11. The ring M2(Z2k) is a GSNC ring for each k ∈ N

Our next chief statement is:

Theorem 4.12. Let R be a 2-primal, local and strongly nil-clean ring. Then, M2(R)
is a GSNC ring.

Proof. Since R is simultaneously local and strongly nil-clean, we can write that
R/J(R) ∼= Z2, so Example 4.10 informs us that M2(R/J(R)) is a GSNC ring.
On the other hand, since R is both 2-primal and strongly nil-clean, we may write
J(R) = Nil(R) = Nil∗(R), so that from this we extract that

M2(R/J(R)) = M2(R)/M2(J(R)) = M2(R)/M2(Nil∗(R)) = M2(R)/Nil∗(M2(R)),

and, moreover, as Nil∗(M2(R)) is a nil-ideal, Proposition 4.7(i) forces that M2(R) is
a GSNC ring, as inferred. �

In the above theorem, the condition of being local is not redundant. In order to
demonstrate that, supposing R = Z2×Z2, then R is 2-primal and strongly nil-clean,
but definitely M2(R) is not a GSNC ring as a plain check shows.

Besides, it is impossible to interchange the condition of being strongly nil-clean
with GSNC in the above theorem. Indeed, to illustrate that such a replacement is
really not possible, assuming R = Z3, then R is a 2-primal, GSNC, and local ring,
but an easy verification shows that M2(R) is not a GSNC ring.

Our next series of technical claims is like this.

Lemma 4.13. Let M2(R) be a GSNC ring. Then, R is a strongly nil-clean ring.
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Proof. Let us assume that a ∈ R. Then, one sees that

A =

(
a 0
0 0

)

/∈ U(M2(R)).

Thus, referring to Proposition 4.5, we have A − A2 ∈ Nil(M2(R)) and, as a result,
a − a2 ∈ Nil(R). Therefore, consulting with [2, Theorem 5.1.1], we can conclude
that R is a strongly nil-clean ring. �

Example 4.14. If R is a local ring with nil J(R), then R is GSNC.

Proof. Given a ∈ R and a /∈ U(R). Since R is local, a ∈ J(R) and hence a ∈ Nil(R).
So, a is a nilpotent element, and thus it is strongly nil-clean, as stated. �

Lemma 4.15. Let R be a ring. Then, the following points are equivalent for a
semi-local ring R:
(i) R is a GSNC ring.
(ii) R is either a local ring with nil J(R), or a strongly nil-clean ring, or R/J(R) =
M2(Z2) with J(R) nil.

Proof. (i) ⇒ (ii). Applying Proposition 4.7(ii), we have that R/J(R) is a GSNC
ring. Since R is a semi-local ring, we write R/J(R) =

∏m

i=1Mni
(Di), where each

component Mni
(Di) is a matrix ring over a division ringDi. If, for a moment, m = 1,

then combining Example 4.10 and Theorem 4.9, we infer that either R/J(R) = D1

or R/J(R) = M2(Z2).
If, however, m > 1, then employing Proposition 4.7(iii), each of the rings Mn(D)

must be strongly nil-clean, which means that, for any i, the equality Mni
(Di) = Z2

holds.
(ii) ⇒ (i). If R is a strongly nil-clean ring, it is apparent that R is GSNC. If now R
is local with nil J(R), then R has to be GSNC invoking Example 4.14. �

Corollary 4.16. Let R be a ring. Then, the following items are equivalent for a
semi-simple ring R:
(i) R is a GSNC ring.
(ii) R is either a division ring, or a strongly nil-clean ring, or R = M2(Z2).

Proof. It is immediate by using Lemma 4.15. �

We now proceed by proving some structural results.

Proposition 4.17. Let R be a ring. Then, the following two issues are equivalent
for an abelian ring R:
(i) R is a GSNC ring.
(ii) R is either a local with nil J(R), or a strongly nil-clean ring.

Proof. It is similar to that of Lemma 2.10. �

The next claim also appeared in [9], but we will give it a bit more conceptual
proof.

Proposition 4.18. A ring R is strongly nil-clean if, and only if,
(i) R is UU;
(ii) R is strongly clean.
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Proof. ”⇒”. Let u ∈ U(R). So, a = e + q, where e ∈ Id(R) and q ∈ Nil(R) with
eq = qe. Thus, e = u − q, where uq = qu, and hence e ∈ U(R). Therefore, e = 1
whence u ∈ 1 + Nil(R). That is why, R is a UU ring.
”⇐”. Let a ∈ R. Write a+ 1 = e+ u, where eu = ue, e ∈ Id(R) and u ∈ U(R). So,
a = e+ (−1 + u), where −1 + u ∈ Nil(R) and e(−1 + u) = (−1 + u)e, guaranteeing
that a is strongly nil-clean, as required. �

Lemma 4.19. [12] A unit u of a ring R is strongly nil-clean if, and only if, u ∈
1+Nil(R). In particular, R is a UU ring if, and only if, every unit of R is strongly
nil-clean.

In our terminology alluded to above, we extract the following two assertions:

Corollary 4.20. A ring R is strongly nil-clean if, and only if,
(i) R is UU;
(ii) R is GSNC.

Proof. It follows directly from a combination of Proposition 4.18 and Lemma 4.19.
�

Corollary 4.21. Let R be a UU ring. Then, the following are equivalent:
(i) R is a strongly clean ring.
(ii) R is a strongly nil-clean ring.
(iii) R is a GSNC ring.
(iv) R is a strongly π-regular ring.

Proposition 4.22. A ring R is GUNC if, and only if,
(i) R is abelian;
(ii) R is GSNC.

Proof. It follows immediately combining Lemma 2.10, Proposition 4.17 and [2, The-
orem 5.3.3]. �

We call a ring an NR ring if its set of nilpotent elements forms a subring. Recall
also that a ring R is called an exchange ring, provided that, for any a in R, there is
an idempotent e ∈ R such that e ∈ aR and 1− e ∈ (1− a)R.

Lemma 4.23. Let R be a NR ring. Then, the following two conditions are equiva-
lent:
(i) R is either local with nil J(R), or R is strongly nil-clean.
(ii) R is a GSNC ring.

Proof. (i) ⇒ (ii). It is clear by following Example 4.14.
(ii) ⇒ (i). If R is a GSNC ring, then Lemma 4.2 applies to get that R is an
exchange ring. Therefore, in virtue of [3, Corollary 2], R/J(R) is an abelian ring.
Consequently, Proposition 4.22 enables us that R/J(R) is GUNC ring, which means
that either R/J(R) is local, or R/J(R) is an UNC ring. Hence, the application
of [24, Theorem 19] leads us to R/J(R) is either a local ring, or a Boolean ring.
Finally, inspired by [2, Theorem 5.1.5], we conclude that R is either a local ring, or
is a strongly nil-clean ring. �

The next constructions are worthy of mentioning.
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Example 4.24. (i) Any strongly nil-clean ring is GSNC, but the converse is not true
in general. For instance, consider the ring Z3 which is GSNC, but is not strongly
nil-clean.
(ii) Any GSNC ring is strongly clean, but the converse is not generally valid. For
instance, the ring Z2[[x]] is strongly clean, but is not GSNC.
(iii) Any GUNC ring is GSNC, but the converse is not fulfilled in generality. For
instance, the ring M2(Z2) is GSNC, but is not GUNC.

A ring R is said to be semi-potent if every one-sided ideal not contained in J(R)
contains a non-zero idempotent. Additionally, a semi-potent ring R is called potent,
provided all of its idempotents lift modulo J(R). Notice that semi-potent rings and
potent rings were also named in [23] as I0-rings and I-rings, respectively.

In the terminology we have introduced, we remember that the definitions of
GUSC, GUC, GUNC and GSNC rings are given above.

Proposition 4.25. Let R be a ring, Id(R) = {0, 1} and J(R) is nil. Then, the
following are equivalent:
(i) R is a local ring.
(ii) R is a GUSC ring.
(iii) R is a strongly clean ring.
(iv) R is a clean ring.
(v) R is an exchange ring.
(vi) R is a potent ring.
(vii) R is a semi-potent ring.
(viii) R is a GUC ring.
(ix) R is a GUNC ring.
(x) R is a GSNC ring.

Proof. (i) ⇒ (ii). It follows from [10, Example 2.7].
(ii) ⇒ (iii). It follows from [10, Lemma 3.2].
(iii) ⇒ (iv) ⇒ (v) ⇒ (vi) ⇒ (vii). These implications are pretty obvious, so leave

all details to the interested reader.
(vii) ⇒ (i). It is obvious since Id(R) = {0, 1}.
(i) ⇔ (viii). It follows at once from [13, Proposition 2.9].
(viii) ⇔ (ix). It follows directly from Example 2.11.
(ix) ⇔ (x). It follows immediately from Proposition 4.22. �

Example 4.26. (i) For any ring R, the power series ring R[[x]] is not GSNC.
(ii) If R is a ring, then the polynomial ring R[x] is not GSNC.

Proof. (i) Note the principal fact that the Jacobson radical of R[[x]] is not nil. Thus,
in view of Lemma 4.4, R[[x]] need not be a GSNC ring.
(ii) If we assume the contrary that R[x] is GSNC, then R[x] is clean in accordance
with Lemma 4.2. This, however, contradicts [14, Example 2]. �

Example 4.27. Let R be a ring, and let

Sn(R) = {(aij) ∈ Tn(R) | a11 = a22 = · · · = ann} .

Then, R is GSNC if, and only if, Sn(R) is GSNC for all n ∈ N.

Proof. Given Sn(R) is GSNC. It is easy to see that R is a GSNC ring, so we omit
the details.



14 P. DANCHEV, O. HASANZADEH, A. JAVAN, AND A. MOUSSAVI

Conversely, let R be GSNC. Thus, for any (aij) ∈ Sn(R), where (aij) /∈ U(Sn(R)),
we see that a11 = · · · = ann /∈ U(R). So, Proposition 4.5 allows us to infer that

aii − a2ii ∈ Nil(R)

for each i. Furthermore, write (aii − a2ii)
m = 0 for some m ∈ N. Consequently,

(
(aij) − (aij)

2
)nm

= 0. Now, according to Proposition 4.5, we infer that Sn(R) is
GSNC, as stated. �

Let R be a ring, and define the following rings thus:

An,m(R) = R[x, y|xn = xy = ym = 0],

Bn,m(R) = R 〈x, y|xn = xy = ym = 0〉 ,

Cn(R) = R〈x, y|x2 = xyxyx...
︸ ︷︷ ︸

n− 1 words

= y2 = 0〉.

On the other vein, Wang introduced in [28] the matrix ring Sn,m(R) as follows:
suppose R is a ring, then the matrix ring Sn,m(R) is representable like this




















a b1 · · · bn−1 c1n · · · c1n+m−1
...

. . .
. . .

...
...

. . .
...

0 · · · a b1 cn−1,n · · · cn−1,n+m−1

0 · · · 0 a d1 · · · dm−1
...

. . .
. . .

...
...

. . .
...

0 · · · 0 0 · · · a d1
0 · · · 0 0 · · · 0 a














∈ Tn+m−1(R) : a, bi, dj, ci,j ∈ R







.

Also, let Tn,m(R) be


























a b1 b2 · · · bn−1

0 a b1 · · · bn−2

0 0 a · · · bn−3
...

...
...

. . .
...

0 0 0 · · · a

0

0

a c1 c2 · · · cm−1

0 a c1 · · · cm−2

0 0 a · · · cm−3
...

...
...

. . .
...

0 0 0 · · · a




















∈ Tn+m(R) : a, bi, cj ∈ R







,

as well as we state

Un(R) =

















a b1 b2 b3 b4 · · · bn−1

0 a c1 c2 c3 · · · cn−2

0 0 a b1 b2 · · · bn−3

0 0 0 a c1 · · · cn−4
...

...
...

...
...

0 0 0 0 0 · · · a











∈ Tn(R) : a, bi, cj ∈ R







.
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We now show in the following statement some of the existing relations between
these rings.

Lemma 4.28. Let R be a ring and m,n ∈ N. Then, the following three isomor-
phisms hold:

(i) An,m(R) ∼= Tn,m(R).
(ii) Bn,m(R) ∼= Sn,m(R).
(iii) Cn(R) ∼= Un(R).

Proof. (i) We assume f = a +
∑n−1

i=1 bix
i +

∑m−1
j=1 cjy

j ∈ An,m(R). We define ϕ :

An,m(R) → Tn,m(R) as

ϕ(f) =




















a b1 b2 · · · bn−1

0 a b1 · · · bn−2

0 0 a · · · bn−3
...

...
...

. . .
...

0 0 0 · · · a

0

0

a c1 c2 · · · cm−1

0 a c1 · · · cm−2

0 0 a · · · cm−3
...

...
...

. . .
...

0 0 0 · · · a




















.

It can easily be shown that ϕ is a ring isomorphism, as required.

(ii) We assume f ∈ Bn,m(R) such that

f = a00y
0x0 + a01y

0x1 + · · ·+ a0,n−1y
0xn−1

+ a10y
1x0 + a11y

1x1 + · · ·+ a1,n−1y
1xn−1

...
...

...

+ am−1,0y
m−1x0 + am−1,1y

m−1x1 + · · ·+ am−1,n−1y
m−1xn−1

We define ψ : Bn,m(R) → Sn,m(R) as

ψ(f) =














a00 a10 · · · am−1,0 am−1,1 · · · am−1,n−1
...

. . .
. . .

...
...

. . .
...

0 · · · a00 a10 a11 · · · a1,n−1

0 · · · 0 a00 a01 · · · a0,n−1
...

. . .
. . .

...
...

. . .
...

0 · · · 0 0 · · · a00 a0,1
0 · · · 0 0 · · · 0 a00














.

It can plainly be proved that ψ is an isomorphism, as needed.

(iii) We introduce the coefficients as follows:

f =
∑

0≤ij≤1

1≤j≤n−1

d(i1,...,in−1) y
i1xi2yi3xi4 ...

︸ ︷︷ ︸

n− 1 words

∈ Cn(R)
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We define φ : Cn(R) → Sn,m(R) as

φ(f) =











d(0,0,0,...,0) d(1,0,0,...,0) d(1,1,0,...,0) d(1,1,1,...,0) · · · d(1,1,1,...,1)
0 d(0,0,0,...,0) d(0,1,0,...,0) d(0,1,1,...,0) · · · d(0,1,1,...,1)
0 0 d(0,0,0,...,0) d(1,0,0,...,0) · · · d(1,...,1,0,0)
0 0 0 d(0,0,0,...,0) · · · d(0,1,...,1,0,0)
...

...
...

...
. . .

...
0 0 0 0 · · · d(0,0,0,...,0)











.

It can readily be checked that φ is an isomorphism, as asked for. �

Our three concrete examples are the following.

Example 4.29. Letting R be a ring, then we have:

(i) R [x, y|x2 = xy = y2 = 0] ∼=













a1 a2 0 0
0 a1 0 0
0 0 a1 a3
0 0 0 a1







: ai ∈ R







.

(ii) R 〈x, y|x2 = xy = y2 = 0〉 ∼=











a1 a2 a3
0 a1 a4
0 0 a1



 : ai ∈ R






.

(iii)R 〈x, y|x2 = xyx = y2 = 0〉 ∼=













a1 a2 a3 a4
0 a1 a5 a6
0 0 a1 a2
0 0 0 a1







: ai ∈ R







∼= T(T(R,R),M2(R)).

Example 4.30. Let R be a ring. Then, the following statements are equivalent:
(i) R is a GSNC ring.
(ii) Sn,m(R) is a GSNC ring.
(iii) Tn,m(R) is a GSNC ring.
(iv) Un(R) is a GSNC ring.

Proof. The proof is similar to that of Example 4.27, so remove the details. �

Example 4.31. Let R be a ring. If Tn(R) is a GSNC ring, then R is GSNC.
However, the converse is not true in general.

Proof. Choose e = diag(1, 0, . . . , 0) ∈ Tn(R). Then, one sees that R ∼= eTn(R)e.
Furthermore, with Corollary 4.8 at hand, we are done.

As for the converse, take R = Z3 and S = T2(Z3). Clearly, R is a GSNC ring.
But, an easy inspection leads to A=

(
0 0
0 2

)
/∈ U(S), and thereby A is definitely not a

strongly nil-clean element in S, as required, whence S need not be GSNC. �

Before stating and proving our next major result, the following two propositions
are pretty welcome.

Proposition 4.32. Let R be a GSNC ring. Then, for any n > 2, there does not
exist 0 6= e ∈ Id(R) such that eRe ∼= Mn(S) for some ring S.

Proof. Let us assume the opposite, namely that there exists 0 6= e ∈ Id(R) such that
eRe ∼= Mn(S) for some ring S. Since R is, by assumption, GSNC, it follows from
Corollary 4.8 that the corner subring eRe is GSNC too, and hence Mn(S) is GSNC
as well. This, however, is a contradiction with Theorem 4.9. �
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Recall that a set {eij : 1 ≤ i, j ≤ n} of non-zero elements of R is said to be a
system of n2 matrix units if eijest = δjseit, where δjj = 1 and δjs = 0 for j 6= s. In
this case, e :=

∑n

i=1 eii is an idempotent of R and eRe ∼= Mn(S), where

S = {r ∈ eRe : reij = eijr, for alli, j = 1, 2, ..., n}.

Proposition 4.33. Every GSNC ring is directly finite.

Proof. Suppose R is a GSNC ring. If we assume the reverse, namely that R is not a
directly finite ring, then there exist elements a, b ∈ R such that ab = 1 but ba 6= 1.
Putting eij := ai(1 − ba)bj and e :=

∑n

i=1 eii, a routine verification shows that
there will exist a non-zero ring S such that eRe ∼= Mn(S). However, according to
Corollary 4.8, the corner eRe is a GSNC ring, so that Mn(S) must also be a GSNC
ring, thus contradicting Theorem 4.9. �

We now have all the machinery necessary to establish the following.

Theorem 4.34. Let R be a ring. Then, the following equivalencies hold:
(i) R is GSNC.

(ii)
R[[x]]

〈xn〉
is GSNC for all n ∈ N.

(iii)
R[[x]]

〈xn〉
is GSNC for some n ∈ N.

Proof. (i) ⇒ (ii). Set S :=
R[[x]]

〈xn〉
. Thus,

S = {
n−1∑

i=0

rix
i | r0, . . . , rn−1 ∈ R, xn = 0}.

Let r(x) =
∑n−1

i=0 rix
i ∈ S, where r(x) /∈ U(S). On the other hand, we know that

U(S) = {
n−1∑

i=0

rix
i ∈ S | r0 ∈ U(R)}.

We also see that

r(x)− r2(x) = (r0 − r20) + bx

for some b ∈ R. As r0−r
2
0 ∈ Nil(R), we can find somem ∈ N such that (r0−r

2
0)

m = 0,
and so

(r(x)− r2(x))2m+1 = ((r0 − r20) + bx)2m+1 = 0.

Therefore, one infers that r(x)−r2(x) ∈ Nil(S). Furthermore, we apply Proposition
4.5 to get the assertion.
(ii) ⇒ (iii). It is trivial.
(iii) ⇒ (i). For any r ∈ R, where r /∈ U(R), we see that r ∈ S with r /∈ U(S), and
thus r − r2 ∈ Nil(S). This implies that r − r2 ∈ Nil(R). Therefore, R is GSNC, as
asserted. �

An immediate consequence is the one:
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Corollary 4.35. Let R be a ring. Then, the following are equivalent:
(i) R is GSNC.

(ii)
R[x]

〈xn〉
is GSNC for all n ∈ N.

(iii)
R[x]

〈xn〉
is GSNC for some n ∈ N.

Furthermore, let A,B be two rings, and let M,N be the (A,B)-bi-module and
(B,A)-bi-module, respectively. Also, we consider the bilinear maps φ :M⊗BN → A
and ψ : N ⊗A M → B that apply to the following properties

IdM ⊗B ψ = φ⊗A IdM , IdN ⊗A φ = ψ ⊗B IdN .

For m ∈M and n ∈ N , we define mn := φ(m⊗ n) and nm := ψ(n⊗m). Thus, the

4-tuple R =

(
A M
N B

)

becomes to an associative ring equipped with the obvious

matrix operations, which is called aMorita context ring. Denote the two-sided ideals
Imφ and Imψ to MN and NM , respectively, that are called the trace ideals of the
Morita context.

We now have all the ingredients needed to prove the following.

Theorem 4.36. Let R =
(
A M

N B

)
be a Morita context such that MN and NM are

nilpotent ideals of A and B, respectively. Then, R is GSNC if, and only if, both A
and B are strongly nil-clean.

Proof. Assume R is a GSNC ring. We show that A is a strongly nil-clean ring and,
similarly, it can be shown that B is also a strongly nil-clean ring. To this goal, let

us assume a ∈ A; then an elementary check gives that C =

(
a 0
0 0

)

/∈ U(R), so

Proposition 4.5 yields C −C2 ∈ Nil(R), that is, a− a2 ∈ Nil(A). So, A is a strongly
nil-clean ring. The converse implication can be obtained by [18, Theorem 3.4]. �

Now, let R, S be two rings, and let M be an (R, S)-bi-module such that the
operation (rm)s = r(ms) is valid for all r ∈ R, m ∈ M and s ∈ S. Given such a
bi-module M , we can set

T(R, S,M) =

(
R M
0 S

)

=

{(
r m
0 s

)

: r ∈ R,m ∈M, s ∈ S

}

,

where it forms a ring with the usual matrix operations. The so-stated formal matrix
T(R, S,M) is called a formal triangular matrix ring. In Theorem 4.36, if we set
N = {0}, then we will obtain the following two corollaries.

Corollary 4.37. Let R, S be rings and let M be an (R, S)-bi-module. Then, the
formal triangular matrix ring T(R, S,M) is GSNC if, and only if, both A and B are
strongly nil-clean.

Corollary 4.38. Let R be a ring and n > 1 is a natural number. Then, Tn(R) is
GSNC if, and only if, R is strongly nil-clean.



RINGS WHOSE NON-INVERTIBLE ELEMENTS ARE STRONGLY NIL-CLEAN 19

Given now a ring R and a central element s of R, the 4-tuple

(
R R
R R

)

becomes

a ring with addition defined componentwise and with multiplication defined by
(
a1 x1
y1 b1

)(
a2 x2
y2 b2

)

=

(
a1a2 + sx1y2 a1x2 + x1b2
y1a2 + b1y2 sy1x2 + b1b2

)

.

This ring is denoted by Ks(R). A Morita context

(
A M
N B

)

with A = B = M =

N = R is called a generalized matrix ring over R. It was observed in [19] that a ring
S is a generalized matrix ring over R if, and only if, S = Ks(R) for some s ∈ Z(R),
the center of R. Here MN = NM = sR, so that

MN ⊆ J(A) ⇐⇒ s ∈ J(R), NM ⊆ J(B) ⇐⇒ s ∈ J(R),

and MN,NM are nilpotent ⇐⇒ s is a nilpotent. Thus, Theorem 4.36 has the
following consequence, too.

Corollary 4.39. Let R be a ring and s ∈ Z(R)∩Nil(R). Then, Ks(R) is GSNC if,
and only if, R is strongly nil-clean.

Following Tang and Zhou (cf. [27]), for n ≥ 2 and for s ∈ Z(R), the n×n formal
matrix ring over R defined with the help of s, and denoted by Mn(R; s), is the set
of all n×n matrices over R with usual addition of matrices and with multiplication
defined below:
For (aij) and (bij) in Mn(R; s), set

(aij)(bij) = (cij), where (cij) =
∑

sδikjaikbkj.

Here, δijk = 1 + δik − δij − δjk, where δjk, δij , δik are the standard Kroncker delta
symbols.

Thereby, we arrive at the following.

Corollary 4.40. Let R be a ring and s ∈ Z(R). If Mn(R; s) is GSNC, then R
is GSNC and s ∈ J(R). The converse holds provided R is strongly nil-clean and
s ∈ Nil(R).

Let R be a ring and M a bi-module over R. The trivial extension of R and M is
defined as

T (R,M) = {(r,m) : r ∈ Randm ∈ M},

with addition defined componentwise and multiplication defined by

(r,m)(s, n) = (rs, rn+ms).

Notice that the trivial extension T(R,M) is isomorphic to the subring
{(

r m
0 r

)

: r ∈ R and m ∈M

}

consisting of the formal 2× 2 matrix rings

(
R M
0 R

)

and, in particular, the isomor-

phism T(R,R) ∼= R[x]/ 〈x2〉 is fulfilled. We also note that the set of units of the
trivial extension T(R,M) is

U(T(R,M)) = T(U(R),M).
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A Morita context is referred to as trivial if the context products are trivial,
meaning that MN = {0} and NM = {0} (see, for instance, [21, p. 1993]). In this
case, we have the isomorphism

(
A M
N B

)

∼= T(A× B,M ⊕N),

where

(
A M
N B

)

represents a trivial Morita context, as stated in [17].

We, thus, come to the following symmetric relationship.

Lemma 4.41. Let R be a ring and M a bi-module over R. Then,

Nil(T(R,M)) = T(Nil(R),M).

Proof. It is technically straightforward, so we drop off the full details leaving them
to the interested reader for an inspection. �

A good information gives also the following necessary and sufficient condition.

Proposition 4.42. Let R be a ring and M a bi-module over R. Then, T(R,M) is
GSNC if, and only if, R is GSNC.

Proof. Method 1: Assuming I = (0,M), then clearly I is a nil-ideal of the ring
T(R,M). Moreover, since the isomorphism R ∼= T(R,M)/I is true, Proposition
4.7(i) employs to get the claim.

Method 2: Let T(R,M) be a GSNC ring and a /∈ U(R). Then, one verifies
that (a, 0) /∈ U(T(R,M)), so Proposition 4.5 applies to detect that (a, 0)− (a, 0)2 ∈
Nil(T(R,M)), hence a− a2 ∈ Nil(R), as required.

Conversely, assuming R is a GSNC ring and (a,m) /∈ U(T(R,M)), we derive
a /∈ U(R). Consequently, a− a2 ∈ Nil(R), implying

(a,m)− (a,m)2 ∈ Nil(T(R,M)),

as needed. �

The next criterion is also worthy of documentation.

Corollary 4.43. Let R =
(
A M

N B

)
be a trivial Morita context. Then, R is GSNC if,

and only if, both A and B are strongly nil-clean.

Proof. It is straightforward bearing in mind Propositions 4.42 and 4.7(iii). �

Likewise, we can derive the following:

Corollary 4.44. Let R be a ring and M a bi-module over R. Then, the following
four statements are equivalent:

(i) R is a GSNC ring.
(ii) T(R,M) is a GSNC ring.
(iii) T(R,R) is a GSNC ring.

(iv)
R[x]

〈x2〉
is a GSNC ring.
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Now, consider R to be a ring and M to be a bi-module over R. Let

DT(R,M) := {(a,m, b, n)|a, b ∈ R,m, n ∈M}

with addition defined componentwise and multiplication defined by

(a1, m1, b1, n1)(a2, m2, b2, n2) = (a1a2, a1m2+m1a2, a1b2+b1a2, a1n2+m1b2+b1m2+n1a2).

Then, DT(R,M) is a ring which is isomorphic to the ring T(T(R,M),T(R,M)).
Also, we have

DT(R,M) =













a m b n
0 a 0 b
0 0 a m
0 0 0 a







|a, b ∈ R,m, n ∈ M







.

Besides, we also have the following isomorphism as rings:
R[x, y]

〈x2, y2〉
→ DT(R,R)

defined by

a+ bx+ cy + dxy 7→







a b c d
0 a 0 c
0 0 a b
0 0 0 a






.

We, thereby, detect the following.

Corollary 4.45. Let R be a ring and M a bi-module over R. Then, the following
statements are equivalent:

(i) R is a GSNC ring.
(ii) DT(R,M) is a GSNC ring.
(iii) DT(R,R) is a GSNC ring.

(iv)
R[x, y]

〈x2, y2〉
is a GSNC ring.

Let α be an endomorphism of R and n a positive integer. It was introduced by
Nasr-Isfahani in [22] the skew triangular matrix ring like this:

Tn(R, α) =















a0 a1 a2 · · · an−1

0 a0 a1 · · · an−2

0 0 a0 · · · an−3

. . .
. . .

. . .
...

. . .

0 0 0 · · · a0









∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ai ∈ R
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with addition defined point-wise and multiplication given by:








a0 a1 a2 · · · an−1

0 a0 a1 · · · an−2

0 0 a0 · · · an−3

. . .
. . .

. . .
...

. . .

0 0 0 · · · a0

















b0 b1 b2 · · · bn−1

0 b0 b1 · · · bn−2

0 0 b0 · · · bn−3

. . .
. . .

. . .
...

. . .

0 0 0 · · · b0









=









c0 c1 c2 · · · cn−1

0 c0 c1 · · · cn−2

0 0 c0 · · · cn−3

. . .
. . .

. . .
...

. . .

0 0 0 · · · c0









,

where

ci = a0α
0(bi) + a1α

1(bi−1) + · · ·+ aiα
i(bi), 1 ≤ i ≤ n− 1.

We denote the elements of Tn(R, α) by (a0, a1, . . . , an−1). If α is the identity en-
domorphism, then obviously Tn(R, α) is a subring of upper triangular matrix ring
Tn(R).

We now establish the validity of the following.

Corollary 4.46. Let R be a ring. Then, the following are equivalent:

(i) R is a GSNC ring.
(ii) Tn(R, α) is a GSNC ring.

Proof. Choose

I :=













0 a12 . . . a1n
0 0 . . . a2n
...

...
. . .

...
0 0 . . . 0







∣
∣
∣
∣
∣
∣
∣
∣

aij ∈ R (i ≤ j)







.

Therefore, one easily finds that In = (0) and
Tn(R, α)

I
∼= R. Consequently, one

verifies that Proposition 4.7 is applicable to get the pursued result. �

5. GSNC group rings

As usual, for an arbitrary ring R and an arbitrary group G, the symbol RG
stands for the group ring of G over R. Standardly, ∆(RG) designates the kernel of
the classical augmentation map RG→ R.

We begin here with the following technicality.

Lemma 5.1. Let φ : R → S be a non-zero epimorphism of rings with Ker(φ) ∩
Id(R) = {0}. Then, R is a GSNC ring if, and only if, S is a GSNC ring and
Ker(φ) is a nil-ideal of S.

Proof. Suppose R is a GSNC ring and a ∈ Ker(φ). Thus, a /∈ U(R), so that
there exist e ∈ Id(R) and q ∈ Nil(R) with a = e + q and eq = qe. That is why,
0 = φ(a) = φ(e) + φ(q), yielding φ(e) ∈ Id(S) ∩ Nil(S) = {0}. This unambiguously
shows that e ∈ Id(R) ∩Ker(φ) = {0}, hence a = q ∈ Nil(R).
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Next, since φ is an epimorphism, we have S ∼= R/Ker(φ) and, in conjunction
with Proposition 4.7(i), we conclude that R is a GSNC ring.

The converse relation can easily be extracted from Proposition 4.7(i). �

The following three lemmas are also useful for further applications.

Lemma 5.2. Let R be a ring and let G be a group, where ∆(RG) ∩ Id(RG) = {0}.
Then, RG is a GSNC ring if, and only if, R is a GSNC ring and ∆(RG) is a
nil-ideal of RG.

Proof. There is an epimorphism ε : RG→ R with Ker(ε) = ∆(RG). �

Lemma 5.3. [29, Lemma 2]. Let p be a prime with p ∈ J(R). If G is a locally
finite p-group, then ∆(RG) ⊆ J(RG).

Lemma 5.4. Let R be a ring and let G be a locally finite p-group, where p is a
prime and p ∈ J(R). Then, RG is a GSNC ring if, and only if, R is a GSNC ring
and ∆(RG) is a nil-ideal of RG.

In regard to the last lemma, an important question which could be raised is to
find, as in the case of GUNC rings, a suitable criterion when a group ring RG of a
locally finite p-group G over an arbitrary ring R to be a GSNC ring. In other words,
is the restriction p ∈ J(R) necessary in this claim and whether it could be deduced
from the condition RG is GSNC?

6. Open Questions

We close the work with the following challenging problems.

A ring R is said to be weakly nil-clean provided that, for any a ∈ R, there exists
an idempotent e ∈ R such that a− e or a+ e is nilpotent. Additionally, a ring R is
said to be strongly weakly nil-clean provided ae = ea or, equivalently, provided that,
for any a ∈ R, at least one of the elements a or −a is strongly nil-clean (see, e.g.,
[2, 11]).

We now can formulate the following.

Problem 6.1. Examine those rings whose non-invertible elements are (strongly)
weakly nil-clean.

A ring R is called strongly 2-nil-clean if every element in R is the sum of two
idempotents and a nilpotent that commute each other (see, for example, [2]). These
rings are a common generalization of the aforementioned strongly weakly nil-clean
rings.

Now, we may raise the following.

Problem 6.2. Examine those rings whose non-invertible elements are strongly 2-
nil-clean.
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