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Abstract
We propose a novel way of generalizing the class of interval graphs, via a graph width parameter
called the simultaneous interval number. This parameter is related to the simultaneous representation
problem for interval graphs and defined as the smallest number d of labels such that the graph
admits a d-simultaneous interval representation, that is, an assignment of intervals and label sets
to the vertices such that two vertices are adjacent if and only if the corresponding intervals, as
well as their label sets, intersect. We show that this parameter is NP-hard to compute and give
several bounds for the parameter, showing in particular that it is sandwiched between pathwidth
and linear mim-width. For classes of graphs with bounded parameter values, assuming that the
graph is equipped with a simultaneous interval representation with a constant number of labels, we
give FPT algorithms for the clique, independent set, and dominating set problems, and hardness
results for the independent dominating set and coloring problems. The FPT results for independent
set and dominating set are for the simultaneous interval number plus solution size. In contrast, both
problems are known to be W[1]-hard for linear mim-width plus solution size.
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1 Introduction

Interval graphs are among the best-known and most studied graph classes, due to their
intuitive representation with an interval intersection model, their rich structure, and many
algorithmic advantages. Many problems that are NP-hard on general graphs can be solved
in polynomial time on interval graphs. Examples are the coloring problem [39,42,53], the
dominating set problem [13], and the Hamiltonian cycle problem [52]. Furthermore, due to
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2 The Simultaneous Interval Number

their definition via interval representations, there are plenty of real-world applications for
interval graphs (see [51] for a nice, short overview of such applications).

There are several different ways to generalize the concept of an interval graph. One of
these concepts are the so-called d-interval graphs where every vertex is represented by a set of
d intervals on the real line and two vertices are adjacent if any pair of their intervals intersect.
A subclass of these graphs are the d-track interval graphs where we have d parallel lines and
every vertex is represented by d intervals, one on each line. It is easy to see that any graph
is a d-track interval graph (and, thus, a d-interval graph) for some d. Therefore, it makes
sense to define the parameters interval number i(G) [38] and track number t(G) [41] as the
minimal numbers d such that G is a d-interval (resp. d-track interval) graph. There is some
work on these graph classes concerning parameterized complexity [27,50]. However, most
of the classical graph problems are NP-hard for graphs with i(G) = 2 or t(G) = 3 [24, 25].
Furthermore, even the independent set problem and the dominating set problem are W[1]-hard
when parameterized by the solution size for graphs with t(G) = 2 [50].

Another way to define a whole family of generalizations of interval graphs comes from the
so-called simultaneous representation problems. In this generalization, we are given d interval
graphs G1, . . . , Gd which may share some vertices and asks for an interval representation
that assigns to every vertex in V (G1) ∪ · · · ∪ V (Gd) exactly one interval such that for every
i ∈ {1, . . . , d} two vertices of Gi are adjacent if and only if their intervals intersect. The
problem of deciding whether a given set of graphs has such a simultaneous representation
was introduced in 2009 by Jampani and Lubiw [46], where they considered chordal graphs,
comparability graphs, and permutation graphs, all classes of graphs that can also be defined
via certain intersection representations. A year later, the same authors considered the
problem of simultaneous interval representations [47]. Since then, there has been several
results on the complexity of this problem for different classes of graphs [5, 8, 69].

An equivalent definition for a simultaneous interval representation can be given as follows:
For some interval model we add additional label sets in the form of subsets of {1, . . . , d}
and two vertices belonging to two intervals are adjacent if these intervals intersect and the
intersection of their label sets is non-empty. This definition leads to an intuitive application
in scheduling, where each of the labels 1, . . . , d represents some machine and an interval
represents a job with its processing window (the interval) and the set of machines needed to
perform the job (the label set). An independent set in such a graph would then represent a
conflict-free schedule of a subset of jobs.

Similar to d-interval graphs and d-track interval graphs, any graph can be defined as a
d-simultaneous interval graph for some d. Thus, we can introduce the simultaneous interval
number si(G) as the smallest number d for which G is a d-simultaneous interval graph. Many
width parameters are unbounded for interval graphs, as these tend to grow with the clique
number (for example treewidth/pathwidth is unbounded for interval graphs). Furthermore,
even width parameters that can be bounded for dense graphs, such as cliquewidth or twin-
width, are unbounded for interval graphs [9, 34]. On the other hand, those parameters that
are bounded for interval graphs, such as linear mim-width or tree-independence number
(see [22,45]), do not properly reflect the structural advantages of interval graphs. Many of
the problems that are easy for interval graphs, such as coloring or independent set, are either
para-NP-hard or W[1]-hard (see Table 1). Furthermore, the maximum clique problem is
para-NP-hard when parameterized by one of those parameters, even though the structure of
the maximal cliques is very restricted for interval graphs.

When parameterized by the simultaneous interval number, however, the maximum clique
problem becomes FPT, as we will show. In addition, some of the problems that are W[1]-hard
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Table 1 Parameterized complexity summary. Abbreviations mean ind → independent, dom
→ dominating, W[1] → W[1]-hard, W[2] → W[2]-hard, pNPh → para-NP-hard, tree-α → tree-
independence number. Green results are given in this paper. Hardness results for problems with
given solution size k means that the problem is hard when parameterized by p+ k.

problem\parameter p = si(G) p = linear-mim(G) p = tree-α(G) p = t(G)

clique O∗(p22p+2p) pNPh [71] pNPh [26] pNPh [29]
clique of size k O∗(2kp) ? O∗(2kp

) [16, 22] O∗(pkkk+2) [27]
coloring pNPh pNPh [31] pNPh [31] pNPh [31]
k-coloring O∗(kkp) O(nkp) [35] O∗(kkp

) [16, 22] pNPh [25]
ind set O(np) W[1]/O(n2p) [28, 44] O(np) [22, 73] pNPh [25]
ind set of size k O∗(2kp) W[1]/O(n2p) [28, 44] ? W[1] [27]
dom set O(n2p) W[1]/O(n2p) [28, 44] pNPh [4,18] pNPh [25]
dom set of size k O∗(2kp) W[1]/O(n2p) [28, 44] W[2] [57] W[1] [27]
ind dom set W[1]/O(n2p) W[1]/O(n2p) [28, 44] ? pNPh [25]
ind dom set of size k O(n2p) W[1]/O(n2p) [28, 44] ? W[1] [27]

when parameterized by linear mim-width plus solution size, such as independent set and
dominating set (see [28,44]), are FPT when parameterized by simultaneous interval number
plus solution size. Therefore, we argue that the simultaneous interval number is a strong
candidate to fill the gap in describing graphs with a structure similar to interval graphs.

Our Contribution. We introduce a new graph width parameter, the simultaneous interval
number, in Section 2. This parameter is compared to most of the other common width
parameters such as treewidth, cliquewidth, or mim-width in Section 3, where we also give
several bounds involving the order and the size of the graph, the edge clique cover number, the
clique number, and other width parameters. In Section 4 we show that the computation of the
simultaneous interval number is NP-hard. Furthermore, we give results on the parameterized
complexity of several graph problems, such as clique (Section 5), coloring (Section 6), and
variants of the independent set and dominating set problems (Section 7). For an overview of
these results see Table 1.

Definitions and Notation. Unless stated otherwise, all the graphs considered are simple,
finite, non-empty and undirected. Given a graph G, we denote by V (G) its vertex set and
by E(G) its edge set. Often we will denote the number of vertices of graph, i.e., |V (G)|, as
n and the number of edges, i.e., |E(G)|, as m. A matching in a graph is a set of pairwise
disjoint edges; a matching is induced if no two vertices belonging to different edges of the
matching are adjacent.

Next we define the term class of intersection graphs. Such a graph class C can be defined
via a family SC of sets whose elements are also families of sets. For the sake of convenience,
we assume that SC contains a set family that contains a non-empty set. A C-representation
of a graph G is a mapping R : V (G) → F where F ∈ SC such that xy ∈ E(G) if and only if
R(x) ∩ R(y) ̸= ∅. We call F the ground set family of R. By definition, C consists precisely of
graphs G having a C-representation.

The class of chordal graphs is defined via the set SC that contains for every tree the set
of its subtrees. For the class of interval graphs, the set SC contains only the one set family,
namely the set of all open intervals of the real line. For any interval representation R of
graph G, we define ℓ(v) and r(v) to be the left and right endpoints of the interval R(v).
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A graph G is a bipartite graph if its vertex set can be partitioned into two independent
sets A and B. Furthermore, a bipartite graph is complete bipartite if every vertex of A is
adjacent to every vertex of B. A graph is a split graph if its vertex set can be partitioned
into a clique and an independent set. A graph is a complete split graph if there exists a
partition in which every vertex of the independent set is adjacent to all the vertices of the
clique. A graph is C4-free if it does not contain an induced cycle of length 4.

2 Simultaneous Representations and Simultaneous Interval Number

In [46,48], Jampani and Lubiw introduce the concept of simultaneous representations as well
as the simultaneous representation problem. This concept was then taken up by Bok and
Jedličková [8] who give the following definition:

▶ Definition 2.1. Let C be a class of intersection graphs. Graphs G1, . . . Gd ∈ C are
simultaneously C-representable if there exist C-representations R1, . . . , Rd of G1, . . . Gd with
a common ground set family F ∈ SC such that

∀i, j ∈ {1, . . . , d}, ∀v ∈ V (Gi) ∩ V (Gj) : Ri(v) = Rj(v).

In particular, we say that G = G1 ∪ . . . ∪ Gd is a d-simultaneous C-graph.

For convenience of notation, we will oftentimes use the following equivalent definition of
a simultaneous representation.

▶ Definition 2.2. Let d ∈ N, let G be a graph, and let L : V (G) → P({1, . . . , d}) be a labeling
of the vertices of G. Furthermore, let G′ ∈ C with V (G) = V (G′) and E(G) ⊆ E(G′) be a
graph with a C-representation R. We say that (R, L) is a d-simultaneous C-representation of
G if it holds that vw ∈ E(G) if and only if R(v) ∩ R(w) ̸= ∅ and L(v) ∩ L(w) ̸= ∅.

Note that this definition allows the empty set as a label set. Obviously, any vertex with an
empty label set is isolated. Therefore, the graphs admitting a 0-simultaneous C-representation
are exactly the edgeless graphs.

▶ Observation 2.3. Let C be a class of intersection graphs. Let the graphs G1, . . . , Gd ∈ C
be simultaneously C-representable with C-representations R1, . . . , Rd with a common ground
set family F . Let G := G1 ∪ · · · ∪ Gd and let R : V (G) → F be defined as R(v) := Ri(v) for
any i with v ∈ V (Gi). Let L be the labeling given by L(v) = {i : v ∈ Gi} for all v ∈ V (G).
Then (R, L) is a d-simultaneous C-representation of G.

This observation implies that every d-simultaneous C-graph has a d-simultaneous
C-representation. However, the converse is not true in general.1 However, if we exclude
empty label sets and unused labels, then there is an analogous result to Observation 2.3.

▶ Observation 2.4. Let (R, L) be a d-simultaneous C-representation of a graph G with
L(v) ̸= ∅ for all v ∈ V (G) and such that for all i ∈ {1, . . . , d} there exists a vertex v with
i ∈ L(v). Let Gi be the subgraph of G induced by the vertex set {v : i ∈ L(v)} and let Ri be
the restriction of R to V (Gi). Then the graphs G1, . . . , Gd are simultaneously C-representable
with C-representations R1, . . . , Rd.

1 As an example, we consider the class K of complete graphs which can be represented as intersection
graphs via the set SK = {{1}}. The n-vertex edgeless graph has a 1-simultaneous K-representation
where all vertices are labeled with the empty set. However, it is not a d-simultaneous K-graph for any d.
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Figure 1 Two forbidden induced subgraphs of interval graphs with 2-simultaneous interval
representations. Yellow intervals have label set {1}, blue intervals have label set {2} and black
intervals have label set {1, 2}. Note that the representation of the 4-cycle can be extended to a
2-simultaneous interval representation of cycles of arbitrary length.

A vertex with an empty label set would have to be considered as a vertex that is in
none of the graphs of a simultaneous representation. However, this technical addition to the
definition is very useful to address the issue of isolated vertices and leads to more compact
statements and simpler proofs. For all of the classes considered here, it is always possible to
represent isolated vertices without the empty label set. For example, for interval graphs we
can always represent such a vertex with an interval that intersects nothing else. However,
in general we cannot assume that this is possible for any class of intersection graphs (see
Footnote 1).

▶ Theorem 2.5. For every class of intersection graphs C, every graph G has an |E(G)|-
simultaneous C-representation.

Proof. Let E = {e1, . . . , em}. By our assumption of classes of intersection graphs, there
exists a set family F ∈ SC that contains some non-empty set S. For all vertices v ∈ V (G),
we define R(v) = S. Furthermore, let L(v) := {i : v is an endpoint of ei}. It follows directly
that two vertices of G are adjacent if and only if their representations and their label sets
have a non-empty intersection. ◀

In particular, this theorem holds for the class of intervals graphs, motivating the following
definition.

▶ Definition 2.6. Let G be a graph. The simultaneous interval number si(G) of G is the
smallest integer d such that there exists a d-simultaneous interval representation of G.

As observed before, the graphs with simultaneous interval number 0 are exactly the
edgeless graphs. Furthermore, the graphs with simultaneous interval number at most 1 are
exactly the interval graphs, and the class of graphs with the simultaneous interval number
equal to 2 contains some asteroidal triples and all cycles (see Figure 1).

In the following, we show some bounds on the simultaneous interval number. The first
result is implied directly by Theorem 2.5.

▶ Corollary 2.7. For any graph G it holds that si(G) ≤ |E(G)|.

Next we show that this bound is tight, up to a constant factor.

▶ Theorem 2.8. Let G be a complete 3-partite graph with parts of equal size. Then,
si(G) = 1

9 |V (G)|2 = 1
3 |E(G)|.

Proof. Let n = |V (G)|. First we show that si(G) ≥ 1
9 n2. Consider an arbitrary simultaneous

interval representation of (R, L) of G. Assume that there are two intervals that do not
intersect. Then these intervals belong to vertices of the same partition set. This implies that
the intervals of the vertices of the other two partition sets have to intersect both intervals.
Therefore, they all share a common point. Thus, in any case there are at least two of the
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three partition sets whose intervals all share a common point. Let X and Y be two such
partition sets. As the vertices of a partition set form an independent set, their label sets
have to be disjoint. Furthermore, the label sets of all vertices of X have to contain at least
one label of all the label sets of the vertices in Y . As the label sets of Y are also disjoint,
each label set of X has at least n

3 elements. Thus, in total there have at least n
3 · n3 = 1

9 n2

different labels.
Now we construct a simultaneous interval representation of G with exactly 1

9 n2 labels.
Let X, Y , and Z be the three partition sets of G. We consider n

3 pairwise disjoint sets
S1, . . . , S n

3
and enumerate their elements as Si = {si1, . . . , sin

3
}. Note that |

⋃
i Si| = 1

9 n2. For
all x ∈ X let L(x) =

⋃
i Si. Let Y = {y1, . . . , y n

3
} and Z = {z1, . . . , z n

3
}. We set L(yi) = Si.

Furthermore, we define L(zi) = {sji : 1 ≤ j ≤ n
3 } for all i ∈ {1, . . . n3 }. We give all vertices

of Y and Z the same interval and all the vertices of X get pairwise disjoint intervals that
are contained in the intervals given to vertices in Y and Z. It is easy to see that both the
intervals and the label sets of two vertices have a non-empty intersection if and only if the
vertices belong to different partition sets. ◀

▶ Theorem 2.9. Let G = (V, E) be a bipartite graph with a bipartition V = X∪̇Y . Then
si(G) ≤ min{|X|, |Y |}. This bound is tight for complete bipartite graphs.

Proof. We may assume without loss of generality that |X| ≤ |Y |. Let X = {x1, . . . , xd}. We
build a d-simultaneous interval representation of (R, L) of G as follows: All the vertices of
X get the same interval (0, 1). All the vertices of Y get pairwise disjoint intervals that are
completely contained in the interval (0, 1). Vertex xi ∈ X gets label set L(xi) = {i}. The
label set of a vertex y ∈ Y is chosen so that it holds i ∈ L(y) if and only if xiy ∈ E. It
follows immediately that two vertices are adjacent in G if and only if both their intervals
and their label sets have a non-empty intersection.

Now consider a complete bipartite graph G with a bipartition {X, Y } where |X| ≤ |Y |
and assume for a contradiction that G admits a d-simultaneous interval representation of
(R, L) of G with d < |X|. If |X| ≤ 1, then d = 0 and hence G is edgeless, implying |X| = 0,
which contradicts d < |X|. Thus, |X| ≥ 2 and every vertex of X is labeled with a nonempty
label set. Since X is an independent set and the maximum number of pairwise disjoint
label sets used on X is d, there must exist two vertices in X whose intervals are disjoint.
However, this implies that the intervals of all vertices in Y are pairwise intersecting. Since
there are fewer than |Y | labels, at least one label appears in the label set of two vertices of
Y , a contradiction. ◀

The complement of a matching is a graph obtained from a complete graph of even order n

by removing from it n
2 pairwise disjoint edges.

▶ Lemma 2.10. If G is the complement of a matching with n vertices, then si(G) ≥ log2(n−1).

Proof. Consider an arbitrary simultaneous interval representation of (R, L) of G. If there
exist two intervals R(x) and R(y) that do not intersect, then the vertices x and y are not
adjacent. Since all the other vertices must be adjacent to both x and y all their intervals
have to pairwise intersect. Furthermore, since all vertices have different neighborhoods, it
follows immediately that except for x and y no pair of vertices can have the same label set.
Thus, we need at least n − 1 different label sets. This implies that the number of labels is at
least log2(n − 1). ◀

We will see later, in Lemma 5.5, that this bound is tight.
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pathwidth edge clique cover number

treewidth

simultaneous interval number

path-independence number

tree-independence number

cliquewidth rank-width

twin-widthlinear mim-width

mim-width

o-mim-width

sim-width

track number interval number

thinness

boxicity

Figure 2 Diagram illustrating the relations between different graph width parameters. A directed
edge from parameter P to parameter Q means that a bounded value of P implies a bounded value
for Q. If a directed path from P to Q is missing, then parameter Q is unbounded for the graphs of
bounded P .

3 Placing si(G) in the Zoo of Graph Width Parameters

In this section we compare the simultaneous interval number to several other graph width
parameters. See Figure 2 for an overview. A verification of the figure can be found in Table 2
on p. 28.

3.1 Lower Bounds
It is easy to see that d-simultaneous interval graphs are d-track interval graphs. This implies
the following result.

▶ Theorem 3.1. Every graph satisfies t(G) ≤ si(G).

The concept of thinness was introduced by Mannino et al. [59].

▶ Definition 3.2 (Thinness). The thinness thin(G) of a graph G is the smallest integer k

such that there is a partition {V1, . . . , Vk} of V (G) and a vertex ordering (v1, . . . , vn) of G

fulfilling that for any three vertices va, vb, vc with a < b < c and va, vb ∈ Vi for some i it
holds that vbvc ∈ E(G) if vavc ∈ E(G).

▶ Theorem 3.3. For any graph G it holds that thin(G) ≤ 2si(G).

Proof. Consider a si(G)-simultaneous interval representation (R, L) of G. We define a
partition of V (G) as follows. Two vertices vi, vj are in the same partition set if and only if
L(vi) = L(vj). Hence, there are at most 2si(G) sets in the partition. Let σ = (v1, . . . , vn)
be a vertex ordering of G such that for all i, j ∈ {1, . . . , n} with i < j it holds that
r(vi) ≤ r(vj). Let va, vb, vc be three vertices with a < b < c where L(va) = L(vb). If va is
adjacent to vc, then r(va) > ℓ(vc) and L(va) ∩ L(vc) ̸= ∅. By construction of σ, it holds
ℓ(vc) < r(va) ≤ r(vb) ≤ r(vc) and, thus, the intervals of vb and vc intersect. Furthermore,
L(vb) ∩ L(vc) ̸= ∅ since L(va) = L(vc). Hence vbvc ∈ E(G). ◀
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Complements of matchings with n edges have thinness n [15]. We will later see in
Lemma 5.5 that the simultaneous interval number of such a graph is O(log n). This implies
that the bound given in Theorem 3.3 is asymptotically sharp. Bipartite permutation graphs
and, hence, also complete bipartite graphs have thinness at most 2 [11]. As we have seen in
Theorem 2.9, the simultaneous interval number of complete bipartite graphs is unbounded.
Therefore, this class shows that bounded thinness does not imply bounded simultaneous
interval number.

The concept of a linearized version of mim-width was introduced by Vatshelle [71] as
mim-width using a caterpillar decomposition. This concept has since been called linear
mim-width (for example by Golovach et al. [33]).

▶ Definition 3.4 (Linear mim-width). Given a graph G and a vertex ordering σ =
(v1, . . . , vn) of G, we define the quantity linear-mim(G, σ, i) for 1 ≤ i ≤ n to be the max-
imum size of an induced matching in the bipartite graph that contains all the edges of
G between the two sets {v1, . . . , vi} and {vi+1, . . . , vn}. We define linear-mim(G, σ) :=
maxi∈{1,...,n} linear-mim(G, σ, i). The linear mim-width of G, denoted linear-mim(G), is de-
fined as the minimum value linear-mim(G, σ) among all vertex orderings σ of G.

It was shown by Bonomo and de Estrada [10] that for any graph G it holds that
linear-mim(G) ≤ thin(G). Combining this with Theorem 3.3 we see that bounded simultaneous
interval number also implies bounded linear mim-width. Moreover, using a more direct
argumentation, the lower bound on the simultaneous interval number given by the logarithm
of the linear mim-width can be improved to a linear lower bound.

▶ Theorem 3.5. For any graph G it holds that linear-mim(G) ≤ si(G).

Proof. Consider a si(G)-simultaneous interval representation (R, L) of G. Let (v1, . . . , vn) be
a vertex ordering of G such that for all i, j ∈ {1, . . . , n} with i < j it holds that r(vi) ≤ r(vj).
Let i ∈ {1, . . . , n} be arbitrary and consider the spanning bipartite subgraph B of G containing
the edges of G between the vertex sets {v1, . . . , vi} and {vi+1, . . . , vn}. Let M be a maximum
induced matching of B. For every edge vavb in M we define λ(vavb) := L(va) ∩ L(vb). Note
that λ(vavb) ̸= ∅. Consider two edges vavb and vcvd in M . We may assume without loss
of generality that a ≤ c ≤ i. We know that ℓ(vb) < r(va) ≤ r(vc) ≤ r(vb) and, thus, the
intervals of vb and vc have a non-empty intersection. As M is induced, the edge vbvc is
not present in the graph B and, thus, not part of G. Therefore, L(vb) ∩ L(vc) = ∅. This
also implies that λ(vavb) ∩ λ(vcvd) = ∅. Hence, the λ-sets of all edges in M are pairwise
disjoint. As there are at most si(G) many non-empty pairwise disjoint label sets, we know
that |M | ≤ si(G) and, thus, linear-mim(G) ≤ si(G). ◀

A tree decomposition of a graph G is a pair (T, {Xt}t∈V (T )) consisting of a tree T and
a mapping asigning to each node t ∈ V (T ) a set Xt ⊆ V (G) (called a bag) such that
the following conditions are satisfied: (i) the union of all the bags equals V (G), (ii) for
every edge uv ∈ E(G) there exists a bag Xt such that u, v ∈ Xt, and (iii) for every vertex
v ∈ V (G) the bags containing v form a subtree of T . A path decomposition of G is a tree
decomposition of G such that T is a path. For simplicity, we will denote a path decomposition
simply by the corresponding sequence P = (X1, . . . , Xk) of bags. Note also that in this
case, condition (iii) simplifies to: for every vertex v ∈ V (G) the bags containing v form a
consecutive subsequence of P. The width of a tree decomposition is the maximal size of its
bags minus 1. The treewidth of a graph G, denoted by tw(G), is the minimum width of a
tree decomposition of G. The pathwidth, denoted by pw(G), is defined analogously, with
respect to path decompositions. Yolov [73] and independently Dallard et al. [22] introduced
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the parameter called tree-independence number (or α-treewidth). The independence number
of a tree decomposition (T, {Xt}t∈V (T )) of a graph G is defined as the maximum cardinality
of an independent set I in G such that there exists a bag Xt with I ⊆ Xt, or, equivalently,
the maximum, over all bags Xt, of the independence number of the subgraph of G induced
by the bag Xt. The tree-independence number of a graph G, denoted by tree-α(G), is
defined as the minimum independence number of a tree decomposition of G. We define
the path-independence number, denoted by path-α(G), analogously, with respect to path
decompositions.

We now prove a characterization of the path-independence number, which relies on the
concept of the intersection of two graphs G1 = (V1, E1) and G2 = (V2, E2), denoted by
G1 ∩ G2 and defined as the graph (V1 ∩ V2, E1 ∩ E2). In the proof we will use the following
two known facts about path decompositions and interval graphs (see [7, 30]):

Let G be a graph, let P be a path decomposition of G, and let S ⊆ V (G) be a set of
vertices of G such that for every two vertices u, v ∈ S there exists a bag Xi of P such
that u, v ∈ Xi. Then there exists a bag Xj of P such that S ⊆ Xj .
A graph G is an interval graph if and only if it admits a path decomposition in which
each bag is a clique in G.

▶ Theorem 3.6. Let G be a graph. Then, the path-independence number of G equals the
minimum integer k ≥ 0 such that G is the intersection of an interval graph and a graph with
independence number at most k.

Proof. Let use denote by k the minimum nonnegative integer such that G is the intersection
of an interval graph and a graph with independence number at most k.

We first show that path-α(G) ≤ k. Let G be the intersection of an interval graph G1 and
a graph G2 with independence number at most k. Each of the properties of being an interval
graph and having independence number at most k is preserved under vertex deletion, hence
we may assume that V (G1) = V (G2) = V (G). Since G1 is an interval graph, it admits a path
decomposition P such that each bag is a clique in G1. Note that G is a spanning subgraph
of G1 and therefore P is also a path decomposition of G. To show that path-α(G) ≤ k, it
suffices to show that for every bag, the subgraph of G induced by the bag has independence
number at most k. Consider an arbitrary bag Xi of P and the subgraph of G induced by
the bag. Note that this graph is the intersection of the subgraphs of G1 and G2 induced by
Xi. Since each bag is a clique in G1, the graph G1[Xi] is complete and hence G[Xi] equals
the subgraph of G2 induced by Xi. This implies that α(G[Xi]) ≤ α(G2) ≤ k, which is what
we wanted to show.

Next, we show that k ≤ path-α(G). Let p = path-α(G) and let P be a path decomposition
of G with independence number p. We show that G is the intersection of an interval graph
and a graph with independence number at most p; note that this will imply k ≤ p. Let G1
be the graph obtained from G by adding edges so that each bag of the path decomposition
P becomes a clique and let G2 be the graph obtained from G by adding edges between any
two vertices that are not contained in the same bag in P . We claim that G = G1 ∩ G2, G1 is
an interval graph, and G2 has independence number at most p.

First, observe that P is a path decomposition of G1 in which each bag is a clique and,
hence, by the first property above, G1 is an interval graph.

To show that α(G2) ≤ p, consider an arbitrary independent set I in G2. Then I is also an
independent set in G and, moreover, for any two vertices u, v ∈ I there exists a bag Xi of P
such that u and v both belong to that bag. By the second property above, there exists a bag
Xj of P such that I ⊆ Xj . Thus, since P is a path decomposition of G with independence
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number p, we infer that |I| ≤ p. Since this holds for an arbitrary independent set of G2, the
independence number of G2 is at most p.

It remains to verify that G is the intersection of G1 and G2. By construction, G is a
spanning subgraph of both G1 and G2. Thus, E(G) ⊆ E(G1) ∩ E(G2). Consider now two
vertices u and v of G that are adjacent in G1. Then, there exists a bag containing both u

and v. This implies that u and v are adjacent in G2 if and only if they are adjacent in G.
Hence, G = G1 ∩ G2. ◀

With a similar approach as that used to prove Theorem 3.6, it can be proved that the
tree-independence number of a graph G equals the minimum integer k ≥ 0 such that G is
the intersection of a chordal graph and a graph with independence number at most k.

Theorem 3.6 has the following consequence.

▶ Corollary 3.7. Every graph G satisfies path-α(G) ≤ si(G).

Proof. Let (R, L) be a si(G)-simultaneous interval representation of G. Let G1 be the
interval graph with vertex set V (G) and edge set {uv : u, v ∈ V (G), u ≠ v, R(u) ∩ R(v) ̸= ∅}.
Furthermore, let G2 be the graph with vertex set V (G) in which two vertices u and v are
adjacent if and only if L(u) ∩ L(v) ̸= ∅. Then G = G1 ∩ G2, the graph G1 is an interval graph
and since any independent set in G2 corresponds to a family of pairwise disjoint nonempty
subsets of the label set {1, . . . , si(G)}, the graph G2 has independence number at most si(G).
Therefore, path-α(G) ≤ si(G) by Theorem 3.6. ◀

Note that complements of matchings have independence number 2 and, thus, also path-
independence number at most 2. Due to Lemma 2.10, they form a class of graphs with
bounded path independence number but unbounded simultaneous interval number.

In the spirit of Dallard et al. [21], we can also show that graphs with bounded simultaneous
interval number are (pw, ω)-bounded (and consequently (tw, ω)-bounded; note that Chaplick
et al. [16] refer to the same property as the clique-treewidth property). A graph class G is
said to be (pw, ω)-bounded (resp., (tw, ω)-bounded) if there is a function f such that for all
graphs G ∈ G and all induced subgraphs G′ of G, it holds that pw(G′) ≤ f(ω(G′)) (resp.,
tw(G′) ≤ f(ω(G′))), where ω(G′) is the clique number of G′.

▶ Theorem 3.8. Every graph G satisfies pw(G) ≤ si(G)ω(G) − 1.

Proof. Fix an si(G)-simultaneous interval representation (R, L) of G and let H be the
interval graph corresponding to the interval representation R. It is clear that V (G) = V (H)
and E(G) ⊆ E(H). The pathwidth of H is then exactly ω(H) − 1 and H admits a path
decomposition P in which each of the bags is a clique, as H is an interval graph. Furthermore,
the path decomposition P of H is also a path decomposition of G, as E(G) ⊆ E(H).

On the other hand, we know that for each clique of H, say for example C, the intervals
belonging to that clique have a common intersection in the interval representation of G.
Consequently, any intervals of C that share a common label in the interval model of G must
also form a clique in G. Therefore, any bag of P can have size at most si(G)ω(G). As P is
also a path decomposition of G, we get pw(G) ≤ si(G)ω(G) − 1. ◀

3.2 Upper Bounds
We begin our discussion on upper bounds by proving that bounded pathwidth implies
bounded simultaneous interval number.

▶ Theorem 3.9. Every graph G satisfies si(G) ≤ pw(G)2 + pw(G).
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i

j
aij bij ∅ bij ∅ aij

aij ∅ aij bij ∅ bij aij

Figure 3 Illustration of the proof of Theorem 3.9. The thick intervals mark the active intervals.
A black edge between two intervals means that the corresponding vertices are adjacent in G. The
symbol ∅ means that the corresponding vertex has neither label aij nor the label bij . However, the
vertex will have other labels.

Proof. Let k := pw(G) + 1. Consider a path decomposition P of G with maximal bag
size k. It is easy to see that we can transform P in such a way that every bag has size k.
Furthermore, we can ensure that two consecutive bags differ only in two vertices, i.e., both
vertices are part of exactly one of the two bags and all the other vertices are part of both
bags or of none of them. This can be done by adding a sequence of new bags between two old
ones in which the vertices are removed and introduced one by one. Let P ′ = (X1, . . . , Xp) be
the resulting path decomposition of G. Now there exists a mapping f : V (G) → {1, . . . , k}
such that every bag of P ′ contains a vertex v with f(v) = i for all i ∈ {1, . . . , k}. For every
vertex of G, we define the interval R(v) as (a − ε, b + ε) where 0 < ε < 1

2 , a is the smallest
index such that Xa contains v and b is the largest index such that Xb contains v. It follows
that the intervals of two vertices have a non-empty intersection if and only if these vertices
are part of a common bag. Therefore, intervals of vertices with the same f -value have an
empty intersection.

It remains to show that we can label the vertices with at most k · (k − 1) labels in such a
way that the defined intervals form a simultaneous interval representation of G. For every
set {i, j} ⊆ {1, . . . , k} with i ̸= j, we introduce labels aij and bij . Note that aij = aji and
bij = bji. In the following we describe a procedure how to label the vertices of G (see Figure 3
for an illustration). During that labeling procedure, we will always have one active vertex v̂

and one active label cij ∈ {aij , bij}. To define the first active vertex let x be the vertex with
f(x) = i whose interval ends first and let y be the vertex with f(y) = j whose interval ends
first. Without loss of generality, we may assume that r(x) < r(y). We define the first active
vertex v̂ to be y. The first active label cij is aij . The active vertex v̂ gets the label cij . For
all vertices z with f(z) ∈ {i, j} \ f(v̂) and ℓ(v̂) < r(z) < r(v̂), we add cij to L(z) if and only
if v̂z ∈ E(G). Now consider the vertex w with f(w) ∈ {i, j} \ f(v̂) and ℓ(w) < r(v̂) < r(w).
Vertex w becomes the new active interval. If v̂w ∈ E(G), then the active label stays the
same, otherwise the new active label becomes the other one. In any case w gets the new
active label. Note that L(v̂) ∩ L(w) ̸= ∅ if and only if v̂w ∈ E(G). We repeat this procedure
until the end of the interval representation. Furthermore, we repeat the whole procedure for
all sets {i, j} ⊆ {1, . . . , k}. In the end, we obtain a d-simultaneous interval representation
(R, L) of G where d = 2

(
k
2
)

= k(k − 1) = pw(G)2 + pw(G). ◀

Observe at this point that bounded simultaneous interval number does not imply bounded
pathwidth as is proven by the class of interval graphs.

An edge clique cover of a graph G is a set K of cliques of G such that every edge of G is
contained in some clique of K. We denote by ecc(G) the edge clique cover number of G, that
is, the minimum size of an edge clique cover of G.

▶ Lemma 3.10. Let C be a class of intersection graphs. Let G be a graph, let d ≥ 0
be an integer, and let R be a C-representation of some graph F ∈ C. Then, there exists
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a d-simultaneous C-representation (R, L) of G if and only if there exists a graph H with
ecc(H) ≤ d and G is the intersection of F and H.

Proof. First assume that H is a graph with ecc(H) ≤ d and G = F ∩ H. Let K =
{C1, . . . , Cd} be an edge clique cover of H. For each vertex v in G, we define L(v) as follows:
L(v) := {i : v ∈ Ci}. We claim that (R, L) forms a d-simultaneous C-representation of G. If
two vertices u, v ∈ V (G) are adjacent in G, then they are adjacent in F and, thus, the sets
R(u) and R(v) have a non-empty intersection. Furthermore, u and v are adjacent in H and,
hence, they are part of a common clique in K. Therefore, the sets L(u) and L(v) share at
least one label. If u and v are not adjacent in G, then either they are not adjacent in F –
which implies that the sets R(u) and R(v) do not intersect – or they are not adjacent in H –
which implies that no clique contains both of them, and, hence their label sets are disjoint.
Therefore, (R, L) is a d-simultaneous C-representation of G.

Now let (R, L) be a d-simultaneous C-representation of G. We define H as the intersection
graph of the label sets of G, i.e., V (H) = V (G) and there is an edge between two distinct
vertices u and v in H if and only if L(u) ∩ L(v) ̸= ∅. It is easy to see that the intersection of
F and H is the graph G. It remains to show that ecc(H) ≤ d. For any i ∈ {1, . . . , d}, let Ci
be the set of vertices of G whose label set contains i. By definition of H, all the sets Ci form
cliques in H. Furthermore, the vertices of any edge in H have to share some label and, thus,
they are contained in a common set Ci. Therefore, the sets Ci form an edge clique cover of
H of size d implying ecc(H) ≤ d. ◀

Lemma 3.10 implies the following.

▶ Corollary 3.11. Let C be a class of intersection graphs, let G be a graph, and let d ≥ 0 be an
integer. Then, G has an d-simultaneous C-representation if and only if G is the intersection
of a graph in C and a graph with edge clique cover number at most d.

Lemma 3.10 also implies the following strengthening of Theorem 2.5.

▶ Theorem 3.12. For every class of intersection graphs C, every graph G has an
ecc(G)-simultaneous C-representation.

Proof. By our assumption on classes of intersection graphs, there exists a set family F ∈ SC
that contains some non-empty set S. Let F be the complete graph with |V (G)| vertices and
let H = G. Note that mapping every vertex of F to S yields a C-representation of F , and,
thus, F belongs to C. Moreover, G is the intersection of F and H and ecc(H) = ecc(G).
Hence, by Lemma 3.10, G admits an ecc(G)-simultaneous C-representation. ◀

▶ Corollary 3.13. Every graph G satisfies si(G) ≤ ecc(G).

Interval graphs, and in particular paths, have unbounded edge clique cover number. Thus,
bounded simultaneous interval number does not imply bounded edge clique cover number.

The bound given by Corollary 3.13 is tight. Let us denote by Kp
n the complete multipartite

graph on p partite sets of the same size n and by λ(n) the largest size of a family of mutually
orthogonal Latin squares of order n. It is known that λ(n) ≤ n − 1 and that equality holds if
and only if there exists a projective plane of order n. Thus λ(q) = q − 1 if q is a prime power,
but in general the exact computation of the value of λ(n) is difficult. Park, Kim, and Sano
showed in [66] that for any two integers p and n such that 3 ≤ p ≤ λ(n) + 2, the edge clique
cover number of Kp

n equals n2. Taking p = 3, we thus obtain, by combining Theorem 2.8
and Corollary 3.13, that for the complete 3-partite graph G with parts of equal size, we have
si(G) = ecc(G) = |V (G)|2

9 .
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4 Complexity of Computing the Simultaneous Interval Number

Using the characterization from Definition 2.2, we can state three natural recognition problems
for d-simultaneous C-representations.

▶ Problem 1 (Simultaneous C-Representation Problem).
Input: A graph G and a labeling L : V (G) → P({1, . . . , d}) of G.
Question: Does there exist a d-simultaneous C-representation (R, L) of G?

By Observations 2.3 and 2.4, Problem 1 is a generalization of the simultaneous represen-
tation problems by Jampani and Lubiw [46].

In the second problem we are given the graph and some representation and want to find
a suitable labeling.

▶ Problem 2 (Simultaneous Labeling Problem Given a C-Representation).
Input: A graph G and a C-representation R of a graph F with V (G) = V (F ) and E(G) ⊆

E(F ).
Question: What is the smallest number d ∈ N such that there exists a d-simultaneous

C-representation (R, L) of G?

In the third version, we are given just a graph and wish to compute the smallest number
of labels needed for the graph to have a d-simultaneous C-representation.

▶ Problem 3 (Generalized Simultaneous C-Representation Problem).
Input: A graph G.
Question: What is the smallest number d ∈ N such that there exists a d-simultaneous

C-representation of G?

Recall the definition of a class of intersection graphs given on p. 3.

▶ Theorem 4.1. The Simultaneous Labeling Problem Given a C-Representation is NP-hard
for any class of intersection graphs C, even if all sets in the given C-representation pairwise
intersect.

Proof. We use the fact that it is NP-hard to compute the edge clique cover number ecc(G) of
a given graph G [56]. Let G be a graph and let F be the complete graph with V (F ) = V (G).
By our assumption on classes of intersection graphs, there exists a set family F ∈ SC that
contains some non-empty set S. Consider the C-representation R of F mapping all vertices of
F to S. Due to Lemma 3.10, there exists a d-simultaneous C-representation (R, L) of G if and
only if there exists a graph H with ecc(H) ≤ d and F ∩ H = G. As F is complete, it must
hold that H = G. Therefore, there exists a d-simultaneous C-representation (R, L) of G if
and only if ecc(G) ≤ d. Hence, the Simultaneous Labeling Problem Given a C-Representation
is NP-hard even for C-representations like R. ◀

▶ Theorem 4.2. The Generalized Simultaneous C-Representation Problem is NP-hard for
every class of intersection graphs that is a subclass of the class of C4-free graphs and contains
the class of complete split graphs.

Proof. Let C be a class fulfilling the properties given in the theorem. Due to Theorem 4.1,
the Simultaneous Labeling Problem Given a C-Representation is NP-hard for C even if all
sets in the given C-representation pairwise intersect. We will reduce that problem to the
Generalized Simultaneous C-Representation Problem.
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Let G be an arbitrary graph. We add |E(G)| + 1 pairwise non-adjacent vertices to
G and make them all adjacent to all vertices of G. We call the resulting graph H. Let
S be the set of these added vertices. We claim that for any d ≤ |E(G)|, there exists a
d-simultaneous C-representation of G whose elements pairwise intersect if and only if there
exists a d-simultaneous C-representation of H.

First assume that we have a d-simultaneous representation (RG, LG) of G where all sets
in the image of RG pairwise intersect. Let H ′ be the graph obtained from H by making
the vertices of G a clique. Obviously, H ′ is a complete split graph. Since C contains the
complete split graphs, there is a C-representation RH of H ′. We define a label function LH
of H as follows: For all vertices v ∈ V (G), we set LH(v) := LG(v). For all vertices v ∈ S, we
choose LH(v) to be the universal label set of LG, that is, the union of all label sets of LG.
We claim that (RH , LH) is a d-simultaneous representation of H. If two vertices x, y ∈ V (H)
are adjacent, then they are also adjacent in H ′. Thus, their representations in RH intersect.
Furthermore, if both x and y are in G, then their label sets in LG are non-disjoint and, thus,
their label sets in LH are non-disjoint. If one of x and y is in S, then the label sets of x and
y in LH are non-disjoint since one of them is universal. If x and y are not adjacent in H,
then either both are in G or both are in S. If both are in G, then their label sets in LG (and,
thus, LH) are disjoint since their representations in RG are non-disjoint. If both vertices
are in S, then they are also not adjacent in H ′ and, thus, their representations in RH are
disjoint. Summing up, (RH , LH) is an d-simultaneous C-representation of G.

Now assume that there exists a d-simultaneous C-representation (RH , LH) of H. Since
no vertex in S is isolated in H, the label sets LH(v), v ∈ S, are all nonempty. There are at
most d pairwise disjoint nonempty label sets in LH . Hence, since S contains |E(G)| + 1 > d

pairwise non-adjacent vertices, there are at least two vertices x and y in S such that RH(x)
and RH(y) are disjoint. We claim that all the sets RH(v), v ∈ V (G), have to pairwise
intersect. Assume for contradiction that this is not the case and let u and v be two vertices
in G such that RH(u) and RH(v) are disjoint. As u and v are adjacent to both x and y in
H, each of the sets RH(u) and RH(v) intersects each of the sets RH(x) and RH(y). This
implies that the graph F such that RH is a C-representation of F contains the induced cycle
(x, u, y, v); a contradiction to the fact that F ∈ C and C is a subclass of the class of C4-free
graphs. Hence, the representations of all vertices of G in RH pairwise intersect. Let (RG, LG)
be the restriction of (RH , LH) to the vertices of G. Then, (RG, LG) is a d-simultaneous
C-representation of G where all the elements of RG pairwise intersect. ◀

▶ Corollary 4.3. Let C be the class of interval graphs or the class of chordal graphs. Then,
the Generalized Simultaneous C-Representation Problem is NP-hard.

▶ Corollary 4.4. It is NP-hard to compute the simultaneous interval number of a graph G.

5 Cliques

In this section, we focus on the Maximum Clique problem: Given a graph G = (V, E),
compute a largest clique in G. The problem can be naturally generalized to the weighted
case, where the input graph is equipped with a vertex weight function w : V → Q+ and
the task is to find a clique C in G maximizing its weight, w(C), defined as the sum of the
weights of the vertices in C.

▶ Theorem 5.1. A graph G has at most 22si(G) · n many maximal cliques.

Proof. Let d = si(G) and fix a d-simultaneous interval representation (R, L) of G. Let C

be a maximal clique of G. There exists a point p on the real line that is contained in any
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interval of the vertices contained in C. Furthermore, for every subset S ⊆ {1, . . . , d}, if there
is any vertex u ∈ C such that L(u) = S, then the clique C contains all the vertices v whose
label set is exactly S and whose interval R(v) contains p. There are at most n points on the
real line such that the sets of intervals containing these points are pairwise incomparable with
respect to inclusion. These are always points before the endpoint of some interval. For each
of those points we have to decide for every subset of {1, . . . , d} if vertices having this subset
as label set are contained in the maximal cliques. There are 2d many subsets. Therefore,
there are 22d different decisions and, thus, there are at most 22d

n many maximal cliques. ◀

▶ Theorem 5.2. Given a graph G with n vertices and a d-simultaneous interval representation
of G, the maximal cliques of G can be enumerated in time O(d · 22d+2d · n log n).

Proof. We generate all binary vectors with 2d many entries. Every entry stands for some label
set. We only keep those vectors where the label sets with entry 1 are pairwise non-disjoint.
This can be checked in time O(d22d) per vector by comparing the label sets with entry 1
pairwise. For every of the remaining binary vectors, we create the interval representation
only containing the intervals whose vertices have a label set with entry 1. This can be done in
total time O(22d · n). Finally, we have to compute for every of those interval representations
the set of maximal cliques which can be done in time O(n log n) [40]. ◀

This result implies directly that we can compute a maximum-weight clique of a graph G

within the same time bound.

▶ Corollary 5.3. Given a vertex-weighted graph G with n vertices and a d-simultaneous
interval representation of G, we can find a maximum weight clique of G in time O(d · 22d+2d ·
n log n).

Tsukiyama et al. [70] gave an algorithm that generates all maximal cliques in time O(n3µ)
where µ is the number of maximal cliques. Using this algorithm, we can drop the requirement
in Theorem 5.2 and Corollary 5.3 that the input graph is given together with a d-simultaneous
interval representation.

▶ Theorem 5.4. Given a vertex-weighted graph G with n vertices, we can find a list of all
maximal cliques and a maximum weight clique of G in time O(22si(G) · n3).

Let us remark that a faster dependency on n (although still slower than quadratic in n)
could be obtained by using some of the more recent maximal clique enumeration algorithms
(see, e.g., [17]).

Note that the unweighted maximum clique problem is already NP-hard for 2-unit interval
graphs and 3-track interval graphs [29] while it is polynomial-time solvable for 2-track interval
graphs. However, there is an FPT algorithm for the clique problem on d-interval graphs
when parameterized by d plus solution size [27].

Next we prove that the bound given in Theorem 5.1 is tight. To this end, we consider
complements of matchings. As we have seen in Lemma 2.10, the simultaneous interval number
of those graphs is at least log2(n − 1) where n is the number of vertices. Here, we show that
this bound is tight. Let Mm be the complement of a matching with m edges. Gregory and
Pullman [36] showed that limm→∞

ecc(Mm)
log2(m) = 1. As we have seen in Corollary 3.13, it holds

that si(G) ≤ ecc(G). This implies the following result.

▶ Lemma 5.5. For any ε > 0, there exists some n′ ∈ N such that for all even n ≥ n′,
the following holds: If G is the complement of a matching with n vertices, then si(G) ≤
(1 + ε) log2 n.
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Using this result, we are able to prove that the bound given in Theorem 5.1 is tight.

▶ Theorem 5.6. For any ε with 0 < ε < 1 and any k ∈ N, there is an infinite family F of
graphs such that any graph G ∈ F with n vertices has at least 22(1−ε)si(G) · nk many maximal
cliques.

Proof. Let n′ be chosen as in Lemma 5.5. Since nk ∈ o(2n1−ε2

) and n1−ε2 ∈ o(n), there is an
integer n′′ ≥ n′ such that for all integers n ≥ n′′ it holds that nk ≤ 2n1−ε2

and 22n1−ε2

≤ 2 n
2 .

Let n ≥ n′′ be an even number and let G be a complement of a matching with n vertices.
Then it holds:

22(1−ε)si(G)
· nk ≤ 22(1−ε)(1+ε) log2(n)

· nk

= 2n
1−ε2

· nk

≤ 2n
1−ε2

· 2n
1−ε2

= 22n1−ε2

≤ 2 n
2

As 2 n
2 is the number of maximal cliques of G, this proves the theorem. ◀

This result shows that the bound on the running time of our approach for the Maximum
Clique problem cannot be significantly improved. Furthermore, the following result shows
that the Maximum Clique problem cannot be solved with a single-exponential FPT algorithm
parameterized by the simultaneous interval number.

▶ Theorem 5.7. Unless P = NP, for any fixed k ∈ N there is no algorithm that solves the
Maximum Clique problem on complements of cubic graphs with n vertices in time 2O(si)nk.

Proof. Alon [1] showed that complements of cubic graphs have edge clique cover number
of at most c log n for some constant c. Due to Corollary 3.13, their simultaneous interval
number is also at most c log n. Suppose for a contradiction that for some k ∈ N, there is
a 2O(si(G))nk algorithm for the Maximum Clique problem on complements of cubic graphs.
Then we could solve the Maximum Clique problem on the complements of cubic graphs in
polynomial time. However, as Mohar [63] showed, the Maximum Independent Set problem is
NP-complete on cubic graphs, implying that the Maximum Clique problem is NP-hard on
their complements. ◀

Note that the above result does not rule out the possibility that it may be possible to solve
the Maximum Clique problem in time 2O(d)nk when a d-simultaneous interval representation
of the graph is given.

As graphs with bounded simultaneous interval number are (pw, ω)-bounded (Theorem 3.8),
we can use the results from Chaplick et al. [16, Theorem 11] to show that the clique problem
admits an FPT algorithm when parameterized by the simultaneous interval number plus
solution size.

▶ Theorem 5.8. Given an n-vertex graph G and an integer k, it can be determined in time
2O(si(G)k)n whether G contains a clique of size k.
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6 Coloring

Circular-arc graphs have linear mim-width at most 2 [2, Lemma 4], path-independence
number at most 2 [62, proof of Theorem 4.5] and track number at most 2. Since the
Coloring problem is NP-hard on circular-arc graphs [31], the same holds for graphs whose
linear mim-width, path-independence number, and track number are at most 2. This result
does not transfer directly to the simultaneous interval number, as the simultaneous interval
number of complements of matchings and, thus, of circular-arc graphs is unbounded, due
to Lemma 2.10. Nevertheless, we can adapt a proof for the NP-hardness of the Coloring
problem on circular-arc graphs given by Marx [60] to the case of graphs of simultaneous
interval number 2. This proof uses the following definitions and results.

▶ Problem 4 (Disjoint Paths).
Input: Directed graphs G and H on the same vertex set.
Question: Are there paths Pe in G for each e ∈ E(H) such that these paths are edge

disjoint and path Pe together with edge e forms a directed cycle?

Given a directed graph G = (V, E), the in-degree (resp. out-degree) of a vertex v ∈ V

in G is the number of directed edges (x, y) ∈ E such that v = y (resp. v = x), and the
degree dG(v) of v in G is the number of directed edges (x, y) ∈ E such that v ∈ {x, y}. A
directed graph G = (V, E) is Eulerian if for each vertex v ∈ V , the in-degree of v equals its
out-degree.

▶ Theorem 6.1 (Vygen [72]). The Disjoint Paths problem remains NP-complete even if G is
acyclic and G + H is Eulerian.

▶ Lemma 6.2 (Marx [60]). If G + H is Eulerian and G is acyclic, then every solution of the
Disjoint Path problem given G and H uses every edge of G.

▶ Lemma 6.3. The Disjoint Paths problem remains NP-complete even if G is acyclic, G + H

is Eulerian, and every vertex in H has degree at most one.

Proof. We show that for every instance of the disjoint path problem there is an equiv-
alent instance where every vertex is incident to at most one edge in H. Let ξ(H) :=∑
v∈V max{0, dH(v) − 1}. We prove our claim by induction on ξ(H).
If ξ(H) = 0, then for every vertex v ∈ V it holds that dH(v) ≤ 1 and we are done. Thus,

we may assume that for all instances with ξ(H) ≤ i the claim holds true. Let (G, H) be an
instance with ξ(H) = i + 1 and let w be a vertex with dH(w) ≥ 2.

First assume that there is an edge (v, w) ∈ E(H). Then we insert a vertex w′ to G and
H. Furthermore, we add the edge (w′, w) to G and we replace (v, w) in H by (v, w′). We
call the newly obtained graphs G′ and H ′. The graph G′ is acyclic since w′ is only incident
to one edge in G′ and, thus, cannot be part of a cycle. Furthermore, the graph G′ + H ′ is
Eulerian since v has lost one outgoing edge and obtained a new outgoing edge, w has lost
one incoming edge and obtained a new incoming edge, and w′ has one outgoing edge and
one incoming edge.

If there is a solution of the disjoint path problem for the instance (G, H), then we can
replace the path P(v,w) by the path (w′, w) + P(v,w) and this path closes a cycle with edge
(v, w′). On the other hand, if (G′, H ′) has a solution, then the path P(v,w′) contains the
edge (w′, w) and removing this edge leads to a path that closes a cycle with edge (v, w).
Therefore, the instance (G′, H ′) is equivalent to the instance (G, H). Since ξ(H ′) = i, there
is an instance (G′′, H ′′) with ξ(H ′′) = 0 that is equivalent to (G′, H ′) and, thus, to (G, H).
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If there is no edge (v, w) ∈ E(H), then there must be an edge (w, v) ∈ E(H). In that
case we add a vertex w′ to both G and H, add the edge (w, w′) to G and replace the edge
(w, v) in H by (w′, v). With the same argumentation as above it follows that the claim holds
true.

Since the desired equivalent instance can be computed from H in polynomial time, by
performing at most ξ(H) of the above modification steps, the lemma follows. ◀

▶ Theorem 6.4. The Coloring problem is NP-complete on graphs G with si(G) ≤ 2 even if a
2-simultaneous interval representation of G is given.

Proof. We adapt a proof given by Marx [60] to establish NP-completeness of the Coloring
problem on circular-arc graphs. Let (G, H) be an instance of the Disjoint Paths problem
such that G is acyclic, G + H is Eulerian, and dH(v) ≤ 1 for all v ∈ V (G). Let k = |E(H)|.

Let v1, . . . , vn be a topological sort of G. For every edge (vi, vj) ∈ E(G) we construct an
interval (i, j) with label set {1}. Note that i < j, due to the property of the topological sort.
For every edge (vi, vj) ∈ E(H) we may assume that i > j since otherwise there is no path
from vj to vi in G. We add the intervals (0, j) and (i, n + 1) with label set {1, 2} and the
interval (j, i) with label set {2}. We call the resulting 2-simultaneous interval graph G′.

We claim that (G, H) is a yes instance of the disjoint path problem if and only if G′

can be colored with k colors. First assume that (G, H) is a yes instance. Fix a solution,
that is, paths Pe in G for each e ∈ E(H) such that these paths are edge-disjoint and path
Pe together with edge e forms a directed cycle. By Lemma 6.2, the solution covers all
the edges with k directed cycles. Let C be the ℓ-th cycle in the solution. For every edge
(vi, vj) ∈ E(C) ∩ E(G) we color the corresponding interval (i, j) that has label {1} with color
ℓ. For the edge (vi, vj) ∈ E(C) ∩ E(H) we color with color ℓ the intervals (0, j) and (i, n + 1)
that have label set {1, 2} as well as the interval (j, i) that has label set {2}. This leads to a
proper coloring of G′ since the only intervals with the same color that intersect each other
do not share a label and, thus, their corresponding vertices are not adjacent.

Now assume the graph G′ can be properly colored with k colors. As all the k intervals
with label set {1, 2} that start in 0 pairwise intersect, they have different colors. Now consider
the subgraph of G induced by the intervals containing label 2. Since every vertex in H has
degree at most one, whenever an interval ends before point n + 1, there is no other interval
that ends at this point. Furthermore, there is exactly one interval that starts at this point.
This implies that every point p in the interval (0, n + 1) in which no interval ends belongs to
exactly k intervals. Consequently, any two intervals such that the second one starts where
the first one ends must have the same color. This implies, in particular, that the two intervals
with label set {1, 2} representing the same edge of H have the same color.

Now consider all the intervals that contain the label 1. There are k of those intervals
that start in point 0. If exactly j of those intervals end in point i, then there are exactly j

intervals that start in i, due to the Eulerian property of G + H. Thus, any non-integer point
in (0, n + 1) is contained in exactly k intervals. This also implies that for any of those points
there is an interval with color d ∈ {1, . . . , k}. Therefore, the intervals with color d represent
a directed cycle in G + H containing exactly one edge of H.Thus, (G, H) is a yes instance of
the disjoint path problem. ◀

As any class of graphs with bounded simultaneous interval number are (pw, ω)-bounded
(Theorem 3.8), we can use the results from Chaplick et al. [16, Theorem 12] to show that
the List k-Coloring problem admits an FPT algorithm when parameterized by k plus the
simultaneous interval number.



J. Beisegel, N. Chiarelli, E. Köhler, M. Milanič, P. Muršič, R. Scheffler 19

▶ Theorem 6.5. Given a graph G, we can solve the List k-Coloring problem on G in time
kO(si(G)k)n.

7 Domination and Independent Sets

The Dominating Set problem and the Independent Set problem can be solved in polynomial
time on interval graphs [32, 68]. However, when we parameterize these problems by the
solution size and linear mim-width they are W[1]-hard [44]. If we parameterize the Dominating
Set problem by tree-α and the solution size then it is W[2]-hard [57]. In contrast, when the
problems are parameterized by simultaneous interval number and the solution size, then
bounded-search-tree methods lead to FPT-algorithms.

▶ Theorem 7.1. Given a graph G with n vertices and a d-simultaneous interval representation
of G, we can decide whether G has a dominating set of size at most k or an independent set
of size k in time O(2kd · n).

Proof. We use the common technique of bounded search trees (see, e.g., [20]). First consider
the Dominating Set problem. If the graph has no vertices, the algorithm returns “yes” .
Otherwise, if k = 0, the algorithm returns “no”. For k ≥ 1 and V (G) ̸= ∅, our algorithm
considers the vertex v whose interval ends first. For every possible label set S we do the
following: If there exists a vertex in NG[v] with label set S, then let u be the vertex in NG[v]
with label set S whose interval ends last. Remove u and all its neighbors from G and solve
the Dominating Set problem with parameter k − 1 on the remaining graph recursively.

To prove that the algorithm works correctly it is sufficient to show that in some of the
branches the algorithm detects a dominating set of size at most k if there is one. We prove
this by induction on k and, therefore, we assume that the algorithm works correctly for
k − 1. Let D be a dominating set of size at most k in G. We know that there is a vertex
w ∈ NG[v] ∩ D. Let S be the label set of w. Let u be the vertex in NG[v] with label set
S whose interval ends last. We claim that (D \ {w}) ∪ {u} is also a dominating set of G.
Assume for contradiction that this is not the case. Then there is a vertex x that belongs to
NG[w] \ NG[u]. As w and u have the same label set and u does not end before w, we know
that x has to end before u starts. However, this implies that x ends before v; a contradiction
to the choice of v.

For the Independent Set problem, if k = 0, the algorithm returns “yes”. Otherwise, if the
graph has no vertices and k ≥ 1, the algorithm returns “no”. For k ≥ 1 and V (G) ̸= ∅, our
algorithm considers for every label set S, the vertex u with label set S whose interval ends
first. The algorithm removes u and all its neighbors from G and solves the Independent Set
problem with parameter k − 1 on the remaining graph recursively.

Again, we prove the correctness by induction. Let I be an independent set of size k. Let
w be the vertex in I whose interval ends first and let S be the label set of w. Let u be the
vertex with label set S whose interval ends first. Again, we claim that (I \ {w}) ∪ {u} is an
independent set. Assume for contradiction that this is not the case. Then there is a vertex
x ∈ I \ {w} that is adjacent to u but not to w. As u and w have the same label set and u

does not end after w, x has to end before w; a contradiction to the choice of w.
For the running time observe that every call of our algorithm produces at most 2d new

calls and in any of these calls the parameter k is decreased by one. Therefore, we have at
most 2kd calls and any of these calls needs O(n) steps to find vertex u and to remove it
together with all its neighbors. ◀
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Using a technique due to Fomin et al. [28], in [44] Jaffke et al. showed that a whole range
of domination-type problems (including dominating and independent set) are W[1]-hard
when parameterized by mim-width and solution size. While that approach cannot be easily
adapted for the simultaneous interval number, it is possible to show that at least one of these
problems is W[1]-hard when parameterized just by si.

▶ Problem 5. Independent Dominating Set Problem (IDSP)
Instance: A graph G and an integer k.
Question: Does there exist a set X of at most k vertices of G such that G[X] is edgeless and

NG[X] = V (G)?

The results in [28] use a reduction from the Multicolored Clique problem (MCP), a
technique popularized by Fellows et al. [27]. We will use a reduction from the Multicolored
Independent Set problem.

▶ Problem 6. Multicolored Independent Set Problem (MISP)
Instance: A graph G with a proper coloring of k colors.
Question: Is there an independent set I in G such that I contains exactly one vertex of each

color?

The MCP (and thus the MISP) was shown to be W[1]-hard when parameterized by
solution size by Pietrzak [67] and by Fellows et al. [27]. In fact, in [20,58] the authors show
the following result under the assumption of the Exponential Time Hypothesis (ETH) which
asserts that solving n-variable 3-SAT requires time 2Ω(n) (see [43]).

▶ Theorem 7.2 (Cygan et al. [20], Lokshtanov et al. [58]). Assuming the Exponential Time
Hypothesis, there is no f(k)no(k) time algorithm for the MCP (MISP) for any computable
function f .

For an instance G of the MCP we can assume that all color classes are of the same size q,
since adding isolated vertices does not affect the existence or nonexistence of a multicolored
clique. A similar assumption can be made for the MISP. For each color class i ∈ {1, . . . , k},
we denote the vertices in the class by vi1, . . . , viq.

We will show that the IDSP is W[1]-hard when parameterized by the simultaneous interval
number. To this end we will construct a reduction from the MISP in the following way. Let
G together with a vertex partition V (G) = V1∪̇ . . . ∪̇Vk be an instance of the MISP, where
Vi = {vi1, . . . , viq} for all i ∈ {1, . . . , k}.

Let E(G) = {e1, . . . , em}. We will now define a (k + 2)-simultaneous interval graph G′

together with its (k + 2)-simultaneous interval representation. For each vertex vij ∈ V (G) we
will define a collection of m + 1 (open) intervals (see Figure 4)

W i
j :=

{(
γ − 1 + (j − 1)1

q
+ iϵ, γ + (j − 1)1

q
+ iϵ

)
: γ ∈ {1, . . . , m + 1}

}
,

where ϵ ≪ 1
kq , i.e., all k shifts in sum are much smaller than one interval of a W i

j .
We will denote the γ-th interval of vij as Iij(γ). These intervals will be referred to as the

vertex intervals. Note that none of these intervals have common left endpoints or common
right endpoints. Furthermore, for each of the Vi we add an additional collection of 2mq + 2
intervals

Si :=
{(

q − 1
q

+ γ
1
q

+ iϵ, 1 + γ
1
q

+ iϵ

)
: γ ∈ {0, . . . , 2mq + 1}

}
,
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Figure 4 The yellow intervals represent the edges of G, the black intervals are the intervals of the
W i

j . The blue intervals are in Si. Each of the rows marked Vi represent that vertex set of G. For
visual reasons the intervals belonging to the Vi have not been shifted by ϵ as in the definition. For
the same reason, we define ζ := k + 1 and ψ := k + 2. The labels of the edge intervals are denoted
completely above these. Each of the other intervals also contains the label i if it is associated with
Vi. The intervals on the right have not been labeled.

where again ϵ ≪ 1
qk .

Finally, we add further intervals for each edge in G. Let eγ = viavjb be an edge with
via ∈ Vi, vjb ∈ Vj . W.l.o.g. we may assume that a ≤ b and if a = b, then i < j. We add an
interval of the form I(eγ) = (r(Iia(γ)), ℓ(Ijb (γ + 1))). These intervals will be referred to as
the edge intervals. As none of the intervals of different vertices have common endpoints, we
can be sure that each of these edge intervals has strictly positive length. In the following, we
will frequently identify the intervals and vertices of G′ in order to simplify the notation.

In the next step, we assign a label set to each of the intervals in order to construct a
simultaneous interval graph. To each interval in Si we assign the label set {i} and to each
I(eγ) we assign the label set {k + 1} if γ is odd and {k + 2} if γ is even.

Before we label the vertex intervals, we need the following observation which follows
easily from the definitions above.

▶ Observation 7.3. Any interval Iij(γ) intersects at most two edge intervals and these
intervals have distinct labels.

Any interval of a W i
j is given at least the label i. Let Iij(γ) be one of the intervals

representing the vertices of G. If Iij(γ) does not intersect any edge interval such that one of
the endpoints of that edge is contained in Vi, then L(Iij(γ)) = {i}. If Iij(γ) intersects some
edge interval such that one of that edges endpoints is contained in Vi but is not identical
to vij , then we add the label of that edge to L(Iij(γ)). If Iij(γ) intersects some edge interval
such that one of that edges’ endpoints is identical to vij , then L(Iij(γ)) does not contain the
label of that edge. Note that these last two rules cannot lead to a contradiction, due to
Observation 7.3. Therefore, any interval Iij(γ) has label set either {i}, {i, k + 1}, {i, k + 2}
or {i, k + 1, k + 2}.

▶ Lemma 7.4. Any minimum independent dominating set of G′ must contain all the vertices
corresponding to the intervals in the set W 1

j1
∪ . . . ∪ W k

jk
for some set of indices {j1, . . . , jk}.
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Proof. Let D be some minimum independent dominating set of G′. For some index i let
W i
j∗ be a set containing the most intervals belonging to vertices of D among all W i

j .
Suppose there is some γ such that Iij∗(γ) does not belong to D. If there is no interval

from W i
j∗ to the left of Iij∗(γ), then let λ be the leftmost left endpoint of some vertex in Si.

If there are further intervals of W i
j∗ in D to the left of Iij∗(γ) then let λ be the right endpoint

of the rightmost of these. We similarly define ρ as either the rightmost right endpoint of a
vertex in Si or the left endpoint of the leftmost interval of W i

j∗ to the right of Iij∗(γ). We
now claim that adding all intervals of W i

j∗ between λ and ρ and deleting from D all intervals
that intersect with these gives us a smaller independent dominating set.

Either λ or ρ must be the endpoint of some Iij∗(δ), as D must contain at least one interval
of W i

j∗ . Without loss of generality, let this be λ. As any interval of a W i
j that intersects

the interval (λ, λ + 1
q ) must also intersect Iij∗(δ) by definition, we can assume that D must

contain two intervals of Si in (λ, λ + 1
q ) to be an independent dominating set. Therefore,

in order to dominate all intervals between λ and ρ with non intersecting intervals, the set
D must contain ⌈ρ − λ⌉ + 1 many intervals that cover (λ, ρ). On the other hand, we can
cover (λ, ρ) with ⌈ρ − λ⌉ intervals from W i

j∗ . This is a contradiction to D being a minimum
independent dominating set of G′, proving the statement. ◀

▶ Lemma 7.5. The vertices belonging to W := W 1
j1

∪ . . . ∪ W k
jk

form an independent
dominating set of G′ if and only if C := {v1

j1
, . . . , vkjk

} is a multicolored independent set of G.

Proof. It is easy to see that the intervals of some W i
ji

dominate all intervals of Si as well
as the intervals of all other W i

j . In the following we will show that the edge intervals are
also covered if C is an independent set in G. To this end, let eγ be some edge of G with
interval I(eγ). Suppose that eγ = vpxvst . As C is an independent set, we can assume without
loss of generality that vpx /∈ C implying that x ̸= jp. Furthermore, we can assume that I(eγ)
must intersect one of Ipjp

(γ − 1), Ipjp
(γ), and Ipjp

(γ + 1) and must, by definition, share a label
(either k + 1, or k + 2) with it. As all of these intervals are contained in W p

jp
, the set W is

an independent dominating set.
For the other direction, we need to show that if W is an independent dominating set

of G′, then C is an independent set of G. Therefore let W be an independent dominating
set of G′ and suppose that there exists some edge eγ = vpxvst such that vpx and vst are
contained in C. Assuming that x ≤ t and if x = t, then p < s, we know by definition that
I(eγ) = (r(Ipx(γ)), ℓ(Ist (γ + 1))). Also by definition, any interval of W intersecting I(eγ) does
not share a label with it. ◀

Combining Lemmas 7.4 and 7.5 with the fact that MISP is W[1]-hard when parameterized
by the solution size and Theorem 7.2 we get the following result.

▶ Theorem 7.6. The IDSP is W[1]-hard when parameterized by the simultaneous interval
number even if a si(G)-simultaneous interval representation is given. Furthermore, assuming
the ETH, there is no f(si)no(si)-time algorithm for the ISDP for any computable function f .

Note that this reduction cannot be easily adapted to show that independent dominating
set is W[1]-hard when parameterized by the simultaneous interval number and the solution
size k, as the minimum size of an independent dominating set in G′ is of the order Ω(km).

8 Conclusion

While we have presented some algorithmic properties for graphs of bounded simultaneous
interval number, many open problems still remain. First and foremost is the computation



J. Beisegel, N. Chiarelli, E. Köhler, M. Milanič, P. Muršič, R. Scheffler 23

of si. Unsurprisingly, the computation of si is NP-hard, however, we are not aware of any
results regarding the decision problem whether si is at most some fixed value d. It still
remains to be seen whether there exists a computable function f and an FPT or an XP
algorithm that for a given graph G and integer d, either correctly determines that si(G) > d

or computes an f(d)-simultaneous interval representation of G. Such FPT algorithms are
known for treewidth [6, 55] and cliquewidth [64], and XP algorithms are known for the
tree-independence number [23,73].

Furthermore, the complexity status of many important problems is still open when
parameterized by si, for example that of independent set and dominating set (see Table 1).
Regarding the obtained FPT results, it remains to be shown whether the running times are
best possible. Especially in the case of the clique problem, there is still a large discrepancy
between the achieved running time and the lower bound.

The simultaneous representation problem has also been considered for chordal graphs [46].
This imposes the question whether similar results can be made for a simultaneous chordal
number. In fact, some of the results given here for the simultaneous interval number can be
directly translated for the simultaneous chordal number as well. However, as the Dominating
Set problem is W[2]-hard for chordal graphs, the FPT algorithm for that problem given in
Theorem 7.1 does not carry over.
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