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Numerical validation of the inverse cascade of surface gravity wave action

Christopher Higgins1 and Basile Gallet1

1Université Paris-Saclay, CNRS, CEA, Service de Physique de l’Etat Condensé, 91191 Gif-sur-Yvette, France.

We report numerical simulations of surface gravity waves forced at small scale and the subsequent inverse

cascade of wave action. We combine the spectral approach to simulating weakly nonlinear waves with the

capabilities of modern Graphics Processing Units to reach unprecedented scale separation between the forcing

and domain scales. The resulting broad inertial range allows for an unambiguous confirmation of the theoretical

prediction for the spectrum in the inverse cascade regime, both in terms of spectral index and dependence of the

spectral level on the action flux.

Introduction –. Wave turbulence shares many similarities

with standard hydrodynamic turbulence, including the transfer

of conserved quantities in spectral space through self-similar

cascades. As compared to hydrodynamic turbulence, how-

ever, an appealing aspect of Wave Turbulence Theory (also

known as Weak Turbulence Theory, WTT in the following)

is that it comes with a natural closure based on the dispersive

nature of the waves and the timescale separation between lin-

ear and nonlinear processes, allowing for precise predictions

for the energy spectrum [1–3]. To wit, WTT begins with a

weak-nonlinearity expansion, from which one derives a Wave

Kinetic Equation (WKE) describing the slow evolution of the

wave spectrum. In the inertial range of a turbulent cascade –

that is, over the range of scales on which forcing and dissipa-

tive processes do not directly act – V.E. Zakharov first showed

how one can derive exact self-similar solutions to the WKE.

WTT has since been applied to many wave systems encoun-

tered in physics, providing a common framework for the de-

scription of out-of-equilibrium nonlinear dispersive wave sys-

tems: deep-water surface gravity and capillary waves [4–9],

elastic waves on thin plates [10–14], inertial waves in rotat-

ing tanks [15–17], internal waves in density-stratified fluids

[18, 19], Bose–Einstein condensates [20–22], particle interac-

tions [23] and gravitational waves [24], to name a few.

Recently, there has been growing interest in understand-

ing under which conditions the theoretically predicted tur-

bulent states are realised in laboratory experiments and nu-

merical simulations. The majority of these investigations are

concerned with forward (direct) cascades, where the invari-

ant – often the energy – is transferred from the injection scale

through smaller scales, all the way down to dissipation. For

systems that possess multiple quadratic invariants, however,

wave turbulence predicts that some invariants may be trans-

ferred upscale through an inverse cascade mechanism. Deep-

water surface gravity waves constitute one such system, con-

serving both energy and wave action. As for standard slowly-

evolving waves (see e.g. waves in inhomogeneous media

[25, 26]), wave action density is defined as wave energy den-

sity over the wave frequency. That is, with wavenumber k
and energy spectrum E(k) , the wave action spectral density

is E(k)/Ωk where Ωk =
√
gk is the angular frequency of

surface gravity waves, with g the acceleration due to gravity.

In the absence of forcing and dissipation, the weakly nonlin-

ear system conserves both the total wave energy,
∫

∞

0 E(k)dk,

and total wave action,
∫

∞

0
E(k)/Ωkdk. When some forcing

mechanism provides a source of energy and action, WTT ap-

plied to deep-water surface gravity waves predicts both a di-

rect cascade of energy and an inverse cascade of wave action

[1, 2], the latter being characterised by the one-dimensional

energy spectrum [27]:

E(k) = CKZ g
2/3ζ1/3k−7/3 , (1)

where ζ denotes the wave action flux and the dimension-

less prefactor CKZ is the Kolmogorov–Zakharov (KZ) con-

stant. Deep-water surface gravity waves can be considered

the archetypal wave system for which an inverse cascade has

been predicted. Additionally, the inverse cascade is thought

to play a crucial role in the observed frequency downshift

of wind-wave spectra, and in the formation of swell [28].

Equally, a clear numerical or experimental validation of (1)

would have consequences extending beyond surface gravity

waves, to other systems for which inverse cascades have been

predicted based on WTT: Bose-Einstein condensates and ‘op-

tical turbulence’ as described by the Gross-Pitaevskii equa-

tion [20–22, 29], Kelvin waves on thin vortex filaments [30–

32], spin waves [33, 34] and most recently gravitational waves

[24].

Based on the literature, however, it appears that this inverse

cascade is more difficult to observe than the forward cascade

of surface gravity wave energy. Early experiments have shown

reasonable agreement over a narrow inertial range [35], while

more recent experiments in a much larger basin exhibit in-

verse transfers over approximately a factor of two in scale

only [36]. While numerical simulations based on consistent

truncations of the nonlinear surface wave equations are very

successful at producing the expected direct cascade [9, 37],

numerical investigations of the inverse cascade again appear

to be more challenging, such that the produced inertial range

is either very narrow [38], or the observed spectral index de-

parts from the theoretical prediction over a more extended in-

ertial range [39]. That the inverse cascade is more challeng-

ing to observe is perhaps unsurprising: first, a broad inertial

range requires forcing small-scale waves, while ensuring that

these are unaffected by dissipation at yet-smaller scales. If

the intuition gathered from idealised 1D systems holds for 2D,

then the frequency inertial range must be broad, a particularly

stringent criterion for the concave dispersion relation of deep-

water surface gravity waves, as discussed in Ref. [40]. Sec-
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Figure 1. Energy spectrum at successive times in a high-resolution

simulation. The forcing ranges from k1 = 220 to k2 = 292. The

dashed line indicates the theoretical value −7/3 for the spectral in-

dex. The rms surface slope is 0.14. Inset: Spectra compensated by

the theoretical power-law k−7/3.

ondly, the inverse cascade is very prone to finite-size effects,

and in practice the first decade in k-space seems to exhibit fea-

tures of discrete wave turbulence [41]. Such finite-size effects

can lead to formation of a ‘condensate’, inducing nonlocal

transfers of action in spectral space and a spectrum that ulti-

mately differs from the KZ prediction (1) [42]. Thirdly, while

the direct energy cascade has finite capacity and equilibrates

over finite time, the inverse action cascade has infinite capac-

ity: in an infinite domain, it would take an infinite amount of

time to populate wavenumbers down to k = 0 [43]. The prac-

tical consequence is that numerical simulations of the inverse

cascade can take a very long wall-clock time (up to a year in

the recent study reported in [44]!), with an inertial range that

extends in an ever-slower fashion.

In this Letter we combine a higher-order spectral approach

to simulating weakly nonlinear surface gravity waves [45]

with the capabilities of modern Graphics Processing Units to

investigate the inverse cascade of wave action. This approach

allows us to cope with the long integration times mentioned

previously and to simulate waves over up to three decades in

wavenumber (after de-aliasing). Such a broad range of scales

makes it possible to force waves at sufficient distance from the

small-scale dissipation, while simultaneously ensuring the ex-

istence of an inertial domain that does not involve the lowest

decade of wavenumbers where discrete interactions dominate.

Numerical setup –. We consider the evolution of gravity

waves on the surface of an infinitely deep body of fluid. The

problem domain is (x, y) ∈ [0, 2πL]2 with periodic boundary

conditions. While the equations governing surface waves of

arbitrary amplitude are remarkably challenging, restricting at-

tention to the weakly nonlinear regime arising for weak wave

slope allows for crucial simplifications. Specifically, retaining

nonlinearities up to cubic order, the evolution of the wave field

is governed by the following coupled PDEs for the free sur-

face elevation η(x, y, t) and the velocity potential evaluated

on the free surface, ψ(x, y, t):

∂tη = Dψ − ∇ · (η∇ψ) −D (ηDψ)

+D [ηD (ηDψ)] +
1

2
D
(

η2
∇

2ψ
)

+
1

2
∇

2
(

η2Dψ
)

, (2)

∂tψ = −gη − 1

2

[

|∇ψ|2 − (Dψ)
2
]

− (Dψ)D (ηDψ)

− (ηDψ) ∇
2ψ . (3)

where ∇ = (∂x, ∂y) and the operator D is defined in

terms of the two-dimensional Fourier transform F as Dψ =
F−1{kF{ψ}}, with k the norm of the wavevector k. To

some extent, (2) and (3) make up the simplest set of equa-

tions describing the weakly-nonlinear evolution of deep-water

surface gravity waves in the 2D horizontal plane. The wavy

motion is described as a potential flow and the nonlinearities

stem from the standard kinematic and dynamic boundary con-

ditions at the moving fluid surface [25]. Crucially, this set

of equations captures the spectral energy and action transfers

between waves with different frequencies and wavevectors.

Simpler models have been derived for the study of weakly

nonlinear (quasi-)unidirectional waves, albeit in the shallow-

water limit, such as the Korteweg-de Vries equation (1D) or

the Kadomtsev–Petviashvili equation (weakly 2D). However,

these models are based on drastic approximations, rendering

them ‘integrable systems’. This rules out any resonant interac-

tion between waves of different frequencies and wavevectors

which are essential for wave turbulence to occur, and there-

fore also the associated spectral transfers of energy and action

which are the focus of the present study [2, 46].

In the following we nondimensionalise the equations us-

ing the lengthscale L and timescale
√

L/g, keeping the

same notations for the dimensionless variables. Decomposing

η(x, y, t) and ψ(x, y, t) in terms of their Fourier amplitudes

as [η(x, y, t) , ψ(x, y, t)] =
∑

k∈Z2

[

η̂k(t) , ψ̂k(t)
]

eik·x, we

introduce the so-called ‘interaction variables’:

bk(t) = eiΩkt

(

√

Ωk

2k
η̂k + i

√

k

2Ωk
ψ̂k

)

. (4)

The governing equations are recast in terms of bk as:

∂tbk = Nk + Fk + Dkbk, (5)

where Nk denotes the nonlinear terms and we have included

a forcing term Fk and a damping term Dkbk. In the absence

of forcing and dissipation, equations (2-3) – and thus equa-

tion (5) – possess an exact energy invariant [37]:

H =
1

2

s
[0,2πL]2

{

gη2 + ψDψ + η[|∇ψ|2 − (Dψ)2](6)

+η(Dψ)[D(ηDψ) + η∆ψ]} dxdy .
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Additionally, in the weakly nonlinear regime of interest here

the wave action is an adiabatic invariant, conserved at the

order of validity of the WKE (but not at the next order, see

e.g. equation (5.2) of [47]). The wave action contained

in scales larger than the forcing is defined as A←(t) =
∫ k1

0

〈

|bk|2
〉

θ
2πkdk, where 〈·〉θ represents an average over the

direction of the wavevector k. The forcing term we choose is

restricted to wavenumbers k = (kx, ky) satisfying the two

conditions (i) kx > |ky | and (ii) k1 ≤ k ≤ k2, with the fol-

lowing complex amplitude:

Fk = f0
(k2 − k)(k1 − k)

(k2 − k1)2
eiχk . (7)

In this expression f0 denotes the overall forcing amplitude,

while χk are time-independent random phases specified at the

outset of a simulation. Directional localisation of the forcing

– condition (i) above – has been observed to stabilise the nu-

merical method and is therefore routinely used for long sim-

ulations with relatively strong forcing amplitudes [9, 28, 48].

More fundamentally, the relative spectral width of the forcing

– the ratio (k2 −k1)/(k1 +k2) in condition (ii) above – has re-

cently been shown to have a crucial impact on the emergence

of the turbulent cascade: a forcing which is too narrowbanded

in wavenumber restricts the number of resonances partaking

in the inverse cascade [41], ultimately leading to a frozen form

of discrete turbulence that halts the transfer of wave action to

larger scales (see discussion section).

Finally, following Refs. [9, 48, 49] the standard viscous dis-

sipative operator is replaced by a high power of the Lapla-

cian, Dk = −νk30. Such hyperdiffusion behaves like a sharp

low-pass filter [50] ensuring that only waves near the highest

wavenumber allowed by the computational grid are directly

subjected to damping. We have tested lower powers of the

Laplacian and confirmed that the sharp dissipative operator

does not result in an artificial bottleneck.

We solve equation (5) using a pseudospectral solver with

4th-order Runge–Kutta time-stepping and de-aliasing follow-

ing the 1/2 rule. Graphical Processing Units are particularly

well-suited for such low-memory simulations and lead to a

significant speed-up, allowing us to perform long numerical

simulations at high resolution.

Results –. We first report a conservative numerical simula-

tion where forcing is distant from the high-k dissipative range

and the broad inertial range does not include the first decade

in spectral space where discrete turbulence may arise. To wit,

we employ 40962 resolution, which corresponds to kx and ky

ranging from −1024 to 1024 after de-aliasing, offering three

decades in spectral space. The forcing ranges from k1 = 220
to k2 = 292, which proves broad enough to trigger an inverse

action cascade. The waves remain weakly nonlinear through-

out the entire simulation, the root-mean-square (rms) slope

reaching approximately

√

|∇η|2 = 0.14 at the end time of

the simulation, where the overbar denotes the spatial mean. In

Fig. 1, we plot the energy spectrum E(k) = 2πkΩk

〈

|bk|2
〉

θ
at successive times. E(k) is normalised such that its inte-
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Figure 2. Energy spectra at late time for various forcing amplitudes,

see legend for corresponding values of the action flux ζ. The rms

slope of the fluid surface is 0.075, 0.1, and 0.15 (bottom to top, re-

spectively). The dashed line indicates the theoretical value −7/3

for the spectral index. Inset: Spectra compensated by the theoretical

power-law ζ1/3k−7/3. The collapse of the curves onto a plateau val-

idates the theoretical prediction (1), the height of the plateau giving

the value of the KZ constant CKZ.

gral equals the quadratic part of the wave energy per unit sur-

face,
∫

∞

0 E(k)dk =
〈

η2/2 + ψDψ/2
〉

, where angle brackets

denote an average over several periods of the slowest waves

and over the spatial directions. One can clearly see upscale

transfers in Fig. 1, with a power-law spectrum developing

over an increasingly broad inertial range as time goes on.

To investigate compatibility with the KZ prediction (1), we

provide an eyeguide with exponent −7/3 in the main figure

and compensate the spectra by this prediction in the inset.

The agreement is excellent over the inertial range, indicating

that we have successfully circumvented any early-time frozen-

cascade/condensate behavior at finite k.

It turns out that the inverse cascade can be reasonably

observed with more modest resolution, and in Fig. 2 we

show spectra obtained at 10242 resolution for a maximum

wavenumber of 256 (after de-aliasing) and three different

forcing amplitudes. Although the power laws are perhaps

slightly less clean that in Fig. 1, they remain in excellent

agreement with the spectral index of the theoretical spec-

trum (1). A crucial ingredient explaining this success may

be the forcing function (7), which contributes to circum-

venting – or delaying – discrete turbulence processes in at

least two ways. First, the relatively large spectral width

(k2 − k1)/(k2 + k1) ≈ 0.14 allows for the activation of

many resonances, and secondly the angular restriction per-

mits stronger forcing amplitudes, thus inducing more nonlin-

ear waves with broader frequency resonances. For each of

the simulations in Fig. 2 we track the wave action A←(t) =
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Figure 3. Energy spectrum in statistically steady state for a run with

the same forcing as the upper curve in Fig. 2, with the addition of

large-scale damping. The rms slope of the fluid surface is 0.13. Once

again, the spectral index agrees well with the theoretical prediction

(1) as shown by the eyeguide in the main figure and the compensated

spectrum in the inset.

∫ k1

0

〈

|bk|2
〉

θ
2πkdk =

∫ k1

0 E(k)/Ωkdk contained in scales

larger than the forcing scales, k < k1. A time derivative leads

to the instantaneous action flux ζ(t) = dA←/dt.
We average ζ(t) over the last 104 time units and use the re-

sulting value to compensate the spectra in the inset of Fig. 2.

The collapse of the spectra onto a single constant curve vali-

dates the theoretical values for the exponents both in ζ and in

k.

Large-scale damping –. One possible objection to both the

present work and previous attempts reported in the literature

is that the spectral index sometimes differs between the sta-

tistically steady state of a forced-dissipative turbulent cascade

on the one hand, and the spectra observed during the transient

phase where the forcing gradually populates the inertial range

on the other hand [51–54].

To investigate this issue, we have performed an additional

run with forcing similar to the upper curve in Fig. 2, but with

additional artificial large-scale damping in the form of an in-

verse Laplacian: Dk = −µk−2 − νk30. Such large-scale

damping efficiently removes wave action at the end of the

inverse cascade, leading to a stationary state. We plot the

statistically-steady spectrum in Fig. 3. The spectrum is sim-

ilar to those in previous figures and the spectral index agrees

equally well with the KZ prediction, as shown by the eyeguide

in the main figure and the compensated plot in the inset.

Discussion –. The present numerical simulations unam-

biguously validate the theoretical spectrum for the inverse ac-

tion cascade of surface gravity waves, in terms of spectral

index for both the wavenumber and the energy flux. A key

ingredient of this success seems to be the choice of forcing

function, which must be broad enough and strong enough to

mitigate any freezing of the cascade at finite k. In this respect

the present results strongly depart from previous attempts at

observing the inverse cascade over an extended inertial range

[44, 55], where freezing of the cascade causes condensation at

finite k. The resulting strong condensate then triggers nonlo-

cal forward transfers of wave action associated with a distinct

theoretical prediction for the spectral exponent [42].

Our observation of an extended inverse action cascade pro-

vides a unique opportunity to discuss the value of the associ-

ated KZ constant, estimated to be CKZ = 0.9 ± 0.1 based on

the inset in Fig. 2 (our 40962 run also agrees with this esti-

mate). While the exact theoretical value is unknown, the esti-

mate CKZ = 2π × 0.227 ≈ 1.43 has been proposed based on

a nonlocal approximation in Ref. [28], although a factor 1/2
may be missing [56]. The corrected theoretical estimate for

CKZ lies close to the numerical value obtained in this work.

Beyond this approximate value it would be desirable to ob-

tain the exact theoretical prediction for the action cascade KZ

constant.

In the meantime, the careful study by Falcon et al. [36]

affords a comparison of the present results to experimental

data. While their inertial range is arguably narrow, suffi-

cient information is provided to extract an estimate of the

KZ constant. The (dimensional) action flux is estimated as

ζ = 4 × 10−7m3s−2 and the elevation frequency spectrum

takes the value Sη(f) ≃ 2 × 10−4m2s for f = 1.5Hz.

Recasting formula (1) into the corresponding prediction for

Sη(f) and inserting the above quantities leads to: CKZ =
25/3π8/3Sη(f)f11/3/(ζ1/3g) ≃ 0.8. This rough estimate

turns out to agree closely with our numerically determined

value, and provides further evidence that Falcon et al. are in

the right regime for development of an extended inverse cas-

cade. That the cascade appears to saturate in their experiment

may again be a consequence of the forcing mechanism, which

is likely crucial at the experimental level too. It could be that a

more spatially homogeneous and broadbanded forcing mech-

anism – as opposed to boundary forcing – would lead to a fully

developed inverse cascade in such large-basin experiments.

Beyond surface gravity waves, it would be interesting to in-

vestigate to what degree the conclusions of the present study

hold for other systems that have been predicted to sustain an

inverse cascade based on WTT (as listed at the outset): is a

broad enough forcing key to unfreezing the inverse cascade in

these systems as well? Does this depend on whether the in-

verse cascade has finite or infinite capacity? How might this

change with the number of waves involved in the dominant

interaction mechanism? Careful experimental and numerical

studies spanning a large variety of physical systems will be

crucial to assess the extent to which WTT indeed provides a

universal characterisation of out-of-equilibrium weakly non-

linear systems.
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