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ABSTRACT In this study, we present a novel swarm-based approach for generating optimized stress-
aligned trajectories for 3D printing applications. The method utilizes swarming dynamics to simulate the
motion of virtual agents along the stress produced in a loaded part. Agent trajectories are then used as print
trajectories. With this approach, the complex global trajectory generation problem is subdivided into a set
of sequential and computationally efficient quadratic programs. Through comprehensive evaluations in both
simulation and experiments, we compare our method with state-of-the-art approaches. Our results highlight
a remarkable improvement in computational efficiency, achieving a 115× faster computation speed than
existing methods. This efficiency, combined with the possibility to tune the trajectories spacing to match
the deposition process constraints, makes the potential integration of our approach into existing 3D printing
processes seamless. Additionally, the open-hole tensile specimen produced on a conventional fused filament
fabrication set-up with our algorithm achieve a notable ∼ 10% improvement in specific modulus compared
to existing trajectory optimization methods.

INDEX TERMS 3D printing, additive manufacturing, fused filament fabrication, stress-aligned printing,
swarming, trajectory optimization

I. INTRODUCTION

In 3D printing, a desired three-dimensional part is created
by depositing material in a layer-wise fashion. This family
of manufacturing processes, also known as Additive Manu-
facturing (AM), enables the creation of complex geometries
and has been steadily gaining popularity in the last decades.
The most widely AM technique is Fused Filament Fabrica-
tion (FFF) [1], which is also known as Fused Deposition
Modeling (FDM) or Material Extrusion Additive Manufac-
turing [2]. In FFF, a numerically controlled heated extruder
moves along a predefined trajectory while depositing melted
plastic, forming the desired part. Typically, the geometry to
be manufactured is first sliced into equally spaced planes
(known as planar printing) [3] or two-dimensional manifolds
(known as non-planar printing) [4], [5]. Then, trajectories are
created inside each slice. This process is generally achieved
via a slicer software, which mostly focuses on generating
trajectories that form the part in a rapid or precise manner.
Depending on the used material, desired geometry, printing
equipment, and required geometrical accuracy, the slicing and
trajectory generation process can be adapted to optimize the

properties of the manufactured part [6]–[9].

The recent developments of high performance materials,
paired with a general technological improvement of the print-
ing process, has enabled the usage of parts produced with
FFF in a wide range of applications where high strength and
stiffness are required [10], [11]. Motivated by these devel-
opments, recent works have focused on generating stress-
aligned printing trajectories that maximize the mechanical
properties of FFF printed parts, both in the planar [12] and
non-planar case [13], [14]. Other works have tackled the same
problem for the specific case of fiber-reinforced filaments,
which must be printed in a continuous fashion [15]–[17].
The general idea in this field of research is that, for a given
material, manufacturing process, and geometry, there exists a
stress-aligned trajectory that produces the desired part while
improving its strength and stiffness under a general or specific
load case. Finding such a trajectory is a challenging task due
to complex part features, manufacturing process constraints
and geometrical accuracy. The surveyed works that produce
acceptable results in practice generally compute print trajec-
tories by solving a very large optimization problem, which
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is complex and time-consuming. Additionally, these methods
produce a single solution which cannot be tuned or refined to
exactly match the printing process properties and mechanical
requirements.

In this work, we propose a novel approach to the generation
of stress-aligned print trajectories that is based on swarming
dynamics. Each computed print line is the trace of a simulated
agent moving through the part to be printed. Agents move in a
swarm, and their motion is dictated by the stress generated by
the part’s load case, producing stress-aligned trajectories. By
utilizing a swarm-based approach, the complex stress-aligned
trajectory generation problem is broken down into a set of
sequential and computationally efficient optimization prob-
lems. This significantly reduces the total time required for op-
timization. Additionally, the swarming dynamics enable great
flexibility: our swarm-based trajectory generationmethod can
be fine-tuned to produce trajectories that perfectly match the
printing process limitations. The main contributions of this
work are:

• A novel, computationally efficient, and flexible swarm-
based approach to stress-aligned trajectory generation
for 3D printing,

• A study of the methods’ behavior with different settings,
and

• The experimental comparison of swarm-based stress-
aligned trajectory generation with a state-of-the-art
method.

In Section II we introduce the methods of which we make
use in our approach and discuss related literature. Section III
details the swarm-based trajectory generationmethod. In Sec-
tion IV we analyze the performance of our method in detail
and benchmark it. Section V concludes the paper.

II. BACKGROUND
A. FINITE ELEMENT ANALYSIS
Finite Element Analysis (FEA) is a very well known and
widely used method to simulate numerically the stress field
inside a loaded geometry [18]. We utilize it to compute the
stress along which the printing trajectories for the optimized
part will be aligned. In FEA, the part to be manufactured is
first subdivided in a tetrahedral mesh. Then the forces pro-
duced by the predefined load case are added to the problem as
boundary conditions. After assigning to the part its mechan-
ical properties (i.e. Young’s modulus and Poisson ratio), an
FEA solver is used to find a numerical solution to the resulting
set of differential equations. Solving this discretized problem
corresponds to finding a Cauchy stress tensorσ for each node
in the mesh. Typically, the Cauchy stress tensor is decom-
posed using eigenvalue decomposition to obtain the principal
stresses and principal directions [19]. Now, the stress tensor
can be represented as a diagonal matrix in a reference frame
oriented along the principal directions of the decomposition.
The diagonal entries σ1, σ2 and σ3 of the principal stress
matrix are ordered such that |σ1| ≥ |σ2| ≥ |σ3|. In this work,
we only consider the principal stressσ1 and the corresponding

normalized eigenvector e1. This eigenvector indicates the
direction along which the principal stress acts. At any given
node of the mesh, we indicate the product of the principal
stress with the corresponding normalized eigenvector as s =
σ1e1, and we loosely call it local principal stress vector.

B. STRESS-ALIGNED PRINTING
The goal of stress-aligned printing is to optimize the internal
structure of a 3D printed part to enhance its mechanical
performance. The approach exploits the anisotropic nature of
AM processes. In particular, parts produced with FFF have
been shown to be anisotropic, as their mechanical properties
are better in the direction in which the plastic filament has
been deposited. This effect can be moderately strong with
materials such as PolyLactic Acid (PLA) (see Fig. 2 from
[13]) or extremely strong with materials such as Liquid Crys-
tal Polymers (LCP) [20]. In practice, after conducting a FEA
for a given geometry and load case, the field of local princi-
pal stress vectors is used to guide the trajectory generation
process. The objective is to produce trajectories for which
the local printing direction is aligned with the local principal
stress. This has been shown to maximize the strength and
stiffness of the final object under the given load case [3], [13],
[21]. While the stress-alignment of trajectories has been the
central goal of past works, it has been achieved at the expense
of computational efficiency and of flexibility of the approach.
Existingmethods require long and complex computations, of-
ten relying on commercial optimization solvers, which makes
them unsuitable for widespread use in conventional slicers.
Furthermore, for a given geometry and load case, a unique tra-
jectory is generated, with no possibility for refinement. This
is particularly limiting, since the manufacturability of trajec-
tories is a central issue in FFF. Generally, a stress-aligned
trajectory for a complex part is characterized by a variable
spacing between the print lines. However, the possibility to
deposit lines of variable width is constrained by the material
properties and the extrusion process. Attempting to print
beyond these constraints necessarily produces over- or under-
extrusion, strongly reducing the quality of the printed part
and its mechanical properties [22], [23]. Thus, there exists a
need for a computationally efficient stress-aligned trajectory
generation algorithm that can be tuned to produce trajectories
with a desired distribution of line spacing, ensuring manufac-
turability. This last aspect is becoming increasingly relevant
as recent works have enhanced the quality and width range of
variable width FFF [24], [25].

C. SWARMING
Numerous methods for swarm formation, modeling, and nav-
igation for multiple autonomous agents have been proposed
in the literature [26]–[28]. Often, the interactions between
individuals (or between individuals and the space surrounding
them) have been modeled using artificial potential functions.
The main applications driving this line of research have
been robot navigation and control [29]–[31] or multi-agent
coordination [32]. Interestingly, however, the inspiration for
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a more general approach to the study of swarm aggregation
came frommathematical biology [33], [34]. Gazi and Passino
[35]–[37] have introduced a class of attraction and repulsion
functions between individuals that ensure the aggregation of
a swarmmoving through an environment, prevent individuals
frommaking contact with each other, and allow for formation
control. They have further extended their work to follow an
energy approach [38]. This method, mimicking the behavior
of swarms in nature, proposes that the motion of individual
agents is dictated by a biological potential energy to be
minimized. The total energy of a swarm is given by the sum
of its kinetic and potential energies. Trivially, a swarm kinetic
energy corresponds to the sum of the kinetic energies of its
individual components, as defined in classical mechanics.
The notion of potential energy of a swarm, however, has
been extended beyond classical physical potential energy to
also include aggregation, environment and predator poten-
tials. Given these notions, it is possible to model a swarm by
applying a Lagrangian approach to the swarm total energy.
Intuitively, the agents composing a swarm have a tendency to
maintain their kinetic energy unchanged and to attainminimal
potential. A flock of birds or a school of fish, for example,
seek to travel with constant speed and direction (thus avoiding
kinetic energy variations), to maintain a comfortable and safe
distance between individuals (minimizing the aggregation
potential), to explore areas rich in food (minimizing the envi-
ronment potential), and to scatter and flee in the presence of
threats (minimizing the predator potential).

III. METHOD
The approach we propose originates from the fascinatingly
simple idea that the motion trajectories of a swarm of virtual
point-mass agents can be used as manufacturing trajectories.
If the swarm is carried through a mechanically loaded part
by the load-induced stress flow, the resulting manufacturing
trajectories are then stress-aligned. Similarly to other existing
approaches in the literature [13], [21], we separate the tasks
of slicing the part and of generating trajectories on a slice.
We assume that the slices are given and only consider the
trajectory generation problem. Irrespective of whether slices
are planar or not, the trajectories are thus generated over a 2D
manifold.

The generation of trajectories for FFF has specific require-
ments and peculiarities that make the existing approaches to
swarm modeling not immediately usable for the task. The
method introduced in Section II-C must be modified or ex-
tended in three areas:
1) agents in the swarmmust avoid moving through existing

trajectories,
2) the set of trajectories must cover the entire part, and
3) agents can be added to or removed from the swarm at

will.
Condition 1 is not enforced in classical swarm modeling,

since physical agents must simply avoid collisions among
each other. Only the present location of agents is relevant for
planning, and agents are allowed to cross existing trajectories.

In swarming for manufacturing, however, both a spatial and
temporal separation must be maintained between agents: the
manufacturing trajectories cannot overlap as depositing ma-
terial twice at the same location creates defects in the part.
Condition 2 ensures that the outside of the part produced

with the generated trajectories matches the desired geometry,
and that no voids are left inside the part. Additionally, in
FFF (and in AM in general) the rate of material deposition
is bounded. For this reason, good quality coverage of the
part is achieved when the spacing between neighboring man-
ufacturing trajectories respects upper and lower bounds. If
trajectories are too far apart the space in between cannot be
entirely filled, if trajectories are too close together too much
material will be deposited at the same location.
Finally, Condition 3 exploits the non-physical nature of

agents in the manufacturing problem to simplify the part
coverage problem (Condition 2). Contrarily to a swarm of
physical agents, we can change the number of agents in the
swarm at any time. For example, it is possible to spawn new
agents (which will produce a new manufacturing trajectory)
where other trajectories have diverged, or to kill existing
agents (which will interrupt an existing manufacturing trajec-
tory) where trajectories compress excessively.

A. SWARM-BASED TRAJECTORY PLANNING FOR
MANUFACTURING
Our approach has been principally inspired by the notions
of aggregation and environment potentials from [38], which
we have adapted to the context of manufacturing. Let us
consider amechanically loaded part for which a FEA has been
conducted as discussed in Section II-A. We create a swarm
of agents at the location where the largest external force is
applied to the part. At initialization, the agents are homoge-
neously spaced, and neighboring agents are at a predefined
distance matching the nominal desired distance between FFF
print lines. We define the swarm potential as

P = Pa + KPe , (1)

where Pa and Pe are the aggregation and environment poten-
tials of the swarm, and K is a tuning constant. Pa encodes the
quality of the swarm formation: it is minimal when the spac-
ing between neighboring agents corresponds to a predefined
desired distance, and increases in case of spacing deviations.
Pe quantifies the stress alignment of the agents’ motion: it
is minimal when agents follow the stress flow exactly, and
increases when they deviate from it. To have the swarm draw a
well-spaced set of stress-aligned trajectories through the part,
we propose to utilize Algorithm 1.

B. METHODOLOGICAL DETAILS
Algorithm 1 is obviously only an outline of the method, that
we first introduce in a simplified manner for clarity. In this
section, we describe every required detail that composes our
method for swarm-based trajectory planning for manufactur-
ing.
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Algorithm 1 Swarm-Based Trajectory Generation
Require: Agents initial location, Step size, Agents desired

distance, FEA simulation, K
1: while Part is not fully covered do
2: Advance each agent by one step size along the local

principal stress direction
3: Reposition agents by minimizing P
4: if Two agents are too close together then
5: Kill one of them
6: end if
7: if Two agents are too far apart then
8: Spawn one agent in between
9: end if
10: end while

1) Step Direction and Size
The solution to an FEA simulation of stresses in a me-
chanical component produces a stress flow in the part. As
the principal stress vectors forming the stress flow originate
from the eigenvectors of the Cauchy stress tensor, only their
direction is relevant to the stress alignment problem, while
their orientation is not. Intuitively, local alignment between
a print line and a stress vector is left unchanged by flipping
the vector orientation. To produce a stress flow free from
this 180◦ ambiguity (i.e. heterogeneous stress vectors ori-
entations), past approaches have used simulated annealing
[39] and rectification along the main Cartesian component
[21]. In this work, we exploit the particle swarming nature
of the approach to solve the orientation ambiguity by using
the momentum of the agents. At each iteration, an individual
agent is displaced according to the local principal stress vector
direction. However, we select the displacement orientation
that best aligns with the displacement of the agent in the
previous iteration. In practice, using this approach, no sharp
changes (i.e. larger than 90◦) in an agent’s trajectory are
possible.

Contrarily to intuition, the size of the agents steps does not
depend on the magnitude of the stress vectors. To ensure that
agents advance in a uniform front, every agent moves by a
predefined and fixed step size. The uniformity of the front
is a condition required to simplify the optimization problem,
as we will see in the rest of this section. To ensure that no
trajectories overlap (see Section III, Condition 1), we set the
step size h = l, where l is the desired distance between
neighboring agents.

To summarize, we consider an agent x1 that at iteration k
is located in x1(k) and the local principal stress vector s1(k)
(which we project on the slice if necessary). We indicate with
ŝ1(k) = s1(k)/∥s1(k)∥2 the normalized local principal stress
vector. After one step, the agent will be located in

t1(k + 1) = x1(k) + µŝ1(k)h , (2)

where µ is the momentum term used to circumvent the am-
biguity problem: we set µ = 1 when s1(k) · (x1(k) −
x1(k − 1)) ≥ 0 and µ = −1 otherwise. x1(k − 1) naturally

denotes the location of the agent at the previous iteration of
the algorithm, and x1(k) − x1(k − 1) corresponds to its last
displacement. The forward step motion of two agents can be
observed in Fig. 1.

2) Agents Potential Functions
Two potential functions are required to obtain the swarm
potential introduced in Eq. (1): the environment potential
Pe, and the aggregation potential Pa. The potential functions
commonly utilized in the literature [38] are nonlinear, and the
resulting total potential of a swarm is generally non-convex.
Optimizing such functions remains a complex, inefficient,
and time-consuming task [40], [41]. To simplify and accel-
erate the potential optimization problem, we introduce two
quadratic environment and aggregation potential functions.
Using these, Eq. (1) becomes a quadratic programming (QP)
problem [42], which can be solved very efficiently by numer-
ous existing solvers.
To define the environment potential Pe, let us consider an

individual agent x1 that has advanced by a step in the local
stress direction following Eq. (2) and is now located in t1(k+
1). We can imagine that t1(k + 1) is the ‘‘ideal’’ location for
the agent, as the trajectory of the agent between x1(k) and
t1(k+1) is perfectly aligned with the local stress vector s1(k).
We assign the agent a virtual mass m1(k + 1) ∝ ∥s1(k)∥2,
that is proportional to the local stress vector magnitude1. We
can now imagine the environment potential associated to the
agent as the energy required to reposition the agent away from
its ideal location t1(k + 1), and bring it to a final location
x1(k + 1), as visible in Fig. 1. We define this as

Pe
(
x1(k + 1)

)
= m1(k + 1)∥x1(k + 1)− t1(k + 1)∥2 , (3)

which is a quadratic function with a global minimum
Pe
(
x1(k + 1)

)
= 0 when the agent is not repositioned.

Using the virtual mass term m, we make the repositioning
of agents with a larger associated stress more costly. This
ensures that where the local stress is larger, the alignment
between trajectories and stress will be higher.

The aggregation potentialPa is computed by comparing the
locations of neighboring agents. As discussed in Section III,
Condition 1, we want to avoid agent trajectories that overlap
or cross. An intuitive way to achieve this would be to encode
existing trajectories as locations to be avoided by the moving
agents (for example, by including them in the environment
potential). However, this approach presents a major scalabil-
ity issue. As the number of iteration of Algorithm 1 grows,
the size of existing trajectories keeps on increasing, making
the size and complexity of the optimization problem larger
and larger, and leading to computation issues. Additionally,
this problem is amplified if the parts to be manufactured
are large with respect to agent spacing. We avoid this issue
altogether by ensuring that themoving agents never encounter

1In practice, we use the largest principal stress vector found in the FEA
simulation as a normalization factor. We set, for each agent xi(k + 1)
and corresponding local stress vector si(k), a virtual mass mi(k + 1) =
∥si(k)∥2/max ∥s∥2
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any past trajectory. In this case, their potential functions can
be designed to only depend on the location of other agents
at the current iteration, and not at all past iterations. Instead
of evaluating the distance between agents in a straight line,
we decompose it into radial distance, which is measured
perpendicularly to the displacement direction of the agents,
and axial distance, measured in the displacement direction of
the agents. We achieve an orderly advance of the agents by
keeping neighboring agents at a desired radial distance and
by minimizing their axial distance. Thus, the swarm advances
as a front of homogeneously spaced agents, which are aligned
along a quasi-straight front line.We consider two neighboring
agents x1 and x2 whose locations at iteration k+1 are denoted
as x1(k + 1) and x2(k + 1). We define the vectors

v = x2(k + 1)− x1(k + 1) , (4)

corresponding to the directed distance between the agents,
and

d = −
(
x1(k)− x1(k − 1) + x2(k)− x2(k − 1)

)⊥
, (5)

d̂ =
d

∥d∥2
, (6)

the unit vector orthogonal2 to the averaged direction of travel
of the two agents in the previous iteration. Both vectors are
shown in Fig. 1 for clarity.We define the aggregation potential
Pa of agent x1 with respect to its neighbor x2 as

Pa
(
x1(k + 1)|x2

)
= (∥proj d̂v∥2 − l)2 + ∥oproj d̂v∥

2
2 , (7)

where the norm in the first term, encoding the requirement
to keep the radial distance close to the desired distance l, is
computed as

∥proj d̂v∥2 = v · d̂ , (8)

and the norm in the second term, used to minimize the axial
distance, is computed as

∥oproj d̂v∥2 = ∥v − (v · d̂)d̂∥2 . (9)

As d̂ and l are fixed, Pa is a quadratic function depending
on x1(k + 1) and x2(k + 1), and has a global minimum
Pa

(
x1(k + 1)|x2

)
= 0 when the two agents advance side by

side at distance l.

3) Agents Adjacency
The aggregation potential Pa of the swarm is obtained by
comparing the locations of different agents in the swarm.
We greatly simplify the computation task by only comparing
neighboring agents. Every agent has two neighbors, each
being the closest agent in either orientation along the radial
direction. In simpler terms, agent xi has neighbors xi−1 and
xi+1; any other agent in the swarm has no aggregation poten-
tial with respect to xi. The adjacency of agents is fixed since
initialization and does not change during their motion through
the part. Given the commutative nature of Pa as defined in

2The notation ·⊥ used in Eq. (5) corresponds, in two dimensions, to a
counterclockwise rotation of the vector by 90◦, i.e. a⊥ =

[
0 −1
1 0

]
a.

x1(k − 1)

x1(k)

x2(k − 1)

x2(k)

t1(k + 1)

ŝ
1 (k)h

t2(k + 1)

ŝ 2
(k
)h

x1(k + 1)

δ 1

x2(k + 1)

δ
2v

d̂

proj d̂v

oproj d̂v
v

d̂

FIGURE 1. Notation of the agents locations and distance vectors utilized
in the definition of the environment potential Pe and of the aggregation
potential Pa

Eq. (7), we consider as adjacent during the computations only
agents xi and xi+1. This corresponds to having Pa

(
xi|xj ̸=i+1

)
=

0.

4) Boundary Conditions
To produce parts with a desired shape, the generated trajecto-
ries must cover the part entirely, as discussed in Section III,
Condition 2. By simply defining a swarm of initial agents and
making it propagate through the part as explained in Algo-
rithm 1, complete coverage is not guaranteed. In particular,
without further constraints, agents are free to step outside
the part or to leave an empty non-covered space between the
part boundaries and the swarm. To avoid such scenarios, we
introduce boundary conditions to constrain and condition the
swarm. As the swarm is initialized, at the beginning of Algo-
rithm 1, two boundary agents are added at the extremities of
the swarm. In a swarm X composed of N agents x1,...,N , we
create the boundary agents x0 and xN+1, as shown in Fig. 2.
The motion of these two agents is constrained to follow the
part boundary. As a consequence, when computing the swarm
trajectories, the agents x1 and xN maintain approximately
a distance l from the part boundaries, ensuring complete
coverage and avoiding boundaries crossing.

During trajectory generation, the swarm of agents can en-
counter other part boundaries (such as holes or other non-
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Part

x0 x1 x2 · · · xN−1 xN xN+1

l

FIGURE 2. Initial swarm of equally spaced agents x1,...,N and boundary
agents x0 and xN+1. The displacement of the boundary agents is one
dimensional, as they are constrained to follow the part boundary.

convex features). In this case, two additional internal bound-
ary agents are added to the swarm in between the two agents
closest to the boundary, as shown in Fig. 3 The agents ad-
jacency is updated accordingly, and the trajectory generation
according to Algorithm 1 continues. Should the two internal
boundary agents meet along their motion (for example, when
the swarm has moved past a hole), they are removed from the
swarm.

Part

xi xi+1 xi+4 xi+5

xi+2 xi+3

FIGURE 3. Internal boundary agents xi+2 and xi+3 added to the swarm
when encountering a hole in the part

5) Optimization Problem

To compute the total potential of the swarm P, that we intend
to minimize at each iteration, we first need to define the
total environment and aggregation potentials of the swarm.
Considering a swarmX of N agents x1,...,N , at iteration k+1,
the swarm environment potential is simply

Pe
(
X (k + 1)

)
=

N∑
i=1

Pe
(
xi(k + 1)

)
, (10)

where the environment potential of an individual agent is
given in Eq. (3). Similarly, we define the swarm aggregation
potential as

Pa
(
X (k + 1)

)
=

N∑
i=0

Pa
(
xi(k + 1)|xi+1

)
, (11)

where the aggregation potential of an individual agent is given
in Eq. (7) and includes the notion of adjacency introduced in
Section III-B3.

For a given tuning hyperparameter K , we can formulate
the optimization problem being solved at each iteration of
Algorithm 1 as

min
x∈X

Pa
(
X (k + 1)

)
+ KPe

(
X (k + 1)

)
(12)

s.t. ∥proj ŝ1δi(k + 1)∥2 ≤ h/4 i = 1, . . . ,N

∥oproj ŝ1δi(k + 1)∥2 ≤ h/8 i = 1, . . . ,N

xi(k + 1) ∈ ∂P for boundary agents ,

where δi(k + 1) =
(
x1(k + 1) − ti(k + 1)

)
. The definitions

of the projection terms in the constraints correspond to those
given in Eq. (8) and Eq. (9), and ∂P indicates the boundary
of the part. The inequality constraints limit the displacement
of agents to a box around their ideal location ti(k + 1), as
shown in Fig. 4, and are necessary to ensure that agents
keep advancing and do not cross. With a suitable change
of coordinates, all constraints can be transformed into input
bounds in the form ai ≤ xi(k + 1) ≤ bi. The resulting
problem is a bound-constrained QP, which can be solved very
efficiently.

h/4

h/2

t1(k + 1)
x1(k)

ŝ1(k)h

x1(k + 1)

δ 1

FIGURE 4. Representation of the constraints used in the optimization
problem (12) to limit the displacement of the agents around their ideal
location ti (k + 1). The two constraints form the box depicted in magenta,
which constrains x1(k + 1).

6) Killing and Spawning
During trajectory generation, we exploit the fact that agents
can be spawned or killed when necessary (see Section III,
Condition 3). The procedure we utilize is based on the swarm
potential P, following again the intuition that the ideal swarm
behavior is achieved by minimizing P. At every iteration
of Algorithm 1, we study the swarm (which we denote in
this section with X0(k + 1)) to identify the agent with the
closest neighbor and the agent with the furthest neighbor. This
corresponds to locating the regions where the trajectories are
most compressed and most expanded. In the first case, we
kill the compressed agent to form the swarm X−1(k + 1);
in the second case, we spawn a new agent in the empty
space between neighbors to form the swarm X+1(k + 1).
We then solve the optimization problem (12) for X0(k + 1),
X−1(k + 1), and X+1(k + 1). We denote as P

(
X (k + 1)

)
the solution of Eq. (12) for a swarm X (k + 1). Finally,
after computing the optimized potential of each swarm, and
normalizing it with the number of agents in each swarm,
we can make a comparison. We select and keep for the next
iteration the swarm

X (k + 1) = argmin
q=−1,0,1

P
(
Xq(k + 1)

)
|Xq|

, (13)
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which has the lowest potential among the evaluated scenarios.
Clearly, this approach relies on heuristics which make only
one spawning or one killing possible at each iteration. This
choice was done to reduce the computational burden, as it
allows Algorithm 1 to change the number of agents in the
swarm in a principled way, while only solving Eq. (12) three
times per iteration.

IV. RESULTS
In this section, we test and benchmark the swarm-based
trajectory generation algorithm on a demonstrator part. The
part we selected is a loaded open-hole tensile specimen.
The specimen is taken from the ASTM standard for open-
hole tensile strength of polymer matrix composite laminates
[43], and described in Fig. 5. We first analyze the behavior
of Algorithm 1 by studying the trajectories generated for
the specimen. Then, we conduct an experiment to quantify
the improvements obtained in the specimen strength via the
proposed method.

p

q

FIGURE 5. Open-hole tensile specimen according to [43]. The dimensions
are p = 36mm and q = 150mm, and the thickness is 2mm. The hole has
a diameter of 6mm. The specimen is evaluated in a tensile strength test,
with tension applied at the two narrow extremities.

A. TRAJECTORIES GENERATION
We implement the swarm-based trajectory generation algo-
rithm in Python (including SciPy [44] and NumPy [45]);
the optimization problems are solved efficiently by utilizing
CasADi [46] as an interface and OSQP [47] as a solver.
We first discuss the effect of the hyperparameter K , and
then compare the trajectory generation performance with the
method from [21].

1) Effect of K
In Eq. (12), K modifies the relative weight of the aggregation
potential Pa with respect to the environment potential Pe.
Selecting smaller values of K in the optimization produces
swarms that mostly minimize Pe: this corresponds to better
swarming behavior (i.e. agents advancing as a front and
evenly spaced) at the expense of stress alignment. Conversely,
larger values of K increase the importance of Pa in the op-
timization problem: the agents follow the stress in the part
more, but the swarming behavior is worsened. In Fig. 6 we
show the trajectories generated around the hole of the tensile
specimen for three different values of K . With K = 0.5
(Fig. 6a) the trajectories are uniformly spaced, but they follow
the stress circulating around the hole poorly, which reduces
the manufactured part strength. With K = 50 (Fig. 6c) the

(a) K = 0.5

(b) K = 5

(c) K = 50

FIGURE 6. Comparison of manufacturing trajectories for the open-hole
tensile specimen generated with different values of the hyperparameter
K . The swarm advances from the bottom of the figures towards the top.
Green circles and red crosses indicate the locations in which Algorithm 1
evaluates a potential spawn or kill, respectively (see Section III-B6).
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trajectories follow the stress around the hole, but become very
compressed in the regions to its left and right, which can
cause defects in the manufacturing process. The intermediate
case, produced with K = 5 (Fig. 6b) appears to constitute a
satisfactory trade-off, with the trajectories showing a better
stress following behavior than in the K = 0.5 case, and a
better swarming behavior than in the K = 50 case.
To quantify the effect of K , we analyze stress alignment

and trajectory spacing. For stress alignment, we introduce the
metric

β̄ =

∑Z
z=1 mz∥ŝz · pz∥∑Z

z=1 mz
, (14)

where z indexes all the Z points in a set of generated trajec-
tories, and ŝz and pz are the normalized local stress and the
printing direction at the point z. The alignment metric β̄ is
weighted by the magnitude of the local stress (encoded in the
virtual mass mz, see Section III-B2), and can range between
0 (no alignment) and 1 (perfect alignment). The alignment
values for the three studied cases are given in Table 1. For
trajectory spacing, we compute the distance of every point in
the trajectory set from the following trajectory, and visualize
the results as a distribution in Fig. 7.We also compute the vari-
ance of each distribution and report it in Table 1. Both metrics
are in agreement with the qualitative intuitions obtained from
Fig. 6, as both β̄ and the variance of the distance distribution
increase monotonically with K .
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FIGURE 7. Distribution of distances between trajectories for different
values of K . The distance has been normalized using the nominal line
spacing l .

2) Comparison and Benchmarking
We compare Algorithm 1 with the method proposed in [21],
a state-of-the-art method for stress-aligned trajectory gener-
ation for 3D printing, which we call global trajectory gen-
eration. We utilize both algorithms to generate print trajec-
tories for one slice of the open-hole tensile specimen de-
tailed in Fig. 5, with a nominal line spacing l = 0.4mm.
Both algorithms are executed on the same machine, a Win-
dows computer with an Intel Core i9-9900K CPU running
at 3.60GHz and using 48GB of RAM. The global trajec-
tory generation algorithm solves a single large optimization
problem and requires 22.7 s to produce the print trajectories.

The proposed swarm-based trajectory generation algorithm
solves iteratively a large number of simpler optimization
problems and completes the task in 198ms. Thanks to its
speed, our approach can be smoothly integrated in existing
slicers without affecting user experience. The 99% reduction
in computation time is only one advantage of the method
we propose in this work. As discussed by the authors in
[21], the global trajectory generation method returns only
one solution for a given part and load case, producing tra-
jectories at a fixed (and quasi constant) distance. This is
well suited to printing processes where the deposited line
width cannot be changed, but penalizes stress alignment. In
fact, the trajectories produced with the global method (also
reported in Table 1) have β̄ = 0.983 and a variance of
normalized distances of 4.4 × 10−4. The trajectory spacing
is extremely uniform, and the stress alignment is comparable
with the results of Algorithm 1 with K = 0.5. When variable
line width printing is possible, the swarm-based trajectory
generation method offers more flexibility, as trajectories can
be adapted by selecting the correct value ofK . Allowing a cer-
tain amount of variation in the trajectories spacing increases
stress alignment (as shown in Table 1) and as a consequence
improves the mechanical properties of the part. The tuning of
K is however limited by the hardware effectiveness in variable
width printing. The stress alignment and trajectory spacing
metrics we have proposed are a useful tool for choosing the
most suitable value of K in practice. Based on these metrics,
the ideal K can be found with numerous sampling based
methods, such as for example random sampling, grid search,
or Bayesian optimization.

B. PRINTED PARTS
We manufacture and test according to [43] 12 open-hole
tensile specimen which are printed following different trajec-
tories. The utilized trajectories are generated with:

1) A commercial slicer [48] set to cross-hatching infill.
This infill creates a rectilinear grid by printing one layer
as parallel lines in one direction, the next layer rotated
by 90◦, etc. The direction of the lines is set to 45◦ with
respect to the sides of the specimen. Lines are generated
at a distance of 0.4mm and with a 100% infill. This case
constitutes a baseline for non stress-aligned printing.

2) A commercial slicer [48] set to aligned rectilinear infill.
All lines in the part are parallel and aligned in the direc-
tion of the long side of the specimen. Lines are generated
at a distance of 0.4mm and with a 100% infill. This case
constitutes a baseline for naive stress-aligned printing.

3) The global trajectory generation method from [21]. The
nominal line distance is set to 0.4mm. This case is a
state-of-the-art benchmark.

4) The proposed swarm-based trajectory generation
method with K = 5 and a nominal line distance of
0.4mm. These print trajectories are shown in Fig. 8.

We manufacture three samples for each trajectory generation
case. All parts are printed in PLA on a Prusa i3 MK3S
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TABLE 1. Stress alignment and variance of the distribution of distances of the swarm-based trajectory generation method (for different values of K ) and
of the global trajectory generation method from [21]

Swarm-based method Global method
from [21]

K = 0.5 K = 5 K = 50

β̄ 0.981 0.993 0.998 0.983

Variance 6.1× 10−3 12.9× 10−3 16.4× 10−3 4.4× 10−4

FIGURE 8. Print trajectories for the open-hole tensile specimen obtained with swarm-based trajectory generation (Algorithm 1) and K = 5. Agents move
from the left to the right of the figure.

machine at a nozzle temperature of 205 ◦C, a bed temperature
of 60 ◦C and feed rate of 3150mmmin−1. Samples are tested
on a Galdabini Quasar 10 testing machine following [43].
As different trajectory generation methods produce different
line spacing distributions, and as this affects the deposition
process, the samples have different densities. To make the
results comparable, we divide the force measurements by the
density of each sample to produce specific stress, specific
modulus and specific strength (which are the density adjusted
equivalents of stress, Young’s modulus and ultimate tensile
strength). The results are reported in Fig. 9 and Table 2. Cross-
hatching, the most common trajectory generation technique
in FFF, produces the worst performance, with the lowest
specific modulus and strength. The aligned rectilinear ap-
proach and the global trajectory generation method have a
very similar stress-strain curve, and a comparable specific
modulus. The samples manufactured with our swarm-based
trajectories outperform all other samples on the entire strain
range. They produce a ∼ 10% improvement in specific
modulus with respect to the aligned rectilinear and the global
methods, while retaining the specific strength of the aligned
rectilinear method. Contrarily to previous works [13], [21],
this improvement was achieved on a conventional planar
printer, using a ubiquitous feedstock material. It indicates
that any combination of commercially available slicer and
printer can benefit from our approach to produce stiffer
and stronger parts via optimized trajectory generation. We
point out that the high specific strength of the naive aligned
rectilinear approach is in all likelihood the consequence of
the line spacing homogeneity, which enables high quality
deposition. We expect that the constant developments in the
field of variable width FFF will reduce the number of depo-

sition defects in the optimized parts, further increasing their
strength. Furthermore, the aligned rectilinear approach can be
used exclusively in very simple geometries where the load is
rectilinear and stress-alignment can be achieved intuitively.
Conversely, rigorous trajectory optimization methods can be
applied to geometries and load cases of any complexity, as it
was demonstrated in [21].
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FIGURE 9. Specific stress-strain curve of the twelve tested open-hole
tensile specimen

V. CONCLUSION
In this work, we introduced a novel swarm-based approach to
the generation of optimized stress-aligned print trajectories
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TABLE 2. Specific modulus and specific strength of the twelve tested open-hole tensile specimen. The values were obtained by averaging the results from
samples produced with the same trajectory generation method.

Cross-
hatching

Aligned
rectilinear

Global method
from [21]

Swarm-based
method
(K = 5)

Specific modulus
[Pa kg−1 m3]

17.48 19.53 19.91 21.73

Specific strength
[Pa kg−1 m3]

24.57 44.14 41.08 44.08

for 3D printing. We evaluated our method and compared with
state-of-the-art approaches, both in simulation and in exper-
iments, focusing on the implications of stress-aligned trajec-
tories for mechanical properties and printing quality. Our re-
sults demonstrate a significant improvement in computational
efficiency with our proposed algorithm, achieving a remark-
able 115× increase in computation performance compared
to the state-of-the-art method. This computational advantage,
coupled with the flexibility of adapting trajectory spacing
through hyperparameter tuning, positions our approach as a
highly practical solution for seamless integration into existing
slicers without compromising user experience. Furthermore,
our method allows for enhanced stress alignment, leading to
improved mechanical properties of printed parts. The specific
modulus of parts produced using our swarm-based trajecto-
ries exhibited a ∼ 10% enhancement compared to existing
methods. Our findings highlight the potential of trajectory
optimization in advancing the mechanical performance and
efficiency of 3D printing processes in general, and of the
prevalent planar FFF of PLA in particular. In future research,
we plan to extend the swarm-based approach to the non-
planar slicing problem, and to solve the slicing and trajectory
generation tasks in a single optimization.
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