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This Letter examines the coalescence of two unequal-size spherical liquid droplets in the inviscid
regime. We find that the liquid bridge evolution exhibits a breaking from the classical 1/2 power-law
scaling [Phys. Rev. Lett. 95, 164503 (2005)]. Employing an energy balance analysis, we attain a
theoretical model to collapse bridge evolution data of different droplet size ratios. This model reveals
an exponential dependence of the bridge’s radial growth on time, which is intrinsically scaling-free
owing to the asymmetric movement of the liquid bridge.

PACS numbers:

In natural and industrial processes, the contact or im-
pact of droplets [1–5] could lead to the coalescence of
liquid-gas interfaces, which is crucial to the outcome or
performance of the relevant applications. Extensive re-
search has been carried out to understand the most basic
situation, the momentumless coalescence of a pair of liq-
uid droplets [6–9]. Early studies [1, 10] found that the
radial growth of the liquid bridge, which forms between
the merging droplets, satisfies certain scaling relations
between the radius R of the bridge and time t. Later
experimental [2, 6, 11–13] and numerical [14–17] works
were able to confirm the existence of a 1/2 power-law
scaling, i.e. R ∼

√
t, when the coalescence is in the invis-

cid (or inertial) regime. On the other hand, the bridge
evolution in the viscous regime is better modeled by a
linear scaling [2, 6, 7, 14, 18]. The crossover (or transi-
tion) [14] between the viscous and inertial regimes has
also attracted considerable interest, from the discovery
of a master curve for both regimes [7, 19] to the devel-
opment of theoretical models justifying the underlying
universality [20, 21].

Previous research on binary droplet coalescence mainly
revolves around two equal-size droplets. However, less
attention has been given to droplet coalescence with size
disparities, despite its higher relevance to reality. Among
the existing works involving the coalescence of unequal-
size droplets [22–27], the main focus was on the effect
of internal mixing facilitated by the break of symme-
try. Regarding the evolution of the liquid bridge, it is
evident from our previous work [27] that the bridge sur-
face shows an asymmetric growth–the bridge interface
becomes tilted as it expands out. Yet, little quantitative
study exits on the liquid bridge evolution of unequal-size
droplet coalescence.

In this Letter, we study the liquid bridge evolution for
two unequal-size droplets merging in the inertial regime.
We first conduct experiment to resolve the bridge’s tem-
poral variations for droplet pairs of various liquid proper-
ties and size ratios. Then, we develop a theory to model
the radial growth of the liquid bridge, resulting in an ex-

FIG. 1: (a) high-speed image of the sessile and pendant
droplets and (b) zoomed-in detail of the liquid bridge.

ponential dependence of R on t that breaks the classical
1/2 power-law scaling relation.

Experimental approach & observations.—The present
experiment employs the classical sessile-pendant ap-
proach for droplet coalescence, similar to those reported
previously [2, 6, 12, 13]; see the Supplemental Materi-
als [29] for a schematic of the setup. During each ex-
perimental run, a sessile droplet with a diameter of 1-5
mm is first generated by a syringe pump (Longer Preci-
sion Pump) and placed on a super-hydrophobic surface,
yielding a contact angle of ∼ 140◦ and a near-spherical
upper part as depicted in Fig. 1(a). Then, the syringe
pump generates a smaller-size pendant droplet (1-2 mm
in diameter), which is attached to the needle tip. Subse-
quently, the merging process is initiated by actuating an
automatic lifting platform (Winner Optics) which holds
the super-hydrophobic surface, slowly bringing the ses-
sile droplet into contact with the pendant droplet. The
platform rises at a speed about 10 µm/s, which is suf-
ficiently small to ignore the gas-film flow disturbing the
initial droplet coalescence [7, 13, 28].

A high-speed camera (Photron SA-Z) integrated with
a long-distance microscope (Questar QM100) is used to
capture time-resolved shadowgraph images of the merg-
ing droplets. The camera operates at 150,000 frame per
second (fps) with a spatial resolution of 384×256 pix-
els and a field of view of 2.04×1.36 mm2, corresponding
to a resolution of 5.3 µm/pixel. The diameters of the
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small and large droplets, DS and DL, are determined at
the initial moment prior to the coalescence, based on fit-
ting an arc to three arbitrarily-selected points on each
droplet contour. The uncertainty associated with the di-
ameter measurement is estimated to be within ±3%. As
such, the large-to-small droplet size ratio is defined as
∆ = DL/DS , which varies from 1.0 to 5.0 in the present
experiment. Fig. 1(b) illustrates the zoomed-in detail
of the liquid bridge, exhibiting a distinct asymmetric
bridge interface. So two characteristic radii of the droplet
bridge, RS and RL, can be respectively defined as the
radial distances from the two points, P1 and P2, where
the bridge interface intersects the contours of the initial
droplets (denoted by the white-dashed lines), to the axis
of symmetry. Then, the characteristic radius of the cir-
cular bridge, R, is defined as R = (RS + RL)/2. Note
this definition differs from the conventional one based on
the minimum radial distance of the bridge interface to
the center axis, so it yields a slightly larger R.

To study the effect of varying liquid properties, i.e.,
density ρl, dynamic viscosity µl, and surface tension σ,
we adopt water and two aqueous glycerol solutions with
40 wt% and 60 wt% glycerol. The three different liquids
correspond to ρ = 1000, 1100, and 1150 kg·m−3, µ =
1.002, 3.630, and 10.80 mPa·s, and σ = 72.8, 70.0, and
66.0 mN·m−1, respectively. The Ohnesorge number, de-
fined as Oh = µ(ρσDL)

−1/2, varies within 10−3-10−2.
All cases are characterized in terms of ∆ and Oh, as
summarized in the Supplemental Materials [29].

The image sequences for representative droplet coales-
cence cases are presented in Fig. 2(a-c), based on which
the droplet interface contours corresponding to the differ-
ent snapshots are extracted and overlapped in Fig. 2(b-
f). It is seen that the liquid bridge displays a notable
asymmetry for ∆ > 1, rendering an inclined bridge inter-
face with RL > RS , which becomes increasingly evident
as the bridge evolves with time. As Oh increases from
0.0016 to 0.0051, the bridge profiles in Fig. 2(f) follow
the original droplet contour more closely than those in
Fig. 2(e), as the secondary deformation on the bridge’s
upper and lower surfaces tends to be inhibited. This can
be interpreted that the primary bridge movement gives
rise to the development of a capillary wave along the
droplet surface, which can be damped by enhanced vis-
cosity. The experimental images for other cases can be
found in the Supplemental Materials [29].

Geometric correlations.—Inspired by the liquid bridge
configuration observed from the experiment, we present
a geometric model for the bridge surface between two
unequal-size droplets in Fig. 3, based on the core geo-
metric variables of RS(t), RL(t), θS(t), θL(t), and S(t).
In obtaining the geometric correlations, we consider the
following conditions.
(i) ‘Similar-size droplets’, meaning the two droplets are
of similar sizes such that ∆ ∼ O(1), RL/RS ∼ O(1), and
θL/θS ∼ O(1).

FIG. 2: Image sequences of the coalescence process of (a)
equal-size water droplets and (b-c) unequal-size droplets of
water and 40 wt% aqueous glycerol. (d-f) show the evolutions
of the extracted interface contours corresponding to (a-c).

(ii) ‘Small bridge’, meaning that the characteristic
radii of the bridge, RS and RL, are much smaller
than the droplet diameters, i.e., RS/DS ∼ o(1) and
RL/DL ∼ o(1). This condition is readily satisfied during
the early-stage coalescence.
(iii) ‘Equally-dividable bridge interface’, meaning there
exists a principle normal direction np dividing the bridge
interface into similar-shaped upper and lower sections,
and the surface stress (including both pressure difference
∆p and viscous stress τ) is also equally distributed over
the two sections. Given the present experimental results,
this condition can be considered a first approximation,
although the two sections divided by np might not be
perfectly equal.

Based on Fig. 3, we can obtain the following geometric
correlations,

RS

DS
=

sin (2θS)

2
= θS −O(θ3S),

RL

DL
=

sin (2θL)

2
= θL −O(θ3L).

(1)

Applying condition (ii), it is deduced that both θS and
θL are of o(1), θS ≈ RS/DS , and θL ≈ RL/DL. It
follows that the width of the bridge, S, defined as the
axial distance between P1 and P2, satisfies

S = RS tan θS +RL tan θL

= RSθS +RLθL +RSO(θ3S) +RLO(θ3L).
(2)

Combining Eqs. 1 and 2, we can easily show that S/DS

and S/DL are of O(θ2S) or O(θ2L).
Note that, compared with the equal-size situation, the

unequal-size coalescence is characterized by the tilted
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FIG. 3: Schematic of the liquid bridge between two unequal-
size merging droplets.

bridge interface and the misaligned bridge movement
from the radial direction, as illustrated in Fig. 3. The
cause of the tilted interface may be understood in a force
balance analysis. Under condition (iii), the principle nor-
mal direction np of the bridge interface should align with
the integral of the total surface stress across the inter-
face, which is balanced by the surface tension exerted at
both ends of the bridge interface. Given the two surface
tension forces are identical to each other, np must be in
line with the angular bisector of the two surface tension
forces. Therefore, the tilting angle of the bridge interface,
θ, can be simply expressed as

θ = θS − θL. (3)

Since both θS and θL ∼ o(1), Eq. 3 implies that θ is also
a o(1) quantity. Thus, θ is treated as the ‘small param-
eter’ hereinafter. From Fig. 3, we further note another
geometric relationship, RL − RS = S tan θ ≈ Sθ, which
can be combined with Eqs. 1 and 3 to yield

θ ≈
(

1

DS
− 1

DL

)
R−

(
1

DS
+

1

DL

)
Sθ

2

≈
(

1

DS
− 1

DL

)
R.

(4)

The second term on the right-hand side of Eq. 4 is neg-
ligible compared with θ because S/DS ∼ O(θ2S) and
S/DL ∼ O(θ2L), as indicated from Eq. 2. Similarly, we
can apply RL −RS ≈ Sθ to Eqs. 1 and 2 to obtain

S ≈
(

1

DS
+

1

DL

)
R2 +

(
RL +R

DL
− RS +R

DS

)
Sθ

2

≈
(

1

DS
+

1

DL

)
R2.

(5)

Again, the second term on the right-hand side of Eq. 5
is dropped out because it is a O(θ2)S term.
On the other hand, given the equally-distributed vis-

cous stress, τ = 2µS with S being the strain-rate tensor,
the liquid-side velocity must also be equally distributed
over the bridge interface, so the overall bridge movement

also points in the direction of np. The physical implica-
tion here is significant. Consider the very early stage of
coalescence when RS ≈ RL, Eq. 3 dictates that θ is a
positive value, which explains why the bridge movement
is inclined towards the smaller droplet from the begin-
ning. It follows that the velocity V at which the bridge
interface expands out is given by the kinematic relation-
ship, dR/dt = V cos θ. After Taylor expansion, it takes
the form

dR

dt
≈ V

(
1− θ2

2

)
. (6)

Energy balance analysis and solution.—Now, consider-
ing the energy balance during the coalescence process,
the movement of the liquid entrained by the bridge is
driven by the rapid discharge of the surface energy, which
can be expressed as

∆Es +∆Ek ≈ 0, (7)

where ∆Es and ∆Ek represent the changes in surface and
kinetic energies, respectively, from the initial state before
coalescence. Note Eq. 7 requires the viscous dissipation
being negligible compared to the change in inertia energy.
Based on the geometries in Fig. 3, we have

∆Es = −πD2
S(θ

2
S +O(θ4S))σ − πD2

L(θ
2
L +O(θ4L))σ

+ πS(RS +RL)[1 +O((θS + θL)
2)]σ,

(8)

where σ is the surface tension. Since θS and θL ∼ o(1),
we can combine Eqs. 1 and 2 to obtain S ≈ RSθS +
RLθL ≈ DSθ

2
S+DLθ

2
L. Thus, the third term on the right-

hand side of Eq. 8 has the leading order of O(θ3S)D
2
Sσ

or O(θ3L)D
2
Lσ, which is one order smaller than the first

two terms and can be dropped out. Next, ∆Ek can be
estimated as

∆Ek ≈ C

2
πρlR

2SV 2, (9)

where ρl is the liquid density and C is a prefactor related
to the volume and velocity distribution of the moving
fluid entrained with the bridge.
With S given by Eq. 5, we can plug Eqs. 8 and 9 into

Eq. 7 and balance the leading order terms to obtain

C

2
ρlR

4

(
1

DS
+

1

DL

)
V 2 ≈ 2R2σ. (10)

Further substituting V using Eqs. 6 and 4, we have

1

1− βR2/2

dR

dt
≈ γ

R
. (11)

In simplifying Eq. 11, we define β and γ as

β =

(
1

DS
− 1

DL

)2

and γ =

[
4σDS

Cρl(1 + 1/∆)

]1/2
. (12)
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Eq. 11 has the solution:

R2 ∼ 1− e−βγt

β
, (13)

where the initial condition, R(t = 0) = 0, has been used
in the derivation. Eq. 13 can further take the nondimen-
sional form of

R∗2 ∼ 1− e−t∗ , (14)

where R∗ = Rβ1/2 and t∗ = tβγ. Interestingly, the
bridge evolution governed by Eq. 13 or 14 no longer has a
power-law scaling between R and t. However, by letting
∆ → 1, we have β → 0 and R2 ∼ [1− (1− βγt)]/β = γt.
This means that the present model is able to recover the
inviscid scaling law of R ∼ t1/2 in the equal-size limit.
Discussion.—It is worth discussing the origin of this

scaling-free solution. Mathematically, the exponential
dependence of R on t arises from the θ2 term in Eq. 6.
If θ = 0 is set in Eq. 6, the above analysis would give
the exact scaling relation of R ∼ t1/2. Thus, we can infer
that the breaking of the power-law scaling results from
the misaligned movement of the liquid bridge from the
radial direction.

Next, we check the scaling breaking behavior for the
present experimental data of various ∆ and Oh. In
Fig. 4, the classical scaling law of R ∼ t1/2 is eval-
uated by plotting the data in the parameter space
[(8σ/ρD3

S)
1/2t, (2R/DS)

2] [2, 10]. While the overall scal-
ing of R2 ∼ t is still valid for most cases, there is an
apparent upward drift of large-∆ data. And a larger ∆
tends to cause a larger shift from the ∆ = 1.0 line. This
can be understood that the presence of a larger droplet
enhances the expansion speed of the bridge interface, cor-
responding to a larger prefactor of the power-law scaling.
Furthermore, the cases with ∆ > 3 display a gradual de-
flection from R2 ∼ t as time proceeds and the liquid
bridge becomes more asymmetric, indicating a diversion
from the power-law scaling.

To evaluate our theory, Fig. 5 shows the validation of
Eq. 14 based on the same set of data in Fig. 4. We can
confirm the collapse of non-unity-∆ data onto a single
line given by Eq. 14 with C = 1.5 (C is obtained by
fitting Eq. 14 with a unity prefactor). Here, the effect
of ∆ is assimilated into the time and length scales. In
particular, a larger ∆ generally corresponds to higher
R∗, as R is scaled by β−1/2 that is highly sensitive to
∆. This result also demonstrates that the present model
has a negligible dependence on viscosity for Oh varying
between 10−3 and 10−2. The theoretical line in Fig. 5 re-
mains almost linear when R∗2 < 10−1, while it exhibits
notable deflection or deviation from the power-law scal-
ing when R∗2 > 10−1. Given the correlation between ∆
and R∗, this means that the scaling-law breaking is man-
ifest when ∆ is greater than 3 or so, which explains the
observed scaling diversion in Fig. 4.

FIG. 4: Effect of ∆ on the scaling ofR2 ∼ t. See Supplemental
Materials [29] for detailed experimental parameters.

FIG. 5: Validation of Eq. 14 against experimental data.

In summary, this Letter reports the breaking of the 1/2
power-law scaling for the liquid bridge evolution during
the coalescence of unequal-size droplets. By accounting
for the asymmetric motion of the liquid bridge interface,
we attain a new solution for the bridge evolution in the
inviscid regime based on balancing the changes in surface
and kinetic energies. The derived model shows distinct
scaling-free feature and well resolves the droplet coales-
cence of non-unity size ratios.
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