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Abstract. Modern smartphone camera quality heavily relies on the im-
age signal processor (ISP) to enhance captured raw images, utilizing
carefully designed modules to produce final output images encoded in
a standard color space (e.g., sRGB). Neural-based end-to-end learnable
ISPs offer promising advancements, potentially replacing traditional ISPs
with their ability to adapt without requiring extensive tuning for each
new camera model, as is often the case for nearly every module in tra-
ditional ISPs. However, the key challenge with the recent learning-based
ISPs is the urge to collect large paired datasets for each distinct cam-
era model due to the influence of intrinsic camera characteristics on the
formation of input raw images. This paper tackles this challenge by in-
troducing a novel method for unpaired learning of raw-to-raw translation
across diverse cameras. Specifically, we propose Rawformer, an unsuper-
vised Transformer-based encoder-decoder method for raw-to-raw trans-
lation. It accurately maps raw images captured by a certain camera to
the target camera, facilitating the generalization of learnable ISPs to new
unseen cameras. Our method demonstrates superior performance on real
camera datasets, achieving higher accuracy compared to previous state-
of-the-art techniques, and preserving a more robust correlation between
the original and translated raw images.

1 Introduction

Unlike the high-quality digital single-lens reflex (DSLR) cameras, mobile phone
cameras possesses inherent limitations owing to their smaller sensor size and
fixed lenses with limited optical capabilities [53]. The mobile camera image sig-
nal processor (ISP) aims to overcome these limitations by applying a series of
carefully designed modules (e.g., [1,7,11,17,23,45]) to enhance the quality of the
final image rendered in a standard color space, such as sRGB. These modules
work in tandem to optimize key parameters, such as sharpness, color accuracy,
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Fig. 1: We introduce Rawformer, an unsupervised method for raw-to-raw transla-
tion that allows the utilization of pre-trained neural-based ISPs to process raw images
captured by previously unseen cameras. Shown are raw and sRGB images processed by
a neural-based ISP [52]. a) Raw image from an iPhone X rendered by the neural-based
ISP trained on iPhone X’s raw images. b) Raw image from an iPhone X rendered by
the neural-based ISP trained on Samsung S9’s raw images. c) iPhone X raw image
translated to Samsung S9’s raw space using our method, then processed by the Sam-
sung S9 neural-based ISP. d) Raw image captured by Samsung S9’s camera rendered
by its native camera ISP, provided as a reference for visual comparison.

and noise reduction, resulting in a visually pleasing sRGB image from the raw
image captured by the camera [13,16].

Despite yielding promising results, achieving compatibility among camera
ISP modules for each new camera device requires extensive tuning and adjust-
ment efforts to attain the desired image quality. This motivates the use of deep
neural networks to replace individual camera ISP modules with a single neural-
based unit capable of accomplishing the task [12,18,42]. Nonetheless, the training
of such neural-based ISPs demands an extensive dataset consisting of raw im-
ages taken with a specific camera, accompanied by corresponding “ground-truth”
sRGB images (typically generated by a high-quality DSLR camera) [18,21].

An issue emerges with the introduction of a new camera model, as pre-trained
neural-based ISPs might encounter difficulty in accurately rendering raw images
captured by the new camera (refer to Fig. 1(b)). This difficulty arises from the
potential distinct characteristics of the new camera, such as sensor sensitivities,
which influence the formation of its raw images [4,5]. Consequently, inconsisten-
cies arise in the interpretation of raw RGB colors between cameras [4], hindering
the generalization of neural-based ISPs to new cameras not encountered during
training. To address this issue, re-training or fine-tuning on a new paired dataset
becomes necessary, in which the raw images are sourced from the target new
camera. This process mirrors similar challenges encountered in traditional ISP
development for new cameras.

An alternative strategy to address this challenge is domain adaptation, where
the raw images from the new target camera are mapped to the raw space of the
training camera to emulate those captured by the original camera used for train-
ing. In light of this, [4] proposed a semi-supervised learning framework for raw
image translation, but the approach outlined in [4] inherits the drawbacks asso-
ciated with the CNN-based architecture, notably the limited receptive field and
inefficient encoding of global information. Thus, we present a fully unsupervised
Transformer-based raw-to-raw method, dubbed Rawformer, that maps raw im-
ages between camera models by efficiently encoding their global and semantic
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correlations. Our method eliminates the need for a paired raw-sRGB dataset
from each new target camera, enabling the utilization of a neural-based ISP
trained on a specific camera’s raw images to process raw images taken by new
cameras with different characteristics without necessitating any re-training; see
Fig. 1(c). Our contributions are summarized as follows:

– We propose Rawformer, a fully unsupervised encoder-decoder Transformer-
based method designed for raw-to-raw translation facilitating the reuse of
neural-based ISPs.

– We introduce contextual-scale aware downsampler and upsampler blocks
that efficiently summarize the local-global contextual details in mixed scale
representations via its condensed query attention block and scale perceptive
feed-forward network.

– A novel cross-domain attention-driven discriminator is proposed along with
a specialized discriminator head for stabilizing the network training.

– We achieve state-of-the-art results on the existing raw-to-raw translation
datasets. Additionally, using our method as a pre-processing step for map-
ping raw images to the camera space used in training neural-based ISPs,
we achieve the best results for cross-camera ISP rendering across various
datasets.

2 Related Work

2.1 Neural-Based ISP

Several neural-based ISPs methods have been introduced [8, 18, 54, 57], with
the majority relying on CNN-based U-Net-like architecture [40]. These include
earlier approaches, such as DeepISP [42] and PyNET [21], as well as more recent
methods, such as MW-ISPNet [20], AW-Net [12], and LAN [52], which achieve
improved image restoration quality by integrating discrete wavelet transform
(DWT) and double attention modules (DAM) techniques. Such learnable ISPs
are typically trained to map raw images captured by a specific camera model
to target high-quality sRGB “ground-truth” images produced by some target
camera ISP (usually with higher quality than the mobile native ISP; e.g., a
DSLR camera [18,21]). A significant challenge for neural-based ISPs is the need
for paired datasets of raw-sRGB images. Collecting such datasets is tedious and
typically involves using specific equipment. Additionally, it may require post-
processing techniques to align the raw images with the target sRGB images
[21]. The challenge intensifies when a mobile phone manufacturer introduces a
new camera model with different characteristics, which happens frequently [47],
requiring the recollection of paired raw-sRGB datasets for each new camera
model.

One solution is to render images to the sRGB space from the device-independent
CIE XYZ space [3]. However, this requires calibration for each camera model, and
accuracy depends on specific camera conditions (e.g., the Luther condition) [15].
In contrast, our work introduces an unsupervised raw-to-raw mapping technique
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that eliminates the need for paired raw-sRGB datasets for re-training or camera
calibration. Our method maps raw images from new cameras to the camera raw
space utilized during the training of neural-based ISPs, enabling the reuse of
pre-trained ISPs.

2.2 Image-to-Image Domain Adaptation

Numerous generative adversarial network (GAN)-based methods address un-
paired image-to-image (I2I) translation challenges [36]. Notably, CycleGAN [59],
DualGAN [55], UNIT [30], STARGAN [10], SEAN [60], and U-GAT-IT [26] fo-
cus on cycle consistency, employing dual generator networks guided by a cycle-
consistency constraint. ACLGAN [58] and CUT [37] represent advancements in
this field. ACLGAN relaxes the cycle consistency constraint, favoring an ad-
versarial constraint, potentially enhancing translation quality. CUT utilizes a
contrastive loss, eliminating the need for multiple generators and enabling faster
training. ITTR further refines CUT’s performance by altering the generator ar-
chitecture. CycleGAN-based model, such as UVCGAN [48] incorporate U-Net-
like generators with vision Transformers (ViTs).

In computational photography, attempts have been made for domain adap-
tation, including synthesizing raw night images from raw daylight images to
enhance neural-ISP rendering quality [39], few-shot domain adaptation for low-
light image enhancement [38], and mapping graphics images to a target camera’s
raw space [43]. Raw-to-raw translation has received even limited attention. Clas-
sical approaches require a calibration object to learn global mapping [35], while
recent work [4] proposes a semi-supervised CNN learning-based method using a
small set of perfectly aligned images. Despite being effective at exploiting the
local semantics, this CNN-based method lacks the potential to exploit the long-
range/global semantics between different domains. In contrast, our method aims
at solving the raw mapping by exploiting both local and global contextual infor-
mation through fully unsupervised training, achieving state-of-the-art results.

3 Proposed Method

The existing raw-to-raw alternatives map images in a supervised manner (e.g.,
[35]) or semi-supervised manner (e.g., [4]), which hinders the usability of such
methods due to either the need for paired raw-to-raw datasets or limited ac-
curacy. Additionally, for effective reconstruction of the content from the source
domain and style from the target domain, domain adaptation methods [37, 59]
focus on extracting the local semantics between the domains, but often fall short
in comprehending the overall semantics, and context-dependent relationships. In
contrast to other methods, our approach in this study handles the raw images
in a fully unsupervised manner. We attain this by proposing Rawformer, that
effectively leverages the overall semantics via an encoder-decoder architecture
in a CycleGAN framework, owing to its ability to maintain intrinsic consis-
tency between the translated images. As illustrated in Fig. 2(a), the generator
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Fig. 2: a) Overview of the generator architecture of Rawformer. The primary
components of the generator: b) contextual-scale aware downsampler (CSAD) block,
c) condensed query attention block (CQA), d) scale perceptive feed-forward (SPFN)
network, e) composite downsampling (CDown) block, f) composite upsampler (CUp)
block, and g) contextual-scale aware upsampler (CSAU) block.

in Rawformer is specifically designed for efficiently augmenting the content ren-
dering and structural integrity of the generated images via stacked contextual-
scale aware downsampler and upsampler blocks. The discriminator (Fig. 3(a)) is
modelled for stabilizing the training by blending a cache of the previous crucial
discriminator features, thus combating the model collapse and saving redundant
computations between different domains. In the following, we provide a compre-
hensive elucidation of the proposed components.

3.1 Contextual-Scale Aware Downsampler Block

As shown in Fig. 2(a), the encoder of the proposed generator in Rawformer
comprises stacked contextual-scale aware downsampler (CSAD) blocks to bridge
the semantic gap between the source and target domains. Each CSAD block,
depicted in Fig. 2(b), offers a holistic approach of understanding the contextual
dependencies efficiently between the domains by capturing both the global and
local information via its condensed query attention (CQA) block, in parallel with
a 3×3 depth-wise convolution layer. It further handles the intrinsic correlations
among the extracted features in a multi-scale manner via maintaining a syner-
gistic collaboration between the scale perceptive feed-forward network (SPFN),
and the composite downsampler (CDown) block.

Condensed Query Attention Block: Self-attention has proven its excel-
lence in explicitly modelling the long-range contextual dependencies, where a
token is compared with all other tokens enabling seamless information prop-
agation within the network [56]. However, the computational demands of the
self-attention pose challenges for generation tasks such as unpaired raw-to-raw
translation, where preserving both visual quality and semantic consistency is
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paramount. To address these concerns and overcome the constraints of compu-
tation, we introduce the condensed query attention (CQA) block; see Fig. 2(c).
Here, we bring two notable changes in the design of self-attention to improve the
overall learning. Firstly, we spatially compress (condense) the spatial dimension
of the query vector by applying average pooling followed by a linear projection
for confining the crucial information. Following it, we downsample the obtained
feature map by factor r in both the dimensions. Thus, instead of directly com-
puting the similarity between the dot product of key-query and value vectors,
the condensed queries (Qc) act as an intermediate for the similarity comparison
as shown in Eq. 1. Secondly, to further strike a balance between the scalability
of global and regional range modelling and the computational complexity, the
attention is efficiently conducted horizontally and vertically in the network to
remove the redundant computations. Formally, the overall operation of CQA
block is defined as:

CQA(Qc,K,V) = AU .(AH · V); Qc = Wp(AvgPool(Q))

AH = Softmax(QcK
T

√
d

), AU = Softmax(
QQT

c√
d
) (1)

where, the duet of key (K), and value (V) vectors are obtained through plain
linear convolutions, and the dimensions of each of these features are shown in
the Fig. 2(c). Wp(.) denotes a 1×1 pointwise convolution, and AH , and AU

represents the compressed attention map between the key-condensed query pair
horizontally and query-condensed query pair (for focusing on fine grained con-
textual information) vertically, respectively. The choice of operations and the
reason for condensing the queries is investigated in the supplementary of the
paper.

Scale Perceptive Feed-forward Network: To proficiently capture the intri-
cacies of the local image structure across various scales by encoding the informa-
tion from neighboring pixel locations, we propose a scale perceptive feed-forward
network (SPFN); see Fig. 2(d). Unlike the conventional feed-forward networks
that integrate single-scale depth-wise convolutions [56], we emphasize on en-
hancing the locality and inter-correlations among the incoming raw features of
different domains by inserting multi-scale depth-wise convolutions. Given an in-
put tensor at layer s and scale i, such that Xi

s ∈ RHi×W i×C , SPFN is formulated
as:

X1
s = ϕ(W 3

d (W
1
p (LN(Xs−1))));X2

s = ϕ(W 5
d (W

2
p (LN(Xs−1)))),

Ys = W 3
p (X

1
s C X2

s) + Xs−1.
(2)

Here, ϕ represents a LeakyReLU activation function [33], W k
d represents a depth-

wise convolution with filter size k, LN denotes the layer normalization [6], and
C represents the concatenation operation. This enriches a more nuanced un-
derstanding of the underlying image features at different hierarchical levels.

Composite Downsampler: In general, the essence of downsampling is the re-
trieval of the multi-scale information in the image. Unlike the common encoder
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architectures for various image signal processing pipelines [29, 46] that deploy
strided convolutions for downsampling, we design a hybrid strategy of leverag-
ing the benefits of information exchange between different resolution features.
To adaptively recover the underlying content information from the input domain
at multiple scales, we design a composite down (CDown) block that intelligently
combines pixel-unshuffle (to prevent the information loss) and strided convolu-
tion (to enhance the model’s expressiveness) as shown in Fig. 2(e).

Style Modulator: Different cameras have their own distinctive characteris-
tics to be handled or restored. To augment the expressiveness of Rawformer for
handling camera perturbations, we design a style modulator in the generator
using extended pixel-wise ViT [49]. It aids in calibrating the decoder features
and subsequently encourages the recovery of crucial details while translation.
As demonstrated in Fig. 2(a), the style modulator applies style tokens in each
contextual aware upsampler (CSAU) block, where every style token models the
weight of the query vector of the CQA block to enrich the style specific context.
This addition of style token at each stage in the decoder helps in the flexible
adjustment of the feature maps. Unlike StyleGANv2 [25], where the style vec-
tors are generated from the random prior, our approach resorts to learnable
style token for conjecturing the important target style directly from the source
domain, thus enhancing the consistency and control in raw image translation.
More details on style modulation are provided in the supplementary.

3.2 Contextual-Scale Aware Upsampler Block

Unlike the popular additive or multiplicative skip connections between the encoder-
decoder, we also present a learnable linking layer (LLayer) as shown in the
Fig. 2(a) to facilitate the feature preservation in the contextual scale aware up-
sampler (CSAU) block. The overall design of the CSAU block closely resembles
that of the CSAD block, ensuring consistency and coherence in the network
architecture in a bottom-up fashion. The primary distinction lies within the
composite upsampling block, where for inducing the relevant spatial informa-
tion into the target domain for the incoming features from the style modulator,
we design a composite upsampler block (CUp). It embodies a parallel combi-
nation of pixel-shuffle (for preventing the checkerboard artifacts in the target
domain) and deconvolution (for combating with aliasing) as shown in Fig. 2(f)
and (g).

3.3 Cross-Domain Attention-Guided Discriminator

Leveraging batch statistics provides a potent strategy to mitigate mode collapse
and foster diversity within the GAN models [41]. The conventional minibatch
discrimination techniques for improving the discriminator’s performance necessi-
tate a substantial batch size [24], which could pose challenges due to limitations
in GPU hardware. Following the idea in [48], we try to mitigate this issue by
decoupling batch size from the minibatch discrimination approach. The core
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visualizations without (w/o) and with (w) the discriminator head. The inclusion of the
discriminator head aids in refining the overall results, and the discriminator training
(as shown in c) benefits from the inclusion of the discriminator head, particularly with
the cache (M) component.

innovation lies in incorporating a cache of the previous discriminator features,
functioning as an alternative to larger batch size. It is to be noted that while
training, the batch features are stored in 4 different caches (M); real images from
the source camera, real images from the target camera, and fake images from
both the domains. This concept of the utilization of a memory bank-style cache
involves a composite discriminator consisting of a head and a body. The head
is designed to capture the batch statistics via a batch normalization layer fol-
lowed by two 3×3 convolutional layers. It processes a concatenated input (along
the batch dimension) comprising the output of the discriminator body for the
current minibatch and a historical record of past outputs from the cache, as
depicted in Fig. 3(a). The discriminator body comprises of the proposed CQA
block followed by strided convolution to check with the highly detailed global
features in the distant regions of different domains. This strategic integration of
batch statistics, caching mechanism and attention in the discriminator design
significantly enhances its capability in handling the multi-resolution image data
while stabilising the overall training (Fig. 3 (b) and (c)).

4 Experiments

We evaluated our method using two types of datasets : 1) raw-to-raw datasets,
which provide unpaired raw images for training and aligned raw images from
source and target cameras for assessing unsupervised raw-to-raw translation ac-
curacy (Sec. 4.3), and 2) raw-to-sRGB datasets, offering aligned raw and corre-
sponding sRGB images for evaluating transformed raw image quality followed
by learnable neural-based ISP rendering (Sec. 4.4). This evaluation mirrors real-
world usage scenarios where raw images from a new camera are translated to
the raw space of the camera used for ISP training. In all the experiments, raw
images were demosaiced using the Menon algorithm [34] and normalized after
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black-level subtraction. During our method’s training, each raw image was seg-
mented into non-overlapping crops of 224× 224 pixels. Similarly, we used paired
raw-sRGB non-overlapping crops of 224×224 pixels to train the camera-specific
LAN ISP [52] on each raw-to-sRGB dataset.

4.1 Datasets

We utilized two raw-to-raw datasets: 1) the Raw-to-Raw dataset [4] and 2)
the NUS dataset [9], and three raw-to-sRGB datasets: 1) the Zurich raw-to-
RGB dataset [19], 2) the Samsung S7 dataset [42], and 3) the Mobile AIM21
dataset [18]. The Raw-to-Raw dataset [4] includes raw images from the Sam-
sung Galaxy S9 and the iPhone X, featuring both unpaired and paired sets. The
NUS dataset [9] comprises scenes captured by eight DSLR cameras. Following
the evaluation in [4], we utilized the Nikon D5200 and Canon EOS 600D DSLR
cameras from the NUS dataset [9]. Aligned paired raw images were generated
using the same approach as in the Raw-to-Raw dataset [4]. In both datasets,
paired raw images are dedicated for testing, while unpaired images are utilized
for unsupervised training.

The Zurich raw-to-RGB dataset [19] includes pairs of raw and sRGB images
captured synchronously using a Huawei P20 smartphone camera and a Canon 5D
Mark IV DSLR camera. The Samsung S7 dataset [42] comprises paired raw and
sRGB images captured by the Samsung S7 smartphone’s main camera. The Mo-
bile AIM21 dataset [18] includes images captured using a Sony IMX586 mobile
sensor and a Fujifilm GFX100 DSLR, employing an advanced dense correspon-
dence algorithm for matching due to imperfect alignment [50].

4.2 Training details

Inspired by the effective fine-tuning capabilities demonstrated by the pre-trained
BERT model for the text completion task [14], we initially trained each generator
network in a self-supervised fashion for image completion. Initially, the generator
was trained on 32×32 pixel patches extracted from training images, with 40% of
these patches being randomly masked out. The objective of the generator during
this stage was to reconstruct the original unmasked image from its partially
obscured version. Training was performed using the AdamW optimizer [32] with
betas set to (0.9, 0.99) and a weight decay of 0.05 for 500 epochs to minimize
the following pixel-wise loss function:

Lpixel−wise = L1 + (1− SSIM) + V GG (3)

where L1, SSIM , V GG refer to L1 loss, Structural Similarity Index (SSIM)
[51], and VGG perceptual loss [28] between original unmasked image and the
reconstructed image. The learning rate was initialized at 0.005, and the learning
schedule was managed using the cosine annealing warm restarts strategy [31].
This self-supervised pre-training was shown to improve the raw mapping results
(see Table 1).
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Fig. 4: Shown are two images captured by Samsung S9 and iPhone X in sRGB (left)
and two cropped patches from each image in raw (right). On the right, we show the
input raw patch from the corresponding camera and the corresponding ground-truth
raw patch from the other camera, along with the results by other methods. Our pro-
posed Rawformer is better at preserving the domain consistent features.

Thereafter, the weights of both generators were fine-tuned for our unpaired
raw-to-raw translation task for an additional 500 epochs, while simultaneously
training the discriminator networks. We use the Adam optimizer [27] with betas
set to (0.5, 0.99) and a learning rate of 0.0001 for the discriminator networks and
0.00005 for the generator networks. The discriminator networks were optimized
to minimize the following loss functions:

Ldis
A = ℓgan(DA(GB→A(b)), 0) + ℓgan(DA(a), 1) (4)

Ldis
B = ℓgan(DB(GA→B(a)), 0) + ℓgan(DB(b), 1) (5)

where a and b represent images from camera A and B, respectively, while
GB→A(b) and GA→B(a) are the translated images produced by each genera-
tor network, respectively. The labels 0 and 1 represent “fake” and “real” raw
images, respectively, and ℓgan(·) computes the cross-entropy loss.

During this stage, the weights of both generators were optimized to minimize
the following loss function:

Lgen = β1(Lgan
A + Lgan

B ) + β2(Lidt
A + Lidt

B ) + β3(Lcyc
A + Lcyc

B ) (6)

where β1 = 1, β2 = 10, β3 = 0.5, Lgan
A = ℓgan(DB(GA→B(a)), 1),

Lidt
A = Lpixel−wise(GB→A(a), a), and Lcyc

A = Lpixel−wise(GB→A(GA→B(a)), a).
Note that at inference time, only a single generator network (e.g., GA→B) is
required to translate raw images captured by the source camera (e.g., A) to the
target camera (e.g., B).
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Table 1: Raw-to-raw translation results on NUS dataset [9]. The mapping
results of Nikon D5200’s raw images to Canon EOS 600D DSLR camera and vice versa
using our method and other methods are shown. Here, ℓa = L1, ℓb = L1 + V GG,
ℓc = Lpixel−wise (Eq. 3), w, and w/o denote the results with and without training on
a corresponding configuration, respectively. Best results are in bold.

Methods Canon-to-Nikon Nikon-to-Canon
PSNR↑ SSIM↑ MAE↓ ∆E↓ PSNR↑ SSIM↑ MAE↓ ∆E↓

CycleGAN [59] 27.32 0.83 0.03 15.40 26.81 0.82 0.03 11.49
UNIT [30] 25.55 0.81 0.03 18.22 24.73 0.79 0.03 18.64
SSRM [4] 32.36 0.93 0.02 6.21 30.81 0.93 0.02 5.95
UVCGANv2 [49] 37.11 0.96 0.02 4.34 37.29 0.96 0.02 4.28

Ours (w/o self-supervised pre-training; ℓa loss) 37.13 0.96 0.02 4.65 37.27 0.96 0.02 4.46
Ours (w/o self-supervised pre-training; ℓb loss) 37.94 0.97 0.02 3.96 37.99 0.96 0.02 3.93
Ours (w/o self-supervised pre-training; ℓc loss) 38.73 0.97 0.02 3.64 38.26 0.97 0.02 3.72
Ours (w self-supervised pre-training; ℓc loss) 41.89 0.98 0.01 2.04 41.37 0.98 0.01 2.53

Table 2: Raw-to-raw translation resuls on the Raw-to-Raw dataset [4]. Shown
are the mapping results of Samsung Galaxy S9’s raw images to iPhone X and vice versa
using our method and other methods. Additionally, the total number of parameters of
each method is shown in millions (M), and inference time in milliseconds (ms) without
optimization on NVIDIA GeForce RTX 4090 GPU. Results on inference time with
optimization are in supplementary.

Methods Samsung-to-iPhone iPhone-to-Samsung
PSNR↑ SSIM↑ MAE↓ ∆E↓ PSNR↑ SSIM↑ MAE↓ ∆E↓ Params (M) Time (ms)

CycleGAN [59] 24.63 0.71 0.05 14.71 24.37 0.73 0.04 12.88 21.7 19
UNIT [30] 23.91 0.70 0.05 13.23 26.42 0.78 0.04 13.16 32.2 29
U-GAT-IT [26] 28.22 0.89 0.03 5.98 31.04 0.89 0.02 5.04 34.4 35
SSRM [4] 29.65 0.89 0.02 6.32 28.58 0.90 0.02 6.53 20.2 18
UVCGANv2 [49] 36.32 0.94 0.02 4.21 36.46 0.92 0.02 4.73 32.6 31

Ours 40.98 0.97 0.01 2.09 41.48 0.98 0.01 1.99 26.1 26

4.3 Raw-to-Raw Translation Results

We compare our raw-to-raw translation results with those of the recent semi-
supervised raw-to-raw mapping (SSRM) method [4]. Additionally, we compare
our method against several established unsupervised generic I2I methodologies,
including UVCGANv2 [49], U-GAT-IT [26], UNIT [30], and the classic Cycle-
GAN [59]. All other methods were trained on the same training data used for
our method, for 500 epochs. Since SSRM is not entirely unsupervised, we in-
corporated 22 image pairs from the paired subset for its training, as discussed
in [4]. Fig. 4 shows qualitative comparisons on the Raw-to-Raw dataset [4],
while Tables 1 and 2 present the quantitative results on the NUS dataset [9] and
the Raw-to-Raw dataset, respectively. In Tables 1 and 2, we adopted the same
quantitative metrics used in [4]: peak signal-to-noise ratio (PSNR), SSIM, mean
absolute error (MAE), and ∆E 2000 [44]. As can be seen in both the tables,
our Rawformer significantly outperforms the alternative methods across all the
quantitative metrics by a large margin (around +12 dB against SSRM [4]).
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Table 3: Raw-to-Raw dataset [4] results on low-light raw images (a subset).

Input Prediction GT

S9iPhone SSRM

UVCGANv2

Ours

Method PSNR↑ SSIM↑

SSRM [4] 23.87 0.85
UVCGANv2 [49] 35.22 0.94

Ours 40.21 0.97

Table 4: Ablation results on the impact of various configurations of the
generator model on the NUS dataset [9]. ‘CQA’, ‘Style’, ‘SPFN’ and ‘CUp-CDown’
refers to the condensed query attention, style modulator, scale perceptive feed-forward
network, and the composite up and downsampler, respectively.

Modules Canon-to-Nikon Nikon-to-Canon
Configuration Baseline CQA Style SPFN CUp-Cdown PSNR↑ SSIM↑ PSNR↑ SSIM↑

G1 ✓ 37.23 0.96 37.31 0.96
G2 ✓ ✓ 38.21 0.96 37.97 0.96
G3 ✓ ✓ ✓ 39.08 0.97 38.99 0.96
G4 ✓ ✓ ✓ ✓ 39.72 0.97 39.68 0.97
G5 ✓ ✓ ✓ ✓ ✓ 39.93 0.97 39.86 0.97

Evaluation on Low-Light Images: Translating raw-to-raw for low-light im-
ages presents challenges due to various variations among cameras, including dif-
ferences in raw normalization and noise characteristics [2,4]. To further prove the
efficacy of our method against other methods on low-light images, we selected
a subset of 15 paired low-light images from the Raw-to-Raw dataset [4]. The
results on this subset are presented in Table 3, where our proposed method sig-
nificantly outperforms SSRM [4], and UVCGANv2 [49] for translating low-light
raw images captured by an iPhone X to the Samsung S9’s camera.

Ablation Studies: We conducted a set of ablation studies to validate the im-
pact of the proposed components in the generator and discriminator networks.
In this series of experiments, we trained our Rawformer on the NUS dataset [9],
in addition to a baseline model trained using the same training settings as our
Rawformer. The baseline model comprises a UNet architecture with channel and
spatial attention [48] for the generator, and a PatchGAN discriminator [22]. As
demonstrated in Table 4, the integration of the proposed modules into the base-
line consistently improves the network’s capabilities, showcasing an enhancement
in overall accuracy. We also conducted further ablation studies that explore var-
ious configurations of the discriminator, as shown in Table 5. The results clearly
underscore the improvement by the inclusion of each proposed component in the
discriminator network (attention, batch normalization, and discriminator head
(Disc. head)) in improving the accuracy of our raw-to-raw translation.

4.4 Raw Translation for Learnable ISP

To comprehend the practical application of our model in real-world scenarios, we
utilized three datasets: Zurich raw-to-RGB, Samsung S7 ISP, and Mobile AIM21,
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Table 5: Ablation results on the impact of various discriminator model
configurations on the NUS dataset [9]. ‘Baseline’ refers to the G5 config. from Tab. 4.

Modules Canon-to-Nikon Nikon-to-Canon
Configuration Baseline CQA Batchnorm Disc. head PSNR↑ SSIM↑ PSNR↑ SSIM↑

D1 ✓ 39.93 0.97 39.86 0.97
D2 ✓ ✓ 40.12 0.97 40.09 0.97
D3 ✓ ✓ ✓ 40.24 0.97 40.21 0.97
D4 ✓ ✓ ✓ ✓ 41.89 0.98 41.37 0.98

Table 6: Cross-camera raw-to-sRGB results (PSNR/SSIM) comparing: a)
UVCGANv2 [49] with b) our Rawformer. Each entry compares ground-truth sRGB
images generated by the function: ISPB(F

B(rawA)), where FB denotes translation
of raw images, rawA, captured by camera A to camera B. ISPB(·) produces sRGB
images using the LAN ISP [52] trained on raw images from camera B. Diagonal results
(in red) represent the camera-specific ISP case and are the sRGB images produced by
the ISP model tested on the same camera used for training. Best cross-camera results
are in bold.

a) UVCGANv2 [49]+ LAN ISP [52] b) Our Rawformer+ LAN ISP [52]
Testing camera B Testing camera B

Training camera A ZRR [19] AIM21 [18] S7 [42] ZRR [19] AIM21 [18] S7 [42]
ZRR [19] 19.46/0.73 17.72/0.70 17.81/0.70 19.46/0.73 18.97/0.72 19.02/0.72
AIM21 [18] 22.14/0.79 23.48/0.87 22.39/0.79 23.25/0.86 23.48/0.87 23.08/0.86
S7 [42] 21.07/0.80 20.93/0.79 22.16/0.81 22.08/0.80 22.03/0.80 22.16/0.81

encompassing various source and target domain combinations. Specifically, for
each dataset, we trained the LAN ISP [52] on a single paired raw-to-sRGB
dataset, where raw images originated from a single camera. Then, we transferred
all raw images from other cameras in the other datasets using our Rawformer
before rendering with the trained LAN model. We report the PSNR and SSIM
of the rendered sRGB images compared to the ground-truth sRGB images for
each set as shown in Table 6. This includes the results of camera-specific LAN
ISP models trained and tested on the same datasets. The camera-specific results
represent the optimal results achievable by the neural-based ISP, which requires a
paired raw-SRGB dataset for training on each camera model. As can be seen, our
unsupervised raw-to-raw translation method demonstrates robust improvement,
exhibiting only a marginal 3% reduction in accuracy compared to the camera-
specific LAN model trained and tested on the same camera. This underscores the
effectiveness of our method in addressing real-world cross-domain broadcasting
challenges. See Fig. 5 for qualitative examples.

4.5 Comparison with Few-Shot Domain Adaptation
We further compared our Rawformer against Prabhakar’s Few-Shot Domain
Adaptation (PDA) [38]. Specifically, we conducted a 10-shot domain adapta-
tion from the Samsung S7 ISP dataset’s camera [42] to the Zurich raw-to-RGB
dataset’s camera [19], and vice-versa. The PDA model underwent initial training
for 10 epochs using the Samsung S7 ISP dataset. Subsequently, domain adapta-
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Fig. 5: ISP rendering results with our raw translation on various datasets.
Each set includes ground-truth (GT) raw-sRGB paired images and LAN ISP [52] re-
sults on mapped raw images from different cameras. S7, ZRR, and AIM stand for the
Samsung S7 ISP dataset [42], Zurich raw-to-RGB dataset [19], and Mobile AIM21
dataset [18], respectively. The shown results are consistent with the ground-truth,
demonstrating the proficiency of our model.

tion was performed on 10 images from the Zurich raw-to-RGB dataset’s camera
over 4 epochs. This process resulted in performance metrics of 21.07 dB, and
17.81 dB in terms of PSNR and 0.80 and 0.70 for SSIM for our Rawformer,
representing approximately 11% superior performance compared to PDA (see
Table 7).

Table 7: Comparison with PDA [38]. S7 and ZRR denote the Samsung S7 ISP [42]
and the Zurich Raw-to-RGB [19] datasets, respectively. Results are produced after
translating each raw image to the target camera using PDA and our Rawformer, sub-
sequently rendering with a LAN ISP [52] trained on the target camera’s raw images.

Method S7-to-ZRR ZRR-to-S7
PSNR↑ SSIM↑ MAE↓ ∆E↓ PSNR↑ SSIM↑ MAE↓ ∆E↓

PDA [38] 20.33 0.79 0.09 13.99 17.12 0.69 0.18 15.86

Ours 22.08 0.80 0.08 10.27 19.02 0.72 0.15 11.74

5 Conclusion and Future Work

In this work, we presented a new approach, Rawformer, for raw-to-raw image
translation using unpaired data. Rawformer sets a new standard for performance
on real camera datasets, showcasing its superior capabilities in raw-to-raw trans-
lation when measured against other alternatives. The proposed method reduces
the need for the extensive collection of raw-to-sRGB paired datasets to re-train
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learnable ISPs for new cameras, thereby decreasing associated costs. Our results
indicate that existing raw-to-sRGB paired datasets can reliably train neural-
based learnable ISPs, which can then be utilized to render raw images taken
by unseen cameras, lacking such unpaired data. We believe that our approach
provides valuable insights for learnable ISP, raw image translation research, and
applications. Our method (without optimization) runs at 26 milliseconds per
frame on GPU (∼1 second on CPU), which may be impractical for real-time ren-
dering in camera previews on devices with limited computational power. Future
work will focus on introducing lighter models capable of real-time performance
on CPU.
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1 Architecture and Experimental Details

In the main paper, we introduced Rawformer, a fully unsupervised framework
for raw-to-raw translation. The overview of the proposed framework and the
training flow are illustrated in Fig. 1. As can be seen, we train two genera-
tor networks, GA−B and GB−A, alongside two discriminator networks, DA and
DB , utilizing cycle consistency loss, identity loss, and discriminator loss. Our
framework accurately maps images from domain A to domain B through a fully
unsupervised training scheme.

1.1 Pre-training of Generator Networks

The pre-training phase of the generator network, essential for initializing the
weights effectively, involves a self-supervised image inpainting task spanning 500
epochs. This task is designed to enhance the network’s detail preservation ca-
pabilities in input images. Specifically, the network is trained on 32×32 pixel
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of these patches randomly masked. The masking is conducted by zeroing out the
pixel values. The objective of the generator is to reconstruct the original image
from its partially obscured version by minimizing a pixel-wise loss function, as
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Fig. 1: Overview of the proposed architecture and training flow. At and Bt refer to
translated images used by the discriminator loss, while Ac and Bc refer to the produced
images used by the cycle consistency loss.

discussed in the main paper. The pre-training is performed with batch size of
16 and we apply random horizontal and vertical flips on both the considered
datasets. This pretraining phase employs an AdamW optimizer with betas (0.9,
0.99), a weight decay of 0.05, an initial learning rate of 0.005, and a learning
schedule managed through the Cosine Annealing Warm Restarts strategy.

1.2 Raw Translation Training

After pre-training, the model enters the Generative Adversarial Network (GAN)
training phase, which lasts for 500 epochs and focuses on unpaired image trans-
lation. This phase employs a pixel-wise loss function for both the generator and
discriminator components, with the discriminator optimized using the Adam op-
timizer with betas (0.5, 0.99) and a learning rate of 0.0001. The generator uses
the same optimizer but with a slightly lower learning rate of 0.00005. The batch
size is kept to 1 and data augmentations, including random horizontal flips and
vertical flips, are further applied on the dataset in this phase as well. The overall
size of image caches is set to 3 and the overall batch head has 4 samples to
compute the batch statistics. The overall training process is illustrated in Fig.
1.

2 Style Modulator

To augment the capability of the generator, we have expanded its functionality to
deduce the correct target style for every input image, using a Vision Transformer
(ViT) [49]. Thereafter, we modulate the decoding part of the generator with the
obtained target style for markedly boosting its expressive power [25]. The main
technique of style modulation is depicted in Figure 2.
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Fig. 2: Details of the proposed style modulation process.

Input Ours (w Style) GTOurs (w/o Style)

iPhone S9

Fig. 3: Enhancement in translation accuracy by the style modulator. The
improvements are demonstrated on the Raw-to-Raw dataset [4] (from iPhone X to
Samsung S9), showcasing the positive impact of the style modulator on translation
accuracy.

In particular, at the generator’s bottleneck, the image is encoded into a series
of tokens for the ViT network. We enhance this series with an extra trainable
style token S, which, after processing through the ViT, encapsulates the latent
style of the image. For each layer in the Rawformer’s decoding section, we derive
a unique style vector si from S through trainable linear transformations.

The process of style modulation [25] effectively adjusts the weights wi,j,h,w of
the Q vector with the designated style vector si, resulting in modulated weights:

w′
i,j,h,w = si × wi,j,h,w, (1)

where i, j denote the input and output feature maps, respectively, and h,w repre-
sent spatial dimensions. To maintain the activation magnitudes, the modulated
weights, w′

i,j,h,w, are subjected to demodulation, renormalizing the convolutional
Q vector weights as:

w′′
i,j,h,w =

w′
i,j,h,w√∑

h,w(w
′
i,j,h,w)

2 + ϵ
, (2)

with ϵ being a minimal value to avoid numerical issues. Figure 3 illustrates that
the introduced style modulator significantly enhances translation precision.

3 Inference time and Additional Ablation studies

3.1 Inference time

In the main paper, we presented the inference time of our model without opti-
mization. Here, we present the results of various optimized versions of our model
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Table 1: Quantitative results of optimized models. Shown results are for
Samsung-to-iPhone mapping (using the Raw-to-Raw dataset [4]) on different hard-
ware platforms, along with the inference time in milliseconds (ms). The results show
that our proposed Rawformer holds promise for integration into the mobile devices.

Device Dtype Framework Time (ms) PSNR SSIM MAE ∆E

CPU Intel i9-12900K fp32 PyTorch 526 40.98 0.97 0.01 2.09
CPU Intel i9-12900K int8 OpenVINO 179 37.21 0.95 0.03 5.14
GPU NVIDIA RTX 4090 fp32 PyTorch 26 40.98 0.97 0.01 2.09
GPU NVIDIA RTX 4090 fp16 TensorRT 18 40.92 0.97 0.01 2.11
Google Coral Edge TPU int8 TF Lite 68 37.20 0.95 0.03 5.21

Table 2: Ablation results of the impact of the spatial conpression operation
on different vectors of attention on the NUS dataset [9]. ‘Q’, ‘K’, and ‘V’ indicate
the use of the Q, K, and V vectors in the CQA block. ‘Ours’ represents the proposed
design discussed in the main paper. The shown results exhibits the proficiency of ap-
plying the spatial compression/condensation operation on the query vectors.

Canon-to-Nikon Nikon-to-Canon
Spatial Compression operation PSNR↑ SSIM↑ PSNR↑ SSIM↑

K 41.12 0.98 41.09 0.98
V 41.14 0.98 41.11 0.98

Q (Ours) 41.89 0.98 41.37 0.98

for raw translation. Specifically, we applied model post-training quantization to
our trained Rawformer, which was trained to map Samsung S9’s raw images
to iPhone X’s camera raw space. We report the results of float16, float32 and
int8 quantization on different hardware platforms in Table 1. It is worth noting
that we achieve nearly identical accuracy with float16 conversion, running at
approximately 18 milliseconds on an NVIDIA RTX 4090 GPU.

3.2 Ablation Study

In the main paper, we presented several ablation studies conducted to validate
the decisions made in the proposed design of Rawformer. Here, we present ad-
ditional ablation experiments performed to further validate the operations of
the major components in our Rawformer: condensed query attention (CQA),
contextual-scale aware upsampler (CSAU) block and the contextual-scale aware
downsampler (CSAD) blocks. Tables 2, and 3 demonstrates the impact of incor-
porating the spatial compression (where and how), on the attention vectors of
CQA block. The results of the ablation studies shown in Tables 4, and 5 proves
the efficacy of our designed composite upsamplers and downsamplers. All these
ablation studies clearly reveal, that the proposed design with the inclusion of all
the components achieves the best results across all quantitative metrics.
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Table 3: Ablation results on the impact of different query projection oper-
ations for the condensed query attention block. Here ‘Patch merging’ involves
splitting the incoming image feature into patches and then merging across the channel
dimension, and ‘Ours’ represents the proposed design discussed in the main paper. The
shown results clearly reveal that using average pooling and linear projection, helps in
refining the overall results.

Canon-to-Nikon Nikon-to-Canon
Query Projection Operation PSNR↑ SSIM↑ PSNR↑ SSIM↑

Depthwise Conv (stride=2) 40.13 0.97 40.12 0.97
Conv (stride=2) 39.52 0.97 39.48 0.97
Patch merging 38.83 0.96 38.73 0.96

MaxPool + Linear Projection 41.09 0.98 41.03 0.98
AvgPool + Linear projection 41.89 0.98 41.37 0.98

Table 4: Ablation results on the impact of different generator model con-
figurations on the NUS dataset [9]. ‘CUp’ indicates the upsampling block in the
contextual-scale aware upsampler (CSAU) block, while ‘Deconv’ refers to the classical
deconvolution block. ‘Ours’ represents the proposed design discussed in the main pa-
per. The shown results demonstrate the merits of deploying hybrid upsampling in the
overall design.

Canon-to-Nikon Nikon-to-Canon
Configuration PSNR↑ SSIM↑ PSNR↑ SSIM↑

Deconv 40.93 0.97 40.84 0.97
CUp (Ours) 41.89 0.98 41.37 0.98

4 Additional Results

The experiments presented in the main paper focus on the raw translation of
raw images captured by various mobile phone cameras, representing a real-world
scenario and demonstrating one of the most promising applications of the pro-
posed method—reducing costs associated with the development of mobile phone
camera’s neural-based ISP for new camera models. Here, we conducted experi-
ments where we examined the raw mapping between DSLR and mobile phone
cameras. Specifically, we trained our method, along with other unsupervised
methods [30,59], to map between the Canon EOS 600D DSLR camera (from the
NUS dataset [9]) and the main camera of the Huawei P20 smartphone (from the
Zurich raw-to-RGB dataset [19]). Additionally, we trained a LAN neural-based
ISP [52] on the target camera. In Table 6, we present quantitative results ob-
tained by rendering raw images mapped using our method and other methods,
utilizing the pre-trained ISP. As demonstrated, our approach yields superior raw
translation results compared to alternative methods, as evidenced by the quality
of the rendered sRGB images in comparison to the ground-truth sRGB images.
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Table 5: Ablation results on the impact of different generator model config-
urations on the NUS dataset [9]. ‘CDown’ indicates downsampling in the contextual-
scale aware downsampler (CSAD) block, while ‘Conv’ signifies the simple convolution
block with stride 2 for downsampling. ‘Ours’ represents the proposed design discussed
in the main paper.

Canon-to-Nikon Nikon-to-Canon
Configuration PSNR↑ SSIM↑ PSNR↑ SSIM↑

Conv (stride 2) 40.14 0.97 40.07 0.97
CDown (Ours) 41.89 0.98 41.37 0.98

So
ur

ce
 (S

am
su

ng
)

Ta
rg

et
 (i

Ph
on

e)

So
ur

ce
 (i

Ph
on

e)

Ta
rg

et
 (S

am
su

ng
)

Input Ground TruthOursUVCGANv2SSRMU-GAT-ITUNITCycleGAN

So
ur

ce
 (i

Ph
on

e)

Ta
rg

et
 (S

am
su

ng
)

So
ur

ce
 (S

am
su

ng
)

Ta
rg

et
 (i

Ph
on

e)

Fig. 4: Qualitative results of raw translation on the Raw-to-Raw dataset [4].
Shown are images captured by Samsung S9 and iPhone X in sRGB (left) and two
cropped patches from each image in raw (right). On the right, we show the input
raw patch from the corresponding camera and the corresponding ground-truth raw
patch from the other camera, along with the results by other methods. Our proposed
Rawformer is better at preserving the domain consistent features.

Additional qualitative raw translation results are shown in Figs. 4 and 5. In
Fig. 5, we also show the results of mapped raw images (transformed from the
Sony IMX586 camera to the main camera of the Huawei P20 smartphone) after
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GT U-GAT-IT UVCGANv2 Ours

Fig. 5: Qualitative comparisons on raw translation and ISP rendering. We
show the ground-truth (GT) raw/sRGB images from the the Mobile AIM21 dataset
(Sony IMX586) [18], alongside the corresponding mapped raw images to the Zurich
raw-to-RGB dataset (Huawei P20 smartphone’s main camera) [19] generated using
various methods, including ours. Additionally, we show the rendered sRGB images by
processing each mapped raw image using a neural-based ISP [52] trained to render
raw images from the Zurich dataset source camera (i.e., the Huawei P20 smartphone
camera).

Table 6: Translation results for mapping between raw images from DSLR
and mobile phone cameras. The results are on the NUS dataset [9] and the Zurich
raw-to-RGB dataset (ZRR) [19]. Specifically, the mapping results of ZRR raw images
(captured by the Huawei P20 smartphone camera) to the Canon EOS 600D DSLR
camera, and vice versa, are shown. Both our method and other techniques are com-
pared. Best results are highlighted in bold.

Methods Canon-to-ZRR ZRR-to-Canon
PSNR↑ SSIM↑ PSNR↑ SSIM↑

CycleGAN [59] 12.63 0.54 12.81 0.58
UNIT [30] 14.91 0.67 17.73 0.70
UVCGANv2 [49] 17.32 0.71 22.29 0.87
Ours 18.71 0.72 24.35 0.89
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Fig. 6: ISP rendering results with our raw translation on various datasets.
Each set includes ground-truth (GT) raw-sRGB paired images and LAN ISP [52] re-
sults on mapped raw images from different cameras. F y represents our Rawformer
trained to map raw images, rawx, from a source camera, x, to target camera, y. ISPy
denotes LAN ISP [52] trained on raw images from camera y. S7, ZRR, and AIM stand
for the Samsung S7 ISP dataset [42], Zurich raw-to-RGB dataset [19], and Mobile
AIM21 dataset [18], respectively. The shown results are consistent with the ground-
truth, demonstrating the proficiency of our model.

rendering using a pre-trained LAN neural-based ISP [52], which was trained on
the raw space of the target camera. Specifically, the ISP was trained to render
images captured by the Huawei P20 smartphone’s main camera. As can be seen in
Figs. 4 and 5, our method achieves superior raw translation, resulting in visually
enhanced sRGB images when rendered using the pre-trained ISP compared to
other alternative methods. Lastly, Fig. 6 shows additional qualitative results of
our raw mapping and the rendered sRGB images using trained ISP [52] on the
target camera raw space.
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