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Abstract—Different types of staining highlight different struc-
tures in organs, thereby assisting in diagnosis. However, due to
the impossibility of repeated staining, we cannot obtain different
types of stained slides of the same tissue area. Translating the
slide that is easy to obtain (e.g., H&E) to slides of staining types
difficult to obtain (e.g., MT, PAS) is a promising way to solve
this problem. However, some regions are closely connected to
other regions, and to maintain this connection, they often have
complex structures and are difficult to translate, which may lead
to wrong translations. In this paper, we propose the Attention-
Based Varifocal Generative Adversarial Network (AV-GAN),
which solves multiple problems in pathologic image translation
tasks, such as uneven translation difficulty in different regions,
mutual interference of multiple resolution information, and
nuclear deformation. Specifically, we develop an Attention-Based
Key Region Selection Module, which can attend to regions with
higher translation difficulty. We then develop a Varifocal Module
to translate these regions at multiple resolutions. Experimental
results show that our proposed AV-GAN outperforms existing
image translation methods with two virtual kidney tissue staining
tasks and improves FID values by 15.9 and 4.16 respectively in
the H&E-MT and H&E-PAS tasks.

Index Terms—GAN, Virtual Staining, Image Translation

I. INTRODUCTION

In computational pathology, pathologists usually use patho-
logical slides to obtain an accurate diagnosis and pathological
staining is the gold standard [21]. Histochemical staining
detects the presence of specific antigens in pathological tissues
through the combination of antibodies and antigens and pathol-
ogists usually need to use different types of histochemical
staining to achieve an accurate pathological diagnosis [23]. For
example, different types of pathological stains contain different
molecular information, pathologists need several types of
stainings to observe each specific structure of the kidney [22],
[24]. For example, Masson trichromatic staining (MT) slides
are for connective tissue observation, and Periodate Schiff
Staining (PAS) slides are for the observation of the basement

Fig. 1. A H&E stained patch and its attention map. The attention map shows
that different regions deserve different extents of attention and structures like
the edge of cavities in this patch deserve more attention, which corresponds
to the fact that the edge is crucial for the shape of translated images.

membrane. However, the tissue cannot be stained multiple
times, as chemical staining destroys the cell structure [25].
To obtain a variety of staining types, existing methods apply
virtual staining technology based on image translation [3].
Specifically, they translate the staining slide which is easy to
obtain (e.g. H&E) to slides that require more preparation cost
(e.g. MT, and PAS).

Although existing virtual staining technologies have
achieved promising performance, there are still several chal-
lenges. Firstly, as shown in Figure 1, unlike the attention
mechanism target in the previous method, which involves
finding foreground objects to focus on in the background (such
as finding horses in grasslands), in the task of pathological
slides virtual staining, we need to find key regions that interact
closely with tissues in other areas, as these key regions often
require more complex structures to maintain this interaction,
leading to increased translation difficulty [27]. For example, in
the translation task of renal pathology slides, to efficiently filter
the original urine sent from other tissues in a limited space, the
glomerulus in the kidney must increase the contact area with
the renal tubules, forming a complex cystic structure, making
it difficult to translate. Motivated by this point, we design a
novel attention mechanism that focuses on finding regions in
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pathological slides that are closely related to other regions and
treating them as regions with higher translation difficulty.

After that, the existing methods have not been able to
effectively translate information of different resolutions sep-
arately, making them unable to achieve the desired translation
effect for information with high resolution (such as detailed
texture, glomerular basement membrane, etc.) and information
with low resolution (such as the shape of the tissue and the
color appearance) simultaneously and separately [17]. Besides,
the relative position of the nucleus may change during the
translation of some models, which may lead to the deformation
of some regions.

In this paper, we propose an Attention-Based Varifocal Gen-
erative Adversarial Network (AV-GAN) for image translation.
To provide sufficient attention to the key regions (such as
the glomerulus mentioned above) in the image, we adopt
the attention mechanism to effectively focus on key regions.
Besides, to better translate low-resolution features like the
global shape as well as the appearance of the tissue and high-
resolution features such as the detailed texture and local edge,
we utilize a twin network architecture called varifocal module
to achieve the extraction of features at different resolutions and
the interaction between these features. In addition, we set the H
channel loss to constrain the position of the nucleus to ensure
that the shape of the tissue does not change significantly. Our
work may do good for several downstream tasks such as object
detection [29].

To sum up, our main contributions are as follows:
• We design an Attention-based Key Region Selection

Module based on the attention mechanism, which can
select the structures in the tissue with higher translation
difficulty and more connections to other areas.

• We propose a Varifocal Module, utilizing two generators
to deal with global (low-resolution) and local (high-
resolution) information respectively to ensure that infor-
mation with different resolutions will not interfere with
each other.

• We conduct experiments on the image translation tasks
H&E-MT and H&E-PAS. Experimental results show that
our method can translate H&E staining slides into high-
quality MT staining slides and PAS staining slides.

II. RELATED WORK

A. Virtual Staining in Histopathological Analysis

Researchers have begun to explore virtual staining through
image translation models. Lin et al. use StarGAN [5] as the
baseline to convert H&E slides into special staining slides to
achieve one-to-many image translation [4]. Yang et al. convert
the H&E staining slides of the kidney into special staining
slides [30]. Rivenson et al. virtually generate PAS, MT slides
from H&E slides. However, this model needs to input pixel-
level registered data. Due to the large size of pathological
WSIs, it is difficult to implement pixel-level registration [7].
For the existing computational pathology image translation
model, due to the differences in the translation difficulty of

different regions of the slide (for example, the glomerulus is
the key structure in kidney slides that should be focused on
more), there is still a lack of an effective attention mechanism
to enable the model to focus on these regions. Meanwhile, the
input of high-resolution images forces the model to pay atten-
tion to details (such as tissue edges and cavities), while the
input of low-resolution images forces the model to observe the
global information and then handle the spatial relevance (such
as the law of nuclear distribution). The existing pathology
slides translation model can hardly explore the relationship
between multiple resolutions.

B. Generative Adversarial Network

The Generative Adversarial network [9] has become an
important framework in image translation [26] [28] [5]. Zhu et
al. propose Pix2Pix [9] and CycleGAN [10] for supervised and
unsupervised image translation. Kim et al. propose UGATIT
[11] for style transfer. Huang et al. propose MUNIT [12] to
decouple image style information and content information.
Mohammed et al. propose an image translation framework
called AI-FFPE [8]. Zhang et al. design the Self-Attention
Generative Adversarial Network (SAGAN) [13], utilizing
prompts from all feature locations to generate details. How-
ever, this scheme fails to pay attention to image information
at different resolutions. Apart from that, Hu et al. propose
the QS-Attn mechanism [14]. Among the features encoded by
Encoder, the features that the author needs to constrain are
filtered by the “query-select” method. However, this method
only filters at the feature level and does not directly notice the
regions in the image that should be concerned about. Zhang
et al. successfully introduce the attention mechanism into
GAN [16], but it is not applied in the image translation task.
Kwon et al. propose a new layered adaptive diagonal spatial
attention (DAT) layer [15], which hierarchically processes
spatial content and style, but this scheme does not process
high-resolution and low-resolution information separately. In
a word, the above frameworks fail to pay attention to the multi-
resolution information, resulting in some key structures (such
as the edge of tissue) not being well translated.

III. METHOD

In medical images, to solve the problem some structures
are relatively complex (such as glomerulus, renal tubule, etc.)
and cannot be translated precisely using a simple network, as
shown in Figure 2, we propose an Attention-Based Varifocal
Generative Adversarial Network (AV-GAN), which solves the
problem of uneven difficulty distribution in image translation.

A. Attention-based Key Region Selection Module

Correct virtual staining of key structures is of great sig-
nificance for accurate diagnosis. For example, in PAS slides,
the glomerular basement membrane is stained evidently, so the
glomerulus is the key structure of the slide. Correct staining of
the glomerulus helps the diagnosis and treatment of a variety
of kidney diseases (such as the classification of nephritis). To
capture the key structures in pathological slides, we develop



Fig. 2. The structure of AV-GAN. G1 and G2 refer to the low-resolution generator and the high-resolution one respectively. D1 and D2 are the discriminators
of high-resolution and low-resolution, which are not drawn in the figure. The Attention-Based Key Region Selection Module selects the region that is worth
attention and the RGB2HED Block converts the RGB image to an HED image, whose H channel (nuclear channel) can be constrained.

Fig. 3. The structure of the attention module. The Q, K, and V refer to the
Query, Key, and Value network. The matrix A represents the attention map,
which is calculated through Q and K. The network will select the region with
key structures that need to be translated more precisely and return a cord list
with each coordinate group representing a region.

an Attention-based Key Region Selection Module, as shown in
Figure 3. Firstly, we feed the input image x ∈ RC×H×W into
three independent convolution neural networks and downsam-
pling blocks, getting the output xq , xk, and xv ∈ RC× H

16×
W
16

where xq , xk, and xv are the representations of the image in
the Query, Key and Value space, respectively, when C, H and
W refer to the number of channels, the height, and width of
a patch. To avoid the excessive size of the attention map, we
downsample these representations to x′

q , x′
k, and x′

v . Then,
to obtain the strength of interaction between different regions,
the three representations are flattened and the attention map
of the image is calculated by

A = softmax(x′
q
T
x′
k), (1)

where the softmax function is applied to the second dimension.
Next, a matrix P , the importance of each key region for

selection, is calculated by

P = Ax′T
v . (2)

We take the average of C channels for P and continue the
following operation. At last, we sort the values in P to find
the top n maximum values where n is the hyperparameter that
represents the number of key regions. Finally, we obtain the
key regions a1, a2, ..., ai, ..., an (1 ≤ i ≤ n) based on P ′

generated by P , and the generated process is described in the
next paragraph.

To transmit gradients to the attention module, we propose
a novel attention mechanism, which is a key novelty of our
work. After getting the attention map, the selected block
calculates m = sigmoid(1000(P−θ)), where P is the average
attention value of each region and θ determines how many
regions to focus on (i.e., n). The larger the value of the
parameter θ, the fewer regions of interest can be selected and
the less n is. Then, we calculate the P ′ = m×P , and finally,
the selected block selects the key regions for the varifocal
module. The network also adds Spatial Attention Block which
has an impact like [8].

B. Varifocal Module

To improve the translation effect of the key regions selected
in section III.A, we further propose a varifocal module. The
module completes image translation at different resolutions
through two independent generators, with each of them in-
teracting with the other through varifocal loss, thus taking
advantage of image features at different resolutions.

The low-resolution generator G1 consists of a down-
sampling module, a spatial attention module, several bottle-
neck residual blocks, and an upsampling block. The main
function of the low-resolution generator is to focus on the
global characteristics of the image such as the shape and
color style of the tissue. The low-resolution generator achieves
better performance for translating the overall appearance of the
image, especially the color styles, into another type of staining.



At the same time, we set up a high-resolution generator
G2, which can better focus on local characteristics such as the
local texture and the glomerulus. The high-resolution generator
achieves better performance for translating the local structures
of the image, especially the local contour of tissues and
detailed texture, into another type of staining.

To sum up, the low-resolution generator is better at cap-
turing the global features such as the whole appearance,
while the high-resolution generator is better at extracting local
features such as some detailed textures. These two generators
perform image translation at different resolutions and play a
crucial role in the process of stain translation. we impel the
generators of different resolutions to interact with each other
properly instead of disorderly interference. The module fuses
the advantages of two generators using L1 loss. The interaction
process can be described as:

N∑
n=1

∥Cn(G1(I))−G2(an)∥1 (3)

In the formula, I is the resized patch, an is the nth key
region, G1(·) is the low-resolution generator, G2(·) is the high-
resolution generator, and N is the total number of key regions.
Cn(·) is the operation that crops the region from the resized
patch I corresponding to an, ∥·∥1 is L1 loss.

As a result, the fused network can deal with features in
both high and low resolutions, capturing the information both
globally and locally. Then we apply Varifocal loss to them
as shown in Figure 2. In short, our model can significantly
improve the virtual staining performance of key regions.

C. Discriminator

We use two discriminators D1 and D2 to distinguish low-
resolution images and high-resolution local areas respectively.
According to the research results of [1], the structure of
the generator and discriminator equipped in networks should
match the difficulty of the task. Therefore, we choose the
PatchGAN discriminator.

D. RGB2HED

HED is a color space similar to RGB and is commonly used
in computational pathology. RGB2HED is the process of trans-
forming an image from RGB space to HED space by a stain
deconvolution matrix. In HED space, the H channel highlights
the nucleus. If the consistency of the H channel before and
after translation can be maintained, the position of the nucleus
can be guaranteed, and the structural precision after image
translation is guaranteed. If we remove this constraint, we
obtain FID values of 80.66 (H&E-MT translation) and 97.85
(H&E-PAS translation), worse than before, demonstrating the
effectiveness of the H channel. Please refer to H channel loss.

E. Loss function

Our loss function has five terms and they are Adversarial
loss Ladv , Identity loss Lidt, PatchNCE loss LNCE , H channel
loss LH , and Varifocal loss Lv . Here we only introduce LH

and Lv . You may refer to other terms in [8], [10], [26].

1) H channel loss: To further constrain the spatial position
relationship of the nucleus and ensure that the cell position
distribution in the patch does not receive too much influence,
we utilize the H channel separation operator S to convert the
source domain and generated target domain images into the
HED color space and constrain the H channel of the HED
color space. G refers to the generator and X refers to the
source domain. The H channel loss can be calculated by

LH = ||S(X)− S(G(X))||1. (4)

2) Varifocal loss: To ensure the consistency of the gener-
ated images between different resolutions, we set the Varifocal
loss Lv to constrain the difference in the generated results
between the low-resolution and high-resolution generators. We
find the corresponding regions of the selected regions in the
low-resolution generated image and constrained those regions
with the generation results of the high-resolution generator. To
constrain images translated by the high-resolution generator
and the low-resolution generator on the same scale, the larger
image of the two is resized to the smaller image with the
resizing operator R. The Varifocal loss is calculated by

Lv =

n∑
i=1

||R(ai)− bi||1, (5)

where ai refers to the region mentioned in section III.A, and
bi refers to the corresponding location in the translated image
G1(x).

3) Optimization objective: The optimization objective func-
tion can be calculated by

L =λadvLadv + λidtLidt+

λNCE(LNCE(X) + LNCE(Y)) + λHLH + λvLv, (6)

where the weights λadv , λidt, λNCE , λH , and λv are set to
1.0, 0.03, 1.0, 2.5, and 1.0 respectively to keep the loss terms
in similar magnitude.

IV. EXPERIMENTS AND RESULTS

A. Dataset and Data Preprocessing

We have evaluated our proposed model over the H&E-
MT and H&E-PAS image translation datasets of the ANHIR
[18]. In the ANHIR dataset, there are 5 groups of high-
resolution tissue slides of human kidneys. Each of which has
3 unpaired Whole Slide Images (WSIs) stained with different
kinds of stain, namely Hematoxylin-eosin (H&E), Masson’s
trichrome(MT), and Periodic Acid-Schiff (PAS). We divide
the dataset according to the existing work [4] and segment all
slides into 512 × 512 size patches. We adopt the overlapping
measure in the segmentation process, which sets the stride
of segmentation to 64. In the end, we obtained 17,964 H&E
patches, 20,139 MT patches, and 16,048 PAS patches as the
training set 3,013 H&E patches, 3,577 MT patches, and 2,997
PAS patches as the testing set.



B. Experimental Details and Evaluation Criteria

During training, we use Adam [2] optimizer with β1 = 0.5,
β2 = 0.999. The initial learning rate is set to 0.0002. The batch
size is set to 1. We adopt Fréchet Inception Distance (FID)
[19], Kernel Inception Distance (KID) [20], and Collaborative
Structural Similarity (CSS) [4] to evaluate our model. The
smaller the FID and KID values, the more similar the trans-
lated images are to real images. However, CSS only measures
the similarity between the translated image and the source
image, and higher CSS does not mean higher quality of the
generated image.

C. Quantitative Results

1) Comparative Experiments of H&E-MT Task: We test
3013 H&E images in the dataset and compare the results with
starGAN [5], MW-GAN [31], UGATIT [11], CycleGAN [10],
AI-FFPE [8], SSPRVS [6], and UMDST [4]. The results are
shown in Table I.

TABLE I
COMPARISON OF THE EFFECT OF AV-GAN IMAGE TRANSLATION WITH

OTHER IMAGE TRANSLATION METHODS (H&E-MT IMAGE TRANSLATION
TASK). THE VALUES IN BOLD ARE THE BEST ONES, AND THE RESULTS

UNDERLINED ARE THE SECOND-BEST ONES.

Model FID↓ CSS↑ 100KID↓

StarGAN(2017) 284.37 0.62 29.11
MW-GAN(2019) 194.32 0.64 18.18
UGATIT(2019) 142.50 0.33 7.33
CycleGAN(2017) 95.22 0.69 4.34
AI-FFPE(2022) 89.58 0.81 3.56
UMDST(2022) 94.43 0.69 4.27
SSPRVS(2022) [6] 140.84 0.68 6.69
AV-GAN (ours) 73.68 0.75 2.41

In Table 1, the generated images of our model have better
quality, indicating that they are more similar to the target do-
main image. From the effect of the H&E-MT image translation
task, we can conclude that our model has further decreased the
FID value compared with existing methods. The 100KID also
decreases by 1.15 compared with the previous SOTA value.
The larger the CSS value, the better the target domain image
can maintain the object structure in the source domain. Our
CSS value exceeds most image translation methods largely,
which shows that our model can effectively maintain the
structural information in the source domain. This ensures the
authenticity of cell structure in image translation tasks.

2) Comparative Experiments of H&E-PAS Task: Table II
shows the result of the H&E-PAS image translation dataset,
compared with other models, our method is significantly
ahead. The FID value of the image dataset generated by
our method is 88.36, which is better than other methods.
One of the key reasons is that the basement membrane
in H&E patches is a detailed structure, and the traditional
virtual staining image translation model can not recognize the
structure well, resulting in a higher FID value. Our model also
surpasses most comparison methods in terms of the CSS value,
indicating that the structure information in the source domain
is also well preserved.

TABLE II
COMPARISON OF THE EFFECT OF AV-GAN IMAGE TRANSLATION WITH

OTHER IMAGE TRANSLATION METHODS (H&E-PAS IMAGE TRANSLATION
TASK). THE VALUES IN BOLD ARE THE BEST ONES, AND THE RESULTS

UNDERLINED ARE THE SECOND-BEST ONES.

Model FID↓ CSS↑ 100KID↓

StarGAN(2017) 219.71 0.60 20.48
MW-GAN(2019) 176.77 0.66 15.35
UGATIT(2019) 156.88 0.31 10.11
CycleGAN(2017) 106.51 0.66 3.95
AI-FFPE(2022) 97.03 0.77 3.52
UMDST(2022) 92.52 0.69 4.28
SSPRVS(2022) [6] 131.46 0.68 7.21
AV-GAN (ours) 88.36 0.75 3.16

D. Ablation Study

1) Sharing the parameters of the two generators G1 and
G2: We design the high-resolution generator G2 to let the
model focus more on details and avoid artifacts such as cell
deformation in the translated images. We utilize the low-
resolution generator G1 to let the model get more global
consideration and to avoid errors such as cell mass distribution
displacement in the translated images. If the two generators
share the parameters, the model can only focus on the common
features rather than the features unique to each resolution. The
result is shown in Table III. The experiments show that using
only one generator has obvious disadvantages over using two.

TABLE III
COMPARE THE RESULTS OF WHETHER THE WEIGHTS OF TWO

GENERATORS ARE SHARED.

Measurement Shared parameters Unshared parameters

H&E-MT FID↓ 128.07 73.68
H&E-MT 100KID↓ 4.85 2.41
H&E-PAS FID↓ 132.44 88.36
H&E-PAS 100KID↓ 5.04 3.16

2) Selecting the Proper Number of Key Regions: To verify
the importance of the Key Region Selection Module in region
selection, we remove the Key Region Selection Module by
selecting a fixed region, and then comparing the FID value and
KID value of the generated image with the previous results.
The results in Table IV show that when the number of regions
is the same if the Key Region Selection Module is absent, the
FID value and KID value will both increase, the quality of
the generated image will decrease, and the distribution of the
generated image dataset will be far from the distribution of
the real target domain image dataset.

The table also shows the influence of the number of re-
gions on evaluations. When the number of attention regions
increases, the CSS value remains almost unchanged, and
the FID and KID have decreased to varying degrees. The
best FID value is 73.68, and the best KID value is 2.30,
which is obtained when adding two regions and three regions,
respectively. This shows that in the H&E-MT image translation
task, properly increasing the number of the attention regions
is conducive to generating higher-quality images.



TABLE IV
ABLATION EXPERIMENT. THE QUALITY OF TRANSLATED PICTURES IN THE
CASE OF “USING THE ATTENTION MECHANISM TO SELECT REGION” AND

“SELECTING FIXED REGION”. (H&E-MT IMAGE TRANSLATION TASK)

Model FID↓ CSS↑ 100KID↓

AV-GAN (1 attention region) 74.25 0.76 2.30
AV-GAN (2 attention regions) 73.68 0.75 2.41
AV-GAN (3 attention regions) 76.01 0.73 2.51
AV-GAN (1 fixed region) 91.16 0.75 4.16
AV-GAN (2 fixed regions) 97.51 0.74 5.31
AV-GAN (3 fixed regions) 83.50 0.74 3.09

TABLE V
ABLATION EXPERIMENT. THE QUALITY OF TRANSLATED PICTURES IN THE
CASE OF “USING THE ATTENTION MECHANISM TO SELECT REGION” AND
“SELECTING FIXED REGION”. (H&E-PAS IMAGE TRANSLATION TASK)

Model FID↓ CSS↑ 100KID↓

AV-GAN (1 attention region) 88.36 0.75 3.16
AV-GAN (2 attention regions) 90.20 0.73 3.83
AV-GAN (3 attention regions) 91.89 0.74 3.50
AV-GAN (1 fixed region) 95.68 0.75 3.41
AV-GAN (2 fixed regions) 96.19 0.73 3.43
AV-GAN (3 fixed regions) 97.96 0.73 3.99

The n needs not to be too large (generally less than 3).
In a picture, only key areas such as dense nuclei need to be
selected. Once the key areas are selected, other key areas of
the same type need not be selected again, because they have
similar characteristics due to the homogeneity of pathological
images. If an excessively large n is chosen, the effect will not
improve significantly except for increasing training time and
GPU memory.

Table V shows the results of the H&E-PAS image trans-
lation task, which further validates the conclusions drawn
previously. Specially, when the number of attention regions is
1, all evaluations are optimal. The result shows that because
the overall color style of PAS is close to that of H&E (both of
them are soft pink), there is no need for too much attention.
As a result, we can translate the H&E image into the PAS
image without adding too many attention regions.

TABLE VI
COMPARATIVE EXPERIMENT. THE QUALITY OF TRANSLATED PICTURES IN

THE CASE OF “SELECTING THE REGION OF 128×128” AND “SELECTING
THE REGION OF 64×64”. (H&E-MT IMAGE TRANSLATION TASK)

The region size FID↓ CSS↑ 100KID↓

64 (1 attention region) 74.25 0.76 2.30
64 (2 attention regions) 73.68 0.75 2.41
64 (3 attention regions) 76.01 0.73 2.51
128 (1 attention region) 80.46 0.75 2.46
128 (2 attention regions) 89.49 0.73 3.52
128 (3 attention regions) 114.16 0.74 4.13

3) Selecting a Proper Size for Key Regions: To further
explore the selection strategy of the number of Key Regions
and region size, we adjust their values on the H&E-MT
image translation task, which contains more structure and color
conversion compared with the H&E-PAS task. To be specific,

we experiment with the region size of 64 and 128 and with the
number of Key Regions of 1,2, and 3. The results are shown
in Table VI. It can be found that when the region size is small,
the performance will improve with the increase in the number
of Key Regions. On the contrary, when the region size is large,
the number of Key Regions should not be too large (Line 6).
In summary, when the number of Key Regions and region size
reach a balance, better performance can be achieved. Besides,
the CSS values are almost all distributed around 0.75, which
indicates that the number and size of the regions do not affect
the CSS values.

E. Evaluation of Experts

To confirm the image translation effect of AV-GAN, we
have designed a Visual Turing test performed by three experts.
Since experts often see real stained slides, they have sufficient
experience to determine whether a generated patch is realistic.
On each task of H&E-MT and H&E-PAS image translation,
each patch is translated with 7 models, generating 7 results
and each expert is asked to select the most vivid one. We
calculate the average of their results. Among the 4,000 best-
translated MT patches, 1181.33 patches come from our model.
Among the 4,000 best-translated PAS patches, 1149 patches
come from our model. The results are shown in the Table VII.

TABLE VII
THE EVALUATION MADE BY THE EXPERTS. THE NUMBERS IN THE TABLE

INDICATE HOW MANY OF THE 4000 IMAGES WITH THE BEST STAINING
EFFECT COME FROM THE CORRESPONDING METHOD. THE VALUES IN THE

TABLE ARE THE AVERAGE VALUES EVALUATED BY THREE EXPERTS.

Method MT patches PAS patches

StarGAN (2017) 289.67 236.33
MW-GAN (2019) 310.33 263.67
UGATIT (2019) 476.67 486.33
CycleGAN (2017) 523.33 593.33
UMDST (2022) 493.67 468.67
AI-FFPE (2022) 725.00 802.67
AV-GAN 1181.33 1149

F. Qualitative Experiment

As shown in the left side of Figure 4 and Figure 6, in
the H&E-MT image translation task, the result of UGATIT
is relatively poor, which not only has low legibility, but also
has the phenomenon of nucleus loss, and the relatively close
nuclei cannot be separated from each other (see the yellow
circle in Figure 4). The translation of CycleGAN is slightly
better, but the nucleus is hidden in the red zone and cannot
be distinguished (see yellow circle in Figure 4). Then, the AI-
FFPE model is slightly better in terms of structural clarity. Our
AV-GAN can also ensure structural clarity and distinguish red
muscle fibers better. Furthermore, in the part pointed out by the
yellow arrow, there are two glomerular structures. According
to the diagnosis of the pathologist, this patient did not suffer
from the disease that could lead to the deposition of collagen
fibers in the glomerulus and the MT staining slide of the
glomerulus should not appear blue, but AI-FFPE translates
some areas in the glomerulus into blue (Figure 5).



Fig. 4. Image translation results. The first line is the original H&E-stained
images, the second line, the third line and the fourth line are the results of
image translation using UGATIT, CycleGAN, and AI-FFPE models, and the
fifth to seventh lines are the results of image translation using AV-GAN with
different numbers of regions. Our task is to translate H&E staining into MT
staining and PAS staining.

Fig. 5. The leftmost and rightmost are MT patches stained by AI-FFPE
and a real patch of the same patient’s MT patches (the dataset is an unpaired
dataset). A blue zone appears at the location the red arrow points at, while the
right patch indicates that there should be no blue in the patient’s glomerular.

The right side of Figure 4 is the result of the image
translation experiment of H&E-PAS staining. Similar to the
H&E-MT staining image translation experiment, the image
translation effect of UGATIT and CycleGAN is poor. The main
function of PAS staining is to stain the glomerular basement
membrane pink. In the part pointed out by the yellow arrow,
AI-FFPE’s result appears as a diffuse pink area, which is an
error. After applying our model, the error is corrected.

V. CONCLUSION

We propose Attention-Based Varifocal Generative Adversar-
ial Network (AV-GAN), effectively solves the problems of un-
even translation difficulty, interference of different resolution
information, and nuclear deformation in pathological image
translation. In AV-GAN, the Attention-based Key Region Se-
lection Module allows the network to find the area that is most

closely related to other regions, which is often the area with
higher translation difficulty, and the Varifocal Module decou-
ples the information of regions difficult to translate at multiple
resolutions and translate them separately, which improves the
translation quality of key regions. This paper also utilizes the
H channel loss term to restricts the position distribution of
the nucleus and ensures that the tissue morphology does not
change after translation. Our model gets the state-of-the-art
performance on H&E-MAS and H&E-PAS translation tasks.
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