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THE TOPOLOGICAL CARTIER–RAYNAUD RING

KONRAD BALS

Abstract. We prove that the ∞-category of p-typical topological Cartier modules, recently
introduced by Antieau–Nikolaus, over some base A is equivalent to the ∞-category of modules
over a ring spectrum RA, which we call the topological Cartier–Raynaud ring. Our main result is
an identification of the homotopy groups of RA. In particular, for A = W (k) the homotopy groups
π∗RW (k) recover the classical Cartier–Raynaud ring constructed by Illusie–Raynaud. Moreover,
along the way we will describe the compact generator of p-typical topological Cartier modules and
classifies all natural operations on homotopy groups of p-typical topological Cartier modules.

1. Introduction

Given a scheme S over a ring k. One goal of algebraic geometry is to associate to this situation
a cohomology theory H∗(S) and deduce geometric properties of S from algebraic information on
H∗(S). In the last years there has been an amazing development of such cohomology theories by
analyzing constructions coming from stable homotopy theory:

To the scheme S one can associate its topological Hochschild homology THH(S) and variants of it.

Define TP(S) := THH(S)tS
1

as the Tate construction of the S1-action on THH(S). This spectrum
prominently features in the development of prismatic cohomology, in fact in some situations it
actually computes prismatic cohomology:

Theorem 1.1 ([BMS19]). Let R be a quasi-syntomic k-algebra, then there exists a motivic filtration
on topological periodic cyclic homology TP(R) with

grn TP(R) ≃ ∆̂
(1)
R {n}[2n]

where the right hand side is version of prismatic cohomology, Breuil–Kisin twisted and shifted into
degree 2n.

This connection between arithmetic cohomology theories and variants of topological Hochschild
homology is not new. In [HM97] Hesselholt–Madsen describe the genuine S1-action on topological
Hochschild homology and construct the spectrum TR(S) := limn THH(S)Cpn 1, topological restric-
tion homology. It still carries a non-genuine S1-action and we have in some situations:

Theorem 1.2 ([Hes96, Theorem C]). Let S be a smooth scheme over Fp, then

π∗TR(S) ∼= WΩ∗
S/Fp

where WΩ∗
S/Fp

is the de Rham–Witt complex of S relative Fp computing H∗
cris(S).

The de Rham–Witt complex has been introduced by Bloch–Deligne–Illusie in [Blo77] and [Ill79] in
order to study cristalline cohomology from an algebraic perspective, giving an alternative perspective
to the site theoretic definition in [Ber74].

Thus, in particular TR(S) knows about cristalline cohomology of S. In fact, this implies a special
case of Theorem 1.1: By the machinery developed in [BMS19] and [BS22] over the prism (TR(Fp) ∼=

Zp, p) prismatic cohomology agrees with cristalline cohomology, and in general, TP(S) ≃ TR(S)tS
1

1By the result of [NS18] this can be completely expressed in terms of non-genuine information, however, that
makes the formula not as nice.
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with the motivic filtration being the decalage of the Tate filtration on TP(S) ≃ TR(S)tS
1

. Using
the computation of TR(S) from above this refines to an equivalence in D(Zp) of

grn TP(R) ≃ WΩ∗
S/Fp

as shown in [AN18][Theorem 6.24].
The Verschiebung and Frobenius operators on the cristalline cohomology groups can already be

seen on the de Rham–Witt complex. There are algebraic maps on the complex level

V, F : WΩ∗
S/Fp

→ WΩ∗
S/Fp

satisfying certain relations together with the differential. Over a general Fp-algebra k in [IR83] Illusie
and Raynaud describe the interaction of this structure as a module action on the de Rham–Witt
complex by an explicit non-commutative graded ring R(k):

Definition 1.3. For a ring k, the Cartier–Raynaud ring is given as

R(k) := W (k){v, f, d}/IR.

The quotient of the free associative graded (not necessarily central) W (k)-algebra on generators v
and f in degree 0 and d in degree 1. The ideal IR is generated by the following relations:

fv = p vxf = V (x)

df = pfd vd = pdv

fx = F (x)f xv = F (x)v

fdv = d d2 = 0

dx = xd

for all x ∈ W (k) and where V and F are the Witt vector Verschiebung and Frobenius on W (k).

On the de Rham–Witt complex WΩ∗
−/k the elements v, f act as Verschiebung V resp. Frobenius F

and d gives the differential WΩ∗
−/k → WΩ+1

−/k. Modules over R(k) are called Cartier–Witt complexes

and the study of the de Rham–Witt complex becomes an analysis of Cartier–Witt complexes.
By [HM04] the homotopy groups π∗TR(S) acquire a Verschiebung, a Frobenius and a differential
becoming a module over R(k) and in fact the equivalence in Theorem 1.2 refines to an equivalence
of Cartier–Witt complexes.

Turning a statement on the homotopy groups into a statement in higher algebra, in [AN18]
Antieau and Nikolaus describe the spectrum TR as an object in the algebraic ∞-category of topo-
logical Cartier modules TCartp, which behave like a highly structured version of the category of
Cartier–Witt complexes.

We make this precise by constructing a spectrum-level analogue of the Cartier–Raynaud ring
as suggested in [AN18][Remark 3.13]: For every algebra A ∈ Alg(TCartp) the forgetful functor
LModA(TCartp) → Sp lifts to an equivalence

LModA(TCartp) ≃ LModRA
(Sp)

for a ring spectrum RA. In fact, the ring spectrum is uniquely determined by this property.

Definition 1.4 (Definition 4.3). For A ∈ Alg(TCartp) we call the E1-ring spectrum RA the topo-
logical Cartier–Raynaud ring.

Our main result is to completely describe the homotopy groups of RA in terms of the homotopy
groups π∗A. We compute:

Theorem 1.5 (Theorem 4.13). For A ∈ Alg(TCartp) there is an isomorphism

π∗RA ≃ (π∗A){v, f, d}/IR



THE TOPOLOGICAL CARTIER–RAYNAUD RING 3

where |v| = |f | = 0 and |d| = 1 and with the ideal IR generated by the relations

fv = p vxf = VA(x)

df = pfd vd = pdv

fx = FA(x)f xv = FA(x)v

fdv = d (+η if p = 2) d2 = ηd

dx = dA(x) + (−1)|x|xd

for all x ∈ π∗A and where VA, FA, dA : π∗A → π∗A are induced by the topological Cartier module
structure of A.

For a ordinary ring k we have W (k) ∈ Alg(TCartp) and putting A = W (k) we get the justification
for our naming:

Corollary 1.6. Let k be an ordinary ring, then there is an isomorphism of associative graded rings

π∗RW (k)
∼= R(k)

By the construction of RA in section 4, the underlying spectrum carries the structure of a
topological Cartier module itself. As such it is a compact generator of TCartp and we get as a
further consequence:

Corollary 1.7 (Corollary 4.2). The ∞-category LModA(TCartp) is compactly generator by a single
generator and if A is n-truncated then the compact generator is (n+ 1)-truncated.

Finally, the underlying spectrum of RA as a compact generator of the ∞-category LModATCartp
corepresents the homotopy group functor π∗ : LModATCartp → grAb. Thus, π∗RA captures all
information about the ring of natural endotransformations of π∗.

Corollary 1.8 (Corollary 4.6). For the functor π∗ : LModATCartp → grAb the graded ring of
natural transformations π∗ → π∗ is given by π∗RA. In particular, all natural operations on the
homotopy groups of p-typical topological Cartier modules are essentially given by Verschiebung,
Frobenius, the differential and combinations thereof.

1.1. Notation. We will freely use the language of ∞-categories as developed in [Lur09] and [Lur16].

Moreover, we will work with the ∞-category SpBS1

:= Fun(BS1, Sp) the ∞-category of spectra
with S1-action. The object S1 carries an endomorphism given by multiplication by p, i.e x 7→ xp

and by abuse of notion we denote its induced map on classifying spaces by p : BS1 → BS1. Via
restriction and Kan extension this gives us the adjunctions

SpBS1

SpBS1p∗

p!

p∗

classically referred to as p! = (−)hCp
and p∗ = (−)hCp , the homotopy orbits and homotopy fixed

points with respect to the restricted Cp action. However, this notation makes it clear, how to put a
residual S1 ∼= S1/Cp-action on both of these adjoints. For example, the residual action on p!S[S

1]
gives an equivalence p!S[S

1] ≃ S[S1].
In the presence of group actions it is sometimes necessary to work with semilinear algebra,

accounting for a twist by the group action. Nevertheless, for a ring A we call a ring R over A,
an A-algebra, regardless of whether A → R factors through the E1-center of R. In particular, for
an ordinary ring A we will write A{Xi} for the free non-commutative, non-central A-algebra on
generators Xi, i.e. A{Xi} ∼= A ∗ Z{Xi} the coproduct of associative algebras of A and the group
ring Z{Xi} of the free group on {Xi}.
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2. The Category of p-typical Topological Cartier Modules

We briefly recall the definitions of p-typical topological Cartier Module in [AN18] and recall the
perspective through Mackey functors made explicit in [McC21].

Definition 2.1 ([AN18, Definition 3.1]). A topological Cartier module X is a spectrum with S1-
action together with an S1-equivariant factorization

NmCp
: p!X

V
−→ X

F
−→ p∗X

of the Cp-Norm map.

Example 2.2 ([AN18][Construction 3.18). ] For a cyclotomic spectrum X the topological restriction
homology TR(X) acquires the structure of a topological Cartier module.

By adjunction, a topological Cartier modules comes equipped with maps

V : X → p∗X, F : p∗X → X. (1)

In particular as X ≃ p∗X on underlying spectra, these maps give rise to operations V, F : π∗X →
π∗X . Moreover, the S1 action on X gives π∗X the structure of a π∗S[S

1] ≃ π∗S[d]/(d
2−ηd)-module

for |d| = 1, where η is the unique non-zero element in π1S. The interaction of these operations has
been studied in [AN18] and they prove:

Proposition 2.3 ([AN18, Lemma 3.33]). Given a topological Cartier module X, then the graded
abelian group π∗X carries a module action by the graded non-commutative ring

(Z{v, f, d}/ITCart

where the action of v, f , and d on π∗X is given by V , F , and d, respectively, and ITCart is generated
by the relations

fv = p d2 = ηd

df = pfd vd = pdv

fdv = d (+η if p = 2)

Moreover, the perspective in (1) suggests, to view the Verschiebung and Frobenius as restriction
and transfer along something like a p-fold covering map S1 → S1. This has been made precise in
[McC21]:

Following [AMR17b], let Wp := S1
⋉N be the semidirect product of N acting on S1 by p-power

exponentiation, i.e. the map N → End(S1) sends n ∈ N to the pn-fold covering map S1 → (p∗)nS1 ∼=
S1. In [McC21, Lemma 3.2.1] McCandless verifies that the category BWp is orbital in the sense

of [BGMN21], i.e. the finite coproduct completion Fin∐BWp admits fibre products, such that the
definition of Mackey functors on BWp makes sense.

By [AN18, Proposition 5.5] and [McC21, Proposition 3.2.8] we get an alternative description of
p-typical topological Cartier modules.

Proposition 2.4. There is an equivalence of categories

TCartp ≃ Mack(BWp) := FunΠ(Span(Fin∐BWp), Sp)
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Forgetting the Verschiebung maps the functor BW
op
p to SpanFin∐BWp induces a forgetful func-

tor
TCartp → CycSpFrp := Fun(BW

op
p , Sp)

where the right hand side is given by p-typical cyclotomic spectra with Frobenius lift, cf. also
the series of work [AFR18; AMR17a; AMR17b]. Restricting further to the point in BWp give
conservative functors

TCartp → CycSpFrp → Sp

both of which preserve limits and colimits. Indeed, in CycSpFrp limits and colimits are computed
underlying and, thus, the right functor even creates limits and colimits, and the composite also pre-
serves limits and colimits because localizing onto product preserving functors (i.e. Mackeyfication)
does not change the value on the point.

In particular, the functor TCartp → CycSpFrp admits a left adjoint (−)[V ] : CycSpFrp → TCartp,

which has been explicitly described in [AN18, Lemma 4.1]: Let M ∈ CycSpFrp with Frobenius
M → p∗M then

M [V ] ≃
⊕

n∈N

pn! M

with Verschiebung given on summands by V : p!(p
n
! M)

∼
−→ pn+1

! M and similarly Frobenius given

by the Frobenius on M in the bottom summand M → p∗M and for n > 0 given by F : pn! M
Nm
−−→

p∗p
n−1
! M .

3. Symmetric Monoidal Structures

In this section we want to describe the natural symmetric monoidal structure on TCartp and

prove that with this structure the functor (−)[V ] : CycSpFrp → TCartp previously described refines
to a symmetric monoidal functor.

Let us first recollect some abstract results on symmetric monoidal structures on functor categories.

Definition 3.1. Let C and D be categories and given a symmetric monoidal structure on D.

1) We denote by DC the pointwise symmetric monoidal structure on Fun(C,D) (cf. [Lur16,
Remark 2.1.3.4.] ). It is characterized by

Funlax(E ,DC) ≃ Fun(C,Funlax(E ,D)) (2)

for every symmetric monoidal ∞-category E .
2) If also C has a symmetric monoidal structure, we denote by Fun(C,D)⊗ the Day convolution

product on Fun(C,D) (cf. [Lur16, Example 2.2.6.9.]) satisfying the universal property for
every symmetric monoidal E :

Funlax(E ,Fun(C,D)⊗) ≃ Funlax(E × C,D). (3)

Both symmetric monoidal structures behave well under left Kan extension and we have:

Lemma 3.2. Given a functor f : C → C′ and a symmetric monoidal ∞-category D such that the
tensor product preserves colimits in each variable. Denote by f! : Fun(C,D) → Fun(C′,D) the left
Kan extension.

1) Then f! refines to a symmetric monoidal functor DC → DC′

2) If we assume that f is a symmetric monoidal functor between symmetric monoidal categories,
then f! can also be refined to a symmetric monoidal functor

Fun(C,D)⊗ → Fun(C′,D)⊗

Proof. By the universal property the lax structure on the functor DC → DC′

can be obtained via
left Kan extension C → Funlax(DC ,D) given by evaluation.

The second claim is [MS21, Theorem 3.6.]. �
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In general the pointwise tensor product (forgetting possible symmetric monoidal structure on
the source) and the Day convolution give different symmetric monoidal structures on the functor
category. In some situations they agree.

Lemma 3.3. Given two symmetric monoidal categories C and D and assume that C is cocartesian
and the tensor product in D preserves colimits in each variable. Then the Day convolution and the
pointwise symmetric monoidal structures on Fun(C,D) are naturally equivalent.

Proof. We use the universal properties of the Day convolution and the pointwise structure and we
get:

Funlax(−,Fun(C,D)⊗)
(3)
≃ Funlax(− × C,D)

(3)
≃ Funlax(C,Fun(−,D)⊗)

≃Fun(C,Funlax(−,D))
(2)
≃ Funlax(−,DC)

where the first equivalence in the second line uses [Lur16, Theorem 2.4.3.18] stating that for a
cocartesian operad C the map

Funlax(C, E) → Fun(CAlg(C),CAlg(E)) ≃ Fun(C,CAlg(E))

is an equivalence. �

We can now describe the symmetric monoidal structure on our categories of interest:

Construction 3.4. In the case of

TCartp ≃ Mack(Fin∐(BWp))

the general theory of symmetric monoidal structures on spectral Mackey functors developed in
[BGS20] equips p-typical topological Cartier modules with a symmetric monoidal structure (cf. 3.8.
in loc. cit.):

The category Fin∐BW admits products by the cited result from [McC21], which inherit a sym-

metric monoidal structure to SpanFin∐(BW ) making the inclusion Fin∐(BW ) → SpanFin∐(BW )

symmetric monoidal. Then Day convolution on the functor category Fun(SpanFin∐(BW ), Sp) loc-
alizes to the symmetric monoidal structure on Mackey functors as constructed in [BGS20]. We will
denote this tensor product by

−⊠− : TCartp × TCartp → TCartp

On the ∞-category CycSpFrp ≃ Fun(BW
op
p , Sp) we put the pointwise tensor product SpBW

op
p .

Theorem 3.5. The functor (−)[V ] : CycSpFrp → TCartp constructed in [AN18] refines to a sym-
metric monoidal functor with respect to the symmetric monoidal structures described above.

Proof. The functor (−)[V ] : CycSpFrp → TCartp is left adjoint to the forgetful functor coming from

the restriction BW
op → Span(Fin∐BWp). In particular, this left adjoint can be written as the

following factorization

CycSpFrp ≃ Fun(BW
op
p , Sp)

Lan
−−→Fun(Fin∐(BWp)

op, Sp)
Lan
−−→ Fun(SpanFin∐(BWp), Sp)

M
−→Mack(BWp) ≃ TCartp

where Lan are the respective left Kan extension and M is the localization onto Mackey functors. The
latter carries a symmetric monoidal structure by [BGS20, Lemma 3.7.]. Note that the product on

Fin∐(BW) gives the opposite category Fin∐(BW)op the cocartesian symmetric monoidal structure,

such that by Lemma 3.3 the pointwise and Day convolution product on Fun(Fin∐(BW)op, Sp) agree.
Thus the left Kan extensions lift to symmetric monoidal functors by Lemma 3.2 1) in the first case
and 2) in the second case. �



THE TOPOLOGICAL CARTIER–RAYNAUD RING 7

Corollary 3.6. The symmetric monoidal structure on TCartp from Theorem 3.5 induces a lax
symmetric monoidal structure on the forgetful functor TCartp → Sp.

Proof. The forgetful functor CycSpFrp → Sp is symmetric monoidal, so it satisfies to argue that

TCartp → CycSpFrp is lax symmetric monoidal, but this comes from the symmetric monoidal struc-
ture of its left adjoint. �

In [AN18, Section 4] many results can be directly imported to a non-completed tensor product
on topological Cartier modules. In particular, we can recover the analogue of Corollary 4.4 in loc.
cit.:

Corollary 3.7. Given M1,M2 ∈ TCartp the tensor product M1 ⊠ M2 is equivalent to the total
cofibre of a square (

p!M1 ⊗ p!M2

)
[V ]

(
p!M1 ⊗M2

)
[V ]

(
M1 ⊗ p!M2

)
[V ] (M1 ⊗M2)[V ]

where the maps are induced by the map p!Mi
V−incl
−−−−→ Mi[V ] ≃

⊕
n p

n
! Mi of cyclotomic spectra with

Frobenius lifts with the former being equipped with the 0-Frobenius lift.

Proof. This is basically [AN18, Corollary 4.4.]. It follows from the cofibre sequence

p!Mi[V ]
V −incl
−−−−→ Mi[V ] → Mi (4)

together with the fact that the tensor product (−) ⊠ (−) preserves colimits in both arguments
separately and that (−)[V ] is symmetric monoidal by Theorem 3.5. �

We will not use this explicit description of the tensor product of topological Cartier modules, but
let us add the following remark for completeness reasons:

Remark 3.8. One can explicitly identify the maps in (4), and this gives us an explicit description of
bilinear maps in TCartp. Given M1,M2, N ∈ TCartp a map M1⊠M2 → N is given by the following
datum:

1) A morphism f : M1 ⊗M2 → N of underlying cyclotomic spectra with Frobenius lift

2) Homotopies filling the diagrams

M1 ⊗ p!M2 M1 ⊗M2

p∗M1 ⊗ p!M2

p!(p
∗p∗M1 ⊗M2)

p!(M1 ⊗M2)

p!N N

id⊗V

F⊗id

f

H1

∼

p!(η⊗id)

p!f

V

p!M1 ⊗M2 M1 ⊗M2

p!M1 ⊗ p∗M2

p!(M1 ⊗ p∗p∗M2)

p!(M1 ⊗M2)

p!N N

V⊗id

id⊗F

f

H2

∼

p!(id⊗η)

p!f

V

3) A 2-cell witnessing the equivalence

H1 ◦ (V ⊗ id) ≃ H2 ◦ (id⊗ V )

as homotopies between functors p!M1 ⊗ p!M2 → N .
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4. The compact Generator of TCartp

In section 2 we have already encountered the forgetful functor TCartp → Sp and seen that
it preserves limits, colimits and is conservative. Let R : Sp → TCartp denote a left adjoint.
The object R(S) is a compact generator of TCartp, cf. [AN18][Remark 3.13]. More generally, if
A ∈ Alg(TCartp) is an algebra object, the ∞-category LModA(TCartp) is compactly generated by
R(S)⊠A.

Theorem 4.1. The underlying spectrum of the compact generator R(S) of TCartp is given by

R(S) ≃
⊕

i∈Z

(S[V ]⊕ ΣS[V ]).

Moreover, if A is an algebra in TCart, we have the functorial description R(S)⊠A ≃
⊕

i∈Z
(A⊕ΣA)

of the compact generator of LModA(TCartp). In particular, if A is n-truncated R(S)⊠A is (n+1)-
truncated.

Proof. The statement about the compact generator of LModA(TCartp) follows immediately from
the statement for A = S[V ], the unit in TCartp. We can factor the left adjoint R into the two left
adjoints

Sp
−⊗S[Wp]
−−−−−−→ CycSpFrp

(−)[V ]
−−−−→ TCartp

as they are all adjoint to the forgetful functor. The first functor is, indeed, as stated because on
CycSpFrp ≃ Fun(BW

op
p , Sp) the left adjoint to the forgetful functor is given by tensoring with the

induction on S. In [McC21, Example 2.2.9.] the object S[Wp] has already been computed, and we
have

S[Wp] ≃
⊕

m≥0

S[S1/Cpm ] ≃
⊕

m≥0

(p∗)mS[S1]

with Frobenius lifts induced summandwise by the counit of the (p∗ ⊣ p∗)-adjunction, explicitly
(p∗)mS[S1] → p∗(p

∗)m+1S[S1]. Thus, by expanding and reordering the terms using the projection
formula (S1/Cp)

hCp ≃ S1 ×BCp we can compute

R(S) ≃ S[Wp][V ] ≃
⊕

n,m≥0

pn! (p
∗)mS[S1]

≃


 ⊕

n≥m≥0

pn−m
! S[S1]⊗ pm! S


⊕


 ⊕

0≤n<m

(p∗)m−n
S[S1]⊗ pn! S




≃


 ⊕

i=n−m≥0

pi!S[S
1]⊕

⊕

j=m−n>0

(p∗)jS[S1]


 ⊗

⊕

k≥0

pk! S ≃ R⊗ S[V ]

where we set R :=
⊕

i≥0 p
i
!S[S

1] ⊕
⊕

j>0(p
∗)jS[S1]. But here the underlying spectrum of p!S[S

1]

and p∗S[S1] is given by S⊕ ΣS. Thus, R ≃
⊕

i∈Z
S⊕ ΣS and the claim follows. �

Because R(S) ⊠ A only consists of A and ΣA as summands, we can immediately deduce the
following statement on truncatedness:

Corollary 4.2. If A ∈ Alg(TCartp) is n-truncated, then the compact generator of LModA(TCartp)
is (n+ 1)-truncated.

The object R(S) is a commutative algebra in TCartp with respect to ⊠, however, it is not the unit.
Moreover, the underlying spectrum of R(S) carries another E1-structure. It is this E1-structure that
we want to describe in this paper.
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Definition 4.3. For an algebra A ∈ Alg(TCartp) we define the topological Cartier–Raynaud ring
over A as

RA := endLModA(TCartp)(R(S)⊠A)op,

i.e. the endomorphism spectrum of R(S) ⊠A in LModA(TCartp) acquires an E1-algebra structure
by composition and we equip RA with the opposite ring structure.

Remark 4.4. The reason for the (−)op lies in the fact, that given an algebra A in spectra, A-linear
endomorphisms of A as a left A-module naturally acquire a right A-module structure. In particular,
the identification as rings naturally has the form

endLModA(Sp)(A)
op ≃ A.

Proposition 4.5. For A ∈ CAlg(TCartp) there is an equivalence

LModA(TCartp) ≃ LModRA
(Sp)

Proof. The ∞-category LModA(TCartp) is compactly generated by R(S)⊠ A and the stated equi-
valence follows from the Schwede-Shipley theorem proved in this language in [Lur16, Theorem
7.1.2.1.]. �

In fact, this equivalence does not affect the underlying spectrum, thus, RA controls the homotopy
group functor π∗ : TCartp → grAb and we get the following corollary from the Yoneda lemma:

Corollary 4.6. For A ∈ CAlg(TCartp) the graded ring of natural endomorphisms of the homotopy
groups functor π∗ : LModA(TCartp) → grAb is given by π∗RA.

Proof. We can identify TCartp ≃ LModRA
(Sp) and let hLModRA

(Sp) denote its Ab-enriched ho-
motopy category. Now ΣkRA as left modules over RA corespresent the individual homotopy group
functors πk in hLModRA

(Sp). Thus, via (co)Yoneada homotopy operations πk → πk+n correspond
to homotopy classes in [Σk+nRA,Σ

kRA] ∼= πnendLModRA
(Sp)(RA). Moreover, we can contravari-

antly identify the graded ring of natural endomorphisms of π∗ with the graded endomorphism ring
π∗endLModRA

(Sp)(RA). Finally, the isomorphism endLModRA
(Sp)(RA) ≃ Rop

A cancels out with the
contravariance and we get the claimed identifications of graded rings. �

Because R(S)⊠A is the image of S under the left adjoint to the forgetful functor ModA(TCartp) →
Sp, the underlying spectrum of RA agrees with the underlying spectrum of R(S) ⊠ A. By the
Theorem 4.1 we already have an additive description of the homotopy groups of RA in terms of π∗A
given as

π∗RA
∼=

⊕

i∈Z

(π∗A⊕ π∗−1A) .

The goal of the remainder of this section is to compute the graded associative ring structure on
π∗RA. For this we need the following lemma, which proves itself exactly like Corollary 4.6 before.

Lemma 4.7. Given R ∈ Alg(Sp) an associative ring spectrum and S∗ an arbitrary graded ring in
Ab such that the functor π∗ : LModR(Sp) → grAb factors through LModS∗

(grAb), then there is a
graded ring map S∗ → π∗R making the diagram commutative:

LModR(Sp) LModS∗
(grAb)

LModπ∗R(grAb) grAb

π∗ fgt

fgt

Proof. We will construct the map S∗ → π∗R as a map of ordinary graded rings elementwise.
Every homogenous element a ∈ Rn gives rise to a natural transformation π0 → πn as functors
LModR(Sp) → grAb via the natural S∗-module structure on π∗. Denote by hLModR(Sp) the
Ab-enriched homotopy category of LModR(Sp). Then for every k the functor πk factors through
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hLModR(Sp) and is corepresented there by ΣkR as a left R-module. Thus, via the (co)Yoneda lemma
this natural transformation corresponds to a homotopy class in [ΣnR,R] ∼= πnendLModR(Sp)(R). The
multiplicative structures are given by composition and because of the contravariance of coYonda we
get a ring map S∗ → π∗endLModR(Sp)(R)op. Now the identification endLModR(Sp)(R)op ≃ R finishes
the proof. �

Example 4.8. For R ∈ Alg(Sp) and a left R-module spectrum M with (left) R-linear S1-action,

i.e. M ∈ (LModR(Sp))
BS1

, the S1-action induces (left) R-linear maps ΣM ≃ S1 ⊗ M → M . In

particular π∗M is a left module over π∗(R)[d] for |d| = 1. By Morita theory (RModRSp)
BS1

≃
RModR[S1]Sp we get a map π∗(R)[d] → π∗(R[S1]). In fact one can show that the map is surjective

with kernel generated by d2 − ηd.

We will need a variant of this example. The ∞-category SpBS1

has a symmetric monoidal struc-
ture coming from the underlying symmetric monoidal structure of Sp equipped with the diagonal

action. In particular, we can consider R ∈ Alg(SpBS1

) and look at M ∈ LModR(Sp
BS1

), i.e. mod-
ules with S1-equivariant module structure with respect to the non-trivial action on R. The induced
maps ΣM → M are not R-linear anymore, but twisted by the S1-action on R, thus, the underlying
spectrum of M will only be a module over a twisted version of R[S1].

By abstract nonsense the ∞-category LModR(Sp
BS1

) is compactly generated by the module
R⊗ S[S1] equipped with the diagonal S1-action. Let’s write Rτ [S1] for this object, it is sometimes
called the twisted group algebra.

Proposition 4.9. Let R be an S1-equivariant ring spectrum. With the notation from above we have

π∗(R
τ [S1]) ∼= π∗R{d}/(d2 = ηd, dr = dRr + (−1)|r|rd, ∀r ∈ π∗R)

where dR is the image of d under the induced unit map π∗S[S
1] → π∗R.B

Proof. The unit map S → R on underlying ring spectra, extends to an algebra map S[S1] → R.
Moreover, due to the diagonal action on R ⊗ S[S1], this extension of the underlying unit map
S → R⊗ S[S1] factors as

S[S1]
∆
−→ S[S1]⊗ S[S1] → R⊗ S[S1]

But now for d ∈ π∗S[S
1], we have ∆∗(d) = d⊗ 1+ 1⊗ d, so that d is sent to (dR ⊗ 1 + 1⊗ d) under

this map. Thus, the action of d on π∗(R
τ [S1]) is given by multiplication with this element, giving

the claim. �

In Proposition 2.3 we have recalled the structure on the homotopy groups of topological Cartier
modules as described in [AN18]. In particular, we have an example of the above Lemma 4.7:

Example 4.10. The homotopy groups functor π∗ : TCartp → grAb factors through ModS∗
grAb

for S∗ := Z[v, f, d]/ITCartp by Proposition 2.3. Thus, we get a map Z[v, f, d]/ITCartp → RS[V ].
Moreover, if A ∈ Alg(TCartp) is an algebra, then for M ∈ ModA(TCartp) the underlying spectrum
of M also carries a natural A-algebra structure by Corollary 3.6, and we get a map π∗A → RA.

Putting this together, we get a map from the coproduct of associative algebras, explicitly the
map

π∗A{v, f, d}/ITCartp → π∗RA (5)

where the left hand side is the free graded associative, non-central π∗A algebra on the generators
v, f and d.

In order to understand the map (5) by the proof of Lemma 4.7 we have to understand the
operations V, F and d on π∗(R(S) ⊠ A). This will be easier if we assume A = A0[V ] for some

A0 ∈ Alg(CycSpFrp ), as we have easier description of the Verschiebung und Frobenius in this case.
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Before we dive into the explicit identifications, let’s recall the cyclotomic or topological Cartier
module structures on important players:

S[Wp] ≃
⊕

m≥0

(p∗)mS[S1], F : p∗(p∗)mS[S1]
id
−→
∼

(p∗)m+1
S[S1] (6)

and for M ∈ CycSpFrp we have

M [V ] ≃
⊕

n≥0

pn! M

V : pn! M
η
−→ p∗pn+1

! M, F :

{
p∗M → M n = 0

p∗pn! M
p∗Nm
−−−−→ p∗p∗p

n−1
! M

ε
−→ pn−1

! M n > 0
(7)

where η, ε are the unit and counit of their respective adjunctions.

Lemma 4.11. Let A0 ∈ Alg(CycSpFr
p ) and set A := A0[V ]. Then A is an algebra in TCartp and

the map (5) from above (π∗A){v, f, d}/ITCartp → π∗RA is surjective.

Proof. Recall from the proof of Lemma 4.7 the construction of this map. The elements v, f and d are
send to π∗R(A) ∼= π∗end(R(S)⊠A) correspoding to the endomorphism of R(S)⊠A corepresenting
V, F and d on the homotopy groups functor LModA(TCartp) → grAb. We will use that we can
completely describe the V, F and d operators on π∗(R(S) ⊠A). For this let us denote by v, f resp.
d the image of the mulitplicative unit 1 ∈ π0R(S)⊠A under V, F resp. d. In other words, v, f and
d are the image of their counterparts from (π∗A){v, f, d} under the map above.

By our computation in Theorem 4.1 and more precisely by the proof of it, we already have the
additive identifications

R(S)⊠A ≃
⊕

n,m≥0

pn!
(
(p∗)mS[S1]⊗A0

)
≃

⊕

i≥0

(
pi!S[S

1]⊗A
)
⊕
⊕

j>0

(
(p∗)jS[S1]⊗A

)

where the S1-action on the tensor products is given diagonally. In particular, as p!S[S
1] ≃ S[S1] in

SpBS1

, we have pi!S[S
1] ⊗ A ≃ Aτ [S1]. Nevertheless, we will continue writing the term on the left

hand side in order to be able to distinguish different summands.
Claim 1: The summands π∗(p

i
!S[S

1]⊗A) are free as right π∗(A
τ [S1])-modules on vi for all i ≥ 0.

Furthermore, V maps A in pi!S[S
1]⊗A isomorphically to A in pi+1

! S[S1]⊗A.
The first statement follows from the second because the i-fold Verschiebung of 1 is vi. So we

want to have a close look at the Verschiebung R(S) ⊠ A → p∗(R(S) ⊠ A). Because R(S) ⊠ A by

assumption on A lies in the image of −[V ] : CycSpFrp → TCartp we can apply the description from
(7), i.e. the Verschiebung is given by the unit id → p∗p! and we get

pi!S[S
1]⊗A → p∗pi+1

! (S[S1]⊗A) ≃ p∗pi+1
! S[S1]⊗ p∗A →֒ p∗(R(S)⊠A),

not affecting the A-factor. Moreover, indeed, the map pi!S[S
1] → p∗pi+1

! S[S1] is given by the identity
on the S-summand.

Claim 2: The two summands π∗(A) resp. π∗(A[1]) of π∗((p
∗)jS[S1] ⊗ A) are free as left π∗(A)-

modules on f j resp. f jd for j > 0. Moreover, the Frobenius operator

π∗(A) · 1 → π∗(A) · f, π∗(A) · d → π∗(A) · fd

is given by the Frobenius of π∗(A). That is, for x ∈ π∗(A) ⊂ π∗(R(S) ⊠ A) we have the relation
fx = FA(x)f , where FA : π∗A → π∗A is the Frobenius on A.

Before we prove the claim, note that (p∗)jS[S1]⊗A is not free as a left nor right Aτ [S1]-module
because the S1-actions are different, it is sped up by a factor of pj on the former. If we have proven
the claim, this yields another manifestation of the known identity df j = pjfd.

In the claim, again the first statement follows from the last one because the Frobenius FA on π∗(A)
as a ring map sends 1 to 1. Thus, we are reduced to understanding the Frobenius p∗(R(S) ⊠A) →
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R(S)⊠A on the summand (p∗)jS[S1]⊗A. Splitting up A ≃ A0[V ] ≃
⊕

pn! A0 into further summands
we will look at the Frobenius for n = 0 and n > 0 separately, as described in (7). In the first case
it is given by the Frobenius on the tensor product

p∗((p∗)jS[S1]⊗A0) →֒ R(S) ⊠A,

which is the tensor product of the Frobenius described in (6), i.e. the identiy, and the Frobenius on
A0. And for n > 0, we have the Frobenius given as

p∗pn! ((p
∗)n+jS[S1]⊗A0) p∗p∗p

n−1
! ((p∗)n+jS[S1]⊗A0) pn−1

! ((p∗)n+jS[S1]⊗A0)

p∗(p∗)jS[S1]⊗ p∗pn! A0 (p∗)j+1S[S1]⊗ p∗p∗p
n−1
! A0 (p∗)j+1S[S1]⊗ pn−1

! A0.

p∗Nm

≃ ≃ ≃

id⊗p∗Nm

It is precisely the Frobenius of A0[V ] as described in (6) tensored with the identity on (p∗)j+1S[S1].
Putting both claims together, we see that vi, dvi, f j, f jd give a full list of generators of π∗(R(S)⊗

A) as a π∗(A) module, and they all lie in the image of our given map. �

We already know that the kernel of the map (π∗A){v, f, d} → π∗RA contains the ideal ITCart.
But for example, we have also already seen, that in π∗RA we find relations like fx = FA(x)f for
x ∈ π∗A. We want to establish all relations of this sort:

Lemma 4.12. In π∗RA we have the following relations for all x ∈ π∗A:

dx = dA(x) + xd, fx = FA(x)f xv = vFA(x) vxf = VA(x)

Proof. For the first equation recall the discussion from example 4.8. The object RA is an algebra
over Aτ [S1] sending d to d, thus, forcing the claimed relation in π∗RA.

The second equation, we have already seen in the proof of Lemma 4.11. From this proof we
have also already seen that left multiplication by v induces an equivalence π∗A → v · π∗A, of right
π∗A-modules. However, v · π∗A is a π∗A-bimodule, so xv ∈ v · π∗(A) has to be of the form vx′ for
some x′ ∈ π∗A. In ITCart we have the relation fdv = d (only modulo η for p = 2, but we can ignore
this for the proof), so that fdvx′ = dx′, and we can read of x′. On the other hand we have by our
previously proven relations

fdxv =fdA(x)v + (−1)|x|fxdv = FA(dA(x))fv + (−1)|x|FA(x)fdv

=pFA(dA(x)) + (−1)|x|FA(x)d = dA(FA(x)) + (−1)|FA(x)|FA(x)d = dFA(x)

Thus x′ = FA(x) as claimed.
For the last relation we have to again look into the detail of the Verschiebung on π∗(R(S)⊗A).

The element xf lives in π∗(A) ⊂ π∗(p
∗S[S1] ⊗ A0[V ]) and on this summand the Verschiebung is

given as follows:

pn! ((p
∗)n+1S[S1]⊗A0) p∗pn+1

! ((p∗)n+jS[S1]⊗A0)

p∗S[S1]⊗ pn! A0 p∗S[S1]⊗ p∗pn+1
! A0

≃ ≃

which is precisely the Verschiebung on A0[V ], as described in (7), tensored with p∗S[S1] and the
last claim follows. �

Let us denote by IR the ideal in π∗(S[V ]){v, f, d} generated by ITCart together with the relation
from Lemma 4.12. Then in the ring π∗(A){v, f, d}/IR every string of symbols v, f, d and x ∈ π∗(A)
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can be written as a multiple of one of the following generators:

vi, dvi i ≥ 0

f j , f jd j > 0

As a π∗(A)-module this is precisely equivalent to what we computed π∗RA
∼= π∗(R(S) ⊗ A) to be

additively. In particular, we have now proven the case A = A0[V ] of the following theorem:

Theorem 4.13. Given an algebra A ∈ Alg(TCartp), the E1-algebra structure on RA induces an
isomorphism of associative graded rings

π∗RA
∼= (π∗A){v, f, d}/IK

where d sits in degree 1, v, f in degree 0 and the ideal IK is generated by the relations:

fv = p vxf = VA(x)

df = pfd vd = pdv

fx = FA(x)f xv = FA(x)v

fdv = d (+η if p = 2) d2 = ηd

dx = dA(x) + (−1)|x|xd

for all x ∈ π∗A. Here VA, FA : π∗A → π∗A come from the Verschiebung and Frobenius and
dA : π∗A → π∗+1A from the S1-action on the topological Cartier module A.

Proof. Let A ∈ Alg(TCartp), then the counit of the free-forget adjunction between TCartp and

CycSpFrp gives a map A[V ] → A of topological Cartier modules. The explicit identification of the
Verschiebung and Frobenius structure on R(S) ⊠A[V ] above descends along the induced map

R(S) ⊠A[V ] → R(S) ⊠A

and the generators vi, dvi, f j and f jd with i ≥ 0, j > 0 we constructed on R(S) ⊠A[V ] give here

π∗(R(S)⊠A) ≃
⊕

i≥0

(
vi · π∗A⊕ dvi · π∗A

)
⊕
⊕

j>0

(
π∗A · f j ⊕ π∗A · f jd

)
.

Moreover, because the map A[V ] → A preserves the topological Cartier module structure, it is
compatible with the V, F and d operator on the homotopy groups. And because on underlying
spectra it splits, thus is surjective on π∗, we recover all relations claimed.

Finally, this describes the associative ring structure on the endomorphism spectrum of R(S)⊠A
and we get get the claimed description of π∗RA. �
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