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AN EQUIVARIANT BGG CORRESPONDENCE AND PERFECT

COMPLEXES FOR EXTENSIONS BY Z/2× Z/2

HENRIK RÜPING AND MARC STEPHAN

Abstract. We provide an equivariant extension of Carlsson’s BGG corre-
spondence in characteristic two. As an application we classify perfect cochain
complexes of (Z/2× Z/2)⋊Q-representations with four-dimensional total ho-
mology for finite groups Q of odd order. We deduce that cochain complexes of
finite, free A4-CW complexes with four-dimensional total homology are rigid:
They are determined by the degrees of the nonzero homology groups.

1. Introduction

A classical problem in the theory of transformation groups asks which finite
groups G can act freely on a finite CW complex X homotopy equivalent to a sphere
Sn. Smith [Smi44] showed that such a group G can not contain an elementary
abelian subgroup of rank 2, i.e., of the form Z/p × Z/p for any prime p. Swan
[Swa59] proved that this condition is also sufficient for the existence of n ≥ 1 such
that G acts freely on some X ≃ Sn. The problem which dimensions n can occur is
still open and related to number theoretic questions; see the survey [Ham15].

The rank conjecture of Benson and Carlson [BC87] states more generally that
a finite group G can act freely on a finite CW complex X homotopy equivalent
to a product of r spheres Sn1 × . . . × Snr if and only if G does not contain an
elementary abelian subgroup of rank r + 1. For r = 2, the condition that G can
not contain a subgroup of the form (Z/p)3 was already known by work of Heller
[Hel54]. For r = 2 and finite p-groups, Adem and Smith [AS01] showed that it is
also sufficient. Nevertheless, it is open whether the simple groups PSL3(Fp) of rank
2 for odd primes p can act freely on some X ≃ Sm × Sn.

In collaboration with Yalçın [RSY22], we investigated which dimensions m and n
can occur for free actions of the alternating groupG = A4 onX ≃ Sm×Sn following
a question of Blaszczyk [Bla13] and extending Oliver’s result [Oli79, Theorem 2]
that A4 can not act freely on a product of two equidimensional spheres. We proved
that any such action yields a parameter ideal with parameters of degrees m + 1,
n + 1 in the group cohomology ring H∗(BA4;F2) that is closed under Steenrod
operations, and classified these ideals explicitly. These topological obstructions
apply to free actions of any finite simple group of rank 2, as they all contain A4 as
a subgroup. In this paper, we approach the study of free A4-actions from a more
algebraic side.
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Algebraically, we are interested in perfect cochain complexes over the group ring
k[G] for a finite groupG and field k in modular characteristic with total homology of
dimension 2r, as the cellular cochain complex of any finiteG-CW complex homotopy
equivalent to a product of r spheres is an example of such a perfect complex. Again,
if r = 1 or r = 2, then these perfect complexes can only exist if G does not contain a
subgroup of the form (Z/p)r+1. If the homology is concentrated in one degree, then
we are just studying projective modules of dimension 2r. For r = 1 and nonzero
homology in two different degrees m < n, any bounded above cochain complex
C∗ is classified by the k[G]-representations Hm(C∗), Hn(C∗) and one k-invariant
element k(C∗) ∈ Extn−m+1

k[G] (Hn(C∗), Hm(C∗)); see [Dol60, 7.6 Satz]. If H∗(C∗) is

finite-dimensional, then the cochain complex C∗ is perfect if and only if it has trivial
support; see [BIK11, Theorem 11.4]. For r ≥ 2, we can have nonzero homology
in more than two degrees. In general, such cochain complexes are not classified
anymore by their k-invariants. For the alternating group A4 = (Z/2 × Z/2) ⋊ C3

and, more generally, for any extension of a finite group Q of odd order by Z/2×Z/2,
we classify the perfect cochain complexes with four-dimensional total homology.

Theorem 1.1 (see Corollary 6.6). Let F be a field of characteristic two and let
Q be a group of odd order acting on P = Z/2 × Z/2. There is a bijection be-
tween quasi-isomorphism classes of perfect cochain complexes over F[P ⋊ Q] with
four-dimensional homology and triples (l, L, J), where l is an integer, L a one-
dimensional Q-representation, and J ⊂ H∗(BP ;F) is a Q-invariant parameter
ideal.

The bijection assigns to a perfect cochain complex C∗ with dimFH
∗(C∗) = 4, the

degree l of the lowest nonzero homology group, the Q-representation Extl
F[P ](F, C

∗),

and the annihilator ideal J ⊂ Ext∗
F[P ](F,F) of Ext∗

F[P ](F, C
∗). Up to shifting, we

may assume that l = 0 and that the four basis elements of H∗(C∗) have degrees
0 ≤ m ≤ n ≤ t. We will show that t = m+n and that the corresponding parameter
ideal has parameters of degreesm+1 and n+1; see Proposition 4.3. In fact, H∗(C∗)
is isomorphic to L tensored with the exterior algebra Λ(Σ−1J/(H>0(BP )J)) as
graded F[Q]-modules.

The two main methods to establish Theorem 1.1 hold in much greater generality.
In Section 3, we extend the spectral sequence of [RS22] from finite p-groups P to
finite extensions by P . We show in Section 4 that the spectral sequence collapses
for C∗ as in Theorem 1.1 and establish that the annihilator ideal of Ext∗

F[P ](F, C
∗)

is a Q-equivariant parameter ideal.
The idea of constructing perfect complexes from parameter ideals in group co-

homology is due to Benson and Carlson [BC94, Theorem 4.1]. Their method con-
structs perfect cochain complexes with trivial action on homology. In our situation,
we also need perfect cochain complexes with nontrivial action on homology.

In Theorem 5.8 we extend Carlsson’s BGG correspondence for perfect cochain
complexes over an exterior algebra Λ over F from [Car86] Q-equivariantly. Our
formulation holds for any finite group Q, not just groups of odd order.

We use the equivariant BGG correspondence to construct perfect cochain com-
plexes and to establish the classification of Theorem 1.1 in Section 6. This uses an
identification of the Q-algebra F[P ] for a group of odd orderQ acting on P = (Z/2)n

with an exterior algebra Λ(V ) for a Q-representation V .
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Section 2 on augmented crossed product algebras A ∗γ Q over a field k provides
a uniform treatment for augmented skew group algebras and algebras of group
extensions to establish a Q-action on Ext∗A(k, C

∗) for cochain complexes C∗ over
A ∗γ Q.

The cellular cochain complex of a finite, free G-CW complex is not just a perfect
complex, but a finite, free cochain complex. In Section 7, we use Wall’s finiteness
obstruction to determine which perfect complexes from Theorem 1.1 are homotopy
equivalent to a finite, free one.

Theorem 1.2 (see Theorem 7.8). Let F be a field of characteristic two and C∗

a perfect cochain complex over F[A4] with four-dimensional homology. Then C∗

is homotopy equivalent to a finite, free F[A4]-cochain complex if and only if the
corresponding parameter ideal J has a C3-invariant parameter of even degree.

The modular representation theory of A4 depends on whether the polynomial
X2 + X + 1 is irreducible over F, see [DR89, BTCB22], and so does the proof of
Theorem 1.2 even though its statement does not. For instance, if X2 + X + 1 is
irreducible, then the only one-dimensional representation is the trivial representa-
tion.

For F = F2 we can read off from the homology of C∗ whether it is homotopy
equivalent to a finite, free one: A perfect F2[A4]-cochain complex C∗ such that its
homology is four-dimensional with basis elements in degrees 0 ≤ m ≤ n ≤ t is
homotopy equivalent to a finite, free cochain complex if and only if m or n is odd
and H∗(C∗) is a trivial C3-representation, see Corollary 7.9.

Theorem 1.1 for F = F2 allows us to count the perfect cochain complexes with
four-dimensional homology in fixed degrees by computing Q-invariant parameter
ideals with parameters in corresponding degrees. For instance, we will compute in
future work that up to quasi-isomorphism, there exist 9831 perfect cochain com-
plexes over F2[A4] with four-dimensional homology in degrees 0 ≤ 21 ≤ 35 ≤ 56.
Each of these cochain complexes is homotopy equivalent to a finite, free one. A pri-
ori, it might seem hard to find a finite, free cochain complex that can not be realized
topologically as the cochains on a finite, free A4-CW complex. However, it turns out
that it is actually harder to find the ones that can be realized topologically. None of
the 9831 perfect cochain complexes above can be realized topologically, since there
does not exist a C3-invariant parameter ideal with parameters of degrees 22 and 36
that is closed under Steenrod operations by [RSY22, Corollary 6.13].

Moreover, we know by [RSY22, Corollary 6.13] that for any degrees m + 1 and
n + 1, there is at most one Steenrod closed parameter ideal with parameters of
degrees m + 1, n + 1 in H∗(BA4;F2) = H∗(BP ;F2)

C3 for P = Z/2 × Z/2. In
combination with the current work, this fact has the unexpected consequence that
given only the degrees of the nonzero cohomology groups of a finite, free A4-CW
complex with four-dimensional cohomology, we can produce its cellular cochain
complex up to homotopy equivalence.

Theorem 1.3 (see Theorem 8.2). If there exists a finite, free A4-CW complex X
with four-dimensional total cohomology H∗(X ;F2) with a basis in degrees 0 ≤ m ≤
n ≤ t, then its cellular cochain complex is determined by m and n up to homotopy.

Acknowledgments. It is our pleasure to thank Dave Benson and Bill Crawley-
Boevey for helpful discussions. The research of Stephan was partially funded by the
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Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-
ID 491392403 – TRR 358.

2. Augmented crossed product algebras

Crossed product algebras are a common generalization of skew group algebras
and group algebras of group extensions. A fitting reference for their representation
theory is [RR85]. We extend the notion of crossed product algebras to augmented
crossed product algebras A∗Ψ,γQ for augmented algebras A over a field k and finite
groups Q. For any cochain complex C∗ of right A ∗Ψ,γ Q-modules, we establish a
Q-action on Ext∗A(k, C

∗) and show that the action of Ext∗A(k, k) on Ext∗A(k, C
∗) is

Q-equivariant. Similar results for skew group algebras are in [MV01] and generaliza-
tions thereof to smash product algebras for Hopf algebra actions are in [HVOZ11].

Definition 2.1. Let k be a field and (A, aug : A → k) an augmented k-algebra. Let
Q be a finite group together with a function Ψ: Q → Aut(A) that assigns to each
q ∈ Q an automorphism Ψ(q) : A → A of augmented algebras. Let γ : Q × Q →
U(A) be a map to the units of A such that

(1) γ(q, q′)γ(qq′, q′′) = Ψ(q)(γ(q′, q′′))γ(q, q′q′′) for any q, q′, q′′ ∈ Q,
(2) γ(e, q) = 1 = γ(q, e) for any q ∈ Q and e the neutral element of Q,
(3) γ(q, q′)Ψ(qq′)(a) = Ψ(q)(Ψ(q′)(a))γ(q, q′) for any q, q′ ∈ Q and a ∈ A,
(4) aug(γ(q, q′)) = 1 for all q, q′ ∈ Q.

The crossed product algebra A ∗Ψ,γ Q (or short A ∗γ Q) is the k-algebra given as a
vector space by the free A-module on the basis (q)q∈Q with multiplication

aqa′q′ = aΨ(q)(a′)γ(q, q′)qq′.

It is augmented by aq 7→ aug(a).

We do not require Ψ to be a group homomorphism.

Example 2.2. If Ψ is a group homomorphism and γ constant with value 1, then
A ∗Ψ,γ Q is the ordinary skew group algebra A ∗Q of the Q-action on A.

Example 2.3. Let N → G → Q be a short exact sequence of groups and let
s : Q → G be a section of sets that preserves the neutral element, i.e., such that
s(e) = e. For the group ring A = k[N ] and the choice of s, define

γ(q, q′) = s(q)s(q′)s(qq′)−1 and Ψ(q)(a) = s(q)as(q)−1 .

It is elementary to show that γ and Ψ satisfy the conditions of Definition 2.1.
Moreover, we obtain an isomorphism k[N ] ∗Ψ,γ Q → k[G] by extending the identity
on k[N ] via q 7→ s(q).

If N → G → Q splits and s is a section of groups, then this isomorphism
specializes to k[N ]∗Q ∼= k[N⋊Q] writing the group algebra of a semidirect product
as a skew-group algebra.

We recall basic identities and properties.

Lemma 2.4. Let A ∗Ψ,γ Q be a crossed product algebra. Then

(1) Ψ(e) = id,
(2) e is the neutral element in A ∗γ Q,

(3) and each q is a unit in A∗γQ with inverse γ(q−1, q)−1q−1 = q−1γ(q, q−1)−1.
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Proof. We have Ψ(e)(a) = Ψ(e)(Ψ(e)(a)) for any a ∈ A by Definition 2.1(3) and
Definition 2.1(2). Since Ψ(e) is an isomorphism, it follows that a = Ψ(e)(a), show-
ing (1).

We have (aq)e = aγ(q, e)qe = aq and eaq = Ψ(e)(a)γ(e, q)eq = aq showing (2).

The left inverse of q is γ(q−1, q)−1q−1 since

γ(q−1, q)−1q−1q = γ(q−1, q)−1γ(q−1, q)e = e.

The right inverse is q−1γ(q, q−1)−1 as

qq−1γ(q, q−1)−1 = γ(q, q−1)eγ(q, q−1)−1 = e.

Hence the two are equal and the inverse of q. This shows (3). �

The following two lemmas are well-known for skew group algebras. We consider
elements in degree n of a hom complex as homomorphisms that are homogeneous
of degree n.

Lemma 2.5. Let C∗, D∗, E∗ be right A ∗γ Q-cochain complexes. The hom complex
HomA(C

∗, D∗) is a cochain complex of right k[Q]-modules via

(fq)(x) := f(xq−1)q .

Moreover, composition HomA(D
∗, E∗) ⊗k HomA(C

∗, D∗) → HomA(C
∗, E∗) is Q-

linear with respect to the diagonal action on the tensor product.

Proof. The map fq is right A-linear since

(fq)(xa) =f(xq−1qaq−1)q = f(xq−1Ψ(q)(a))q

=f(xq−1)Ψ(q)(a)q = f(xq−1)qa = (fq)(x)a .

The formula defines a Q-action as

(f(qq′))(x) =f(xqq′
−1

)qq′ = f(x(γ(q, q′)−1qq′)−1)γ(q, q′)−1qq′

=f(xq′
−1

q−1γ(q, q′))γ(q, q′)−1qq′ = f(xq′
−1

q−1)qq′ = ((fq)q′)(x) .

We verify that the differential dHom on HomA(C
∗, D∗) is Q-linear:

(dHom(f)q)(x)

=((dD ◦ f)− (−1)|f |f ◦ dC)q)(x) = dD(f(xq−1))q − (−1)|f |f(dC(xq
−1))q

=dD(f(xq−1)q)− (−1)|f |f(dC(x)q
−1)q = dD((fq)(x)) − (−1)|f |(fq)(dC(x))

=dHom(fq)(x) .

Finally, we get for the composition of two composable morphisms f, f ′:

(fq ◦ f ′q)(x) = f(f ′(xq−1)q q−1)q = f(f ′(xq−1))q = ((f ′ ◦ f)q)(x) �

Lemma 2.6. Let C∗ be a right A ∗γ Q cochain complex and D∗ be a left A ∗γ Q
cochain complex. Then C∗ ⊗A D∗ is a cochain complex of right k[Q]-modules with
Q-action given by (x⊗ y)q = xq ⊗ q−1y.

Proof. The formula for the action of Q is well-defined as

xaq ⊗A q−1y =xqΨ(q)−1(a)⊗A q−1y = xq ⊗A Ψ(q)−1(a)q−1y

=xq ⊗A q−1 qΨ(q)−1(a)q−1y = xq ⊗A q−1ay .
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It is indeed a group action since

((x ⊗A y)q)q′ =xq · q′ ⊗A q′
−1

· q−1y = xγ(q, q′)qq′ ⊗A qq′
−1

γ(q, q′)−1y

=xqq′Ψ(qq′)−1(γ(q, q′))⊗A Ψ(qq′)−1(γ(q, q′)−1)qq′
−1

y

=xqq′ ⊗A qq′
−1

y = (x⊗A y)(qq′) .

We verify that the differential d⊗ on C∗ ⊗A D∗ is Q-linear:

(d⊗(x⊗A y))q =(dC(x) ⊗A y + (−1)|x|x⊗A dD(y))q

=dC(x)q ⊗A q−1y + (−1)|x|xq ⊗A q−1dD(y)

=dC(xq)⊗A q−1y + (−1)|x|xq ⊗A dD(q−1y)

=d⊗(xq ⊗A q−1y) = d⊗((x⊗A y)q) �

The augmentation on A ∗γ Q equips k with an A ∗γ Q-module structure.

Proposition 2.7. For any cochain complex C∗ of right A∗γQ-modules, the graded
vector space Ext∗A(k, C

∗) has an induced right Q-action. With this action, the map

Ext∗A(k, C
∗)⊗k Ext

∗
A(k, k) → Ext∗A(k, C

∗)

is a map of graded right Q-modules.

Proof. We take a projective resolution of k as a right A ∗γ Q-module. Then the
claims follow from Lemma 2.5 and taking homology. �

Example 2.8. For a short exact sequence of groups

N → G
pr
→ Q

as in Example 2.3 and C∗, D∗ two cochain complexes of right k[G]-complexes the
Q-action on Homk[N ](C

∗, D∗) can be calculated by

(fq)(x) = f(xg−1)g ,

where g ∈ G is any element such that pr(g) = q. In particular, this is independent
of the choice of representative for q in G.

3. A spectral sequence for extensions by p-groups

Let F be a field of characteristic p > 0. We generalize the spectral sequence from
[RS22] to finite extensions by p-groups. Fix a short exact sequence

1 → P → G
pr
→ Q → 1

of finite groups such that P is a finite p-group. The spectral sequence in [RS22] is
obtained from the coradical filtration of a cochain complex C∗ of free F[P ]-modules.
Here we will show that if C∗ is the restriction of a cochain complex of F[G]-modules,
then the spectral sequence becomes a spectral sequence of F[Q]-modules.

We view F[P ] as a subring of F[G]. Let C∗ be a cochain complex of right F[G]-
modules such that their restrictions to F[P ] are free.

Since group algebras of finite groups over a field are Frobenius algebras, their
classes of injective and projective modules agree; see [Lam99, (15.9) Theorem].
Moreover, for a finite p-group P , the algebra F[P ] is local. Hence projective modules
over F[P ] are free by Kaplansky’s theorem on projective modules.

From the topological side, we are interested in cochain complexes of G-spaces
whose isotropy groups intersect P trivially.
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Example 3.1. Let C∗(X ;F) be the singular chain complex with coefficients in F

of a G-space X such that the restricted P -action is free. Then the singular cochain
complex C∗(X ;F) consists of right F[G]-modules whose restrictions over F[P ] are
free.

From the algebraic side we can dualize perfect chain complexes over F[G] or
consider perfect cochain complexes directly.

Example 3.2. Let C∗ be a perfect chain complex over F[G]. Dualizing yields a
bounded cochain complex C∗ of finitely generated, injective (and thus projective)
right F[G]-modules. Hence C∗ is a perfect cochain complex over F[G] and since
F[P ] is local, it is free over F[P ].

Let I ⊂ F[P ] be the augmentation ideal. Since P is a p-group, the augmentation
ideal is nilpotent. We write L for its nilpotency degree minus 1, i.e., L is the
maximal number for which IL 6= 0. We equip C∗ with the increasing filtration of
F[P ]-modules

0 = F−1C∗ ⊂ . . . ⊂ FLC∗ = C∗,

given by
F iC∗ := {x | xλ = 0 for all λ ∈ Ii+1}.

Lemma 3.3. The filtration on C∗ is a filtration of right F[G]-modules.

Proof. We show that right multiplication with any element in F[G] preserves the
filtration degree. The group G acts on F[P ] by conjugation. The unique maximal
ideal I is invariant by the conjugation action. Thus all powers of I are invariant as
well. If x ∈ F iC∗, then for any g ∈ G and λ ∈ Ii+1, we obtain

xgλ = (xgλg−1)g = 0g = 0

by the definition of the filtration and since gλg−1 ∈ Ii+1. Hence xg lies in F iC∗. �

We examine the associated spectral sequence. Since we do not follow standard
grading conventions, we briefly recall the pages. Let Zk,t

r denote the module of
r-almost cocycles in homological degree t and in filtration degree k, i.e.,

Zk,t
r := {x ∈ F kCt | dx ∈ F k−rCt+1}.

With this notation, the pages of the spectral sequence are given by

Ek,t
r :=

Zk,t
r

Zk−1,t
r−1 + d(Zk+r−1,t−1

r−1 )
.

The differential of the cochain complex induces differentials

dr : Ek,t
r → Ek−r,t+1

r

on each page. Finally, we have for the induced filtration on H∗(C∗) that

Ek,t
∞ = F k(Ht(C∗))/F k−1(Ht(C∗)).

Lemma 3.4. The G-action on Ek,t
r descends to a Q-action with which the spectral

sequence becomes a spectral sequence of F[Q]-modules.

Proof. If x represents a class [x] ∈ Ek,t
r , then g ∈ G acts on [x] by [xg]. We show

that this action is independent of the representative of the coset Pg in G/P ∼= Q.
Indeed, for p ∈ P , we obtain

[xpg] = [x(p− 1)g] + [xg].



8 HENRIK RÜPING AND MARC STEPHAN

Since (p − 1) ∈ I, the element x(p − 1)g is in Zk−1,t
r−1 and thus represents zero in

Ek,t
r . Hence the G-action descends to a Q-action.
Since the differential of C∗ is F[G]-linear, all differentials in the spectral sequence

are F[Q]-linear. �

In [RS22, Proposition 3.6, Corollary 3.7], we calculated the E0-page and E1-page
over F[P ] involving the associated graded gr(F[P ]) of F[P ]. We will show that these
isomorphisms are Q-equivariant.

Lemma 3.5. The graded ring

gr(F[P ]) :=
⊕

s

Is/Is+1

has a Q-action induced by conjugation.

Proof. Each power Is is invariant under the conjugation action by G by the proof
of Lemma 3.3. Thus it suffices to show that the action descends to a Q-action on
Is/Is+1. Let g ∈ G and p ∈ P . We show that g and pg act the same way. For
λ ∈ Is we obtain

[g−1p−1λpg] = [g−1λg]+ [g−1(p−1−1)λg]+ [g−1λ(p−1)g]+ [g−1(p−1−1)λ(p−1)g]

and the last three summands lie in Is+1 since (p− 1), (p−1 − 1) ∈ I. �

Lemma 3.6. The natural maps

EL,t
0 ⊗F I

s/Is+1 → EL−s,t
0 , [c]⊗ [λ] 7→ [cλ],

EL,t
1 ⊗F I

s/Is+1 → EL−s,t
1 , [c]⊗ [λ] 7→ [cλ],

are Q-equivariant isomorphisms.

Proof. These are natural isomorphisms by [RS22, Proposition 3.6, Corollary 3.7].
Since the Q action is descended from G, it suffices to establish G-equivariance. For
g ∈ G, we have

[c]g ⊗ [λ]g = [cg]⊗ [g−1λg] 7→ [(cλ)g] = [cλ]g. �

To complete the calculation of the E0- and E1-page, we provide Q-equivariant

identifications for EL,∗
0 and EL,∗

1 . By [RS22, Proposition 3.6], we have

EL,t
0 = Ct/CtI ∼= Ct ⊗F[P ] F

with Q-action descended from right multiplication by G on Ct.

Lemma 3.7. We have a natural Q-equivariant isomorphism EL,t
0

∼= Ct ⊗F[G] FQ
and thus

EL−s,t
0

∼= (Ct ⊗F[G] F[Q])⊗F I
s/Is+1,

EL−s,t
1

∼= Ht(C∗ ⊗F[G] F[Q])⊗F I
s/Is+1

as right F[Q]-modules.

Proof. We let Q act on F[G]⊗F[P ]F as when considering F[G] as a cochain complex
concentrated in degree zero. Thus Pg = gP acts on c⊗1 by cg⊗1. The isomorphism
F[G/P ] ∼= F[G]⊗F[P ] F is Q-equivariant and yields a natural isomorphism

Ct ⊗F[P ] F
∼= Ct ⊗F[G] F[G]⊗F[P ] F

∼= Ct ⊗F[G] F[Q]

of right F[Q]-modules.
The identification of the E0- and E1-page follows now from Lemma 3.6. �
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Let ε∗(G) be a projective resolution of F by finitely generated projective right
F[G]-modules. We will use the following result for perfect cochain complexes C∗.

Lemma 3.8. Suppose that C∗ is bounded below. Then the natural map

C∗ ∼= HomF(F, C
∗) → HomF(ε

∗(G), C∗)

induces an isomorphism of spectral sequences for the pages Er with r ≥ 1.

Proof. Since the restriction of C∗ to F[P ] is free, the cochain complex C∗ is a
bounded below complex of injective F[P ]-modules. The complex HomF(ε

∗(G), C∗)
is bounded below as well and consists of injective (and thus free) F[P ]-modules.
Thus the natural map is a quasi-isomorphism between bounded below complexes of
injectives and hence a homotopy equivalence. It follows from [RS22, Corollary 3.7]
that the induced map on spectral sequences is an isomorphism. �

We say that a spectral sequence E is a right module over a multiplicative spectral
sequence R if each page Er is a bigraded right module over Rr and the Leibniz rule
holds for the action Er ⊗ Rr → Er. Furthermore, we require that the induced
multiplication H∗(Er) ⊗H∗(Rr) → H∗(Er) agrees with the multiplication on the
(r + 1)-page.

Lemma 3.9. The spectral sequence E∗,∗
r>0(HomF(ε

∗(G), ε∗(G))) is multiplicative
and the spectral sequence E∗,∗

r>0(HomF(ε
∗(G), D∗)) is a module over it for any cochain

complex D∗ of right F[G]-modules.

Proof. The composition

HomF(ε
∗(G), ε∗(G)) ⊗F HomF(ε

∗(G), D∗) → HomF(ε
∗(G), D∗)

is compatible with the filtrations as in the proof of [RS22, Proposition 4.4]. For
D∗ = ε∗(G), the composition is the multiplication of a filtered differential graded
algebra that is compatible with the filtration and thus induces a multiplicative spec-
tral sequence; see [McC01][Theorem 2.14]. For arbitrary C∗, we obtain analogously
an induced module structure of spectral sequences. �

We will use the following description of the E1-page.

Remark 3.10. By definition of the E0-page we have

E0,∗
0 (HomF(ε

∗(G), D∗)) = HomF[P ](ε
∗(G), D∗)

and thus

E0,∗
1 (HomF(ε

∗(G), D∗)) ∼= Ext∗
F[P ](F, D

∗).

For D∗ = ε∗(G), we obtain the group cohomology ring

E0,∗
1 (HomF(ε

∗(G), ε∗(G))) ∼= Ext∗
F[P ](F,F) = H∗(BP ).

All higher pages Er≥1(HomF(ε
∗(G), D∗)) inherit an H∗(BP )-module structure

Ek,t
r≥1(HomF(ε

∗(G), D∗))⊗F H
r(BP ) → Ek,r+t

r≥1 (HomF(ε
∗(G), D∗))

using the quotient map

H∗(BP ) = E0,∗
1 (HomF(ε

∗(G), ε∗(G))) → E0,∗
r (HomF(ε

∗(G), ε∗(G))),

and the differentials are H∗(BP )-linear.
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We will use this structure for D∗ = C∗ bounded below such that the restriction
to F[P ] is free as in Lemma 3.8. Then we can replace HomF(ε

∗(G), C∗) by C∗ in
the spectral sequence for Er≥1. The map

HomF(ε
∗(G), ε∗(G)) → HomF(ε

∗(G),F)

induces an isomorphism on the E1-page and thus all higher pages as well by [RS22,
Corollary 3.7]. Hence Er≥1(HomF(ε

∗(G), ε∗(G))) can be replaced by the spectral
sequence Er≥1(HomF(ε

∗(G),F)).

4. The spectral sequence for extensions by Z/2× Z/2

In this section, we consider the spectral sequence from Section 3 for an elementary
abelian 2-group P ∼= Z/2× Z/2 of rank 2 and F a field of characteristic 2. If f1, f2
are generators for P , then F[P ] is an exterior algebra generated by λ1 := f1−1 and
λ2 := f2 − 1. The augmentation ideal I ⊂ F[P ] is (λ1, λ2) and

I2/I3 ∼= Fλ1λ2, I/I2 ∼= Fλ1 ⊕ Fλ2, F[P ]/I ∼= F.

Thus only three columns in the spectral sequence can be nontrivial.

Lemma 4.1. Let C∗ be cochain complex over F[G] such that its restriction to F[P ]
is a perfect complex. If H∗(C∗) 6= 0, then dimFH

∗(C∗) ≥ 4 with

dimF E
0,∗
∞ ≥ 1, dimF E

1,∗
∞ ≥ 2, dimF E

2,∗
∞ ≥ 1.

If dimF H
∗(C∗) = 4, then the spectral sequence collapses on the E2-page.

Proof. The assumption H∗(C∗) 6= 0 implies H∗(C∗/C∗I) 6= 0. Indeed, as F[P ] is
a commutative, noetherian, local ring, this can be proved for instance by consid-
ering the minimal free resolution of the perfect cochain complex C∗ over F[P ]; see
e.g. [Rob80, Chapter 2, 2.4 Theorem].

As graded vector spaces, we have

E0,∗
1

∼= H∗(C∗/C∗I), E1,∗
1

∼= H∗(C∗/C∗I)2, E2,∗
1

∼= H∗(C∗/C∗I).

Since the differentials have bidegree dr = (−r, 1), the lowest nonzero entry of E0,∗
1

and the highest nonzero entry ofE2,∗
1 survive to E∞. Setting d := dimFH

∗(C∗/C∗I),

the total rank of d1 : E
1,∗
1 → E0,∗−1

1 is at most d−1 and the total rank of d1 : E
2,∗
1 →

E1,∗−1
1 is at most d−1 as well. It follows that dimF(E

1,∗
2 ) ≥ 2d−(d−1)−(d−1) = 2.

For degree reasons, the classes in the middle column E1,∗
2 cannot support any fur-

ther differentials and thus survive to the E∞-page. Together with the two surviving
corners from the E1-page, we deduce dimF H

∗(C) = dimF E∞ ≥ 4.

If dimF H
∗(C) = 4, then dimFE

1,∗
2 = 2. It follows that the total ranks of d1

from E1,∗
1 to E0,∗

1 and of d1 from E2,∗
1 to E1,∗

1 are both d− 1. Hence E0,∗
2 consists

only of the surviving bottom left corner, E2,∗
2 consists only of the surviving top

right corner, and dr = 0 for r ≥ 2. �

Remark 4.2. If dimF(H
∗(C∗)) = 4 and the degrees of the elements of a homo-

geneous basis are 0,m, n, t with 0 ≤ m ≤ n ≤ t counted with multiplicities, then
the surviving classes on E∞ sit in bidegrees (0, 0), (1,m), (1, n), (2, t). Moreover,

H0(C∗/C∗I) is one-dimensional since H0(C∗/C∗I) ∼= E0,0
1 = E0,0

∞ .

Recall that H∗(BP ) ∼= F[x1, x2] is a polynomial ring with generators x1, x2 of
degree one.
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Proposition 4.3. Let C∗ be a perfect F[G]-cochain complex such that its total
homology is four-dimensional with basis elements in degrees 0 ≤ m ≤ n ≤ t. Let J
be the annihilator ideal of the graded H∗(BP )-module Ext∗

FP (F, C
∗). Then

(1) there is a Q-equivariant isomorphism of graded H∗(BP )-modules

Ext∗
FP (F, C

∗) ∼= Ext0
FP (F, C

∗)⊗F (H
∗(BP )/J);

(2) J is generated by a regular sequence of two parameters;
(3) H∗(BP )/J is a complete intersection;
(4) there is an isomorphism of graded F[Q]-modules

Ext0
F[P ](F, C

∗)⊗F Λ(Σ
−1J/(x1, x2)J) ∼= grH∗(C∗);

(5) t = m+ n.

Proof. We show that the map

E0,0
1 (C∗)⊗F E

0,∗
1 (HomF(ε

∗(G),F)) → E0,∗
1 (C∗)

from Lemma 3.9 using Remark 3.10 is surjective by induction on the degree. In
degree zero, the map is surjective by construction. Suppose that the map is sur-
jective in degree i for some i ≥ 0 and let z ∈ E0,i+1

1 (C∗). Since the spectral

sequence collapses on the E2-page by Lemma 4.1 and E0,>0
2 (C∗) is zero, the d1-

differential surjects onto E0,>0
1 (C∗). Thus there exists a class z′ ∈ E1,i

1 (C∗) with
d1(z

′) = z. It follows from the induction hypothesis and Lemma 3.6 that there

exists z′′ ∈ E0,0
1 (C∗) ⊗ E1,i

1 (ε∗(G)) that is mapped to z′. Then d1(z
′′) is mapped

to d1(z
′) = z which concludes the induction step.

Since E0,0
1 (C∗) is one-dimensional, it follows that E0,0

1 (C∗) ⊗F (H∗(BP )/J) ∼=
Ext∗

F[P ](F, C
∗), showing (1). We will show that the map

E0,0
1 (C∗)⊗F E

∗,∗
1 (HomF(ε

∗(G),F)) → E∗,∗
1 (C∗)(4.4)

on the whole E1-page is surjective. Let f : ε∗(G) → C∗ be a representative of

a generator of E0,0
1 (C∗) ∼= Ext0

F[P ](F, C
∗). This is a map of right F[P ]-cochain

complexes. Postcomposing with f induces a map on spectral sequences

E∗,∗
1 (HomF(ε

∗(G), ε∗(G))) → E∗,∗
1 (HomF(ε

∗(G), C∗))

over F that is isomorphic to the map from (4.4). By Lemma 3.7, its surjectivity on

E0,∗
1 shows that it is surjective on the whole E1-page.
After shifting the i-th column of the E1-page for HomF(ε

∗(G),F) up by i, we
obtain the Koszul complex of H∗(BP ) by the description of the differential from
[RS22, Corollary 6.3].

After the same shift, the E1-page for C∗ is the tensor product of the module
E0,0

1 (C∗) with the Koszul complex of H∗(BP )/J .
The first Koszul homology of H∗(BP )/J = F[x1, x2]/J for the sequence x1, x2

is J/(x1, x2)J (see e.g. [GL69, Proof of Lemma 1.4.15]). Since E1,∗
2 (C∗) is two-

dimensional by Lemma 4.1, so is J/(x1, x2)J . Thus J is generated by two param-
eters by the graded Nakayama lemma. Since H∗(BP )/J is finite-dimensional and
the Krull dimension of H∗(BP ) is 2, the ideal J is generated by a system of pa-
rameters. Since H∗(BP ) is Cohen-Macaulay, the two parameters form a regular
sequence, showing (2). The ringH∗(BP )/J is a complete intersection of embedding
dimension 2; see [BH93, Theorem 2.3.3]. Thus (3) holds.
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The Koszul homology of the complete intersection H∗(BP )/J is the exterior
algebra Λ(J/(x1, x2)J); see [BH93, Theorem 2.3.11]. Since the spectral sequence

collapses on the E2-page, we obtain that gr(H∗(C∗)) ∼=
⊕

Ek,∗
2 (C∗) is isomorphic

to E0,0
1 (C∗) ⊗ Λ(Σ−1J/(x1, x2)J) showing (4). The generators of Σ−1J/(x1, x2)J

have degrees m,n. Thus their exterior product has degree t = m + n, showing
(5). �

Remark 4.5. If C∗ as in Proposition 4.3 is given by the cochains of a finite, free
G-CW complex X , then the spectral sequence is multiplicative by [RS22, The-
orem 6.9]. The one-dimensional Q-representation Ext0

F[P ](F, C
∗) ∼= H0(X/P ) is

trivial since the Q-action on the space X/P fixes 1 ∈ H0(X/P ). In this case
Proposition 4.3 (4) is an isomorphism of graded rings

Λ(Σ−1J/(x1, x2)J) ∼= grH∗(C∗).

It is not known for which dimensions m, n the group A4 can act freely on a
finite, CW complex X homotopy equivalent to Sm × Sn.

Remark 4.6. The obstruction result [RSY22, Theorem 7.5] for G = A4 has
the assumption that X is a finite, free G-CW complex with cohomology ring
H∗(X ;F2) ∼= H∗(Sm × Sn;F2) for some 0 < m < n. As explained on [RSY22,
page 31], it suffices that the total cohomology of X is four-dimensional and such
that the product of the two middle classes is the top class. This last assumption
always holds by Remark 4.5.

5. An equivariant BGG correspondence

We will provide an explicit equivariant BGG correspondence in Theorem 5.8.
There are different versions of the BGG correspondence. A related equivariant
BGG correspondence is in [Fy01, Theorem 9.1.2]. We are interested in Carlsson’s
from [Car86]. In particular, we consider the exterior algebra as an ungraded algebra
and work in characteristic 2. Similarly, there are many results on Koszul duality
in the literature (see e.g. [Avr13]). We have not found a general statement that
directly provides our equivariant BGG correspondence.

We begin with two general results for skew group algebras A ∗ Q. We will use
them for A an exterior algebra.

5.1. Augmented skew group algebras. Let k be a field and A an augmented
k-algebra. Let Q be a finite group acting on the augmented k-algebra A. We
write Ψ(q)(a) for the left action of q ∈ Q on a ∈ A. Recall that the skew group
algebra A ∗ Q is the k-algebra given by the free A-module ⊕q∈QAq with basis Q
and multiplication (aq)(bp) = (aΨ(q)(b))(qp) for a, b ∈ A and q, p ∈ Q. In contrast
to the notation for crossed product algebras, we just write q ∈ A ∗ Q instead of
q ∈ A ∗Q for q ∈ Q.

Note that A is a right A ∗ Q-module via b · (aq) = Ψ(q−1)(ba). Since this does
not hold for crossed product algebras, we restrict to skew group algebras. The
right A ∗ Q-action on A does not commute with the left A-action, i.e., A is not
an A-A ∗ Q-bimodule and the following result is not just a formal consequence of
bimodule structures. We transform the right Q-action from Lemma 2.5 to a left
Q-action.
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Lemma 5.1. For any cochain complex C∗ of right A∗Q-modules, the hom complex
HomA(C

∗, A) is a cochain complex of left A ∗Q-modules with left A-action coming
from the A-A-bimodule structure on A and Q-action qf := fq−1, i.e., (qf)(x) =
f(xq)q−1.

Proof. A left A-module structure and a Q-action yield an A ∗Q-module structure
if a(qf) = q(Ψ(q)−1(a)f). This follows from the computation

(a(qf))(x) = a(f(xq)q−1) = a(Ψ(q)(f(xq)))

=Ψ(q)(Ψ(q)−1(a)f(xq)) = (q(Ψ(q)−1(a)f))(x). �

Lemma 5.2. Let C∗ and P ∗ be cochain complexes of right A ∗Q-modules. If P ∗

is bounded above and consists of finitely generated A-projective modules and C∗ is
bounded below (i.e. Cn = 0 for all small enough n), then we have an isomorphism

Φ: C∗ ⊗A HomA(P
∗, A) → HomA(P

∗, C∗), c⊗ f 7→ c · f( ),

of right k[Q]-modules.

Proof. The left-hand side inherits a k[Q]-module structure by Lemma 2.6 and the
right-hand side inherits a k[Q]-module structure by Lemma 2.5.

We check that Φ commutes with the Q-action:

Φ((c⊗A f)q)(x) =Φ((cq ⊗ q−1f))(x) = (cq)(Ψ(q−1)(f(xq−1))

=cf(xq−1)q = (Φ(c⊗ f)q)(x)

Note that Φ is a chain map, thus it suffices to check that Φ is an isomorphism of
graded modules.

For any right A ∗ Q-module M and any finitely generated, A-projective right
A ∗Q-module P , the map

M ⊗A HomA(P,A) → HomA(P,M), m⊗ f 7→ mf( )

is an isomorphism.
For a fixed degree n, consider the map

Φn :
⊕

m

Cn+m ⊗HomA(P
m, A) →

∏

m

HomA(P
m, Cm+n).

The finiteness assumptions ensure that the right-hand side is a direct sum and thus
the map is a direct sum of isomorphisms as above and hence an isomorphism. �

Remark 5.3. We write Aop for the opposite algebra. The Q-action on A induces a
left action on Aop and Aop ∗Q ∼= (A ∗Q)op via aq 7→ (Ψ(q−1)(a))q−1. Thus results
for right A ∗Q-modules can be translated to results for left Aop ∗Q-modules. If A
is commutative, then Aop ∗Q = A ∗Q.

For instance, A is a left A ∗Q-module via (aq) · b = aΨ(q)(b). We will also need
that for a left A ∗Q-module M and a left kQ-vector space V , the tensor product
M ⊗k V is a left A ∗Q-module via

(aq)(m⊗ v) = (aqm)⊗ qv

for a ∈ A, m ∈ M , v ∈ V and q ∈ Q.
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5.2. Equivariant BGG correspondence. We specialize to an exterior algebra
and work over a field F of characteristic two. Let V be a finite-dimensional vector
space over F with a left Q-action denoted by qv for q ∈ Q and v ∈ V . The group
Q acts on the dual vector space V ∗ = Homk(V, k) by (qf)(v) = f(q−1v). Choose
a basis y1, . . . , yn of V and a dual basis x1, . . . xn of V ∗. Let Λ be the exterior
algebra on V and S = F[x1, . . . , xn] the symmetric algebra on V ∗. We consider
Λ as a graded algebra concentrated in degree 0 and grade S by deg(xi) = 1 for
1 ≤ i ≤ n. Since Q acts on V and V ∗, we obtain induced actions on the algebras
Λ and S. In this subsection, we omit the notation Ψ for these actions.

Carlsson [Car86] established an equivalence of derived categories

β : DΛ- perf(Λ) → Dhf
S- perf(S)

from perfect chain complexes over the exterior algebra Λ to finitely generated, free
S-dg modulesM with finite-dimensional total homology. We provide an equivariant
extension in Theorem 5.8 replacing Λ by Λ ∗Q and S by S ∗Q.

Lemma 5.4. The graded tensor product Λ⊗F S with differential

d(c⊗ f) =
∑

i

cyi ⊗ xif

is a Λ-injective resolution of HomΛ(F,Λ) as left Λ∗Q-module. If Q is of odd order,
then Λ⊗F S is a Λ ∗Q-injective resolution.

Proof. Nonequivariantly, it is well-known that d is a differential on Λ⊗FS with ho-
mology concentrated in degree zero; see [Car83, (II) Proposition 2]. The differential
commutes with the action of Λ by definition. It commutes with the Q-action as
well as we show now. The element

∑n
i=1 yi⊗xi in V ⊗V ∗ is fixed by Q since under

the equivariant isomorphism of vector spaces V ⊗ V ∗ ∼= End(V ), v ⊗ f 7→ f(−)v,
the sum corresponds to idV . The map

V ⊗ V ∗ ⊗ Λ⊗ S → Λ⊗ S, y ⊗ x⊗ c⊗ f 7→ cy ⊗ xf,

is a homomorphism of F[Q]-modules. It follows that
∑

i

q(c)q(yi)⊗ q(xi)q(f) =
∑

i

q(c)yi ⊗ xiq(f)

since the left-hand side is the image of q(
∑n

i=1 yi⊗xi)⊗ qc⊗ qf and the right-hand
side is the image of (

∑n
i=1 yi ⊗ xi) ⊗ qc⊗ qf . We conclude that the differential is

Q-equivariant:

q(d(c⊗ f)) =

n∑

i=1

q(c)q(yi)⊗ q(xi)q(f) =

n∑

i=1

q(c)yi ⊗ xiq(f)

= d(q(c)⊗ q(f)) = d(q(c ⊗ f)).

Thus Λ ⊗F S is a cochain complex of Λ ∗ Q-modules. The modules are finitely
generated and free over Λ. Since Λ is self-injective, the modules are injective over
Λ so that Λ⊗F S is a Λ-injective resolution. We have

H0(Λ⊗F S) ∼= Λn(V ) ∼= HomΛ(F,Λ)

as left Λ ∗Q-modules.
Suppose the order of Q does not divide the characteristic of F. Then the skew

group algebra Λ ∗ Q is self-injective as well; see [RR85, Theorem 1.1 and 1.3].
Moreover, a Λ ∗Q-module is projective over Λ ∗Q if and only if it is projective over
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Λ. Thus Λ⊗F S consists of finitely generated projective modules and since Λ ∗Q is
self-injective, it is indeed an injective resolution. �

To emphasize the twisted differential, we write Λ⊗̃FS for the cochain complex
from Lemma 5.4.

Lemma 5.5. The hom complex

ε∗ = HomΛop(Λ⊗̃FS,Λ)

of left Λ-module homomorphisms is a Λ-projective resolution of F as right Λ ∗ Q-
module. For this ε∗ and any bounded below cochain complex C∗ of right Λ ∗ Q-
modules, there is a natural isomorphism

HomΛ(ε
∗, C∗) ∼= C∗⊗̃FS,

where C∗⊗̃FS is C∗⊗FS with differential given by d(c⊗f) = (dc)⊗f+
∑

i cyi⊗xif .

Proof. The cochain complex ε∗ consists of finitely generated Λ-projective right Λ ∗
Q-modules by Lemma 5.1 and Remark 5.3. It is a projective resolution of

HomΛop(HomΛ(F,Λ),Λ) ∼= HomΛop(Λn(V ),Λ) ∼= F

by Lemma 5.4 as Λ is self-injective.
Finally, using Lemma 5.2, we have a natural isomorphism

HomΛ(ε
∗, C∗) ∼= C∗ ⊗Λ HomΛ(ε

∗,Λ) ∼= C∗ ⊗Λ Λ⊗̃FS ∼= C∗⊗̃FS

under which the differential of C∗⊗̃FS is as given in the statement. �

Note that ε∗ = HomΛop(Λ⊗̃FS,Λ) is a right dg module over (Sop ⊗F Λ) ∗ Q
equipped with the trivial differential.

Remark 5.6. Nonequivariantly, C∗⊗̃FS is β(C∗) for Carlsson’s functor β from
[Car83, Section (II)]. To compare to [ABIM10b, ABIM10a], there is an isomorphism

HomΛop(Λ⊗̃FS,Λ) ∼= HomF(HomF(Λ,F)⊗̃FS,F) ∼= Λ⊗̃FHomF(S,F)

of dg modules over (Sop ⊗F Λ) ∗Q, where the differential on the right-hand side is
d(λ⊗ h) =

∑
i λyi ⊗ hxi.

The functor HomΛ(ε
∗,−) from cochain complexes of right Λ∗Q-modules to right

dg modules over S ∗Q is right adjoint to M 7→ M ⊗S ε∗. Here Q acts on M ⊗S ε∗

diagonally.
The counit HomΛ(ε

∗, C∗)⊗S ε∗ → C∗ is given by evaluation (fi)i ⊗ ϕ 7→ fm(ϕ)
for ϕ ∈ εm.

The unit M → HomΛ(ε
∗,M ⊗S ε∗) sends m ∈ Mn to m⊗S − : ε∗ → Mn ⊗S ε∗.

Lemma 5.7. For M = S, the unit S → HomΛ(ε
∗, ε∗) is a quasi-isomorphism.

For C∗ = F concentrated in degree zero, the counit HomΛ(ε
∗,F) ⊗S ε∗ → F is a

quasi-isomorphism.

Proof. We show that the unit is a quasi-isomorphism in M = S. Using Remark 5.6,
consider the composite

S → HomΛ(ε
∗, ε∗) ≃ HomΛ(ε

∗,F) ∼= HomΛ(Λ⊗̃F HomF(S,F),F).

The target has trivial differential and is isomorphic to HomF(HomF(S,F),F) ∼= S.
It follows that the unit is a quasi-isomorphism in M = S since the whole composite
S → S is the identity.
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For C∗ = F, the counit factors as an isomorphism followed by the resolution
ε∗ → F:

HomΛ(ε
∗,F)⊗S ε∗ ∼= S ⊗S ε∗ → F

Hence, the counit is a quasi-isomorphism in F. �

For a differential graded algebra R, we write K(R) for the homotopy category
of differential graded right modules over R and D(R) for the corresponding derived
category obtained by localization with respect to the quasi-isomorphisms. We equip
K(R) and D(R) with the usual triangulated structures. For an object X of D(R),
we write thick(X) (or thickR(X)) for the thick subcategory of D(R) generated by
X , i.e., the intersection of all, full triangulated subcategories of D(R) that contain
X and are closed under taking summands. We use cohomological grading. In
particular, the derived category of cochain complexes over Λ ∗Q is D(Λ ∗Q).

The adjoint functors −⊗S ε
∗ and HomΛ(ε

∗,−) induce exact, adjoint functors on
the triangulated homotopy categories

K(S ∗Q) ⇄ K(Λ ∗Q).

The functor HomΛ(ε
∗,−) preserves quasi-isomorphisms and thus has a right derived

functor RHomΛ(ε
∗,−) with RHomΛ(ε

∗, C∗) = HomΛ(ε
∗, C∗) for C∗ ∈ D(Λ ∗Q).

The left derived functor of − ⊗S ε∗ exists as well and can be computed in a dg
module M over S ∗ Q by applying − ⊗S ε∗ to a semifree resolution of M . If the
underlying graded S-module of M is finitely generated and free, then M is semifree
over S, and M ⊗L

S ε∗ = M ⊗S ε∗.
The functor −⊗L

S ε∗ : D(S ∗Q) → D(Λ ∗Q) is exact and has exact right adjoint
RHomΛ(ε

∗,−).
We write DS- perf(S ∗ Q) for the full triangulated subcategory of D(S ∗ Q) of

objects isomorphic to dg S ∗Q-modules such that the underlying graded S-module
is free and finitely generated. Moreover, we denote the full triangulated subcat-

egory of M ∈ DS- perf(S ∗ Q) with dimF H
∗(M) < ∞ by Dhf

S- perf(S ∗ Q). We

identify the bounded derived categoryDb(modΛ∗Q) of finitely generated right Λ∗Q-
modules with the full subcategory of D(Λ ∗Q) consisting of the objects isomorphic
to bounded cochain complexes of finitely generated modules. Equivalently, this is
the full subcategory of cochain complexes in D(Λ ∗Q) with finite-dimensional total
homology; see e.g. [Kra22, Example 4.2.18].

We write DΛ- perf(Λ ∗ Q) for the full triangulated subcategory of D(Λ ∗ Q) of
objects isomorphic to bounded cochain complexes whose underlying Λ-modules are
finitely generated and projective. By [Lau23, Lemma 3.3], this category agrees with
the full subcategory of objects in D(Λ ∗Q) that are perfect in D(Λ).

Theorem 5.8. The adjunction (−⊗L
S ε∗, RHomΛ(ε

∗,−)) restricts to equivalences
of triangulated categories

DS- perf(S ∗Q) ⇄ Db(modΛ∗Q)

and
Dhf

S- perf(S ∗Q) ⇄ DΛ- perf(Λ ∗Q).

Proof. For any bounded complex C∗ of finitely generated right modules over Λ∗Q,
the dg module HomΛ(ε

∗, C∗) is S-free and finitely generated by Lemma 5.5. Thus
RHomΛ(ε

∗,−) restricts to a functor Db(modΛ∗Q) → DS- perf(S ∗Q). Moreover, the
counit of the derived adjunction HomΛ(ε

∗, C∗)⊗L
S ε

∗ → C∗ can be computed via the
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ordinary counit. We show that it is a quasi-isomorphism. Forgetting the Q-action,
this counit agrees with the counit for the adjunction with Q the trivial group.
This counit is a quasi-isomorphism since it is a quasi-isomorphism for C∗ = F by
Lemma 5.7 and since thick(F) ⊂ D(Λ) is the bounded derived category of finitely
generated Λ-modules. Hence, the counit between the derived adjunction is an
isomorphism for C∗ ∈ Db(modΛ∗Q).

If a dg module M ∈ D(S ∗ Q) is S-free and finitely generated, then the unit
M → HomΛ(ε

∗,M ⊗L
S ε∗) can be computed by the ordinary unit. Forgetting

the Q-action, this unit agrees with the unit for the adjunction with Q the trivial
group. It is a quasi-isomorphism since it is a quasi-isomorphism for M = S by
Lemma 5.7 and thick(S) ⊂ D(S) contains all dg modules that are free and finitely
generated. Hence, the unit between the derived adjunction is an isomorphism for
M ∈ DS- perf(S ∗Q).

To establish the first equivalence, we are left to show that − ⊗L
S ε∗ restricts to

a functor DS- perf(S ∗Q) → Db(modΛ∗Q). Forgetting the Q-action, this reduces to
the case M = S for which S ⊗L

S ε∗ ∼= F. Hence M ⊗L
S ε∗ belongs to Db(modΛ∗Q).

To establish the second equivalence, we check that the adjoint functors re-
strict further. If C∗ is a bounded complex of finitely generated modules over
Λ ∗ Q that are Λ-projective and thus injective over Λ, then H∗(HomΛ(ε

∗, C∗)) ∼=
H∗(HomΛ(F, C

∗)) has finite total dimension.
On the other hand, if M over S ∗Q is S-free and finitely generated with finite-

dimensional total homology, then we will show that M⊗S ε
∗ is perfect over Λ. This

holds since for trivial Q the equivalence restricts to an equivalence thickΛ(Λ) ≃

thickS(RHomΛ(ε
∗,Λ)) = thickS(F), and thickS(F) = Dhf

S- perf(S) by [ABIM10b,

Theorem 6.4]. We have shown that the first equivalence restricts as claimed, pro-
viding the second equivalence. �

If Q is of odd order, then a right Λ ∗ Q-module is projective if and only if it is
projective over Λ. Thus we obtain the following consequence.

Corollary 5.9. If Q is of odd order, then the adjunction (−⊗L
S ε

∗, RHomΛ(ε
∗,−))

restricts to equivalences of triangulated categories

Dhf
S-perf(S ∗Q) ⇄ Dperf(Λ ∗Q),

where the latter category is the perfect derived category of right Λ ∗Q-modules.

Remark 5.10. Carlsson used homological grading in [Car86]. Apart from that, our

functor RHomΛ(ε
∗,−) : DΛ−perf(Λ) → Dhf

S- perf(S) for Q the trivial group agrees

with the functor H from [Car86, Theorem II.7]. This follows from Lemma 5.5.
For a free, finitely generated dg S-module M with dimFH

∗(M) < ∞, we have
M ⊗L

S ε∗ ∼= M ⊗S (Λ⊗̃F HomF(S,F)) instead of G(M) = M⊗̃FΛ from the proof of
[Car86, Theorem II.7]. For a perfect Λ-cochain complex C∗, the composite

G(H(C∗)) = (C∗⊗̃FS)⊗̃FΛ → C∗ ⊗F Λ → C∗

induced by the augmentation S → F and the structure map for C∗ over Λ is not a
chain homotopy equivalence. Indeed, applying the functor −⊗Λ F to this map and
precomposing with the quasi-isomorphism HomΛ(F, C

∗) ≃ C∗⊗̃FS yields the zero
map HomΛ(F, C

∗) → C∗⊗̃ΛF.

Remark 5.11. For C∗ = F concentrated in degree zero, the isomorphism

Ext∗Λ(F,F)
∼= H∗(HomΛ(ε

∗,F)) ∼= S
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is a graded ring isomorphism, which is compatible with the Q-actions. Moreover, for
an arbitrary cochain complex C∗ over Λ ∗Q, the Ext∗Λ(F,F)-action on Ext∗Λ(F, C

∗)
from Proposition 2.7 agrees with the S-action on H∗(HomΛ(ε

∗, C∗)); see [AP93,
Section 1.3].

6. Perfect complexes with small homology for extensions by (Z/2)2

In this section we restrict the equivalence RHomΛ(ε
∗,−) from Corollary 5.9 to

perfect cochain complexes over Λ ∗ Q with four-dimensional total homology for
Λ = Λ(y1, y2) and S = F[x1, x2]. In particular, we assume that Q is of odd order.
We will provide an explicit classification of these perfect complexes with small
homology in Theorem 6.3.

Lemma 6.1. The functor HomΛ(ε
∗,−) induces a bijection between isomorphism

classes of perfect dg modules C over Λ∗Q with four-dimensional homology in degrees

0 ≤ m ≤ n ≤ l and isomorphism classes of objects M of Dhf
S- perf(S ∗Q) such that

M ⊗S F has four-dimensional homology in the same degrees. Moreover, if J ⊂ S
is the annihilator ideal of H∗(HomΛ(ε

∗, C)), then J is a Q-invariant parameter
ideal, H∗(HomΛ(ε

∗, C)) ∼= H0(HomΛ(ε
∗, C)) ⊗F S/J as right S ∗ Q-modules, and

H0(HomΛ(ε
∗, C)) is one-dimensional over F.

Proof. The bijection holds by Theorem 5.8 and since HomΛ(ε
∗, C) ⊗S F ∼= C as

cochain complexes.
The ideal J is a parameter ideal by Proposition 4.3 considering Λ as F[P ], and

it is Q-invariant by Proposition 2.7. By Proposition 4.3(1), the S-action

H∗(HomΛ(ε
∗, C))⊗F S → H∗(HomΛ(ε

∗, C))

induces an isomorphism

H0(HomΛ(ε
∗, C))⊗F S/J ∼= H∗(HomΛ(ε

∗, C))

of graded S-modules. Since the S-action is Q-equivariant, so is the induced isomor-
phism. Finally, H0(HomΛ(ε

∗, C)) is one-dimensional By Remark 4.2, . �

There is a canonical ring homomorphism F[Q] → S ∗ Q as the inclusion of the
degree zero part. Then for any graded right F[Q]-module W the induced module

indS∗Q
F[Q](W ) is just W ⊗F S with the diagonal right Q-action. For a graded right

S ∗Q-module M , we will use repeatedly the induction-restriction adjunction

HomS∗Q(W ⊗F S,M) ∼= HomF[Q](W,M)

to extend F[Q]-linear maps W → M to S ∗Q-linear maps W ⊗F S → M .

Lemma 6.2. There is a bijection between isomorphism classes of objects M in

Dhf
S-perf(S∗Q) such that M⊗SF has four-dimensional homology in degrees 0 ≤ m ≤

n ≤ t, and pairs (L, J) of a one-dimensional Q-representation L and a Q-invariant
parameter ideal J in S with parameters in degrees m + 1, n+ 1. The map assigns

to an object M in Dhf
S-perf(S ∗Q) its zeroth homology H0(M) and the annihilator

ideal of H∗(M). In particular, there is no such M with four-dimensional homology
unless l = m+ n.

Proof. IfM is an object ofDhf
S- perf(S∗Q) such thatH∗(M⊗SF) is four-dimensional,

then by Lemma 6.1, the annihilator ideal J in S of H∗(M) is a Q-invariant param-
eter ideal and H∗(M) ∼= S/J ⊗H0(M) with H0(M) one-dimensional.
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Now suppose that L is a one-dimensional Q representation over F and that J is
such a parameter ideal. Then J/(x1, x2)J is a two-dimensional F[Q]-module. The
projection J → J/(x1, x2)J is an F[Q]-linear map. Since Q is of odd order, it has
a section σ : J/(x1, x2)J → J .

We extend σ to the map J/(x1, x2)J ⊗S → J ⊗S → S and let K be the Koszul
complex of this map tensored with L, i.e.,

K = L⊗ Λ(J/(x1, x2)J)⊗ S

with differential l⊗ j1 ∧ . . . ∧ jr ⊗ s 7→
∑

0≤k≤r l⊗ j1 ∧ . . . ∧ ĵk ∧ . . . ∧ jr ⊗ σ(jk)s.

Since σ is F[Q]-linear, the differential in K is S ∗ Q-linear. We consider K as an
S ∗Q-dg module graded by deg(l ⊗ j1 ∧ . . . ∧ jr ⊗ s) = (

∑
k deg(jk))− r + deg(s).

Note that K ⊗S F = L⊗ Λ(J/(x1, x2)J) with zero differential and grading shift
as above. Since J/(x1, x2)J is a two-dimensional graded F-module with generators
in degrees m+ 1, n+ 1, the tensor product L⊗ Λ(J/(x1, x2)J) is four-dimensional
with generators in degrees 0,m, n,m+ n.

If r1, r2 is a basis of J/(x1, x2)J , then σ(r1), σ(r2) is a minimal generating set of
the parameter ideal J and thus a regular sequence. It follows thatH∗(K) ∼= L⊗S/J
by [BH93, Corollary 1.6.14].

Thus for an arbitrary pair (L, J), we have constructed an object K ∈ Dhf
S- perf(S∗

Q) such that H∗(K ⊗S F) is four-dimensional, H0(K) ∼= L, and such that J is the
annihilator ideal of H∗(K).

Now consider M ∈ Dhf
S- perf(S ∗ Q) such that H∗(M ⊗S F) is four-dimensional.

Let L = H0(M) and let J be the annihilator ideal of H∗(M). We construct a
quasi-isomorphism K → M , where K is constructed as above. Let W denote the
graded Q-representation J/(x1, x2)J .

The S-module structure induces an isomorphism H0(M) ⊗ S/J ∼= H∗(M) by
Lemma 6.1. Denoting the differential of M by d, consider a section H∗(M) → ker d
of graded F[Q]-modules. We obtain an F[Q]-linear map f0 : L⊗Λ0(W ) = H0(M)⊗
F → M . By adjunction we can extend it to an S∗Q-linear map f0 : L⊗Λ0(W )⊗S →
M .

Next we construct a map L⊗Λ1(W )⊗S = L⊗W ⊗S → M . Consider the map
L ⊗ J/(x1, x2)J → M given by l ⊗ j 7→ f0(l) · σ(j). Since H∗(M) ∼= L ⊗ S/J by
Lemma 6.1, it follows that this map hits only boundary elements in M . Thus it can
be lifted to an F[Q]-linear map f1 : L⊗W → M satisfying d◦f1(l⊗w) = f0(l)·σ(w).
Again by adjunction, we extend it to an S ∗Q-linear map f1 : L⊗Λ1(W )⊗S → M .

Consider the F[Q]-linear map

g : L⊗ Λ2(W ) → M, l ⊗ (w1 ∧ w2) 7→ f1(l ⊗ w1) · σ(w2) + f1(l ⊗ w2) · σ(w1).

The boundary of the right-hand side is

df1(l⊗w1) · σ(w2) + df1(l⊗w2) · σ(w1) = f0(l)σ(w1)σ(w2) + f0(l)σ(w2)σ(w1) = 0.

Since Λ2(W ) is one-dimensional with a generator in degree m+n+2 and f1 lowers
degrees by one, the image of g is concentrated in degree m + n + 1. By [NS02,
Theorem 5.4.1], S/J is a Poincaré duality algebra with fundamental class in degree
m + n, in particular Hm+n+1(M) = 0. Thus the image of g is contained in the
boundaries of M and since F[Q] is semisimple we can lift g to a map f2 : L ⊗
Λ2(W ) → Mm+n with df2 = g and extend it to an S ∗ Q-linear map f2 : L ⊗
Λ2(W )⊗ S → M .
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Now define

F : L⊗ Λ(W )⊗ S = L⊗ (Λ2(W )⊕ Λ1(W )⊕ Λ0(W ))⊗ S → M

by F = (f2, f1, f0). A straightforward computation shows that F is a chain map.
By construction, F induces an isomorphism on H0. It follows that H∗(F ) is an
isomorphism since it is the composite

H∗(K) ∼= S/J ⊗H0(K) ∼= S/J ⊗H0(M) ∼= H∗(M).

Note that H∗(K ⊗S F) = L⊗ Λ(W ), and thus t = m+ n. �

We deduce the main result of this section.

Theorem 6.3. There is a bijection between isomorphism classes of perfect dg mod-
ules over Λ ∗ Q with four-dimensional homology and triples (l, L, J) where l is an
integer, J ⊂ F[x1, x2] is a Q-invariant parameter ideal and L is a one-dimensional
Q-representation.

Proof. For a perfect dg module C∗ over Λ ∗Q with four-dimensional homology, let
l ∈ Z be the lowest degree in which H∗(C) is nonzero.

Let L = H l(HomΛ(ε
∗, C)) = ExtlΛ(F, C). Let J ⊂ F[x1, x2] ∼= Ext∗Λ(F,F) be the

annihilator ideal of Ext∗Λ(F, C) ∼= H∗(HomΛ(ε
∗, C)). We show that the assignment

C 7→ (l, L, J) is a bijection as desired.
After shifting C, we may assume that l = 0. Then combining Lemma 6.1 with

Lemma 6.2 shows that the assignment is indeed a bijection as claimed. �

For Q acting on P = Z/2×Z/2, we will identify the Q-equivariant algebra F[P ]
with a suitable exterior algebra.

Example 6.4. For Q = C3 = 〈q〉 acting on (Z/2)2 nontrivially, the Q-action on
F2[(Z/2)

2] ∼= F2[λ1, λ2]/(λ
2
1, λ

2
2) is q(λ1) = λ2, q(λ2) = λ1 + λ2 + λ1λ2. This Q-

equivariant algebra is isomorphic to an exterior algebra Λ(V ) on an equivariant
vector space V = F2y1 ⊕ F2y2 as follows. Let Q act on V by q(y1) = y2 and
q(y2) = y1 + y2. Then

Λ(V ) → F2[(Z/2)
2] , y1 7→ λ1 + λ1λ2, y2 7→ λ2 + λ1λ2,

is an equivariant isomorphism of algebras. Note that it does not preserve the
internal gradings of the exterior algebras Λ and F2[(Z/2)

2]. One can verify by hand
that there is no equivariant isomorphism Λ(V ) → F2[(Z/2)

2] which preserves the
grading.

The preceding example can be generalized.

Lemma 6.5. Let F be a field of characteristic two, let P = (Z/2)n and Q a finite
group of odd order acting on P . Let I denote the maximal ideal in F[P ]. Then
there is a Q-equivariant algebra isomorphism Λ(I/I2) → F[P ] which respects the
augmentations.

Proof. Let k : I/I2 → I ⊂ F[P ] be a Q-equivariant section. Since the target algebra
is also an exterior algebra, k extends to an equivariant algebra homomorphism
Λ(I/I2) → F[P ]. It remains to show that it is surjective. This holds since k is a
section and any lift of a basis of I/I2 generates F[P ].

By construction this map sends the augmentation ideal of Λ(I/I2) to the aug-
mentation ideal of F[P ] and thus it is compatible with the augmentations. �
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The classification from Theorem 6.3 now yields a classification for perfect cochain
complexes up to quasi-isomorphism (or equivalently up to isomorphism in the de-
rived category) with small homology for extensions by (Z/2)2.

Corollary 6.6. Let Q be a group of odd order acting on P = Z/2×Z/2. There is
a bijection between isomorphism classes of perfect cochain complexes over F[P ⋊Q]
with four-dimensional homology and triples (l, L, J) where l is an integer, J ⊂
F[x1, x2] is a Q-invariant parameter ideal and L a one-dimensional Q-representation.

Proof. The augmented Q-algebra F[P ] is isomorphic to an augmented Q-algebra
Λ on a two-dimensional Q-representation V by Lemma 6.5. Thus F[P ⋊ Q] ∼=
F[P ] ∗Q ∼= Λ ∗Q and the bijection follows from Theorem 6.3. �

Methods of Benson and Carlson construct perfect cochain complexes with trivial
action on homology; see [BC94, Theorem 4.1].

Remark 6.7. For P = Z/2 × Z/2, any perfect cochain complex C∗ over F[P ]
is either isomorphic to the zero complex in the perfect derived category or has
at least four-dimensional homology. Thus if dimFH

∗(C∗) = 4, then C∗ is an
indecomposable object in the perfect derived category. Not all indecomposable
objects have four-dimensional total homology, e.g., the cochain complex from [RS22,
Example 3.8] has six-dimensional homology and in particular is indecomposable.

7. Computing finiteness obstructions

As in Section 3, consider a short exact sequence

(7.1) 1 → P → G
pr
→ Q → 1

of finite groups such that P is a p-group and F a field of characteristic p. In topology,
we are interested in cochain complexes of finite, free G-CW complexes. These are
not just be perfect cochain complexes, but in fact bounded complexes of finitely
generated free F[G]-modules. In this section we consider the finiteness obstruction
to determine whether a perfect cochain complex is homotopy equivalent to a finite,
free one.

The finiteness obstruction is an element of the reduced Grothendieck group
K̃0(F[G]). This group is isomorphic to K̃0(F[Q]) as we will explain below.

Lemma 7.2. Let J ⊂ F[G] be the two-sided ideal generated by the augmentation
ideal I ⊂ F[P ]. Then J is the kernel of pr∗ : F[G] → F[Q] and J is nilpotent.

Proof. For p ∈ P , the element p − 1 is in the kernel of F[G] → F[Q] and so is the
ideal I generated by these elements. We verify that an arbitrary element

∑
g∈G λgg

of this kernel belongs to J . Since
∑

g∈G

λgg =
∑

q∈Q

∑

g∈pr−1(q)

λgg

it suffices to show that
∑

g∈pr−1(q) λgg ∈ J for any fixed q ∈ Q. For each q ∈ Q we

have
∑

g∈pr−1(q) λg = 0. So for a fixed g′ ∈ pr−1(q), we have
∑

p∈P λpg′ = 0. Thus
∑

p∈P

λpg′pg′ =
∑

p∈P\{e}

λpg′ (p− 1)g′

and this is an element of J . To prove the second statement, let S denote the set
{p− 1 | p ∈ P}. Since P is normal, we have F[G] · S · F[G] = F[G] · S as sets and
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inductively (F[G] ·S ·F[G])n = F[G] · (Sn). Since the augmentation ideal of a finite
p-group in modular characteristic is nilpotent, the set Sn is zero for n large enough,
and so is J . �

If p does not divide the order of Q then I · F[G] is the Jacobson radical of F[G]
by [Pot77, Corollary to Theorem 1], but we will not use this statement.

We denote the Grothendieck group of isomorphism classes of finitely generated
projective modules over a ring R by K0(R).

Lemma 7.3. The induced map

K0(pr∗) : K0(F[G]) → K0(F[Q])

is an isomorphism.

Proof. Since ker(pr∗) is nilpotent by Lemma 7.2, the induced map on K0 is an
isomorphism; see [Wei13, Lemma II.2.2]. �

Definition 7.4. For a perfect cochain complex C∗ over F[G], the Euler character-
istic of C∗ is

χ(C∗) =
∑

i

(−1)i[Ci] ∈ K0(F[G]).

The image χ̃(C∗) of χ(C∗) in the reduced projective class group K̃0(F[G]) is called
the finiteness obstruction of C∗.

The element χ̃(C∗) vanishes if and only if the perfect cochain complex C∗ is
homotopy equivalent to a finite, free complex; see [Ran85].

If p does not divide the order of Q, then any F[Q]-module is projective. In
particular gr(F[P ]) from Lemma 3.5 represents a class in K0(F[Q]). Moreover,
P ⊂ G is a normal p-Sylow subgroup and the short exact sequence (7.1) splits
by the Schur-Zassenhaus Theorem; see [CR81, (8.35) Theorem]. In the following
result we choose a splitting so that G is a semidirect product G = P ⋊ Q and
[gr(F[P ])] = [resGQ F[P ]] in K0(F[Q]). If Q is trivial, then the statement reduces to

the fact that the ordinary Euler characteristic of a finite, free F[P ]-cochain complex
is divisible by the order of P .

Proposition 7.5. Let C∗ be a perfect F[G]-cochain complex and assume that p
does not divide the order of Q. We have

pr∗(χ(C
∗)) · [gr(F[P ])] = χ(resGQ H∗(C∗)) ∈ K0(F[Q]).

Hence if [gr(F[P ])] is not a zero-divisor in the ring K0(F[Q]), then the finiteness
obstruction of C∗ vanishes if and only if χ(resGQ H∗(C∗)) lies in the subgroup gen-

erated by the product [gr(F[P ])] · [F[Q]] in K0(F[Q]).

Proof. Let C∗ be perfect F[G]-cochain complex and choose a splitting G = P ⋊Q.
Since F[Q] is semisimple, the Euler characteristic commutes with taking homology
and in a short exact sequence the Euler characteristic of the middle term is the
sum of the Euler characteristics of the other two terms. It follows that

χ(resGQ H∗(C∗)) = χ(resGQ C∗) =
∑

i

χ(resGQ(F
iC∗/F i−1C∗))
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for the filtration from Section 3. These filtration quotients are the columns Ei,∗
0 .

By Lemma 3.7 and the definition of the functor K0, we obtain
∑

i

χ(resGQ(F
iC∗/F i−1C∗)) = χ(C∗⊗F[G]F[Q])·[gr(F[P ])] = pr∗(χ(C

∗))·[gr(F[P ])].

It follows from Lemma 7.3 that the finiteness obstruction χ̃(C∗) vanishes if and

only if pr∗χ̃(C
∗) = 0 in K̃0(F[Q]), i.e., if pr∗(χ(C

∗)) lies in the subgroup generated
by F[Q] of K0(F[Q]). If [gr(F[P ])] is not a zero-divisor, this holds if and only if
pr∗(χ(C

∗)) · [gr(F[P ])] = χ(resGQ H∗(C∗)) lies in the additive subgroup generated

by the product [gr(F[P ])] · [F[Q]]. �

We will use the following consequence.

Lemma 7.6. Let C∗ be a perfect F[G]-cochain complex and assume that p does
not divide the order of Q. If [gr(F[P ])] is not a zero-divisor in K0(F[Q]) and
dimF(H

∗(C∗)) < |G|, then the following assertions are equivalent:

(1) The cochain complex C∗ is homotopy equivalent to a finite, free F[G]-
cochain complex;

(2) χ(resGQ H∗(C∗)) = 0 in K0(F[Q]).

Proof. By Proposition 7.5 and the assumption on [gr(F[P ])], the finiteness obstruc-
tion vanishes if and only if χ(resGQ H∗(C∗)) lies in the additive subgroup generated

by [gr(F[P ])] · F[Q].
The ring homomorphism dim : K0(F[Q]) → K0(F) ∼= Z maps this cyclic sub-

group bijectively to |G|Z. We have −|G| < dim(χ(resGC3
H∗(C∗))) < |G| by as-

sumption. Thus χ(resGQ H∗(C∗)) lies in that subgroup if and only if it is zero. �

If the characteristic p of F does not divide the order ofQ, then K0(F[Q]) coincides
with the representation ring and is additively isomorphic to Z

s, where s is the
number of isomorphism classes of irreducible representations and the canonical
generators are given by the classes of the irreducible representations.

We specialize to the case of G = A4 = (Z/2)2 ⋊ C3 with Q = C3 acting on
P = Z/2× Z/2 nontrivially.

If X2+X+1 does not have a zero in F, then the only two irreducible representa-
tions of C3 are the trivial representation F and the two-dimensional representation
V = Fe1 ⊕ Fe2, where a generator of C3 acts by e1 7→ e2 and e2 7→ e1 + e2.

The tensor product V ⊗ V decomposes as V ⊗ V ∼= V ⊕ F
2 so that

K0(F[C3]) ∼= Z[V ]/(V 2 − V − 2)

as rings.
If X2 +X + 1 has a root α, then X3 + 1 has the three distinct roots 1, α and

α2 = α + 1 in F. For each of the roots, we get a one-dimensional representation,
where a fixed generator of C3 acts by multiplication with that root. We denote
these three one-dimensional representations again by 1, α, α2. Since α ⊗F α ∼= α2

and α⊗F α
2 ∼= 1, we obtain

K0(F[C3]) ∼= Z[α]/(α3 − 1).

Lemma 7.7. The element [grF[P ]] is not a zero divisor in K0(F[C3]). More pre-
cisely:
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(1) If X2 +X + 1 does not have a zero in F, then

[gr(F[P ])] = V + 2 in K0(F[C3]) ∼= Z[V ]/(V 2 − V − 2).

(2) If X2 +X + 1 has a zero in F, then

[gr(F[P ])] = α2 + α+ 2 in K0(F[C3]) ∼= Z[α]/(α3 − 1).

Proof. Since C3 acts nontrivially on (Z/2)2, there are generators f1, f2 of (Z/2)2

on which a generator τ ∈ C3 acts by f1 7→ f2 and f2 7→ f1f2. A basis for I/I2 is
given by [f1 − 1], [f2 − 1]. Conjugation by τ sends this basis to [f2 − 1] and

[f1f2 − 1] = [f1f2 − 1]− [(f1 − 1)(f2 − 1)] = [f1 − 1] + [f2 − 1].

Moreover, conjugation by τ is the identity on F[P ]/I and fixes the generator (f1 −
1)(f2 − 1) of I2.

The first formula for [gr(F[P ])] follows immediately. It is not a zero divisor since
V 2 − V − 2 = (V − 2)(V + 1) in Z[V ].

If X2 + X + 1 has a zero in F, then the ring homomorphism K0(F2[C3]) →
K0(F[C3]) sends V to α+α2 from which we deduce the second formula for [gr(F[P ])].
Since α3−1 = (α−1)(α2+α+1) in the polynomial ring Z[α], the element α2+α+2
is not a zero divisor in K0(F[C3]). �

Theorem 7.8. Let C∗ be a perfect cochain complex over F[A4] with four-dimensional
homology corresponding to the triple (l, L, J) as in Corollary 6.6.

Then the following assertions are equivalent:

(1) The cochain complex C∗ is homotopy equivalent to a finite, free F[A4]-
cochain complex;

(2) χ(resA4

C3
H∗(C∗)) = 0 in K0(F[C3]);

(3) the graded representation J/(x1, x2)J has a C3-invariant basis element of
even degree;

(4) J has a C3-invariant parameter in even degree.

Proof. The first two assertions are equivalent by Lemma 7.6 and Lemma 7.7.
After shifting, we may assume that the homology of C∗ has a basis with ele-

ments in degrees 0 ≤ m1 ≤ m2 ≤ m1 +m2. Since F[C3] is semisimple, we obtain

χ(resA4

C3
H∗(C∗)) = χ(resA4

C3
grH∗(C∗)). Since one-dimensional representations are

invertible in K0, it follows from Proposition 4.3(4) that χ(resA4

C3
grH∗(C∗)) = 0 if

and only if χ(Λ(Σ−1J/(x1, x2)J)) = 0.
We show that χ(Λ(Σ−1J/(x1, x2)J)) = 0 if and only if J/(x1, x2)J has a trivial

one-dimensional subrepresentation of even degree. We distinguish two cases.
First, assume that J/(x1, x2)J is the sum of two one-dimensional graded, repre-

sentations L1 in degree m1 + 1 and L2 in degree m2 + 1. We have

χ(Λ(Σ−1J/(x1, x2)J)) = (1 + (−1)m1 [L1])(1 + (−1)m2 [L2].

Obviously this vanishes if one of the factors is zero, i.e., one mi is odd and Li

is the trivial representation. We show that it is nonzero otherwise. Neither 2
nor (if available) the elements 1 + α, 1 + α2 are zero-divisors in K0(F[C3]), since
(1 + α)(1 + α2) = 2 + α + α2 which is not a zero-divisor by Lemma 7.7. Thus we
may assume that both mi are odd and both Li are nontrivial representations.
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Then X2 +X + 1 has a zero in F, since otherwise all one-dimensional represen-
tations are trivial. Thus Li ∈ {α, α2}. A case distinction yields:

(1− α)(1 − α) = 1− 2α+ α2 6= 0

(1− α)(1 − α2) = 2− α− α2 6= 0

(1 − α2)(1 − α2) = 1 + α− 2α2 6= 0

Secondly, assume that J/(x1, x2)J is not the sum of two one-dimensional rep-
resentations, i.e., a two-dimensional irreducible representation in one single degree
m+ 1. In that case (3) does not hold. Note that X2 +X + 1 does not have a zero
in F, and we have

χ(Λ(Σ−1J/(x1, x2)J)) = 2 + (−1)mV 6= 0 ∈ K0(F[C3]).

Finally, we show that (3) is equivalent to (4). A C3-invariant parameter in J
generates a one-dimensional trivial subrepresentation of J/(x1, x2)J . Conversely,
applying the Reynolds operator R(z) = 1/3

∑
q∈C3

qz to a representative of a gener-

ator of a C3-invariant subspace of J/(x1, x2)J yields a C3-invariant parameter. �

For F = F2 we can read off from the homology of C∗ whether it is homotopy
equivalent to a finite, free one:

Corollary 7.9. A perfect F2[A4]-cochain complex C∗ such that its homology is four-
dimensional with basis elements in degrees 0 ≤ m ≤ n ≤ t is homotopy equivalent
to a finite, free cochain complex if and only if m or n is odd and H∗(C∗) is a trivial
C3-representation.

Proof. Over F2 all one-dimensional F2[C3]-representations are trivial. Moreover,
recall that t = m + n by Proposition 4.3(5). It follows immediately from Theo-
rem 7.8(2) that C∗ is homotopy equivalent to a finite, free cochain complex if m or
n is odd and C3 acts trivially on H∗(C∗).

Conversely, if C∗ is homotopy equivalent to a finite, free cochain complex, then
m or n is odd by Theorem 7.8(4) and Proposition 4.3(4). �

Corollary 7.9 is an algebraic result with a topological application. The following
argument is our original proof of [RSY22, Theorem 7.1].

Remark 7.10. In [Oli79, Theorem 2], Oliver proved that A4 can not act freely
on a finite CW complex X with cohomology ring H∗(X ;Z) ∼= H∗(Sn × Sn;Z).
The statement of [RSY22, Theorem 7.1] is that the assumption on the cohomology
ring can be weakened to F2-coefficients. Indeed, by [Oli79, Theorem 1], it suffices
to show that A4 can not act freely on a finite CW -complex X with cohomology
ring H∗(X ;F2) ∼= H∗(Sn × Sn;F2) on which A4 acts nontrivially. This holds by
Theorem 7.8 applied to the cellular cochain complex of X .

8. A topological application to free A4-actions

We will show in Theorem 8.2 that cochain complexes of finite, free A4-CW
complexes with four-dimensional cohomology are rigid. They are determined by
the degrees of the nonzero cohomology groups.

We begin with a comparison of the topological and algebraic Borel construction.
For any short exact sequence of finite groups

1 → N → G → Q → 1
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and field k, we have equipped the group cohomology H∗(BN ; k) with a Q-action.
More generally, Ext∗k[N ](k,D

∗) has a Q-action for any cochain complex D∗ of right

k[G]-modules by Proposition 2.7. For the cochains C∗ = C∗(X ; k) on a left G-CW
complex X , this can be modeled topologically. The quotient of the universal left
G-space EG by N is a model for BN on which Q acts. More generally, for the
left G-space X , the Borel construction (X)hN = EG×N X inherits a left Q-action
defined by q[e, x] := [ge, gx] for q = Ng = gN .

Let ε∗(G) be a projective resolution of k over k[G]. Then Homk[N ](ε
∗(G), D∗) is

the algebraic Borel construction from [AP93, Section 1.2] extended to extensions.
To connect to the topological Borel construction, note that for C∗ = Homk(C∗, k),
i.e., the cochain complex of the singular chain complex C∗ = C∗(X ; k), we have:

Homk[N ](ε
∗(G),HomF(C∗, k)) ∼= Homk(ε

∗(G) ⊗k[N ] C∗, k)

In Proposition 2.7, we have equipped Ext∗k[N ](k,D
∗) with a Q-equivariant action

by the group cohomology Ext∗k[N ](k, k) = H∗(BN ; k) using Yoneda composition.
Alternatively, the action can be defined with cup products using a diagonal ap-
proximation as in [AP93]; see [Ben98, Lemma 3.2.3]. We used Yoneda composition
since this description makes clear that the action only depends on the structure of
k[N ] as an augmented k-algebra and thus does not depend on the comultiplication
of the Hopf algebra structure.

If the N -action on X is free, then H∗(X/N ; k) ∼= H∗(EG ×N X ; k) and the
H∗(BN ; k)-action agrees with the action induced by H∗(−; k) applied to the clas-
sifying map f : X/N → BN .

Lemma 8.1. Let X be a finite A4-CW complex with four-dimensional cohomology
H∗(X ;F2) such that the restriction of the A4-action to P = Z/2 × Z/2 is free.
Then the kernel of H∗(BP ;F2) → H∗(X/P ;F2) is a Steenrod closed, C3-invariant
parameter ideal.

Proof. Let C∗ = C∗(X ;F2) be the cellular cochain complex of X and J the an-
nihilator ideal of Ext∗

F2[P ](F2, C
∗). Then J is C3-invariant by Proposition 2.7

and a parameter ideal by Proposition 4.3. Since the H∗(BP )-module structure
of H∗(X/P ) ∼= Ext∗

F[P ](F, C
∗) is induced by a ring homomorphism H∗(BP ) →

H∗(X/P ), the annihilator ideal J is the kernel of this homomorphism. The ring
homomorphism is induced by a map of spaces and thus commutes with Steenrod
operations. Hence J is closed under Steenrod operations. �

Theorem 8.2. If there exists a finite, free A4-CW complex X with four-dimensional
total cohomology H∗(X ;F2) with a basis in degrees 0 ≤ m ≤ n ≤ t, then its cellular
cochain complex is determined by m and n up to homotopy.

Proof. By Corollary 6.6 for F = F2, the cellular cochain complex C∗ := C∗(X ;F2)
is determined by just its corresponding parameter ideal J ⊂ H∗(BP ) for P =
Z/2× Z/2 since for spaces the lowest degree l with nonzero homology is l = 0 and
every one-dimensional C3-representation over F2 is trivial.

Since C∗(X ;F2) is a finite, free F2[A4]-cochain complex, the parameter ideal
J has a C3-invariant parameter x by Theorem 7.8. Over F2, the graded two-
dimensional representation J/(x1, x2)J has to be trivial. Thus we can also find a
second C3-invariant parameter y using the Reynolds operator (as in the proof of
Theorem 7.8). Let J ′ ⊂ H∗(BP )C3 be the ideal generated by x, y ∈ H∗(BP )C3 =
H∗(BA4). In particular, J is the extension of J ′ toH∗(BP ). Then J ′ is a parameter
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ideal; see [RSY22, Lemma 2.3]. The ideal J is Steenrod closed by Lemma 8.1 and
so is J ′ by [RSY22, Lemma 2.8].

Finally, [RSY22, Corollary 6.13] states that there is at most one Steenrod closed
parameter ideal in H∗(BA4) with parameters in degrees m+ 1, n+ 1. �

Theorem 8.2 does not hold for P = Z/2× Z/2 instead of A4.

Example 8.3. Let P = Z/2× Z/2. Consider the product action of the antipodal
actions on X = S2 × S3. Then the cohomology ring of the quotient is

H∗(RP 2 × RP 3;F2) ∼= F2[x1, x2]/(x
3
1, x

4
2).

Thus the corresponding parameter ideal of the cellular cochain complex of X is
(x3

1, x
4
2). On the other hand, Oliver [Oli79] constructed a free A4-action on S2 ×

S3. The only Steenrod closed parameter ideal in H∗(BA4;F2) with parameters of
degrees 3 and 4 is (x1x2(x1 + x2), x

4
1 + (x1x2)

2 + x4
2). Its extension to F2[x1, x2]

classifies the cochain complex of the restriction from A4 to Z/2 × Z/2. Since the
two ideals are different, the cellular cochain complexes of the two P -actions are
not homotopy equivalent. Note that the product action can not be extended to an
A4-action since the corresponding parameter ideal is not C3-invariant.

We do not know if rigidity holds topologically.

Question 8.4. Given two finite, free A4-CW complexes homotopy equivalent to
Sm × Sn. Are they A4-equivariantly homotopy equivalent?
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