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Machine learning interatomic potentials (MLIPs) have become a workhorse of modern atomistic
simulations, and recently published universal MLIPs, pre-trained on large datasets, have demon-
strated remarkable accuracy and generalizability. However, the computational cost of MLIPs limits
their applicability to chemically disordered systems requiring large simulation cells or to sample-
intensive statistical methods. Here, we report the use of continuous and differentiable alchemical
degrees of freedom in atomistic materials simulations, exploiting the fact that graph neural net-
work MLIPs represent discrete elements as real-valued tensors. The proposed method introduces
alchemical atoms with corresponding weights into the input graph, alongside modifications to the
message-passing and readout mechanisms of MLIPs, and allows smooth interpolation between the
compositional states of materials. The end-to-end differentiability of MLIPs enables efficient cal-
culation of the gradient of energy with respect to the compositional weights. Leveraging these
gradients, we propose methodologies for optimizing the composition of solid solutions towards tar-
get macroscopic properties and conducting alchemical free energy simulations to quantify the free
energy of vacancy formation and composition changes. The approach offers an avenue for extending
the capabilities of universal MLIPs in the modeling of compositional disorder and characterizing the
phase stabilities of complex materials systems.

I. INTRODUCTION

Atomistic simulations are a cornerstone of computa-
tional modeling of the dynamic behavior of materials.
Achieving predictive and efficient simulations necessi-
tates a balance between the quality and cost of the
description of interatomic interactions and exhaustive
sampling to achieve converged thermodynamic averages.
Density functional theory (DFT) calculations are typi-
cally taken as a gold standard for accuracy in materials
simulations. Ab initio molecular dynamics (AIMD) sim-
ulations [1] propagate dynamics using these high-quality
DFT forces, but their high computational cost limits scal-
ability. Machine learning interatomic potentials (MLIPs)
[2, 3], trained on electronic structure calculation results,
offer a low-cost alternative to DFT energies and forces
in MD. Beginning from the seminal works of the Behler–
Parrinello network [4] and GAP [5], various architectures
of MLIP have been proposed to offer a selection within a
trade-off between accuracy and speed, such as SchNet [6],
PaiNN [7], NequIP [8], Allegro [9], MACE [10, 11], and
CACE [12]. Recently, universal MLIPs, such as M3GNet
[13], CHGNet [14], and MACE-MP-0 [15], have emerged,
providing atomistic modeling capabilities across a sub-
stantial portion of elements in the periodic table and
their combinations. All these models are trained on DFT
energies and gradients extracted from a large-scale ma-
terials database such as the Materials Project [16]. The
benchmark results [17, 18] demonstrate that they offer
high-fidelity modeling of atomic interactions and phonon
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dispersion, thereby serving as reliable “foundation mod-
els” in the context of downstream atomistic simulation
applications.

While interatomic potentials are primarily intended to
operate on atomic positions with fixed elemental iden-
tities, it is intriguing to consider their alchemical de-
grees of freedom, wherein the elemental identities can be
altered continuously. In the realm of electronic struc-
ture methods, von Lilienfeld and colleagues have pio-
neered the molecular grand-canonical ensemble DFT and
have advanced subsequent lines of research on alchemi-
cal transformations, which enable the alteration and op-
timization of chemical compositions [19–23]. From the
standpoint of MLIPs, Ceriotti and colleagues introduced
an alchemical compression scheme based on an atom-
centered density framework and applied the approach to
model high-entropy alloys [24–26]. They demonstrated
that compressing the representation of physical elements
onto low-dimensional subspaces of pseudoelements en-
ables efficient modeling of compositionally complex sys-
tems and interpolation to elements not encountered dur-
ing training. While continuous representations of ele-
ments correspond to atomic embeddings in graph-based
MLIPs, most universal MLIPs typically use much higher-
dimensional atomic embeddings to ensure that the model
is sufficiently expressive. Since models are only trained
with discrete atom identities, it is challenging to identify
meaningful submanifolds of elemental embeddings to in-
terpolate elements or project gradients, as seen in the
context of molecule design with pre-trained MLIPs [27].
On the other hand, simple linear interpolation of embed-
dings for modeling compositions may lead to unphysical
outputs.

Alchemical changes are of particular importance in free
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energy simulations [28, 29]. Free energy simulations are
widely used to characterize the finite-temperature sta-
bilities of solid phases [30, 31], and automatic protocols
have been developed accordingly [32]. However, while al-
chemical free energy calculations are widely used to study
protein–small molecule interactions [33], their applica-
tions in materials systems are limited. This would be
largely due to the challenge of parametrizing interatomic
potentials for systems with three or more elements. No-
tably, Jinnouchi et al. [34] introduced a thermodynamic
integration (TI) method to compute the chemical poten-
tials of liquid Si and LiF in H2O by smoothly turning on
or off interactions between atoms in kernel-based MLIPs
through alchemical switching.

With the advent of universal MLIPs, the challenge of
fitting potentials for systems containing multiple types
of elements has been alleviated, and they provide rea-
sonable accuracy for dynamics around equilibrium ge-
ometries. Thus, it is timely to consider the applica-
tion of universal MLIPs to facilitate free energy simu-
lations along alchemical pathways. In this work, build-
ing upon the prototypical construction of graph-based
MLIPs, we access the hitherto hidden alchemical degrees
of freedom inherent in MLIPs. Rather than altering
the continuous embeddings of individual atoms, we aug-
ment the input graph structure by introducing alchem-
ical atoms, each associated with its respective composi-
tional weight. Through subsequent modifications to the
message passing scheme and energy readout, our scheme
provides smooth interpolation between different composi-
tional states of materials. Moreover, given the end-to-end
differentiability with respect to the alchemical weights
λ, it facilitates the calculation of the alchemical gradi-
ent of the energy ∂H/∂λ and subsequently the calcula-
tion of the free energy of the alchemical transformation.
In addition, we explore the application of alchemical in-
termediate states with mixed compositions in creating a
computationally efficient description of solid solutions.

II. RESULTS

A. Alchemical graph and message passing

Prototypical MLIP construction. Our objective
here is to introduce modifications to the non-learnable
parts of the MLIPs so that we can model the alchemical
compositions of materials without further fine-tuning the
models. First, we start by introducing the prototypical
construction of graph-based MLIPs. An atomic system
is represented as a graph G = (V, E) with an atom as
a node i ∈ V and an atom pair within a defined cutoff
distance as an edge (i, j) ∈ E [35, 36]. Each element Zi

is embedded into a continuous vector zi, which is then

used to initialize node features h
(0)
i . Edge features eij are

derived from the relative displacements rij . The input
is then passed through the layers of the graph neural
network with a message-passing mechanism [37–39]. In

layer t, a message m
(t)
i is constructed by pooling the

message contributions over the neighboring nodes as

m
(t)
i =

∑

j∈N (i)

Mt

(
h
(t)
i ,h

(t)
j , eij

)
, (1)

where each contribution is computed from the hidden
node features and the edge feature by a message function
Mt. The messages are then used to update the node
features:

h
(t+1)
i = Ut

(
h
(t)
i ,m

(t)
i

)
, (2)

where Ut is an update function. Finally, a readout func-

tion R transforms the final node features h
(T )
i into the

node energies, which are summed over the entire node
list to give an estimate of the potential energy as

E =
∑

i∈V
R
(
h
(T )
i

)
. (3)

This is a minimal prototype of MLIPs, and the state-
of-the-art models use various additional mechanisms to
enhance the expressivity to improve the fit to the training
data. Although the alchemical modifications introduced
in this work are based on this prototype, it can easily be
integrated with such mechanisms, as further detailed in
Sec. IV.
Alchemical modification. We now introduce the

modifications to the input graph and the architecture of
the MLIP model to allow the modeling of composition-
ally mixed structures with partial occupancies of atoms.
The main idea is to augment the original graph with
alchemical parts, creating an extra group of atoms or
nodes for each compositional state to be modeled, and to
modify the message passing scheme to keep it consistent
with the baseline MLIP. First, we define the alchemi-
cal weights λ = {λα}kα=1 to assign the weights to each
compositional state. For example, if we are modeling
the mixed structure of LiCl, NaCl, and KCl with 20%,
30%, and 50% weights, respectively, the weights would
be λ = [0.2, 0.3, 0.5].

Now, we define an alchemical graph G̃ = (Ṽ, Ẽ) as an
extension of an original graph G = (V, E). For the previ-
ous example, we assume that we have an original graph
representing the NaCl crystal structure. The construc-
tion is independent of the original elemental identities
of the alchemical atoms, and only the atomic positions
will be inherited. Each node in an alchemical graph is
identified by a pair of indices, the original atom index i
and the alchemical index α, and denoted by (i, α) ∈ Ṽ.
All non-alchemical atoms (e.g., Cl), for which the el-
ement remains the same for all compositional states,
are assigned with α = 0, and the corresponding weight
λ0 = 1. Alchemical atoms are split into multiple nodes
according to their compositional states (Fig. 1a). For
example, the Na atom i in the original graph is split
into three nodes (i, 1), (i, 2), and (i, 3), with elements
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FIG. 1. Alchemical modification scheme for machine learning interatomic potentials. (a) Alchemical graph aug-
mentation: The relevant original atoms are split into alchemical atoms with different elemental identities, which are associated
with alchemical weights λi. (b) Alchemical message passing: At the message aggregation step (equation (6)), each message
contribution from neighboring atoms is weighted according to the asymmetric weighting scheme in equation (5). Only the
weights from alchemical to non-alchemical atoms are weighted according to the alchemical weights of the source atoms to
ensure consistency with the message-passing scheme in the original graph. (c) Alchemical energy readout: The energy contri-
butions from the alchemical atoms are weighted according to their respective alchemical weights.

(Z(i,1), Z(i,2), Z(i,3)) = (Li,Na,K). As such, the node fea-
tures for alchemical atoms will be initialized with respec-
tive elemental embeddings. Then, we assign an alchemi-
cal weight λα to node (i, α). All other features, such as
the positions of the atoms, are inherited from the original
graph, e.g., r(i,α) = ri.
Edges are connected between the alchemical graph

nodes as in the original graph when either any the two
endpoint nodes is non-alchemical (with weight index 0),
or both nodes are in the same alchemical state (have the
same weight index), i.e.,

Ẽ = {((i, α), (j, β)) | (i, α), (j, β) ∈ Ṽ ∧ (i, j) ∈ E
∧ (α = 0 ∨ β = 0 ∨ α = β)}. (4)

This is in line with the “dual topology” paradigm widely
utilized in the alchemical free energy literature [40–42],
in which the atoms in the different alchemical states geo-
metrically coexist but do not interact directly with each
other. To model the scaled interaction between atoms in
the alchemical graph, we introduce edge weights to scale
the message contributions. Aldeghi and Coley [43] have
proposed a similar idea in which they model the different
topological assemblies of polymers by weighted (stochas-
tic) edges between linkage atoms in monomers. Here, we
use an asymmetrical weighting scheme given as

ωαβ =

{
λβ if α = 0 ∧ β ̸= 0

1 otherwise,
(5)

i.e., only the message contributions from alchemical
atoms to non-alchemical atoms are weighted by the al-
chemical weight of the source atom. This choice is based
on the observation depicted in Fig. 1b. Since we are

extending the original MLIP for alchemical compositions
without modifying the learnable functions, we should en-
sure that the message passing is consistent with original
graphs where all edge weights are implicitly 1. Accord-
ing to the expansion of alchemical atoms and the edge
connection scheme, only the message passing from an al-
chemical atom to a non-alchemical atom is split into mul-
tiple pathways with respective alchemical node weights.
Therefore, we utilize the alchemical node weights as the
edge weights in this case, and the message aggregation
scheme is modified from equation (1) as the weighted sum
of the message contributions:

m
(t)
(i,α) =

∑

(j,β)∈Ñ ((i,α))

ωαβMt

(
h
(t)
(i,α),h

(t)
(j,β), eij

)
. (6)

Finally, the readout for energy prediction (equa-
tion (3)) is modified as a weighted pooling of alchemical
node contributions (Fig. 1c):

E =
∑

(i,α)∈Ṽ

λαR
(
h
(T )
(i,α)

)
. (7)

Note that the same Mt and R functions as in equa-
tions (1) and (3) are used, i.e., no trainable weights are
modified. This modification scheme ensures two essential
consistencies with the original MLIP scheme. First, when
all of the alchemical elements are the same (Z(i,α) = Zi)
for each original atom and the alchemical weights sum

up to 1 (
∑k

α=1 λα = 1), the predicted potential energy
is the same with the original graph. Second, when only
one of the alchemical weights is 1 (λα = 1), and the oth-
ers are zero, the predicted potential energy is also the
same as in the original graph with an elemental composi-
tion corresponding to Zα. These two consistencies in the
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limiting cases ensure the correct interpolation between
compositional states, and although the argument here is
based on the prototypical MLIP, the consistencies still
hold when adapted to other architectures, as detailed in
Sec. IVA and Supplementary Information. We addition-
ally explore alternative interpolation methods, including
embedding interpolation, and compare their ability to
interpolate the MLIP energy output in Supplementary
Information.

B. Representation of solid solution

Lattice parameters. First, we investigate whether
our representation of a mixture of compositional states
can be used to model solid solutions and to optimize their
properties with respect to composition. Although many
crystal properties can be tuned by the design choice of
solid solutions [46], here we will use lattice parameters
to probe the modeling ability. Empirically, the lattice
parameters of solid solutions can be approximated by
linear interpolation of those of constituent pure crystals
with the corresponding compositional weights, as stated
by Vegard’s law [47, 48]. Nevertheless, there are sys-
tems that exhibit significant positive or negative devia-
tion from this idealized linear behavior, and we assess
whether the proposed method is able to predict such
trend.

First, the cell parameter for cubic Ce1–xMxO2 solid
solution exhibits linear behavior to x when M = Zr, but
shows a positive deviation with a kink for M = Sn [44].
We modeled this solid solution starting from the CeO2

structure (Fig. 2a), splitting the Ce atoms into two al-
chemical states, Ce with weight 1− x and Zr or Sn with
weight x, and optimizing the zero-temperature cell pa-
rameters by relaxing the unit cell. The alchemical scheme
adapted for the universal MACE-MP-0 model [15] gives
the correct linear behavior for M = Zr, and successfully
identifies the positive deviation for M = Sn (Fig. 2b)
although it fails to predict the kink. Further, we also
model orthorhombic BiSX1–xYx (X, Y = Cl, Br, I) solid
solutions, for which the lattice parameters a (positive)
and c (negative with a local minimum) exhibit devia-
tions from linearity [45]. We start from BiSBr structure
(Fig. 2a) and split the Br atoms into three alchemical
atoms of Cl, Br, and I. The cell parameters are opti-
mized with respective alchemical weights. For example,
the BiSCl1–x Ix structure will have alchemical weights of
λ = (1−x, 0, x). The alchemical scheme with the MACE
model correctly identifies the positive and negative devi-
ations for a and c, respectively, for X = Cl and Y = I
(Fig. 2c). In particular, while the parameter c is much
larger than the experimental values (due to the inher-
ent error in the original MLIP, itself likely arising from
the underbinding nature of the PBE functional used to
create the training data), the composition for the local
minimum (x ≈ 0.2) is accurately predicted. Although
there is no direct correspondence between the alchemical

weights and the stoichiometry of the solid solution, these
results indicate that the representation developed here
offers greater predictive accuracy compared to the naive
estimate from Vegard’s law. It is important to note that
the current method assumes infinite disorder and thus ne-
glects the effect of ionic ordering. In addition, because all
the alchemical atoms are co-located in the position of the
parent atom, the potential discrepancies among the frac-
tional coordinates of substituent alchemical atoms are
not taken into account.

Compositional optimization. Most MLIPs are de-
signed to be end-to-end differentiable in order to obtain
atomic forces and stress as gradients of the potential en-
ergy with respect to the positions ri and the strain tensor
ϵ, i.e., Fi = −∂E/∂ri and σ = V −1∂E/∂ϵ where V is
the volume of the system. Gradient calculations are per-
formed efficiently through the backward pass generated
by automatic differentiation [49]. With our additional
continuous representation of compositional states, the al-
chemical weights λ, we can also compute the gradients of
the energy with respect to the composition ∂E/∂λ. Since
the potential energy is defined up to constant, physically
meaningful optimization targets are, in general, given by
the energy difference or the gradient of the energy with
respect to some system variables.

First, we consider a simple model: a solid solution of
three alkali metal chlorides, LiCl, NaCl, and KCl. We
fix the fractional coordinates of each atom and consider
the cubic lattice constant as a function of alchemical
(or compositional) weights of Li, Na, and K. To find a
composition that matches a target lattice constant, we
can enumerate a grid of compositions and relax the cell
dimensions at each fixed composition to probe lattice
constants over the compositional space (Fig. 3a, left).
However, instead of this direct method, we can consider
that the stress is minimized for the optimized structure
and composition. Since our scheme is end-to-end differ-
entiable, we can calculate the gradient of absolute hy-
drostatic stress |trσ|/3 with respect to the composition
where the lattice constant is fixed to the target value
(Fig. 3a, right). Then, the optimal composition could be
found by performing a gradient descent on the composi-
tional space, offering a different approach to the design
problem. This is more efficient because only a single
gradient-based compositional optimization is required.
In this case, since the size of Na is between Li and K,
multiple optimal compositions exist on the compositional
space.

Now, we apply this to a more realistic example, where
we want to find the “lattice-matching” composition for
solid solutions Al1–xScxN and Al1–xYxN with GaN. The
lattice-matched composition would facilitate the epitax-
ial growth of such solid solutions on the GaN substrate
[50]. The objective is to determine a composition x for
each solid solution such that the cell parameter a of the
lattice matches the value for the GaN structure. Al-
though GaN and AlN possess a hexagonal lattice (space
group P63mc), pure YN and ScN have a cubic lattice
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FIG. 2. Lattice parameters for solid solutions. (a) The starting structures, CeO2 and BiSBr, for solid solutions. (b)
Lattice parameter a for Ce1–xMxO2 (M = Zr, Sn) as a function of the compositional weight x. (c) Lattice parameters a, b, and c
for BiSX1–xYx (X, Y = Cl, Br, I) as a function of x. The upper panels are the result of the alchemically modified MACE-MP-0
medium model [15], and the lower panels are the experimental results from [44] and [45] for (b) and (c), respectively.

(space group Fm3m), which means that one cannot
simply interpolate between the cell parameters of the
constituent compounds to infer those of solid solutions.
Here, we fix the cell parameter a for the hexagonal lat-
tice, and we optimize the relevant stress components with
respect to the cell parameter c as well as the Al/Sc or
Al/Y composition (see Sec. IVB) because the doped AlN
would result in different c/a ratio. Results in Fig. 3b
show that the optimized compositions are x ≈ 0.1 (Y)
and x ≈ 0.2 (Sc), and are in good agreement with the
forward scan result, where the relaxed cell parameters
are measured while scanning for various x values. Fur-
thermore, we created a 4 × 4 × 4 supercell of AlN and
randomly switched some Al atoms to Sc or Y atoms to
match the target composition and measured the unit cell
parameters. These results match well with the scan re-
sults over alchemical unit cell compositions, which indi-
cates that the methodology in the current work can also
be regarded as a computationally efficient compact rep-
resentation of the supercell with compositional disorder.

C. Free energy calculations

Free energy calculations. Here, we utilize the
nonequilibrium switching method, where the Hamilto-
nian depends on a progression parameter λ ∈ [0, 1] so
that it interpolates between the initial Hamiltonian Hi =
H(λ = 0) and the final Hamiltonian Hf = H(λ = 1). As-
suming the NVT ensemble, the reversible work is given
via the TI equation [51]:

∆F = W rev
i→f =

∫ 1

0

dλ

〈
∂H

∂λ

〉

λ

. (8)

We now consider a finite-time process in which λ is
switched from 0 at time ti to 1 at time tf. The irreversible

work done by switching the Hamiltonian is

W irrev
i→f =

∫ tf

ti

dt
dλ

dt

∂H

∂λ
= W rev

i→f + Ediss
i→f , (9)

where Ediss
i→f is the dissipated energy. In a linear-response

regime, it can be shown [52, 53] that the dissipated energy
for the forward and backward path is the same when
averaged over the transition path ensemble, i.e.,

Ediss = Ediss
i→f = Ediss

f→i =
1

2

(
W irrev

i→f +W irrev
f→i

)
. (10)

Then, the free energy difference can be computed as

∆F =
1

2

(
W irrev

i→f −W irrev
f→i

)
. (11)

Often, the Hamiltonian is parametrized by the lin-
ear interpolation of the two endpoints, i.e., H(λ) =
(1−λ)Hi+λHf, to simplify the calculation of the gradient
term ∂H/∂λ in equations (8) and (9): ∂H/∂λ = Hf−Hi.
However, we note that in our case, the system Hamil-
tonian can be parametrized by the alchemical weights,
and ∂H/∂λ can be calculated straightforwardly using au-
tomatic differentiation [49] on the MLIP. This method
proves to be more efficient than linear interpolation as it
obviates the need to repeat calculations for non-changing
atoms. We compare computational efficiencies and the
resultant free energy calculations in Supplementary In-
formation.
Free energy of vacancy formation. Accurate eval-

uation of the free energy of a point defect is important
for characterizing its thermodynamic stability [54]. Here,
we calculate the Gibbs free energy of vacancy defined as

Gv = Gdefect −
N − 1

N
Gperfect, (12)

where Gdefect and Gperfect are the Gibbs free energies of
crystal with and without a point defect, and N is the
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b

a

GaN, AlN

hexagonal

YN, ScN

cubic

FIG. 3. Compositional optimization. (a) Lattice pa-
rameter optimization for solid solutions of LiCl, NaCl, and
KCl. The left panel shows the lattice parameters obtained
by relaxing the cell geometry at each compositional weight,
and the right panel shows the absolute hydrostatic stress val-
ues obtained by fixing the cell dimension to that of NaCl.
Because the energy output is end-to-end differentiable with
respect to the alchemical weights, the gradient of the stress
with respect to the composition could be computed (black
arrows in the right panel), which enables the optimization of
the composition to match the given cell dimensions. (b) The
optimization for the lattice-matching condition for solid solu-
tions Al1–xScxN and Al1–xYxN with GaN. The most stable
polymorph structures are shown on the left. The plot on the
right shows the cell dimension a obtained by optimizing for
each compositional weight (Scan), calculated from the corre-
sponding supercell (Supercell), and the compositional weights
optimized by gradient descent to match the a value for GaN
(Optimized). All results are obtained using the alchemically
modified MACE-MP-0 medium model [15].

number of atoms in the perfect crystal. Because the va-
cancy diffuses at high temperatures, it is common to first
evaluate the Gibbs free energies at low temperatures in
which the vacancy is fixed at one site [55] and extend the
calculation by considering the temperature dependence
of Gibbs free energy [56]. Hence, we will focus on deter-
mining the Gibbs free energy of vacancy in BCC iron at
low temperatures and compare the result with Gibbs free
energies determined using the Frenkel–Ladd path [57],
which is commonly used in nonequilibrium calculations
[32, 53]. In the Frenkel–Ladd path, the crystal struc-
ture is switched from and to a system of independent
harmonic oscillators with the same equilibrium positions
(the Einstein crystal), for which we can calculate the ex-
act free energy. See Sec. IVC for more details on the
reference calculation.

We introduce a new alchemical path for determining

a

b

Perfect
crystal

Crystal with
defect

point mass
attached to spring

original atom

vacancy

dc

FIG. 4. Free energy of vacancy formation in BCC
iron. (a) Transformations used to determine the Gibbs free
energy of the perfect crystal and the crystal with a defect. The
alchemical pathway used here transforms the perfect crystal
into the crystal with a defect and a single atom attached to a
spring to avoid diffusion. (b) The intermediate state param-
eterized by λ for the alchemical pathway in (a). The atom to
be removed is assigned an alchemical weight of 1−λ, and the
energy of the harmonic oscillator is scaled by λ. (c) The free
energy of vacancy (equation (12)) computed by the Frenkel–
Ladd path and alchemical path. (d) Statistical efficiency for
the Frenkel–Ladd paths and alchemical path at 100 K against
the switching time. Upper panel shows the deviation of Gibbs
free energy from the reference value at the longest switching
time (60 ps), and the lower panel shows average dissipated
energies (equation (10)).

the free energy of vacancy, as depicted in Fig. 4a. While
the previous examples of our method were restricted to
cases where

∑
α λα = 1, we can lift this restriction to

create or annihilate atoms in a system alchemically. In
this case, we assign alchemical weight λ1 = 1− λ to the
atom in the vacancy site and switch the weight from 1
to 0 (λ from 0 to 1) over the simulation to make it con-
tinuously disappear from the system. At the same time,
we add the harmonic oscillator term to the atom position
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with weight λ, so that through the alchemical conversion
from λ = 0 to 1 transforms the perfect crystal into a
crystal with defect and a harmonic oscillator (Fig. 4b).
Through nonequilibrium switching simulations, we can
obtain the alchemical free energy difference ∆GAL (equa-
tion (21)). We now compare the free energy of vacancy
(equation (12)) obtained from both Frenkel–Ladd cal-
culations (GFL

defect and GFL
perfect) and with alchemical free

energy calculations (∆GAL and GFL
perfect).

The results in Fig. 4c show that Gv calculated by the
proposed alchemical free energy method is comparable
to that from the reference Frenkel–Ladd calculations,
while offering more consistent results with much smaller
standard deviations when using the same switching time
steps. We further investigate the statistical efficiency of
the switching paths at 100 K by evaluating the conver-
gence of ∆G, taking the longest switching time result as
its reference, as well as the dissipated energy Ediss (equa-
tion (10)) in Fig. 4d. The alchemical pathway offers much
faster convergence, with minimal average energy devia-
tions (< 0.02 meV/atom) from the reference value, even
at a very short switching time of 2 ps (1,000 MD steps).

Alchemical free energy calculations. Now, we
examine the effectiveness of the proposed alchemical
scheme in the calculation of alchemical free energy dif-
ference associated with the change in the elemental iden-
tities of the atoms. We use halide perovskites CsPbI3
and CsSnI3 as our model system, which have been stud-
ied using MLIPs (e.g., [58]) and classical force fields (e.g.,
[59, 60]). Both CsPbI3 and CsSnI3 exhibit three photoac-
tive perovskite phases, α (cubic, Pm3m), β (tetragonal,
P4/mbm), and γ (orthorhombic, Pnma), in decreasing
order of temperature window of stability. However, they
also possess a photoinactive non-perovskite polymorph, δ
(orthorhombic, Pnma), which is the most stable phase at
room temperature [61]. Here, we analyze the difference
in the relative stabilities of α and δ phases (the thermo-
dynamic cycle in Fig. 5a). The direct computation of
the free energy of phase transformation, ∆GPb,α→δ and
∆GSn,α→δ, may require enhanced sampling simulations
with tailored collective variables or nonequilibrium simu-
lations (the Frenkel–Ladd paths) with longer simulation
time until convergence. The alchemical path enables the
calculation of ∆Gα,Pb→Sn and ∆Gδ,Pb→Sn. Since the two
types of free energy differences are linked by

∆∆G = ∆Gδ,Pb→Sn −∆Gα,Pb→Sn

= ∆GSn,α→δ −∆GPb,α→δ, (13)

we can compute the difference in the relative stability
of phases upon compositional changes, or we can calcu-
late either of the free energies of phase transformation if
another is already known.

For the alchemical free energy simulation, starting
from the CsPbI3 structure, the Cs and I atoms remain as
non-alchemical atoms, and the Pb atoms are divided into
alchemical atoms, Pb and Sn, with alchemical weights
λ1 = 1 − λ and λ2 = λ. Then, switching λ from 0 to

b

a

c

Cs
I

FIG. 5. Alchemical free energy simulations. (a) The
thermodynamic cycle considered in this work, consisting of
α and δ phases of CsPbI3 and CsSnI3. (b) Upper panel:
the alchemical free energy of Pb → Sn conversion in both
phases, plotted against the simulation temperature. Lower
panel: the ∆∆G values (equation (13)) computed from the
results in the upper panel. The deviations between the two
methods at lower temperatures result from the phase trans-
formation between the perovskite phases. (c) Statistical ef-
ficiency for the Frenkel–Ladd paths and alchemical path of
CsPbI3 to CsSnI3 transformation for α phase, plotted against
the switching time. Upper panel shows the deviation of Gibbs
free energy from the reference value at the longest switching
time (60 ps), and the lower panel shows average dissipated
energies (equation (10)).

1 continuously transforms the CsPbI3 structure into the
CsSnI3 structure. Refer to Sec. IVC for more details on
the alchemical free energy calculation settings and result
analysis required to obtain the Gibbs free energies.

First, we compare the Gibbs free energy of composi-
tional change from two methods: ∆GAL

α/δ,Pb→Sn from the

alchemical path and ∆GFL
α/δ,Pb→Sn = GFL

α/δ,Sn − GFL
α/δ,Pb

from the Frenkel–Ladd path for each composition. The
results in Fig. 5b indicate that the two calculation results
coincide well except for the slight deviation in the α phase
for temperatures lower than 400 K. The deviation may
occur from the phase transformation between perovskite
phases of CsPbI3 (i.e., α → β). The Frenkel–Ladd path is
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simulated using a fixed cell (NVT), whereas the alchem-
ical path is simulated in the more relevant NPT ensem-
ble, in which phase transformations can occur. Given
that the β phase is more stable than the α phase for
CsPbI3 at low temperatures, ∆GAL

Pb→Sn is expected to
be larger than ∆GFL

Pb→Sn, as in Fig. 5b. The calculation
of ∆∆G (equation (13)) also shows that the two results
are well matched at higher temperatures, while the al-
chemical path provides smaller standard deviations from
multiple runs.

Similarly to the previous example, we analyzed the
convergence of the Gibbs free energy and the energy dis-
sipation for the alchemical path for the α phase at 400 K
by changing the switching time for nonequilibrium sim-
ulations. Fig. 5c shows that, similar to the previous re-
sult, the alchemical path provides much faster conver-
gence than the Frenkel–Ladd path. This result confirms
that the phase space overlap between the two same phase
structures with different compositions is much more sig-
nificant than that between the atomic structures and the
Einstein crystals, which enables much more efficient free
energy simulations.

III. DISCUSSION

The alchemical modification of MLIP introduced in
this work allows a smooth interpolation between struc-
tures with two or more different compositions. Building
upon a prototypical construction of MLIP, we modified
the input graph, message passing scheme, and readout
layers to alchemically weight the different compositional
states. Although this modification can be generalized
to various classes of MLIPs, it is particularly efficient
when integrated with MACE because of its construc-
tion of many-body features from two-body messages (see
Sec. IVA).

We first applied the scheme to the modeling of solid
solutions. Although there is no theoretical relationship
between the stoichiometry and the alchemical weights,
the results showed that it could model the nonlinear de-
viations of cell parameters in some solid solutions. The
end-to-end differentiability of the model with respect to
the alchemical weights enabled the optimization of com-
position to match the desired cell parameters. Further-
more, the alchemical weights allow smooth creation or
annihilation of atoms, or the change in atom types, en-
abling the calculation of free energy differences between
two compositional states. We demonstrated that the free
energy of vacancy in BCC iron and the relative phase sta-
bilities of the α and δ phases of CsPbI3 and CsSnI3 could
be calculated much more efficiently than the widely uti-

lized Frenkel–Ladd path. It is worth noting that, unlike
the modeling of solid solutions, alchemical free energy
calculations conducted here are theoretically exact when
reaching convergence.
Overall, the proposed method enables efficient mod-

eling of composition-related properties with sufficient
consistency within the underlying MLIP. Beyond the
aforementioned lack of theoretical ground on the con-
nection between alchemical weights and stoichiometric
coefficients and convergence questions that are univer-
sal to thermodynamic integration methods, inaccuracies
emerge primarily from the MLIP. In particular, there are
two sources of error: (1) the discrepancies between the
MLIP and the DFT calculations and (2) the inaccuracy
of the underlying DFT calculations. Since most univer-
sal MLIPs are trained on the energies and derivatives
from the relaxation trajectory, the relative error around
the energy minima would be small. This implies that the
former error would also be small when performing free en-
ergy calculations for systems with a sufficient number of
similar structures in the materials database. Fine-tuning
the MLIP using the DFT data from relevant composi-
tional space would alleviate the former error. One can
also utilize free energy perturbation methods [62] to cal-
culate the free energy from a more accurate Hamiltonian
to reduce both types of errors. We also note that differ-
entiable simulations [63, 64] could be used to fine-tune
the MLIP to match either the cell parameters resulting
from the relaxation trajectory or the free energy differ-
ences from the MD simulations to their desired values,
to mitigate both sources of errors.
Beyond the applications demonstrated in this work,

we expect that the gradient of the physical observables
with respect to the composition or elemental identities
would hold particular importance to the generative mod-
eling of molecules and materials systems. We envisage
that further works, integrated with the discrete sampling
literature [65, 66], will utilize the alchemical degrees of
freedom in MLIPs for such modeling applications.

IV. METHODS

A. Architecture-specific modifications

In MACE, the atomic basisA
(t)
i is constructed by pool-

ing the two-body features over the neighbors as in equa-
tion (14a) (equation (8) in the original paper [10]). The
modification to message passing in equation (6) is im-
plemented by multiplying the edge weights ωαβ (equa-
tion (5)) to the summands of the message aggregation as
in equation (14b):
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A
(t)
i,kl3m3

=
∑

l1m1,l2m2

Cl3m3

l1m1,l2m2

∑

j∈N (i)

R
(t)
kl1l2l3

(rji)Y
m1

l1
(r̂ji)

∑

k̃

W
(t)

kk̃l2
h
(t)

j,k̃l2m2
, (14a)

A
(t)
(i,α),kl3m3

=
∑

l1m1,l2m2

Cl3m3

l1m1,l2m2

∑

(j,β)∈Ñ ((i,α))

ωαβR
(t)
kl1l2l3

(rji)Y
m1

l1
(r̂ji)

∑

k̃

W
(t)

kk̃l2
h
(t)

(j,β),k̃l2m2
. (14b)

The original readout mechanism is the sum of site ener-
gies over all the outputs of readout layers Rt(·) (equa-
tion (15a)). We implement the alchemical readout in
equation (7) as the weighted sum of alchemical site ener-
gies as in equation (15b):

E =
∑

i∈V
Ei =

∑

i∈V

T∑

t=0

Rt

(
h
(t)
i

)
, (15a)

E =
∑

(i,α)∈Ṽ

λαE(i,α) =
∑

(i,α)∈Ṽ

λα

T∑

t=0

Rt

(
h
(t)
(i,α)

)
. (15b)

B. Representation of solid solution

We used the MACE-MP-0 medium model [15] for the
experiments in Sec. II B. Fast Inertial Relaxation Engine
(FIRE) algorithm [67], as implemented in the Atomic
Simulation Environment (ASE) [68], was used to conduct
geometry relaxations under fixed composition.

For the optimization for “lattice-matching” composi-
tion for solid solutions Al1–xScxN and Al1–xYxN with
GaN, we used |σxx + σyy| as the optimization target to
find the matching condition for cell parameter a. We
used gradient descent with learning rates 0.01 and 0.005
for c and alchemical weights λ, respectively. We initial-
ized c with the value from the optimized GaN structure
and λ with [1, 0]. The gradient of λ was projected onto
the line λ1 + λ2 = 1 by subtracting the mean value at
each optimization step.

In general, when alchemical weights λ represent the
compositional states, the weights should add up to 1
and the individual weights should be non-negative, i.e.,
the weights are element of the compositional simplex

∆k−1 = {λ ∈ Rk | ∑k
α=1 λα = 1, λα ≥ 0}. We can

perform gradient-based constrained optimization for the
minimization target L(λ) on the simplex by utilizing the
exponentiated gradient descent method [69, 70] with the
update rule given as

λ(t+1)
α =

λ
(t)
α exp(−η · ∂L/∂λα)∑

β λ
(t)
β exp(−η · ∂L/∂λβ)

, (16)

where η is the learning rate.

C. Free energy calculations

We used the MACE-MP-0 small model [15] for the ex-
periments in Sec. II C. MD integrations are performed
with corresponding implementations in ASE [68], and
a time step of 2 fs was used. The characteristic time
scales of τT = 25 fs and τP = 75 fs were used for all
the thermostats and barostats, respectively. Each simu-
lation was initialized with energy minimization (with or
without the cell fixed) using the FIRE algorithm [67] and
sampling the momenta from the Maxwell–Boltzmann dis-
tribution at the given temperature. The center of mass
of the system was fixed for all MD simulations. For all
nonequilibrium simulations, we used the progress param-
eter scheduling of

λ(τ) = τ5(70τ4 − 315τ3 + 540τ2 − 420τ + 126), (17)

where τ = t/tswitch ∈ [0, 1] is the normalized switching
time progress. Instead of linear λ(τ) = τ , the scheme in
equation (17) was used because the slope dλ/dt vanishes
at both ends and reduces the energy dissipation [71]. All
free energy calculation results were averaged over four
statistically independent simulations, and their standard
deviations are reported as error bars in Figs. 4 and 5.
Frenkel–Ladd path. Here, we adapted the proce-

dure arranged in Menon et al. [32]. First, the system
was equilibrated for 60 ps under the NPT ensemble with
the pressure of P = 1 atm by the Berendsen thermo-
stat and barostat [72]. The average cell volume ⟨V ⟩ was
calculated during the last 40 ps of the simulation. The
spring constants for the Einstein crystal were estimated
from the mean-squared displacement (MSD) of the atoms
under the fixed system volume as ki = 3kBT/

〈
(∆ri)

2
〉

[53]. The fixed volume system was simulated for 100 ps
under the NVT ensemble by the Langevin thermostat
with γ = 1/τT [73], and the MSD values were computed
over the last 60 ps of the simulation. The MSD values
were averaged and reassigned to the symmetrically equiv-
alent atoms to reduce the variance before determining the
spring constants. Finally, a nonequilibrium simulation of
the Frenkel–Ladd path with the determined spring con-
stants was conducted under the NVT ensemble using the
Langevin thermostat. The system was equilibrated at
λ = 0 for 40 ps, switched from λ = 0 to 1 with the sched-
ule in equation (17) for 60 ps, equilibrated again at λ = 1
for 40 ps, and switched back from λ = 1 to 0 for 60 ps.

The Helmholtz free energy for independent harmonic
oscillators (Einstein crystal) with angular frequencies
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ωi = (ki/mi)
1/2 is given as

FE(N,V, T ) = 3kBT

N∑

i=1

ln

(
ℏωi

kBT

)
. (18)

Since the center of mass of the system is fixed, the fol-
lowing finite-size correction associated with the Frenkel–
Ladd path was applied:

∆FCM = kBT

[
ln

NWS

V
+

3

2
ln

(
2πkBT

N∑

i=1

µ2
i

ki

)]
,

(19)

where µi = mi/
∑N

i=1 mi and NWS is the number of
Wigner–Seitz cells in the system [74, 75]. Finally, the
Gibbs free energy was determined as

GFL(N,P, T ) = FE(N, ⟨V ⟩ , T ) + ∆F +∆FCM + P ⟨V ⟩ ,
(20)

where ∆F was calculated by equation (11) from the
nonequilibrium switching [32].

Free energy of vacancy. We used 5×5×5 supercell
of BCC iron (250 atoms). The iron atom at the center of
the supercell was removed to simulate the vacancy. We
determined the spring constant from the NVT simulation
of the perfect crystal and used the same spring constant
for both Frenkel–Ladd paths of the perfect crystal and
the crystal with vacancy and for the alchemical pathway
of switching the atom into a spring. All NPT simula-
tions were conducted under a pressure of 1 atm. Before
the alchemical switching process, the initial system was
equilibrated for 20 ps using the Berendsen thermostat
and barostat to reduce initial fluctuations in the cell vol-
ume. Then, the Nose–Hoover and Parrinello–Rahman
dynamics [76] were used to simulate the switching pro-
cess. The same λ scheduling for the Frenkel–Ladd path
was used, with equilibration and switching times of 40
ps and 60 ps, respectively. The alchemical free energy
change ∆GAL was determined using equation (11), and
satisfy the following relationship:

∆GAL = (Gdefect + Fspring)−Gperfect, (21)

where the free energy of spring Fspring could be computed
from equation (18) with N = 1.
Alchemical free energy calculations. We used

6× 6× 6 supercell for α-CsPbI3 and 6× 3× 3 supercell

for δ-CsPbI3. Both systems contain 1,080 atoms. For the
alchemical pathway, we used the same simulation proce-
dure as the alchemical pathway for the vacancy, under
a pressure of 1 atm. Additionally, we set the masses of
atoms as the weighted sum of masses of alchemical atoms,

i.e., mi(λ) = (1− λ)m
(i)
i + λm

(f)
i , through the switching

process. The alchemical free energy change was com-
puted as

∆GAL = ∆G+
3

2
kBT

N∑

i=1

ln

[
m

(i)
i

m
(f)
i

]
, (22)

where ∆G is computed using equation (11). The second
term on the right-hand side accounts for the change in
masses over the transformation and originates from ki-
netic energy contributions [32].

DATA AVAILABILITY

The initial structures used in this work are available
in the Materials Project [16], with the material IDs of
mp-20194 (CeO2), mp-23324 (BiSBr), mp-22851 (NaCl),
mp-804 (hexagonal GaN), mp-661 (hexagonal AlN), mp-
13 (BCC Fe), mp-1069538 (α-CsPbI3), and mp-540839
(δ-CsPbI3).

CODE AVAILABILITY

The code to reproduce this work is available on
GitHub: https://github.com/learningmatter-mit/
alchemical-mlip [77]. The result files for the free en-
ergy calculations are also available on Zenodo: https:
//zenodo.org/doi/10.5281/zenodo.11081396 [78].
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[77] J. Nam and R. Gómez-Bombarelli, learningmatter-
mit/alchemical-mlip: Initial release (2024).
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Supplementary Information for:
Interpolation and differentiation of alchemical degrees of freedom in

machine learning interatomic potentials

I. INTERPOLATION

A. Comparison of interpolation schemes

We investigate alternative interpolation schemes for
the asymmetric edge weight (equation (5) in the main
text) to compare their ability to interpolate the model
energy output. For simplicity, we consider interpolat-
ing between the two compositional states. First, we can
think of a symmetric edge weighting scheme ωαβ = λαλβ ,
which also satisfies the consistencies at both ends of the
alchemical interpolation where one of the weights is one,
and the other is zero. Alternatively, without creating ex-
tra alchemical atoms, we can change the atomic identities
in the input graph by linear interpolating their atomic
embeddings. The alchemical modifications in the main
text are retained for the symmetric scheme, and the orig-
inal MLIP architecture is used for embedding interpola-
tion. We revisit the examples in the main text and inter-
polate between NaCl–KCl and the α phases of CsPbI3–
CsSnI3. We used MACE-MP-0 medium and small mod-
els [1], respectively, and evaluated the energy of the sys-
tem during interpolation, as shown in Fig. S1.

As argued in the main text, since the asymmetric em-
bedding scheme satisfies the consistencies with the origi-
nal message passing, the resulting energy values are close
to the linearly interpolated energy values in both cases.
The two consistencies in the main text do not hold when
using the symmetric weighting scheme, which causes the
energy values to exhibit a significant positive deviation
during interpolation. Finally, since discrete elemental
embeddings would not lie in an affine subspace, a lin-
ear interpolation of atomic embeddings may go through

ba

FIG. S1. Comparison of various interpolation
schemes. Energy values obtained from different interpola-
tion schemes: asymmetric weighting (as in the main text),
linear interpolation of atomic embeddings, and symmetric
weighting, for the interpolation between (a) NaCl–KCl and
(b) the α phases of CsPbI3–CsSnI3.

TABLE SI. Computational efficiency for different al-
chemical interpolation schemes. Computation time per
step for the alchemical switching between α-CsPbI3 and
CsSnI3 structures under the NPT ensemble.

Supercell
size

Number of
atoms

Linear
[ms/step]

Alchemical
[ms/step] Speedup

3 × 3 × 3 135 36 20 1.80
4 × 4 × 4 320 45 28 1.62
5 × 5 × 5 625 83 48 1.73
6 × 6 × 6 1,080 120 76 1.58

unmeaningful embedding values, and this may cause sig-
nificant fluctuations (Fig. S1b). Furthermore, the occu-
pancy of the atom should be retained when only changing
the embeddings, so we cannot create or annihilate atoms
as we did to calculate the free energy of vacancy.

B. Alchemical vs. linear interpolation of energies

Here, we compare the proposed alchemical interpola-
tion scheme with a naive linear interpolation of endpoint
energies. While evaluating the linear interpolation would
require the evaluation of two input graphs correspond-
ing to both endpoints, we are introducing extra alchemi-
cal atoms and doing backpropagation to obtain alchemi-
cal gradients in the alchemical modification scheme. We
benchmarked both interpolation schemes on the alchem-
ical pathway between α-phase structures of CsPbI3 and
CsSnI3, as in the main text. For the alchemical scheme,
we are adding 20% more nodes (Pb or Sn) to the input
graph and evaluate the gradient with respect to three
variables (positions, strains, and alchemical weights); for
the linear scheme, we evaluate the gradient with respect
to two variables (positions and strains), but we compute
them twice (two endpoints) per each MD step. The time
taken per step for each scheme for various supercell sizes
using a single NVIDIA Volta V100 32GB GPU with 20
cores of an Intel Xeon Gold 6248 CPU are reported in
Table SI.
The results show that the alchemical scheme is more

efficient than the linear scheme, offering 1.6 to 1.8 times
the speedup. This is because most of the backward pass
for the alchemical gradient coincides with that of the
forces and stress. The extra overhead of backpropaga-
tion to the alchemical weights would be relatively small.
Furthermore, if three or more alchemical states were con-
sidered [2, 3], the alchemical scheme would be even more
relatively efficient.
Now, we assess whether the two interpolation schemes

offer comparable alchemical free energy calculation re-
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a

b

FIG. S2. Alchemical free energy simulation results
from different alchemical interpolation schemes. (a)
The alchemical free energy difference ∆GAL of Pb → Sn con-
version in α phase at 400 K and 1 atm and (b) the average
dissipated energies (equation (10) in the main text) plotted
against the switching time.

sults. We follow the same simulation procedure used
to produce Fig. 5c in the main text, while using the

energy difference between two endpoint Hamiltonians
as the alchemical gradient in the linear scheme case:
∂H/∂λ = Hf − Hi. First, when the switching time is
long enough, the alchemical free energy differences ob-
tained from the linear and alchemical methods converge
to the same value. Furthermore, not much difference is
observed in the convergence of ∆GAL or the trend of dis-
sipated energies as the switching time increases. Hence,
the alchemical scheme developed in this work could be re-
garded as a computationally efficient alternative to naive
linear interpolation of endpoint energies.

II. CHGNET RESULTS

A. Alchemical modifications

We outline how the alchemical modifications could be
made to the CHGNet model [4]. In CHGNet, the node
and edge features are updated as in equations (1a) and
(1b) (equation (2) in the original paper). The modifica-
tion to message passing in equation (6) in the main text is
implemented by applying the weights ωαβ (equation (5)
in the main text) to the summands of the message aggre-
gation as in equations (1c) and (1d):

vt+1
i = vt

i + Lt
v


∑

j

eaij ⊙ ϕt
v

(
vt
i∥vt

j∥etij
)

 , (1a)
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 . (1d)

Instead of defining “angle weights,” we can also use ωβα

(equation (5) in the main text) for the bond feature up-
dates, considering that the weight of the message sender
should only be taken into account when the message con-
tributions from alchemical objects are being aggregated.

For the original readout in equation (2a) (equation (5)
in the original paper [4]), we implement the alchemi-
cal readout (equation (7) in the main text) as in equa-

tion (2b):

Etot =
∑

i

L3 ◦ g ◦ L2 ◦ g ◦ L1

(
v4i
)
, (2a)

Etot =
∑

(i,α)

λαL3 ◦ g ◦ L2 ◦ g ◦ L1

(
v4(i,α)

)
. (2b)

Although a similar modification could be made, this
scheme is not as efficient as in the MACE model be-
cause the CHGNet model introduces extra features on
bonds and angles for the message passing. This intro-
duces tensors containing multiple alchemical indices, and
the overhead from the alchemical modification becomes
more significant.
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FIG. S3. Lattice parameters for solid solutions using the CHGNet model. (a) Lattice parameter a for Ce1–xMxO2

(M = Zr, Sn) as a function of the compositional weight x. (b) Lattice parameters a, b, and c for BiSX1–xYx (X, Y = Cl, Br, I)
as a function of x. The upper panels are the result of the alchemically modified CHGNet model [4], and the lower panels are
the experimental result from [5] and [6] for (a) and (b), respectively.

B. Lattice parameters

To benchmark the alchemically modified CHGNet
model on determining the cell parameters of solid so-
lutions, we conducted the same calculations as in Fig. 2
in the main text. The trend in Fig. S3 is more rugged
than the results from the MACE model, possibly due to
the extra bond and angle features updated on each mes-
sage passing step. Furthermore, the cell parameters for

pure compounds do not match their experimental values
well in this case. We note that the exceptions to the
Vegard’s law explored in the current work are peculiar
cases and would not mean that the baseline performance
of CHGNet is worse than MACE in general. However,
it still reveals that the proposed alchemical scheme in
this work could be integrated much more nicely with the
universal MACE model.
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Kovács, J. Riebesell, X. R. Advincula, M. Asta, M. Avay-
lon, W. J. Baldwin, F. Berger, N. Bernstein, A. Bhowmik,
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I.-B. Magdău, A. Michaelides, J. H. Moore, A. A. Naik,
S. P. Niblett, S. W. Norwood, N. O’Neill, C. Ortner, K. A.
Persson, K. Reuter, A. S. Rosen, L. L. Schaaf, C. Schran,
B. X. Shi, E. Sivonxay, T. K. Stenczel, V. Svahn,
C. Sutton, T. D. Swinburne, J. Tilly, C. van der Oord,
E. Varga-Umbrich, T. Vegge, M. Vondrák, Y. Wang, W. C.
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