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We derive the two-time linear response theory for out-of-equilibrium pumped systems, generic
pump-probe delays and probe frequencies. Such a theory enormously simplifies the numerical calcu-
lations, for instance, of the optical conductivity with respect to the actual procedure, which requires
computing the effect of the probe pulse for each time delay with respect to the pump pulse. The
theory is given for a generic observable and pumped Hamiltonian and then specialized for a system
with a quadratic Hamiltonian and its transient optical properties, exploiting the Dynamical Pro-
jective Operatorial Approach (DPOA). The theory is complemented by a set of crucial numerical
guidelines that help perform actual calculations in a computationally affordable way. The opti-
cal response (differential transient reflectivity and absorption) of a prototypical three-band (core,
valence, and conduction) model in the XUV regime is analyzed in detail to illustrate the theory
and its application. Using some generalizations of the density of states, we provide a systematic
approach to exploring the optical properties in terms of the system band structure features and the
pump parameters. Such an analysis can be extremely helpful in understanding the actual results
of experimental optical measurements. Moreover, we study the effects of inter-band and intra-band
transitions, the local dipole coupling, and single and multi-photon processes. The latter is further
investigated by varying the central frequency of the pump pulse to have different regions of the first
Brillouin zone in resonance with it. We also study the effect of varying the pump pulse intensity.
Finally, we study and analyze the transient optical properties in the probe pulse regime of IR and
visible.

I. INTRODUCTION

Thanks to modern technological developments, study-
ing the real-time dynamics of condensed matter systems
in the ultra-fast attosecond regime is now possible. For
such studies, one deals with the so-called pump-probe
setups, where a system is driven out-of-equilibrium by
an intense ultra-short electromagnetic pump pulse and
is investigated using a rather low-intensity probe pulse,
as a function of the time delay between the two pulses
[1–5]. The study of the real-time dynamics of ultra-fast
electronic excitation in the attosecond regime unravels
the fundamental physical transitions in the pumped sys-
tem [6–10]. This knowledge is relevant for fundamental
physics and future ultra-fast electro-optical circuit and
device engineering.

Several different approaches can experimentally inves-
tigate the pumped systems. One way is to study the high
harmonic generation (HHG), where one studies the radi-
ations generated by the pumped system with frequencies
of integer multiples of the pump frequency [11–20]. An-
other approach to studying the pumped system is the
time-resolved angle-resolved photoemission spectroscopy
(TR-ARPES) [10, 21–28], where analyzing the energy
and momentum distribution of the electrons ejected from
the pumped system via photoelectric effect as a function
of the time delay between the pump and probe pulses,
one determines the out-of-equilibrium electronic proper-
ties. Another way for studying the pumped systems is
through measuring the transient dynamical variations of
their optical responses to a weak probe pulse [6, 17, 29–

38]. In this work, we focus on the latter and provide a
convenient theoretical tool to facilitate this analysis.

For studying the transient optical properties, one
usually studies the dynamical variation of the absorp-
tion coefficient [6, 17, 29, 31–35, 37] or the reflectivity
[29, 30, 36, 38, 39] of the probe pulse as a function of
the probe-pulse frequency (or equivalently, probe pho-
ton energy) and the time delay between the pump and
probe pulses. Varying the photon energy of the probe
pulse, one can study different energy ranges of the band
structure and their corresponding dynamical excitation
transitions. A very convenient optical approach to re-
veal the pumping mechanisms in solids is to use a probe
pulse with a much higher frequency than the pump pulse.
In such a scenario, an intense low-frequency (e.g., in the
IR or visible ranges) laser pulse pumps the system out
of equilibrium by altering the electronic bands and dis-
tributions for the energies near the Fermi level. At the
same time, the strongly bounded core electrons are left
almost unaltered. The high-frequency (e.g., in the XUV
range) probe pulse then scans those out-of-equilibrium
electronic levels by exciting the core electrons to them
[6, 17, 29, 31–38]. The recent experimental setups ex-
ploit pump pulses with durations of the order of tens of
femtoseconds and probe them with even shorter delay
times [17, 29, 31–33, 35, 37, 38]. Such ultra-short time
intervals rule out several relaxation transitions on longer
time scales, including instantaneous emission, electron-
phonon interaction, etc. This is of fundamental inter-
est as one can study pure early-time electronic dynamics
with several potential technological applications, such as
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manufacturing high-speed electronics.
On the theory side, the standard approach to numeri-

cally simulate the pumped systems is the time-dependent
density functional theory (TD-DFT) [35, 38, 40–47],
which is capable of considering different kinds of interac-
tions up to some approximations. However, there are two
relevant drawbacks in TD-DFT: (i) the computational
cost is very high, and (ii) it’s more complex to get deep
insight into the underlying physics of the results of the
simulations. On the other hand, the model-Hamiltonian
approaches, which generally allow a better understand-
ing of the underlying physical phenomena, usually suffer
from the problem of oversimplification [35, 48].

To overcome some of the limitations and drawbacks
of the current theoretical approaches, we have developed
a method, dubbed the Dynamical Projective Operato-
rial Approach (DPOA), and applied it to a pumped ger-
manium sample [38]. We benchmarked our results with
those of TD-DFT on a rough momentum grid (to be af-
fordable for TD-DFT). Then, we extended our study to
much finer momentum grid, showing that the latter was
necessary to truly understand the complicated transitions
in the actual material and clarify the individual roles of
different mechanisms and their interplay effects. More-
over, being capable of computing all multi-time multi-
particle correlation functions using DPOA, we extended
the theory to study TR-ARPES. We showed how one
can study the effects and interplays of different pumping
mechanisms, as well as the role of crystal symmetry in the
TR-ARPES signal, and how various types of sidebands
emerge [49].

Theoretical study and numerical simulation for the op-
tical properties is much heavier than the other scenarios
(HHG and TR-ARPES), as for each value of the time
delay between the pump and probe pulses, one needs to
compute the current in the presence of both pulses and
then subtract the current induced by the pump pulse only
from it, to obtain the two-time optical conductivity that
can be Fourier transformed to get the out-of-equilibrium
dielectric function and, finally, the transient reflectivity
and absorption. Given that in the experimental setups,
they consider very many time delays, performing TD-
DFT simulations becomes extremely heavy and challeng-
ing, and one usually needs to use a spare sampling of the
first Brillouin zone (FBZ) by exploiting a rough momen-
tum grid, which may indeed result in losing some relevant
features in the simulations.

Instead, one can get a noticeable simplification by ex-
ploiting an out-of-equilibrium version of the linear re-
sponse theory (LRT), where the two-time linear response
of the pumped system to the probe pulse is computed.
This latter is the core of this work, where the out-of-
equilibrium LRT formulation is given for a general case.
Then, it is specialized for a pumped lattice system with
an effective quadratic Hamiltonian within DPOA. Af-
ter that, we apply the out-of-equilibrium LRT to obtain
the optical conductivity and, consequently, the dielec-
tric function, from which one, in principle, can calcu-

late the reflectivity and absorption coefficient. We ap-
ply this theory to a prototypical three-band model and
study the different out-of-equilibrium optical behaviors
that can emerge in various regimes.

The rest of this article is organized as follow. In
Sec. II, we report the derivation of the two-time lin-
ear response theory for an out-of-equilibrium pumped
system (Sec. IIA), its specialization to lattice systems
with quadratic Hamiltonians (Sec. II B), and to their
optical conductivity (Sec. II C), reflectivity and absorp-
tion (Sec. IID), and delve into the equilibrium case too
(Sec. II E). We also report some important guidelines for
numerical calculations (Sec. II F): a simplified and nu-
merically effective rewriting of the optical conductivity
expression (Sec. II F 1), a discussion on how to choose
the value of the unavoidable damping factor (Sec. II F 2),
a possible analytical simplification, leading to a significa-
tive reduction of the calculation time, regarding the time
range after the application of the pump pulse (Sec. II F 3),
two possible approximations regarding the core levels
(Sec. II F 4) and a quasi-static dynamics (Sec. II F 5). In
Sec. III, we define (Sec. III A) and study a prototypical
three-band (core, valence, and conduction) model in pres-
ence of only the Peierls substitution coupling (Sec. III B)
and analyze the effects of inter- and intra-band transi-
tions driven by the pump pulse in the model (Sec. III C).
After that, we consider both the Peierls substitution and
the dipole couplings (Sec. IIID) to study the features
originating from the latter. Then, going back to the case
of having only the Peierls substitution coupling, we study
the dependence of the observed features on the frequency
(Sec. III E) and the intensity (Sec. III F) of the pump
pulse. Moreover, we investigate the optical properties in
the probe pulse ranges of the infrared (IR) and visible
(Sec. III G). Sec. IV summarizes this work. Finally, we
have a plethora of appendices discussing: the linear vari-
ation of the density matrix in the presence of the probe
pulse (Sec. A), the dielectric function and the reflectiv-
ity formula out of equilibrium (Sec. B), the approxima-
tion related to considering only the transitions from the
core levels in optical conductivity (Sec. C), the cancel-
lation of the equilibrium low-frequency (static) tails at
zero temperature (Sec. D), the quasi-static approxima-
tion (Sec. E), the damping factor 0+ (Sec. F), the tran-
sient differential dielectric function (Sec. G), the den-
sity of states and its generalizations (Sec. H), and the
intra-band motion with different pump-pulse frequencies
(Sec. I).

II. THEORY

A. Linear response in pump-probe setups

In a pump-probe experimental setup, the sample is
pumped using an intense electromagnetic pulse (e.g., an
IR pulse) and probed by another pulse (e.g., an ultra-
short XUV pulse) of much lower intensity (usually just
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above the signal-to-noise ratio threshold). Accordingly,
the response of the system to the pump pulse is usually
highly non-linear and very complex, and requires a full-
fledged quantum-mechanical theoretical description even
when the electromagnetic field is described just classi-
cally through its time-dependent vector and scalar po-
tentials. On the other hand, the response of the pumped
system to the probe pulse can be safely studied up to the
first order in the probe pulse, that is within the linear
response theory. This can be exploited to greatly sim-
plify theoretical description of pump-probe setups. In
the following, we derive and describe a comprehensive
theoretical formulation to compute the linear response of
a pumped system to a probe pulse.

The Hamiltonian that describes a system in a pump-
probe setup, Ĥ (t), can be written as

Ĥ (t) = Ĥ ′ (t) + Ĥ ′′ (t) , (1)

where Ĥ ′ (t) is the Hamiltonian describing the pumped
system and Ĥ ′′ (t) is the Hamiltonian describing the in-
teraction between the system and the probe pulse (the
probe Hamiltonian), with respect to which we will com-
pute the linear response. Ĥ ′ (t) is given by the sum of the
Hamiltonian describing the system at equilibrium, Ĥ0,
and the Hamiltonian describing the coupling between the
system and the pump pulse, Ĥpu (t) (the pump Hamilto-
nian),

Ĥ ′ (t) = Ĥ0 + Ĥpu (t) . (2)

We assume that, at an initial time tini (e.g., tini → −∞),
both pump and probe Hamiltonians vanish and the sys-
tem is at equilibrium.

Given an observable that describes a type of response
of the system to the pump and probe pulses (e.g., the
charge, spin, or orbital current density, the polarization
density, the magnetization density, etc.) and the cor-
responding operator in the Schrödinger picture, Ô (t),
which can generally be time dependent, its linear re-
sponse to the probe pulse has two components. The first
component arises from the evolution in time of the state
of the system under the application of the pump and
probe pulses and can be fully taken into account through
the corresponding evolution in time of the density matrix
of the system. The second component is present if there
is a dependence of the operator Ô (t) on the probe pulse
applied to the system.

To obtain the first component, we define an interaction
picture where Ĥ ′ (t) acts as the non-interacting Hamil-
tonian (with respect to the probe pulse; coupling to the
pump pulse is fully taken into account) and Ĥ ′′ (t) acts
as the interaction Hamiltonian. Any operator Q̂ (t) in
the Schrödinger picture transforms to such interaction
picture via

Q̂H′ (t) = Û ′ (tini, t) Q̂ (t) Û ′ (t, tini) , (3)

where Û ′ (t1, t2) is the time propagator given in Eq. A3
of the App. A.

As it is reported in the App. A, it is straightforward
to show that the linear variation (with respect to probe
Hamiltonian) of the many-body density matrix of the
system Υ̂ (t) (both pump and probe pulses applied) upon
the application of the probe pulse is given by

Υ̂ (t)− Υ̂′ (t) =

− i

ℏ

∫ t

tini

dt′Û ′ (t, tini)
[
Ĥ ′′

H′ (t′) , Υ̂0

]
Û ′ (tini, t) , (4)

where Υ̂′ (t) = Û ′ (t, tini) Υ̂0Û
′ (tini, t) is the many-body

density matrix of the system with no probe pulse applied
and Υ̂0 = Υ̂ (tini) is the equilibrium many-body density
matrix of the system (nor pump neither probe pulse ap-
plied).

The first component of the linear response, δ1
〈
Ô (t)

〉
t
,

comes from the variation of the density matrix and can
be written as

δ1

〈
Ô (t)

〉
t
= Tr

(
Ô (t)

[
Υ̂ (t)− Υ̂′ (t)

])
, (5)

and, up to the linear order in the probe Hamiltonian, is
given by

δ1

〈
Ô (t)

〉
t
= − i

ℏ

∫ t

tini

dt′
〈[

ÔH′ (t) , Ĥ ′′
H′ (t′)

]〉
tini

, (6)

where we used Eq. 4 and ⟨...⟩tini = Tr
(
...Υ̂0

)
is the ex-

pectation value with respect to equilibrium many-body
density matrix of the system. Eq. 6 is formally very sim-
ilar to the Kubo formula at equilibrium.

The second component of the linear response comes
from the variation of the operator Ô (t) induced by the
application of the probe pulse, and is given by

δ2

〈
Ô (t)

〉
t
=
〈
δÔH′ (t)

〉
tini

, (7)

where δÔH′ (t) is the variation of the operator ÔH′ (t) up
to the linear order in the probe pulse. The total linear
response to the probe pulse is then the sum of the two
components:

δ
〈
Ô (t)

〉
t
= δ1

〈
Ô (t)

〉
t
+ δ2

〈
Ô (t)

〉
t
. (8)

B. Pumped lattice systems with quadratic
Hamiltonians

In this section, we consider a lattice system with an
effective quadratic Hamiltonian Ĥ ′ (t),

Ĥ ′ (t) =
∑

k,n1,n2

ĉ†k,n1
h′
k,n1,n2

(t) ĉk,n2
, (9)
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where k is the crystal momentum that is summed over
the first Brillouin zone (FBZ), nm stands for all other rel-
evant quantum numbers (e.g., band/orbital, spin, etc.),
ĉk,nm

(ĉ†k,nm
) is the annihilation (creation) operator of an

electron in the state with quantum numbers (k, nm), and
h′
k,n1,n2

(t) is the matrix element, between the two states
(k, n1) and (k, n2), of the first-quantization (single-
particle) Hamiltonian describing the sample and its cou-
pling to the pump pulse.

We already clarified in the previous section, given the
relative low intensity of the probe pulse inherent to its
probing nature, that one can use the linear response the-
ory to compute the response of the pumped system to
the probe pulse. This allows us to safely retain only the
lowest order terms in the probe pulse in the probe Hamil-
tonian, Ĥ ′′ (t). According to this, in the dipole gauge,
Ĥ ′′ (t) has the following general form

Ĥ ′′ (t) =
∑

k,n1,n2

ĉ†k,n1

[ e
ℏ
V k,n1,n2

(t) ·Apr (t)

+ eDk,n1,n2 (t) ·Epr (t)
]
ĉk,n2 , (10)

where · is the inner product of vectors, Apr (t) and
Epr (t) = −∂tApr (t) are the probe-pulse vector potential
and electric field, respectively, −e is the charge of elec-
tron, and the time- and momentum-dependent vectorial
matrix elements V k,n1,n2 (t) and Dk,n1,n2 (t) determine
how the vector potential and electric field couple to the
sample, respectively. Later, we will give their explicit ex-
pressions. We have assumed that the wavelength of the
probe pulse is not shorter than the XUV one, which is
hundreds of times larger than any lattice constant in real
materials, so that one can consider the electromagnetic
field practically as uniform.

Then, for a generic observable Ô (t) =∑
k,n1,n2

ĉ†k,n1
Ok,n1,n2

(t) ĉk,n2
, the first component

of the linear response to the probe pulse is obtained
from Eq. 6 as

δ1

〈
Ô (t)

〉
t
= − i

ℏ
∑

n1,n2,n3,n4

∑
k

Ok,n1,n2
(t)

∫ t

tini

dt′( e
ℏ
V k,n3,n4

(t′) ·Apr (t
′) + eDk,n3,n4

(t′) ·Epr (t
′)
)

〈[
ĉ†H′,k,n1

(t) ĉH′,k,n2 (t) , ĉ
†
H′,k,n3

(t′) ĉH′,k,n4 (t
′)
]〉

tini
.

(11)

As a mathematical simplification, without any loss of
generality, we consider the electric field of the probe pulse
to be a Dirac delta function applied at the time tpr, the
probe time,

Epr (t) = Eprδ (t− tpr) , (12)

and, consequently, we have

Apr (t) = −Eprθ (t− tpr) . (13)

Hereafter, we assume that tpr ≥ tini.
The first component of the linear response to such a

probe reads as

δ1

〈
Ô (t)

〉
t
= − i

ℏ
∑

n1,n2,n3,n4

∑
k

Ok,n1,n2 (t)

∫ t

tini

dt′(
− e

ℏ
V k,n3,n4

(t′) θ (t′ − tpr) + eDk,n3,n4
(tpr) δ (t

′ − tpr)
)
·Epr〈[

ĉ†H′,k,n1
(t) ĉH′,k,n2

(t) , ĉ†H′,k,n3
(t′) ĉH′,k,n4

(t′)
]〉

tini
.

(14)

The retarded response function of the system, χ (t, t′), is
defined through

δ
〈
Ô (t)

〉
t
=

∫ ∞

tini

dt′χ (t, t′) ·Epr (t
′) . (15)

Obviously, if Ô is a vector (scalar), χ is a rank 2 (rank 1)
tensor. Since the linear response has two components (see
Eq. 8), the response function too can be written as the
sum of two components, χ (t, t′) = χ1 (t, t

′) + χ2 (t, t
′),

where χ1(2) (t, t
′) corresponds to the first (second) com-

ponent of the linear response to the probe pulse. Given
the expression chosen for the probe pulse (Eq. 12), Eq. 15
simplifies to

δ1,2

〈
Ô (t)

〉
t
= χ1,2 (t, tpr) ·Epr. (16)

Comparing Eq. 16 with Eq. 14 and considering the arbi-
trariness of Epr, we get the following expression for the
first component of the response function

χ1 (t, tpr) = − i

ℏ
θ (t− tpr)

∑
n1,n2,n3,n4

∑
k

Ok,n1,n2
(t)

∫ t

tini

dt′(
− e

ℏ
V k,n3,n4

(t′) θ (t′ − tpr) + eDk,n3,n4
(tpr) δ (t

′ − tpr)
)

〈[
ĉ†H′,k,n1

(t) ĉH′,k,n2
(t) , ĉ†H′,k,n3

(t′) ĉH′,k,n4
(t′)
]〉

tini
.

(17)

For the second component of the response function,
we need the variation of the operator Ô (t) induced by
the application of the probe pulse up to the linear order.
We assume that Ô (t) depends on the applied pulses only
through their vector potentials. Then, considering the
expression chosen for the probe pulse, Eq. 12, we can
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write

δ2

〈
Ô (t)

〉
t
=
∑
n1,n2

∑
k

δOk,n1,n2
(t)

δA (t)
·Apr (t)〈

ĉ†H′,k,n1
(t) ĉH′,k,n2 (t)

〉
tini

= −θ (t− tpr)
∑
n1,n2

∑
k

δOk,n1,n2
(t)

δA (t)
·Epr〈

ĉ†H′,k,n1
(t) ĉH′,k,n2

(t)
〉
tini

. (18)

Comparing Eq. 18 with Eq. 16, we get

χ2 (t, tpr) = −θ (t− tpr)
∑
n1,n2

∑
k

δOk,n1,n2
(t)

δA (t)〈
ĉ†H′,k,n1

(t) ĉH′,k,n2 (t)
〉
tini

. (19)

Then, to evaluate χ (t, tpr), one needs to compute the
time evolution of the creation and annihilation opera-
tors, ĉ†H′,k,nm

(t) and ĉH′,k,nm (t), appearing in Eqs. 17
and 19. According to what we have recently shown in
Refs. [38, 49], using the Dynamical Projective Operato-
rial Approach (DPOA), such operators can be projected
on their equilibrium counterparts,

ĉH′,k,n1 (t) =
∑
k,n2

Pk,n1,n2 (t) ĉk,n2 (20)

and the projection coefficients, Pk,n1,n2
(t), are obtained

from the following equation of motion

iℏ∂tPk,n1,n2 (t) =
∑
n3

h′
k,n1,n3

(t)Pk,n3,n2 (t) , (21)

with the initial condition Pk,n1,n2 (tini) = δn1,n2 . Using
such projection coefficients and assuming that the equi-
librium Hamiltonian, Ĥ0, is diagonal in the basis we have
chosen, i.e., Ĥ0 =

∑
k,n εk,nĉ

†
k,nĉk,n, one can compute

the two components of the response function as

χ1 (t, tpr) = − i

ℏ
θ (t− tpr)

∑
n1,n2,n3,n4

∑
n′
1,n

′
2

∑
k

Ôk,n1,n2 (t)

∫ t

tini

dt′

(
− e

ℏ
V k,n3,n4 (t

′) θ (t′ − tpr) + eDk,n3,n4 (tpr) δ (t
′ − tpr)

)
P ⋆
k,n1,n′

1
(t)Pk,n2,n′

2
(t)P ⋆

k,n3,n′
2
(t′)Pk,n4,n′

1
(t′)

(
fk,n′

1
− fk,n′

2

)
,

(22)

and

χ2 (t, tpr) = −θ (t− tpr)∑
n1,n2,n3

∑
k

δOk,n1,n2
(t)

δA (t)
P ⋆
k,n1,n3

(t)Pk,n2,n3
(t) fk,n3

,

(23)

where we have used
〈
ĉ†k,n1

ĉk,n2

〉
tini

=

δn1,n2
fk,n1

and
〈[

c†k,n1
ck,n2

, c†k,n3
ck,n4

]〉
tini

=

δn1,n4δn2,n3 (fk,n1 − fk,n2). fk,n = 1

e(εk,n−µ)/kBT
+1

is the Fermi function that determines the equilibrium
distribution of electrons in which kB is the Boltzmann
constant, T is the temperature, and µ is the chemical
potential.

C. Optical conductivity

For a lattice system, in the dipole gauge, the matter-
field coupling Hamiltonian, given a generic electromag-
netic pulse, reads as (see Refs. [49, 50])

Ĥ {A (t) ,E (t)} =
∑

ν1,ν2,k

ĉ†k,ν1
T̃k+ e

ℏA(t),ν1,ν2
ĉk,ν2

+ eE (t) ·
∑
ν1ν2k

ĉ†kν1
D̃k+ e

ℏA(t),ν1ν2
ĉkν2

, (24)

where A (t) is the vector potential and E (t) = −∂tA (t)
is the electric field. ν1 and ν2 are sets of quantum
numbers identifying orthogonal localized states (e.g., the
maximally localized Wannier states). We neglect the
coupling of the spin magnetic moments to the mag-
netic field of the applied pulses. T̃k,ν1ν2

is the ma-
trix element of the equilibrium Hamiltonian, i.e., Ĥ0 =∑

ν1ν2k
ĉ†kν1

T̃k,ν1ν2
ĉkν2

, and D̃k,ν1ν2
is the matrix ele-

ment of the local dipole in the reciprocal space. In
the absence of the probe pulse, the electric field and
the vector potential are just those of the pump pulse,
i.e., Apu (t) and Epu (t), respectively. Consequently, the
Hamiltonian of the pumped system is given by Ĥ ′ (t) =

Ĥ {Apu (t) ,Epu (t)}.
Instead of working in the localized-state basis (ν in-

dexed), we prefer to perform the calculations in the basis
which diagonalizes the equilibrium Hamiltonian (n in-
dexed). Using the diagonalization matrix Ωk,

∑
ν1ν2

Ω∗
kν1n1

T̃k,ν1ν2
Ωkν2n2

= εk,nδn1n2
, (25)

we can rewrite Ĥ ′ (t) as

Ĥ ′ (t) =
∑

n1n2k

ĉ†kn1
Tk,n1n2 (t) ĉkn2

+ eE (t) ·
∑

n1n2k

ĉ†kn1
Dk.n1n2

(t) ĉkn2
, (26)

where ĉ†kn =
∑

ν ĉ
†
kνΩkνn. Moreover, Tk,n1n2

(t) =
Tk,n1n2

{Apu (t)} in which

Tk,n1n2 {A (t)} =
∑
ν1ν2

Ω∗
kν1n1

T̃k+ e
ℏA(t).ν1ν2

Ωkν2n2 , (27)
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and Dk,n1n2
(t) = Dk,n1n2

{Apu (t)} in which

Dk,n1n2
{A (t)} =

∑
ν1ν2

Ω∗
kν1n1

D̃k+ e
ℏA(t),ν1ν2

Ωkν2n2
.

(28)
In the presence of both pump and probe pulses, the

actual applied fields are given by Apu (t) + Apr (t) and
Epu (t) + Epr (t). As discussed above, the probe pulse
intensity is relatively weak and we are considering it
within the linear response theory. Therefore, in order
to obtain the coupling Hamiltonian between the system
and the probe pulse, Ĥ ′′ (t), we expand the full Hamilto-
nian, Ĥ {Apu (t) +Apr (t) ,Epu (t) +Epr (t)}, up to the
linear order in the probe-pulse fields and subtract Ĥ ′ (t).
It is worth noticing that we do not need to expand in
terms of Epr (t) as it only appears already at the lin-
ear order. Following this procedure, it’s straightforward
to show that Ĥ ′′ (t) is of the form given in Eq. 10,
with Dk,n1n2

(t) = Dk,n1n2
{Apu (t)} (see Eq. 28), and

V k,n1n2
(t) = V k,n1n2

{Apu (t) ,Epu (t)}, where

V k,n1n2
{A (t) ,E (t)} =

ηk,n1n2
{A (t)}+ eΛk,n1n2

{A (t)} ·E (t) , (29)

in which

ηk,n1n2
{A (t)} =

∑
ν1ν2

Ω∗
kν1n1

[
∇kT̃k+ e

ℏA(t),ν1ν2

]
Ωkν2n2

,

(30)
is proportional to the velocity at the crystal momentum
k+ e

ℏA (t) transformed to the equilibrium diagonal basis
at the crystal momentum k. Moreover,

Λk,n1n2 {A (t)} =
∑
ν1ν2

Ω∗
kν1n1

[
∇kD̃k+ e

ℏA(t),ν1ν2

]
Ωkν2n2 ,

(31)
is a rank 2 tensor with the first index in momentum space
coordinates (coming from ∇k) and the second index in
direct space ones (coming from D̃k,ν1ν2). This latter is
the one saturated by the scalar product with the electric
field.

The optical conductivity is the response function de-
scribing how an electric current is induced by the probe
pulse. The zero-momentum particle current (i.e., the par-
ticle current integrated over the pulse-interacting portion
of the volume of the sample), in the presence of the pump
field and in the dipole gauge is given by (see Refs. [49, 50])
Ĵ (t) = Ĵ {Apu (t)} where

Ĵ {A (t)} =
∑

n1n2k

ĉ†kn1
Jk,n1n2 {A (t)} ĉkn2 , (32)

in which

Jk,n1n2
{A (t)} =

1

ℏ
ηk,n1n2

{A (t)}

− i

ℏ
[Dk {A (t)} ,T k {A (t)}]n1n2

, (33)

where [Φ, Ψ ]n1n2
=
∑

n′ (Φn1n′Ψn′n2
− Ψn1n′Φn′n2

).
The macroscopic particle current, which is the av-

eraged microscopic particle current over a macroscopic
number of unit cells, is just the zero-momentum current
divided by the pulse-interacting portion of the volume of
the sample, V. Therefore, the macroscopic electric cur-
rent, or simply the electric current, is −eĴ (t) /V. Using
Eq. 22, with Ô (t) = −eĴ (t) /V, the first component of
optical conductivity is obtained as

σ1 (t, tpr) =

ie

ℏV
θ (t− tpr)

∑
k

∑
n1n2n3n4

∑
n′
1n

′
2

Jk,n1n2 (t)

∫ t

tini

dt′

(
− e

ℏ
V k,n3n4

(t′) θ (t′ − tpr) + eDk,n3n4
(t′) δ (t′ − tpr)

)
P ⋆
kn1n′

1
(t)Pkn2n′

2
(t)P ⋆

kn3n′
2
(t′)Pkn4n′

1
(t′)

(
fkn′

1
− fkn′

2

)
.

(34)

For the second component of the optical conductivity, we
have

σ2 (t, tpr) =
e

V
θ (t− tpr)

∑
n1n2k

δJk,n1n2 (t)

δA (t)
Nkn1n2 (t) ,

(35)

where

Nkn1n2
(t) =

∑
n′

P ⋆
kn1n′ (t)Pkn2n′ (t) fkn′ , (36)

and

δJk,n1n2
(t)

δA (t)
=

e

ℏ2
ξk,n1n2

(t)

− ie

ℏ2
[Λk (t) , Tk (t)]n1n2

− ie

ℏ2
[Dk (t) ,ηk (t)]n1n2

,

(37)

in which Λk (t) = Λk {Apu (t)}, ηk,n1n2
(t) =

ηk,n1n2
{Apu (t)}, and ξk,n1n2

(t) = ξk,n1n2
{Apu (t)}

where

ξk,n1n2
{A (t)} =

∑
ν1ν2

Ω∗
kν1n1

[
∇2

kT̃k+ e
ℏA(t),ν1ν2

]
Ωkν2n2 ,

(38)
is proportional to the inverse-mass tensor at the crystal
momentum k + e

ℏA (t) transformed to the equilibrium
diagonal basis at the crystal momentum k.

The total optical conductivity is thus obtained by
adding up its two components as,

σ (t, tpr) = σ1 (t, tpr) + σ2 (t, tpr) . (39)

We choose the center of the pump pulse envelope as the
origin of the time axis. Accordingly, tpr is just the time
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delay between pump and probe pulses. One is usually in-
terested in the optical conductivity in terms of frequency
and time delay, which is obtained by performing a Fourier
transformation with respect to t− tpr, i.e.,

σ (ω, tpr) =

∫ +∞

−∞
ei(ω+i0+)(t−tpr)σ (t, tpr) dt, (40)

where 0+ is a small damping factor.

D. Reflectivity and Absorption

In this section, we consider the absorption and the re-
flectivity, which are the optical quantities usually mea-
sured in real experimental setups. Let us consider that
the electric field of the probe pulse is polarized along
some specific direction determined by the unit vector
λpr, and its reflection is measured along the direction
λ′
pr. Therefore, the relevant element of our optical con-

ductivity tensor would be λ′
pr ·σ (ω, tpr) ·λpr. We assume

that the off-diagonal elements of the optical conductiv-
ity tensor are negligible, i.e., the only relevant case to be
studied is λpr = λ′

pr. It is worth noting that if the spin
inversion symmetry is not broken, one can consider only
one spin direction in the calculations and just double the
final result for the optical conductivity.

From the optical conductivity one can obtain the di-
electric function, ϵ (ω, tpr), as (see App. B)

ϵ (ω, tpr) = 1 +
i

ωϵ0
σ (ω, tpr) , (41)

where ϵ0 is the vacuum dielectric constant, σ (ω, tpr) =
λpr · σ (ω, tpr) · λpr, and ϵ (ω, tpr) = λpr · ϵ (ω, tpr) · λpr.

As discussed in App. B, when the probe pulse fre-
quency is much larger than the pump pulse one, one can
use the well-known formula for equilibrium reflectivity
also to obtain the reflectivity out of equilibrium. Then,
for a s-polarized probe pulse at an incident angle θ, with
frequency ω and center tpr, the transient reflectivity is
given by

Rθ (ω, tpr) =

∣∣∣∣∣∣
cos θ −

√
ϵ (ω, tpr)− sin2θ

cos θ +
√
ϵ (ω, tpr)− sin2θ

∣∣∣∣∣∣
2

. (42)

To analyze the experimental results [38], we are in-
terested in the transient relative differential reflectivity,
δrRθ (ω, tpr), defined as

δrRθ (ω, tpr) =
Rθ (ω, tpr)−Req

θ (ω)

Req
θ (ω)

, (43)

where Req
θ (ω) = Rθ (ω, tpr → tini) is the equilibrium re-

flectivity computed using the optical conductivity given
in Eq. 47.

To get more insight into the transient reflectivity and
its frequency content, one may perform a Fourier trans-
form with respect to the time tpr and obtain

δrRθ (ω, ω
′) =

∫ +∞

−∞
eiωtprδrRθ (ω, tpr) dtpr. (44)

Another interesting optical property is the absorption
coefficient, which is given by

α (ω, tpr) =
ω

nrefr (ω, tpr) c
Im [ϵ (ω, tpr)] , (45)

where c is the speed of light in vacuum and nrefr (ω, tpr) =

Re
[√

ϵ (ω, tpr)
]

is the real transient refractive index. In
our numerical calculations, in order to study the transient
behavior of the system, we will investigate the transient
differential absorption coefficient,

δα (ω, tpr) = α (ω, tpr)− αeq (ω) , (46)

where αeq (ω) is the absorption coefficient at equilibrium.

E. Equilibrium properties

In equilibrium, we have Pk,nn′ (t) = e−iωkn(t−tini)δnn′ .
Inserting this into Eqs. 34 and 35, and performing some
straightforward calculations, one obtains

σeq (ω) = σeq,main (ω) + σeq,tail
1 (ω) + σeq,tail

2 (ω) , (47)

where

σeq,main (ω) =
ie2

ℏV
∑
k

∑
nn′

Jk,n′nJk,nn′ (fk,n′ − fk,n)

ωk,nn′ (ω − ωk,nn′ + i0+)
, (48)

and

σeq,tail
1 (ω) = − ie2

ℏ3V
∑
k

∑
nn′

ηk,n′nηk,nn′ (fk,n′ − fk,n)

ωknn′ (ω + i0+)
, (49)

and

σeq,tail
2 (ω) =

ie2

ℏ2V
∑
k

∑
nn′

fk,nξk,nn′δnn′

ω + i0+
, (50)

in which ωk,nn′ = ωk,n − ωk,n′ = (εk,n − εk,n′) /ℏ, and
Jk,nn′ = Jk,nn′ (t → tini) = ηk,nn′/ℏ+ iωk,nn′Dk,nn′ .
σeq,main (ω) is the main contribution to the equilib-

rium conductivity, which doesn’t diverge in the limit
ω → 0 (see below). On the other hand, σeq,tail (ω) =
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σeq,tail
1 (ω → 0) + σeq,tail

2 (ω → 0) in general diverges in
the static limit, ω → 0, which gives the expected
Drude behavior. However, for semiconductors at zero
temperature, one can show that σeq,tail

1 (ω → 0) =

−σeq,tail
2 (ω → 0) and, therefore, σeq,tail (ω) identically

vanishes (see App. D). In numerical calculations for real
materials, the relative difference of σeq,tail

1 (ω → 0) and
−σeq,tail

2 (ω → 0) can be used to check if the adopted
k grid is dense enough and/or if the number of energy
bands taken into account is sufficient.

After this discussion on the optical conductivity, it is
relevant to study the behavior of the equilibrium dielec-
tric function in the static limit, ω → 0. For the sake of
simplicity, we consider zero temperature, so that the tails
in the optical conductivity cancel each other and we get
σeq (ω) → σeq,main (ω), where σeq (ω) = λpr ·σeq (ω) ·λpr

. After some tricky calculations, one can show that the
static limit of the equilibrium dielectric function is given
by

ϵeq (ω → 0) = 1 +

(
1 + i

0+

ω

)
C, (51)

where

C =
e2

ℏϵ0V
∑
k

∑
nn′

|Jk,n′n|2

ω3
k,nn′

(fk,n′ − fk,n) , (52)

in which Jk,n′n = λpr · Jk,n′n. C is in general a real
positive number, so that the static dielectric function is
larger than 1, as it is quite well known for semiconduc-
tors. The imaginary part of ϵeq (ω → 0) is given by 0+

ω C,
which vanishes if one takes the correct order of the limits:
first 0+ → 0 and then ω → 0. In numerical calculations,
at low frequencies, 0+ is a finite number and 0+

ω cannot
vanish in the limit of ω → 0. Actually, our results are
valid only if the probe frequency is much larger than 0+.
As we will describe below, in order to have a smaller 0+,
one needs a higher energy resolution and consequently
a finer grid in k space. This is consistent with the fact
that, to study the behavior of a system in some energy
regime, it is needed a sufficiently fine energy resolution
of the energy spectrum of the system.

Having computed the optical conductivity, one can ob-
tain the dielectric function in equilibrium and in turn, the
real refractive index in equilibrium. For the frequencies
where the real equilibrium refractive index, neq

refr (ω), is
smaller than 1, one can define the critical incident angle,
θC (ω), as

θC (ω) = sin−1 [neq
refr (ω)] . (53)

In absence of absorption, for incident angles above
θC (ω), we have total external reflection, i.e., the reflec-
tivity is equal to 1. In presence of absorption, the re-
flectivity is smaller than 1 even for incident angles above
θC (ω). On the other hand, for neq

refr (ω) ≥ 1 we have
θC (ω) = 90◦.

F. Guidelines for numerical calculations

In this section, we give some guidelines that can help
to perform the numerical calculations of the reflectivity
and of the absorption in different pump-probe setups.

1. Rewriting the expression for the optical conductivity to
simplify its numerical calculation

At a first glance, it may seem that Eq. 34 is computa-
tionally very expensive. It requires summing over many
indices and this can be quite heavy for real materials.
Moreover, one has to calculate a time integral for each
pair of t and tpr. However, with some careful manipu-
lations, these complexities can be simplified. One can
rewrite Eq. 34 as follows

σ1 (t, tpr) =
ie

ℏV
θ (t− tpr)∑

k

Tr {Zk (t) ◦ [Yk (t)− Yk (tpr) +Xk (tpr)]} , (54)

where ◦ stands for the matrix product in the band space
and Zk (t), Yk (t) and Xk (t) are matrices with the fol-
lowing elements:

Zk,n′
1n

′
2
(t) =∑

n1n2

Jk,n1n2 (t)P
⋆
k,n1n′

1
(t)Pk,n2n′

2
(t)
(
fkn′

1
− fkn′

2

)
,

(55)

Yk,n′
2n

′
1
(t) = − e

ℏ
∑
n3n4

∫ t

tini

dt′

V k,n3n4
(t′)P ⋆

k,n3n′
2
(t′)Pk,n4n′

1
(t′) , (56)

Xk,n′
2n

′
1
(t) = e

∑
n3n4

Dk,n3n4 (t)P
⋆
k,n3n′

2
(t)Pk,n4n′

1
(t) .

(57)

Using such matrices, the numerical calculations of
σ1 (t, tpr) becomes very fast and efficient.

It is worth noting that, in the numerical calculations,
where it is obviously needed to discretize the t time axis,
at each step of time, tm, one can compute Yk,n′

2n
′
1
(tm)

(Eq. 56) recursively from Yk,n′
2n

′
1
(tm−1) and approximat-

ing the remaining integral between tm−1 and tm. There-
fore, there is no need to perform the increasingly expen-
sive integration between tini and tm for each tm.

2. Finite numerical momentum grid and corresponding
damping factor

For the numerical calculations, we need to consider a
finite grid in the first Brillouin zone to sample the mo-
mentum k. Such a grid will have a total number of k
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points Ngrid and all summations over k should be per-
formed as 1

V
∑

k → 1
vucNgrid

∑
k∈grid where vuc is the unit

cell volume. Another issue which is directly connected
to the numerical k grid is the finite damping factor, or
equivalently, level broadening, 0+ . In real experimental
setups, one always deals with a finite level broadening
originating from several scattering mechanisms (such as
electron-phonon interaction, disorder, etc.) present in
the system, or even from the measurement procedure.
Such a level broadening brings a finite energy resolution,
which justifies the use of a finite momentum grid instead
of the almost continuous real one. The sparser is the k
grid, implying a lower and lower achievable energy res-
olution, the larger has to be the value of 0+. This is
crucial in the numerical calculations: if the value of 0+
is smaller than the band energy resolution provided by
the momentum grid, the features corresponding to indi-
vidual k points show up in the final results making them
artificially spiky. Then, if one is forced, by the available
computational resources, to use a sparser k grid than the
one consistent with the actual damping in the real ma-
terial under analysis (as it is usually the case), one has
to use a larger value of 0+ than the physical one and
this comes at the cost of suppressing possibly relevant
physical features (see App. F).

3. Analytical simplification regarding the time range after
the application of the pump pulse

The time step for the Fourier transformation of the
optical conductivity, Eq. 40, should be small enough so
that its reciprocal is larger than the frequency of the
probe pulse. On the other hand, the values of tpr suffer
no physical or mathematical restrictions, and one can
freely choose the instants of time at which to probe the
system. The initial time in the numerical calculations,
tini → −∞, is simple to choose: it should be a time
where the pump pulse is negligible, and also should meet
the criteria tini < tpr.

However, for the final time, tfin → +∞, in addition to
the condition that the pump pulse should become negli-
gible after its application and that tfin > tpr for every tpr,
it is needed that the integrand of Eq. 40 becomes neg-
ligible at tfin. That is, for every tpr, it is required that
e−0+(tfin−tpr) ≃ 0. One can always choose a large enough
value for tfin and solve this problem. However, in order
to increase the speed of computations, one can choose tfin
to meet only one criteria, i.e., the vanishing of pump and
probe pulses, and write

σ (ω, tpr) = σ̄ (ω, tpr) + σa.p. (ω, tpr) , (58)

where the first term on the right hand side is the result
of the numerical calculations

σ̄ (ω, tpr) =

∫ tfin

tpr

dtei(ω+i0+)(t−tpr)σ (t, tpr) , (59)

while the second term, which we dub after-pump contri-
bution, is given by

σa.p. (ω, tpr) =

∫ ∞

tfin

dtei(ω+i0+)(t−tpr)σ (t, tpr) , (60)

and can be calculated analytically, as we are going to
describe in the following. For t > tfin, the pump pulse
becomes negligible, and the projection coefficients follow
a trivial dynamics:

Pknn′ (t) = e−iωkn(t−tfin)Pknn′ (tfin) , t ≥ tfin, (61)

and the pump-pulse dependent observable matrix ele-
ments (such as velocities, dipole elements, currents, etc.)
return to their equilibrium values. After some lengthy
but straightforward calculations one can show that

σa.p.
1 (ω, tpr) = − ie2

ℏV
∑
k

{Wk (ω, tfin, tpr)

+Tr [Qk (ω, tfin, tpr) ◦ Sk (tfin, tpr)]} , (62)

where

Qk,n′n (ω, tfin, tpr) =
∑
n1n2

P ∗
k,n2n′ (tfin)Jk,n3n4

Pk,n1n (tfin)

ie(iω−0+)(tfin−tpr)

(ω − ωn1n2

k + i0+)
(fkn′ − fkn) , (63)

Sk (tfin, tpr) = Yk (tfin)− Yk (tpr)−Xk (tpr) , (64)

Wk (ω, tfin, tpr) = −1

ℏ
∑
n1n2

e(iω−0+)(tfin−tpr)Jk,n2n1

ω − ωn1n2

k + i0+∑
n

(
ηk,n1n

ω − ωnn2

k + i0+
Nk,n2n (tfin)

−
ηk,nn2

ω − ωn1n
k + i0+

Nk,nn1 (tfin)

)
, (65)

and

σa.p.
2 (ω, tpr) =

e

V
∑
k

∑
n1n2

iNk,n1n2 (tfin)
δJk.n1n2

δA

ωk,n1n2
+ ω + i0+

, (66)

and clearly, we have

σa.p. (ω, tpr) = σa.p.
1 (ω, tpr) + σa.p.

2 (ω, tpr) . (67)

4. Approximations considering the core levels

Another numerical efficiency improvement can be
achieved by separating the core bands, which are far be-
low the Fermi energy (i.e., the energy gaps between them
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and the other bands are out of resonance by far with re-
spect to the pump photon energy), from the valence and
the conduction bands. Obviously, the core bands are
completely filled at equilibrium, i.e., fkncore

= 1, and we
can consider negligible the effect of the pump pulse on
them. Therefore, one can write

Pkncoren (t) = Pknncore
(t) = e−iωkncore (t−tini)δnncore

,
(68)

where ωk,ncore
= εk,ncore

/ℏ.
Another approximation regarding the core bands is to

consider only the energy gaps between them and the va-
lence and conduction bands in computing the optical con-
ductivity, and neglect the contributions coming from the
energy gaps between valence and conduction bands. For
more details about this approximation see App. C.

5. Quasi-static approximation

Finally, a possible approximation one may think of is
to assume that on the time scale corresponding to the
probe frequencies, the pump-induced evolution can be
considered quasi-static. Even though such an approxi-
mation speeds up the calculations, as it allows for a sig-
nificant part of the job to be done analytically, it cannot
reproduce some relevant features of the actual behavior
of the optical properties. For further discussions about
this approximation see App. E.

III. RESULTS

A. The system

In this section, we consider the minimal model for a
semiconducting material: a cubic lattice with lattice con-
stant a and one valence (VB), one conduction (CB), and
one core band. We consider the VB and the CB to de-
rive from two Wannier states with onsite energies T̃0,1,1 =

−1.65∆ and T̃0,2,2 = 1.35∆, diagonal first-neighbor hop-
pings T̃a,1,1 = 0.2∆ and T̃a,2,2 = −0.15∆, and off-
diagonal first-neighbor hoppings T̃a,1,2 = T̃a,2,1 = −0.1∆,
where, as mentioned before, T̃R,ν,ν′ is the hopping matrix
between two Wannier states ν and ν′ centered at distance
R, and a ∈ {a (±1, 0, 0) , a (0,±1, 0) , a (0, 0,±1)}. ∆ is
the unit of energy and can be adjusted to obtain the de-
sired band-gap energies. As a reference, ∆ = 0.5 eV gives
a band gap of 0.75 eV at Γ. The core band is assumed
to be flat, with an energy εcore = −50∆. A momentum-
independent local dipole matrix element D = i0.05aĵ is
considered between the core level and both the VB and
the CB. We sample the k space by a cubic grid of size
32×32×32 pinned at Γ. The damping factor for comput-
ing the optical conductivity in the XUV regime is chosen
to be 0+ = 0.05∆/ℏ (see App. 9).

In Fig. 1 (left panel), we show the band energies along
the main path passing through the high-symmetry points

in the k space of the cubic lattice [49] as well as the one-
photon sideband of the VB corresponding to a photon en-
ergy 2.33∆. Pumping the system with such a frequency,
at the k-points where this sideband crosses the CB, we
have the exact one-photon resonances and, therefore,
Rabi-like excitations. Given a k-point, pumping fields
with different polarization directions couple very differ-
ently to the system because the velocity ηk is direction-
dependent in k space.

In the middle panel of Fig. 1, we plot the critical angle,
the real and imaginary parts of the dielectric function,
and the absorption coefficient, in equilibrium, as func-
tions of the probe photon energy, ω. At the moment, we
are interested in the XUV regime, which we define as the
range of the energy gaps between the core band and the
VB/CB: this requires that the real material has at least
one core band in the XUV energy range below the Fermi
energy. According to this, the probe explores the avail-
able states in the VB and the CB by exciting electrons
from the core band to such bands. Consequently, given
that our core band is flat, every probe photon energy
ℏω corresponds to the energy ℏω − |εcore| in the VB/CB
energies. This is implicitly understood hereafter, and ev-
ery optical feature at a given XUV photon energy, ℏω,
is possibly connected to the related band energy ε (k)
after subtracting the core energy, |εcore|. Accordingly,
the edges of the VB (CB) are marked by dashed-wine
(dotted-blue) vertical lines in all panels of Fig. 1 at the
proper XUV photon energy, panel by panel.
Im [ϵeq (ω)] has a behavior very similar to the absorp-

tion coefficient, αeq (ω), and both of them are finite only
in the CB energy range. This can be understood by not-
ing that in equilibrium, the XUV photons can be ab-
sorbed only by exciting the electrons from the core band
to the empty states of CB. However, the finite numeri-
cal value of 0+ gives a small broadening in Im [ϵeq (ω)]
and αeq (ω) outside of the energy range of the CB. One
should also consider that in real systems 0+ is finite, as
several kinds of imperfections and interactions/couplings
make the lifetime of the excited states finite and broaden
the energy bands.

The real part of the dielectric function, Re [ϵeq (ω)],
collects contributions from each k-point (Eq. 48) in the
form of a Cauchy’s principal part, centered at its corre-
sponding CB energy, and therefore, outside of the energy
range of the CB, Re [ϵeq (ω)] does not vanish, and in-
stead, has a hyperbolic-like drop vs energy with a tail
that is finite even in the energy range of the VB. Even
though the VB does not contribute to the optical proper-
ties at equilibrium, this tail results in a non-zero equilib-
rium reflectivity at the VB energy range, as discussed in
the following. Generally, the non-locality in energy (long
tails) of Cauchy’s principal part makes some of the opti-
cal properties at each photon energy not only affected by
the band structure at such energy but also by the overall
band structure.

In the middle panel of Fig. 1, we also have the crit-
ical angle, θC . Here, we assumed the reflection of an
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Figure 1. (left) Equilibrium bands along the main path passing through the high-symmetry points in the k space of the cubic
lattice. The one-photon side-band with photon energy 2.33∆ with respect to the VB is also shown (solid yellow). At the k
points where this side-band crosses the CB, we have one-photon resonances and Rabi-like excitations. (middle) The critical
angle, the real and imaginary parts of the dielectric function, and the absorption coefficient, at equilibrium, as functions of the
probe photon energy ω. The absorption coefficient has been multiplied by the lattice constant a to make it dimensionless and
by 40 to make it visible on the range of the left scale. A dashed-dot vertical red line marks the frequency below which the
critical angle is just 90°. (right) The equilibrium reflectivity at different incident angles, starting from 0° (normal incidence)
and increasing with the steps of 5°, vs the probe photon energy ω. The top and the bottom of the VB (CB) are marked by
dashed-wine (dotted-blue) lines in all panels.

s-polarized probe with an incident angle measured with
respect to the normal to the sample interface. The verti-
cal red dash-dot line shows the probe photon frequency
where Re [neq

refr] = 1, so that above (below) this frequency,
θC is less than (equal to) 90°. In the experimental se-
tups, the incident angle of the probe is chosen to be just
below the critical angle in the range of probe photon en-
ergies. This guarantees a high signal-to-noise-ratio in the
reflected beam and makes the results more precise and
reliable. According to this, in our case, we will choose
the incident angle to be 55°.

In Fig. 1 (right panel), we show the equilibrium re-
flectivities vs the probe photon energy, ω, for different
incident angles starting from 0° (normal incidence) and
increasing in steps of 5°. The reflectivity eventually tends
to zero for the energies well outside of the CB range, even
though it’s not localized in energy to the CB, because of
the non-local-in-energy character of Re [ϵeq (ω)], as ex-
plained above.

We apply to the system a pump pulse of the form
Apu (t) = Apu (t) ĵ where A (t) is given by

Apu (t) = A0e
−(4 ln 2)t2/τ2

pu cos (ωput) , (69)

in which, if not otherwise stated, the center of the pump
pulse is taken as the origin of time, the FWHM of the
pump pulse is τpu = 7ℏ/∆ , the frequency of the pump
is ωpu = 2.33∆/ℏ , and the pump amplitude is A0 =
0.4πℏ/ae. The probe has the same polarization of the
pump: λpr = ĵ.

B. Peierls substitution coupling

At first, we consider (i) the system coupled to the pump
pulse via the Peierls substitution and (ii) no dipole cou-
pling between the VB and the CB. In Fig. 2, we present
the transient behavior of the pumped system in such a
case. Fig. 2(a) shows the transient differential absorp-
tion coefficient, as given by Eq. 46. The main red stripe
in the VB and blue stripe in the CB coincide with the
black-dashed lines that indicate the positions of the main
peaks of the density of one-photon resonant states in each
band, which is reported in panel (b). One should notice
that at the resonances, the hole and electron populations
mainly follow a Rabi-like behavior with a period much
longer than the FWHM of the pump pulse, which results
in the accumulation of the excitation populations. The
electrons pumped into the CB leave less available states
for the electrons to be excited by the probe pulse from
the core band to the CB. Consequently, the absorption
of the probe pulse is reduced that results in a blue stripe
at the resonant energies of the CB. On the other hand,
the photo-injected holes into the VB make it possible for
the probe to excite electrons into the VB, which leads to
a finite absorption and, hence, to the red stripe in the
resonant energies of the VB. As we discussed in Ref. [49],
the pump pulse is not single frequency, and, therefore,
the resonance is not sharp and has a finite width, which
explains the broadening of the main red and blue stripes
around the resonance energies. Out of the resonance, the
excitation population has some transient oscillations [49]
with different amplitudes. The collective effects of all
such oscillations in energy and time (as well as of the reso-
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Figure 2. Transient optical behavior of the pumped system for the case of Peierls substitution coupling. (a) The transient
differential absorption coefficient, as given by Eq. 46, vs probe time, tpr, and probe photon frequency, ω. The orange arrow
determines the main electronic excitation induced by the pump, which is the one-photon resonance. (b) DOS and the one- and
two-photon DORS vs energy difference to the core band. (c) Transient relative differential reflectivity at the incident angle of
θ = 55◦, as defined in Eq. 43, vs delay time and probe photon energy. (d) The amplitude of the Fourier transformation of the
transient reflectivity, |δRθ=55◦ (ω, ω

′)|, see Eq. 44 (the low frequency region, ω′ < 0.2∆/ℏ, is not shown). The horizontal black-
dashed lines indicate the peaks of the one-photon DORS, and the edges of VB (CB) are shown with dashed-wine (dotted-blue)
lines.

nant ones) yield the other blue and red areas, as shown in
the map, together with the modifications induced by the
pump in the band structure of the system, to be intended
as the time-dependent Hamiltonian matrix elements.

In Fig. 2(b), we show the density of states (DOS)
and the one- and two-photon density of resonant states
(DORS) vs energy, as given in the App. H. The peaks of
the nph-photon DORS determine the energies at which
one would expect the effects of resonances. Indeed, as we
already discussed, the blue and red stripes in the map of
δα, in the CB and VB ranges, respectively, stem from the
one-photon resonances. Notably, the two-photon reso-
nances are very weak in this specific case and do not have
any relevant effect on the scales of Fig. 2. This is mainly
due to the peaks of the two-photon DORS being near
the edges of the bands, where we have very small veloci-
ties and, hence, weak couplings to the pump pulse. This
occurrence, together with the two-photon resonances be-
ing of second order and having low densities, results in a
negligible role in the transient optical properties in this
case.

In Fig. 2(c), we show the transient relative differential
reflectivity at the incident angle θ = 55◦, as defined in
Eq. 43. In this map, we see that the peaks of the one-
photon DORS (indicated by black-dashed lines) almost
coincide with the narrow white regions, where δrR ap-
proaches zero. If one does not consider the imaginary
part of the refraction index in the reflectivity calcula-
tion, they will coincide (not shown). This shows that the
white narrow regions in the map of δrR indicate the ab-
sorption edges. Moreover, on this map, one can see the
usual fishbone structure.

In Fig. 2(d), we show the amplitude of the
Fourier transformation of the transient reflectivity,

|δRθ=55◦ (ω, ω
′)|, as defined in Eq. 44. As it is clear

from this map, the oscillatory part is around twice the
pump frequency, ω′ = 2ωpu, and in particular, we don’t
have any odd-pump-frequency component. The absence
of the odd-pump-frequency components in the system’s
response can be explained as follows. Writing the op-
tical conductivity as the sum of the contributions from
individual k points, i.e., σ (ω, tpr) =

∑
k σk (ω, tpr), each

single σk (ω, tpr) can have odd-pump-frequency compo-
nents that come from the coupling via the odd-terms in
the expansion of the Peierls substitution which are pro-
portional to the velocity and higher order odd derivatives
(see Ref. [49]). Summing over all of the k points on the
grid these terms add up to zero because of the periodic-
ity of the FBZ. This cancels out all odd-pump-frequency
components in σ (ω, tpr), and consequently in the differ-
ential reflectivity.

C. Inter and intra-band transitions

In Fig. 3, we study the separate effects of the so-
called inter- and intra-band transitions in the dynam-
ics. To do that, one computes the projection coefficients,
Pknn′ (t), from the Eq. 21, by considering just either the
inter- or the intra-band transitions in the dynamics (see
Ref. [49] for a detailed explanation). Fig. 3 (top-left
panel) shows the transient differential absorption coeffi-
cient with only the inter-band transitions active. In this
case, the energies where we have one-photon resonances
(the one-photon-resonance energies) are even more rele-
vant than in the case of full dynamics (Fig. 2(a)), as the
off-resonance energies become less relevant without the
intra-band transitions.
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Figure 3. Transient (top row) differential absorption and (bottom row) relative differential reflectivity, with (left column)
only inter-band and (right column) only intra-band transitions in the dynamics, vs delay time and probe photon energy. The
horizontal lines are the same as those of Fig. 2.

Fig. 3 (top-right panel) shows the transient differen-
tial absorption coefficient with only the intra-band tran-
sitions active. In this case, the resonant energy gaps are
no longer relevant because there is no electron transition
among the bands, so the resonance loses meaning. Given
that with our system and pump parameters, the reso-
nance effects are the most relevant ones (see Fig. 2(a)),
this may lead to the conclusion that the intra-band mo-
tion is irrelevant. The qualitative shape of the color map,
i.e., the photon energies at which positive or negative (red
or blue, respectively) signals appear, is almost indepen-
dent of the pump frequency (see Fig. 11 in App. I), even
though the details of the oscillations depend on it. Con-
sequently, the main features for this case are determined
by the electronic bands and their couplings to the pump
pulse (i.e., to the system properties) rather than to the
pump-pulse parameters. A comparison between the full-
dynamics case and the cases for only inter- and intra-
band transitions active reveals that each type of tran-
sition contributes with specific features, but that only
the interplay between them can explain the full-dynamics
case. The features caused by inter-band transitions are
the dominant ones. The lower relevance of intra-band
transitions is due to the smoothness of the bands caused
by the short range and the relatively small values of the
hoppings. This leads to relatively small changes in the
bands upon shifting the momentum by the vector poten-

tial through the Peierls substitution.
In Fig. 3 (bottom-left/bottom-right panel), we have

the transient relative differential reflectivity for the case
of having only inter-/intra-band transitions in the dy-
namics. Similar to the case of absorption, we see that
there are features in the full-dynamics case originating
from either of the inter- or intra-band transitions and
the interplay of the two types of transitions results in the
full picture (compare with Fig. 2(c)).

D. Dipole coupling

Now, we study the effect of having a finite local dipole,
in addition to the Peierls substitution coupling. Let us
consider local dipole elements D̃R=0,1,2 = D̃∗

R=0,2,1 =

i0.05aĵ. In Fig. 4 (top-left panel), we show the transient
differential absorption coefficient for such a case. Similar
to the former case, the main change in the absorption
occurs at the one-photon resonance energies in the VB
and CB. In this case, the changes in the absorption are
higher as the local dipole strengthens the excitation rates
of electrons from the VB to CB.

In Fig. 4 (middle panel), we show the transient rela-
tive differential reflectivity at the incident angle θ = 55◦,
δRθ=55◦ (ω, tpr). We see that the white lines that deter-
mine the absorption edges are somewhat distorted under
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Figure 4. Transient optical behavior of the pumped system with both the local dipole and the Peierls substitution coupling
with the pump. (left) The transient differential absorption coefficient, as given by Eq. 46, and, (middle) transient relative
differential reflectivity at the incident angle of θ = 55◦, vs delay time and probe photon energy. (right) The amplitude of
the Fourier transformation of the transient reflectivity, |δRθ=55◦ (ω, ω

′)|, see Eq. 44 (we don’t show the low frequency region,
ω′ < 0.2∆/ℏ) . The horizontal lines are the same as those of Fig. 2.

the effect of the local dipole coupling. This is due to
the off-resonant non-permanent-excitation oscillations at
other energies that are strengthened by the local dipole
and can have more long-range tails in energy.

Comparison between Figs. 2 and 4 clarifies that the os-
cillations are different in the two cases. This can be well
understood from Fig. 4 (right panel), where we show the
amplitude of the Fourier transformation of the transient
reflectivity, |δRθ=55◦ (ω, ω

′)|. The main difference with
the former case is that here we do have the odd-pump-
frequency components, and in particular, ω′ around 1ωpu

giving the most substantial contribution in the oscillatory
behavior. The odd-pump-frequency components come
from the coupling to the pump-pulse electric field via the
local dipole. Such contributions are not canceled upon
the summation over the entire k grid, unlike what hap-
pens for the velocity and higher-order odd-derivatives in
the Peierls substitution, and instead significantly con-
tribute to the system’s response.

Such odd-pump-frequency components did not show
up in our recent work on germanium [38], which indicates
that the effects of local dipole moments between the VB
and CB were negligible there (even though the dipole be-
tween the core levels and the VB/CB is noticeable), as
was further confirmed by our DFT calculations. More-
over, in many other materials, the odd-pump-frequency
components are negligible, which justifies ignoring the
local dipole coupling and keeping only the Peierls substi-
tution, as it is done by some authors (see Ref. [50] and the
references therein). Given these results, we consider zero
dipole coupling between the VB and CB in the following
calculations and keep only the Peierls substitution. An-
other point that is worthy of being mentioned is that the
2ωpu-component is different from the case of having no
local dipole, Fig. 2. It shows the interplay between the
two terms, which clarifies that one cannot consider their
effects irrespective of each other.

E. Pump-pulse frequency dependence

In Fig. 5, we study the effect of changing the pump-
pulse frequency to better understand the role of res-
onances with the pump-pulse frequency in the out-of-
equilibrium optical properties. The FWHM of the pump
pulse, τpu, is also changed in such a way that, in all three
cases, ωpuτpu remains the same as the one of Fig. 2. In
Fig. 5 (top-left panel), we show the transient differential
absorption coefficient for the case of ℏωpu/∆ = 1. It is
worth noting that the minimum gap energy in our sys-
tem, which is at Γ, is 1.5∆, which is higher than ℏωpu,
and therefore we have no one-photon resonances. How-
ever, this map indicates a main absorption process at
the two-photon resonant k-points (a green arrow indi-
cates the two-photon transitions) at the energies where
we have the peaks of the two-photon DORS, as indicated
by the black-dotted lines. The process is of the second
order; hence, the absorption change is lower than in the
former cases. The bottom-left panel shows the transient
relative differential reflectivity for the same pump-pulse
parameters. Again, the peaks of the two-photon DORS
(signaled by black-dotted lines) indicate the absorption
edges, though they are not as intense as the first-order
transitions.

In Fig. 5 (top-middle and bottom-middle panels),
we show the transient differential absorption coeffi-
cient and relative differential reflectivity, respectively, for
ℏωpu/∆ = 1.5. The pump-pulse frequency resonates
with the minimum energy gap at Γ. Therefore, the
upper/lower edges of the VB/CB determine the one-
photon-resonance energies and almost coincide with the
peaks of the one-photon DORS and, consequently, the
main absorption stripes. In addition to the one-photon
resonances, we also see the effects of the two-photon res-
onances, which are of the second order (the peaks of the
two-photon DORS are signaled by black-dotted lines, and
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Figure 5. (top row) Transient differential absorption coefficients and (bottom row) transient relative differential reflectivities,
vs delay time and probe photon energy, for three different pump-pulse frequencies: (left column) ℏωpu/∆ = 1, (middle
column)ℏωpu/∆ = 1.5 and (right column) ℏωpu/∆ = 3. For each ωpu, the FWHM of the pump pulse,τpu, is set in such a
way that ωpuτpu remains the same as the one of Fig. 2. The orange (green) arrows indicate the one-photon (two-photon)
transitions, if any, while the horizontal black-dashed (-dotted) lines determine the peaks of one-photon (two-photon) DORS, if
any.

and a green arrow indicates the two-photon transitions).
Both first-order and second-order transitions result in
their corresponding absorption edges in the transient rel-
ative differential reflectivity, with the difference that the
absorption edges of the two-photon resonances are less
intense than the ones of the one-photon resonances.

In Fig. 5 (top-right and bottom-right panels), we show
the transient differential absorption coefficient and rela-
tive differential reflectivity, respectively, for ℏωpu/∆ = 3.
In this case, we have only the one-photon resonances,
with their corresponding effects in the absorption and
reflectivity, similar to the ones of Fig. 2. It is noteworthy
that in this case, because of the high value of ωpu, we
don’t have two-photon resonances at all. On the other
hand, in the case of Fig. 2, even though we do have two-
photon resonances, they have much smaller effects than
the one-photon ones because they occur near the edges
of the VB and CB and, hence, (i) they are coupled very
weakly to the pump pulse (their velocity is small) and
(ii) they have a smaller DORS than the one-photon res-
onances (see also Ref. [49]).

F. Pump-pulse intensity dependence

Another relevant study investigates the effect of the
pump-pulse intensity. The complete maps with different
intensities look qualitatively similar (not shown), and for
a better understanding, we look at some specific probe
frequencies. For this purpose, we considered two probe
frequencies in Fig. 6: ℏω/∆ = 48.72 and 51.07. In the top
panels of Fig. 6, we consider three different pump-pulse
intensities: 0.5I0, I0 and 2I0, where I0 corresponds to the
pump-pulse intensity of Fig. 2 (other parameters are also
the same as the ones of Fig. 2), and plot the transient
differential absorption coefficients, and the transient rel-
ative differential reflectivities, vs. the probe time. At
each instant of time, one cannot find a power-law behav-
ior for either of the quantities. Nevertheless, the order
is respected; generally speaking, increasing the intensity
increases the strength of the signals.

In the bottom panels of Fig. 6, we plot the absolute
value of the residual differential absorption coefficient,
|δα (ω, tpr → +∞)|, and the absolute value of the residual
relative differential reflectivity, |δRθ=55◦ (ω, tpr → +∞)|,
vs. the pump-pulse intensity (note that tpr → +∞ means
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Figure 6. Study of the intensity dependence, for two probe frequencies: ℏω/∆ = 48.72 and 51.07. (top-left) The transient
differential absorption coefficient, and (top-right) the transient relative differential reflectivities, vs the probe time, for three
different pump-pulse intensities: 0.5I0, I0 and 2I0, where I0 corresponds to the pump-pulse intensity of Fig. 2 (other parameters
are also the same as the ones of Fig. 2). The absolute values of, (bottom-left) the residual differential absorption coefficient,
and (bottom-right) the residual relative differential reflectivity, vs the pump-pulse intensity. The slope of each curve, m, is
written next to it.

a time well after the application of the pump pulse, but
still much smaller than the time scale of the other deco-
herence and de-excitation transitions, such as electron-
phonon interaction, spontaneous emission, etc.). We see
a linear behavior in the logarithmic plot for lower in-
tensities, which means a power-law dependence on the
intensity. The slope of the logarithmic plot, m, is the
power of the dependence and, in our cases, is always be-
low 1. The one-photon resonance is the main process
in our model for ωpu = 2.33∆/ℏ. But the power is less
than 1, as all orders of the Peierls expansion co-exist and
affect each other (see Refs. [38] and [49] for more discus-
sion). For higher intensities, the curves bend and show
no more a power-law behavior. This can be explained by
noting that the excitations are far below the population
inversion for low intensities, and by varying the inten-
sity, one can find a power law. Increasing the intensity
increases the Rabi frequency, which results in excitations
closer to the full population inversion. Hence, we do not
find a power law behavior with respect to the intensity
anymore.

G. IR and visible regime

Up to now, we have been studying the probes in the
high-frequency regime of XUV. Now, we move to probes
in the low-frequency regime, which corresponds to IR and
visible regimes, which we denote by IR-V. Based on our
arguments in App. B, using the standard formulas for the
transient optical properties (reflectivity and absorption)
in this regime is not straightforward. Indeed, to study
the transient optical behavior, we can safely investigate
the transient differential imaginary and real parts of the
dielectric function (see also App. G).

In Fig. 7 (left panel), we show the imaginary and real
parts of the dielectric function at equilibrium in the IR-V
regime. In this regime, we use 0+ = 0.1∆/ℏ (see App. F,
Fig. 9). The core bands play no role, and the probe
pulse induces transitions between the VB and CB. The
green-dotted lines determine the minimum and maximum
values of the gap energies and the CB-VB gap, εck − εvk,
along the main path in the k space is shown in the inset.
Re [ϵeq (ω)] decreases outside of the energy range of the
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Figure 7. Optical properties in the IR-V regime. (left) The imaginary and real parts of the dielectric function at equilibrium.
The inset shows the gap, εck − εvk, along the main path in the k space. The transient differential (middle) imaginary and (right)
real parts of the dielectric function. The green-dotted lines determine the minimum and maximum values of the gap energies
and the black-dashed (-dotted) line show the energy of one-(two-)photon resonance.

gap energies and tends to its predicted value for ω → 0
(see Eq. 51). The Im [ϵeq (ω)] is finite only in the range
of the gap energies, but because of the finite value of 0+,
it doesn’t tend to zero for ω → 0. Instead, as shown in
Eq. 51, it artificially diverges in this limit (not shown).

Fig. 7 (middle panel) shows the imaginary part of the
transient differential dielectric function. At the pump-
pulse frequency, we have the most relevant resonant ex-
citation process. The electrons get excited from the VB
to CB, reducing the absorption of the probe-pulse via
the same process, as there remain fewer available elec-
trons in the VB and vacancies in the CB, hence, a bright
blue stripe. In the right panel of Fig. 7, we report the
real part of the transient differential dielectric function,
which shows a clear absorption edge at the resonance en-
ergy. It is noteworthy that, as we mentioned before, the
two-photon resonance is very weak in this case; hence,
there is almost no signature at its corresponding energy.

IV. SUMMARY

We provided the linear response theory to a weak probe
pulse for a pumped system out of equilibrium. Such a
theory speeds up numerical calculations enormously, as
one needs to simulate the pumped system only once in-
stead of considering the probe repeatedly for all pump-
probe delays.

Applying this theory to a generic semiconductor sys-
tem with a quadratic Hamiltonian in the dipole gauge
and using the recently developed theory, Dynamical Pro-
jective Operatorial Approach, we derive a formula for
computing the optical conductivity as a function of the
pump-probe delay time and the probe photon frequency,
from which one can obtain the transient reflectivity and
absorption. We provided several essential guidelines that
would make it possible to perform actual numerical cal-

culations with affordable computational costs.
By considering a prototypical three-band (valence,

conduction, and core) model system, which is pumped
in the frequency range that can excite electrons between
valence and conductions bands (which is assumed to be
the IR range), we computed transient optical properties
in the probe photon frequency range of the gaps between
the core band and the other bands (which is assumed to
be the XUV range). We provided a systematic way to
analyze such results to find the relation between the fea-
tures in the transient differential absorption and reflec-
tivity and the system band structure in the first Brillouin
zone. We also proposed and exploited some generaliza-
tions of the density of states related solely to the resonant
states. Moreover, we studied the effect of a local dipole
and different mechanisms, such as inter-band and intra-
band transitions and single- and multi-photon processes.
The latter is further analyzed by changing the photon
frequency to explore various regions of the first Brillouin
zone in terms of being in resonance with the pump pulse.
Furthermore, we studied the effect of the pump pulse
intensity. Finally, we investigated the transient optical
response for the IR and visible range and analyzed the
results and their relations to the system and pump pulse
features.

Our work is at least of two-fold relevance: (i) we pro-
vide a theoretical method that can be affordably applied
to simulate realistic experimental setups, and (ii) we give
a systematic way to analyze the results of optical mea-
surements in terms of the system properties and pump
pulse parameters.
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Appendix A: The linear variation of the density
matrix in the presence of the probe pulse

The time evolution of the density matrix of the
pumped system, Υ̂′ (t), is given by the following equa-
tion of motion

iℏ
∂

∂t
Υ̂′ (t) =

[
Ĥ ′ (t) , Υ̂′ (t)

]
, (A1)

with generalized solution

Υ̂′ (t) = Û ′ (t, tini) Υ̂0Û
′ (tini, t) , (A2)

where Υ̂0 is the density matrix at the time tini → −∞
(i.e., at a time preceding the application of the pump)
and,

Û ′ (t1, t2) = T+

[
e−

i
ℏ
∫ t1
t2

dt′Ĥ′(t′)
]
, (A3)

is the time propagator in which T+ is the time-ordering
operator.

The full density matrix of the system in the presence
of both the pump and probe pulses, Υ̂ (t), obeys the fol-
lowing equation of motion,

iℏ
∂

∂t
Υ̂ (t) =

[
H (t) , Υ̂ (t)

]
. (A4)

We need to consider the full effect of the pumping via
Ĥ ′ (t), but consider the effect of the probe pulse up to
the linear order in Ĥ ′′ (t). In order to do that, we move
to an interaction picture in which the Hamiltonian of
the probe pulse, Ĥ ′′ (t), is considered as the interaction
term. The operators in this picture are indicated by the
subscript Ĥ ′ and given by Eq. 3. The full density matrix
in this picture is given by,

Υ̂H′ (t) = Û ′ (tini, t) Υ̂ (t) Û ′ (t, tini) . (A5)

It is straightforward to perform a direct time derivation
and show that Υ̂H′ (t) obeys the following equation of
motion,

iℏ
∂

∂t
Υ̂H′ (t) =

[
Ĥ ′′

H′ (t) , Υ̂H′ (t)
]
, (A6)

with generalized solution

Υ̂H′ (t) = Û ′′ (t, tini) Υ̂0Û
′′ (tini, t) , (A7)

where

Û ′′ (t1, t2) = T+

[
e−

i
ℏ
∫ t1
t2

dt′Ĥ′′
H′(t′)

]
. (A8)

Combining Eqs. A2, A5 and A7, the probe-pulse-
induced variation of the density matrix is obtained as,

Υ̂ (t)− Υ̂′ (t) = Û ′ (t, tini)
(
Υ̂H′ (t)− Υ̂0

)
Û ′ (tini, t) .

(A9)
Up to the linear order in Ĥ ′′ (t), we have

Û ′′ (t1, t2) ≃ 1− i

ℏ

∫ t1

t2

dt′Ĥ ′′
H′ (t′) . (A10)

Substituting Eq. A10 in Eq. A7 and then in Eq. A9, we
obtain the linear order variation of the density matrix,
as given in Eq. 4 in the main text.

Appendix B: Dielectric function and the reflectivity
formula out of equilibrium

1. Dielectric function

In order to obtain the dielectric function from the con-
ductivity out of equilibrium, we recall that the continu-
ity equation for jpr, the electrical current induced by the
probe pulse, reads as

∇ · jpr (t) + ∂tρpr (t) = 0, (B1)

where ρpr (t) is the bounded charge density induced only
by the probe pulse, and for the sake of simplicity, we
showed only the time dependence explicitly. The probe
pulse induced quantities (such as current, charge density,
etc.) are obtained as the difference between the value of
the quantities in the presence of both pump and probe
pulses and their value in the presence of the pump pulse
only.

The bounded charge density satisfies the Gauss’s law,
as

∇ · [ϵ0Epr (t)−Dpr (t)] = ρpr (t) , (B2)

where Dpr (t) is the electric displacement field of the
probe pulse, i.e., it is constructed from the electric field
of the probe pulse and the probe-pulse induced charge
polarization. Combining Eqs. B1 and B2 and consider-
ing the boundary conditions, we arrive at the following
formula,

jpr (t) + ϵ0∂tEpr (t)− ∂tDpr (t) = 0. (B3)

The responses to the probe pulse are assumed to be lin-
ear, so that one can write

jpr (t) =

∫
dt′σ (t, t′) ·Epr (t

′) , (B4)

and

Dpr (t) = ϵ0

∫
dt′ϵ (t, t′) ·Epr (t

′) , (B5)



19

where ϵ (t, t′) is the (dimensionless) dielectric function of
the material and ϵ0 is the vacuum permeability. Sub-
stituting back in Eq. B3, performing a Fourier transfor-
mation with respect to the time (t− t′), and using in-
tegration by parts to deal with the time derivatives, we
get∫

dt′ϵ (ω, t′) · eiωt′Epr (t
′) =∫

dt′eiωt′Epr (t
′) +

i

ωϵ0

∫
dt′σ (ω, t′) · eiωt′Epr (t

′) .

(B6)

Note that the response functions σ (ω, t′) and ϵ (ω, t′) de-
pend only on the material and the pump pulse, and the
above equation should hold for any probe pulse, Epr (t

′).
Consequently, one can eliminate

∫
dt′eiωt′Epr (t

′) and ar-
rive at the following relation which computes the dielec-
tric function from the conductivity:

ϵ (ω, t) = 1+
i

ωϵ0
σ (ω, t) . (B7)

2. Reflectivity

Starting from the Maxwell’s equations, after some
straightforward algebra and using Eq. B5 we obtain

∇2Epr (ω) =− µ0ϵ0ω
2

∫
dt′eiωt′ϵ (ω, t′) ·Epr (t

′) ,

(B8)

and

∇2Bpr (ω) = −iµ0ϵ0ω

∫
dt′eiωt′ϵ (ω, t′) · ∂t′Bpr (t

′) ,

(B9)

where Bpr is the magnetic field of the probe pulse and
we have considered a non-magnetic material, so that the
magnetic susceptibility of the material is just the one of
vacuum, µ0.

To proceed further, we need to apply some approxima-
tions. It is noticeable that for the majority of the exper-
imental setups, performing a Fourier transformation of
ϵ (ω, t′) with respect to t′, the highest frequency content
would be around nωpu , with usually at most n ≈ 2. If
the width of the probe envelope is much less than the
oscillation period of the pump pulse, one can approxi-
mately take ϵ (ω, t′) out of the above integrals. Given
that the probe pulse oscillation period should be smaller
than the width of its envelope, our approximation holds
only when the probe pulse frequency is much higher than
the one of the pump pulse. Under such circumstances,
one can write:

∇2Epr (ω) =− µ0ϵ0ω
2ϵ (ω, tpr) ·Epr (ω) , (B10)

and

∇2Bpr (ω) = −µ0ϵ0ω
2ϵ (ω, tpr) ·Bpr (ω) , (B11)

where tpr is the center of the probe pulse and the inte-
gration by parts has been used in the equation for the
magnetic field.

Eqs. B10 and B11 ensure that, under the approxima-
tions we have considered, the probe pulse behaves simi-
larly to the equilibrium case with the dielectric function
given by ϵ (ω, tpr). Consequently, one can apply the same
procedure as at equilibrium and obtain the formula for
reflectivity given in Eq. 42.

Appendix C: Considering only the transitions from
the core levels in optical conductivity

It is possible to assume that the high-frequency XUV
probes detect only the gaps between core bands and those
bands near the Fermi energy (either valence or conduc-
tion, which we call surface bands, and indicate by ns).
This approximation works better for larger core-surface
energy gaps. After some straightforward calculations,
one can show that the optical conductivity within this
approximation becomes

σ (t, tpr) ≈
e

ℏV
θ (t− tpr)∑

k

∫ t

tpr

dt′
∑

nsn′
sn

′′
s ncore

Im [Jnsncore

k (t)

(
− e

ℏ
V

ncoren
′
s

k (t′) + eD
ncoren

′
s

k (tpr) δ (t
′ − tpr)

)
e−iωkncore(t−t′)P ⋆

knsn′′
s
(t)Pkn′

sn
′′
s
(t′)

(
1− fkn′′

s

)]
. (C1)

Unfortunately, the equilibrium conductivity computed
via this approximation has a non vanishing 1/ (ω + i0+)
tail. This can be understood from Eq. 50 as it has no
core-surface term, unlike Eq. 49. For the cases like our
toy-model this doesn’t bring any problem, and the re-
sults of this approximation are almost exactly the same
as the ones obtained from the full formula. However, in
realistic situations this approximation may fail, not only
because of the non-vanishing tail, but also for the effects
of surface-surface transitions even on the conductivity in
XUV frequency range.

Appendix D: Cancellation of the equilibrium tails at
zero temperature

We consider only the diagonal elements of the optical
conductivity. Accordingly, we use σ = λ · σ · λ where
λ is the unit vector of a generic direction. The diagonal
second tail term in equilibrium, Eq. 50, can be rewritten
as
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σeq,tail
2 (ω) =

ie2

ℏ2V (ω + i0+)

∑
kn

fkn∑
ν1ν2

Ω∗
kν1n

[
∂2
k∥
T̃ ν1ν2

k

]
Ωkν2n, (D1)

where k∥ = λ ·k. Here we consider a fully gapped system
(e.g., a semiconductor) at zero temperature, so that fkn
doesn’t depend on k, but it is just a function of n, and
can be only 1 or 0. As such, ∂k∥fkn = 0, and one can use
the periodicity of the FBZ to perform an integration by
part and write σeq,tail

2 (ω) as,

σeq,tail
2 (ω) = − ie2

ℏ2V (ω + i0+)

∑
kn

fkn{[
∂k∥Ω

†
k

]
Ωkηk + ηkΩ

†
k

[
∂k∥Ωk

]}
nn

(D2)

where, for the sake of simplicity, a compact matrix nota-
tion has been used, {M}nn′ is the nn′ element of matrix
M , and ηk = λ · ηk = Ω†

k

[
∂k∥ T̃k

]
Ωk. Then, we exploit

the following relation [51],

{
Ω†

k

[
∂k∥Ωk

]}
nn′

=

{
− ηnn′

k

ℏωknn′
n ̸= n′,

0 n = n′,
(D3)

to obtain

σeq,tail
2 (ω) = − ie2

ℏ3V (ω + i0+)

∑
kn

fkn

∑
n′ ̸=n

(
ηnn

′

k ηn
′n

k

ωknn′
− ηnn

′

k ηn
′n

k

ωkn′n

)
, (D4)

which after some straightforward calculations can be
rewritten as

σeq,tail
2 (ω) =

ie2

ℏ3V (ω + i0+)

∑
knn′

ηnn
′

k ηn
′n

k (fkn′ − fkn)

ωknn′
. (D5)

Comparing Eqs. 49 and D5, one verifies that

σeq,tail
1 (ω) + σeq,tail

2 (ω) = 0. (D6)

A crucial point in this proof is that the distribution
function,fkn, is independent of k. This is clearly the case
for fully gapped systems at zero temperature, where in-
deed we have no DC conductivity and the tails should
cancel each other which results in a vanishing Drude
weight [50]. On the other hand, if the temperature is not
zero or the system is metallic (non-gapped), this condi-
tion breaks down and we can have DC conductivity as
the tail terms don’t cancel each other.

Appendix E: Quasi-static approximation

One approximation is to assume that the probe fre-
quency is much higher than the one of the pump pulse,
so that one can consider the system to be quasi static
in the vicinity of the probing time tpr. For such an ap-
proximation, one computes the dynamics up to tpr ac-
cording to Eq. 21 to obtain Pk (tpr), but, for those times
larger than tpr, one considers the Hamiltonian as time
independent. Diagonalizing H ′

k (tpr) using a unitary ma-
trix Uk (tpr), one can simply show that the quasi-static
projection coefficients in this diagonal basis, P qs

kln (t), are
given by

P qs
kln (t) = e−i(t−tpr)ωkl(tpr)P qs

kln (tpr) t ≥ tpr (E1)

where ℏωkl (tpr) is the l-th eigenvalue of H ′
k (tpr), and

P qs
kln (tpr) =

∑
n′

U⋆
kn′l (tpr)Pkn′n (tpr) . (E2)

Moreover, all of the coupling matrices J , V , D and
δJ/δA should be evaluated at the time tpr and trans-
formed using Uk (tpr). Performing some algebra, one ob-
tains the two parts of quasi-static conductivity as,

σqs
1 (ω, tpr) =

ie2

ℏV
∑
k

∑
l1l2l3{

−
J l2l1

k (tpr)V
l1l3
k (tpr)Nkl2l3 (tpr)

ωkl1l3 (tpr) [ωkl2l3 (tpr) + ω + i0+]

+
J l2l1

k (tpr)V
l1l3
k (tpr)Nkl2l3 (tpr)

ωkl1l3 (tpr) [ωkl2l1 (tpr) + ω + i0+]

+
J l3l2

k (tpr)V
l1l3
k (tpr)Nkl1l2 (tpr)

ωkl1l3 (tpr) [ωkl1l2 (tpr) + ω + i0+]

−
J l3l2

k (tpr)V
l1l3
k (tpr)Nkl1l2 (tpr)

ωkl1l3 (tpr) [ωkl3l2 (tpr) + ω + i0+]

+
iJ l2l1

k (tpr)D
l1l
k (tpr)Nkl2l3 (tpr)

ωkl2l1 (tpr) + ω + i0+

−
iJ l3l2

k (tpr)D
l1l3
k (tpr)Nkl1l2 (tpr)

ωkl3l2 (tpr) + ω + i0+

}
, (E3)

and

σqs
2 (ω, tpr) =

e

V
∑
k

∑
l1l2

iNkl1l2 (tpr)
δJ

l1l2
k (tpr)

δA

ωkl1l2 (tpr) + ω + i0+
, (E4)

where ωkll′ (tpr) = ωkl (tpr) − ωkl′ (tpr) is the dif-
ference between eigenenergies of the time-dependent
single-particle Hamiltonian at time tpr, Nkll′ (tpr) =∑

n P
qs⋆
kln (tpr)P

qs
kl′n (tpr) fkn is the dynamical population

matrix of the corresponding eigenbasis, and in the deriva-
tion we have used the following property of the projection
coefficients:

∑
n P

qs⋆
kln (tpr)P

qs
kl′n (tpr) = δll′ .
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Figure 8. Transient optical behavior of the pumped system, computed using the quasi-static approximation. All parameters are
similar to the ones of Fig. 2. (left) The transient differential absorption coefficient, (middle) the transient relative differential
reflectivity at the incident angle of θ = 55◦, and (left) the amplitude of the Fourier transformation of the transient reflectivity,
|δRθ=55◦ (ω, ω

′)|.

For the pumped toy-model with the parameters of
Fig. 2 in the main text, we calculate the transient op-
tical behavior, using quasi-static approximation and the
results are shown in Fig. 8. Clearly, even though there are
some similarities between the results presented in Figs. 8
and 2, many of the details of the full calculations are not
captured in the quasi-static approximation.

Appendix F: A brief study on the damping factor
(0+)

As described in the main text (see Sec. II F 2), 0+

should be chosen in such a way to make individual k
points on the grid indistinguishable. As such, for the
case of the XUV probe, we chose it to be 0.05∆/ℏ. In
Fig. 9 top panel, we plot the equilibrium dielectric func-
tion in the XUV regime, with 0+ = 0.02∆/ℏ and compare
it with the case of 0+ = 0.05∆/ℏ , which is used in all of
the XUV calculations in the main text. Clearly, the small
value of 0+ = 0.02∆/ℏ introduces fluctuations which are
the distinguishable effects of individual k points on the
grid. The inset magnifies the low values of the y axis and
shows how the smaller 0+ makes Im [ϵeq (ω)] vanish more
rapidly outside of the energy range of the CB. This con-
firms our explanation that the broadening of Im [ϵeq (ω)]
outside of the energy range of the CB is because of the
finite value of 0+.

Going to the IR-V regime, we work with lower fre-
quencies which makes the results more sensitive to the
energy differences between adjacent k points on the grid
and calls for a larger damping factor. In Fig. 9 bottom
panel, we plot the equilibrium dielectric function in the
IR-V regime, with 0+ = 0.05∆/ℏ and compare it with
the case of 0+ = 0.1∆/ℏ , which is used in the IR-V
calculations in the main text. Clearly, even though the
value 0+ = 0.05∆/ℏ works well for the XUV regime, for

the IR-V regime it is not adequate. On the other hand,
using the more reliable value of 0+ = 0.1∆/ℏ has the
problem that for the low frequencies outside of the gap-
energy range, Im [ϵeq (ω)] doesn’t vanish rapidly enough,
and there is no way out of such limitations.

Appendix G: Transient differential dielectric
function

In this appendix, we show the transient differential
imaginary and real parts of the dielectric function, i.e.,

δ Im ϵ (ω, tpr) = Im [ϵ (ω, tpr)− ϵeq (ω)] , (G1)

and

δRe ϵ (ω, tpr) = Re [ϵ (ω, tpr)− ϵeq (ω)] , (G2)

respectively, where ϵeq (ω) = ϵ (ω, tpr → tini) is the equi-
librium dielectric function.

Fig. 10 shows the transient behavior of the differen-
tial imaginary and real parts of the dielectric function,
with the same parameters as the ones of Fig. 2. Com-
parison between Figs. 2 and 10, one can see that the be-
havior of the absorption coefficient can be qualitatively
very well understood by studying just Im ϵ (ω, tpr), as it
is also clear from the Eq. 45. Moreover, the transient re-
flectivity behavior can also be qualitatively understood to
some extent from the transient real part of the dielectric
function, Re ϵ (ω, tpr), as the latter is the main ingredient
of the refractive index and hence plays a major role in
determining the former.
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Figure 9. (top) The equilibrium dielectric function in the
XUV regime. The solid curves correspond to 0+ = 0.02∆/ℏ,
while the dotted curves correspond to 0+ = 0.05∆/ℏ, which
is used in the XUV calculations in the main text. The in-
set magnifies the low values of the y axis and shows how the
smaller 0+ makes Im [ϵeq (ω)] vanish more rapidly outside of
the energy range of the CB. (bottom) The equilibrium di-
electric function in the IR-V regime. The solid curves corre-
spond to 0+ = 0.05∆/ℏ, while the dotted curves correspond
to 0+ = 0.1∆/ℏ, as used in Fig. 7.

Appendix H: Density of states and its
generalizations

We define the density of states, g (ε), at each energy
ε as the number of states within the infinitesimal range
dε around ε divided by dε, in the volume of the unit
cell. Even though mathematically, g (ε) is defined us-
ing a Dirac-delta function, in numerical calculations it is
obtained as,

g (ε) =
1

Ngrid

∑
k∈grid

∑
n

L (ε− εk,n) , (H1)

where L (ε) = ℏ0+
π(ℏ20+2+ε2) is the Lorentzian function.

This concept can be generalized to any momentum and

Figure 10. Transient behavior of the differential (left) imagi-
nary part of the dielectric function, δ Im ϵ (ω, tpr), and (right)
its real part, δRe ϵ (ω, tpr), vs the probe time and photon en-
ergy, with the same parameters as the ones of Fig. 2.

band dependent property, Ok,n, such as diagonal velocity
and inverse-mass, etc., with the density given by:

gO (ε) =
1

Ngrid

∑
k∈grid

∑
n

Ok,nL (ε− εk,n) . (H2)

Another generalization is to compute the nph-photon
density of resonant states (DORS). Roughly speaking,
the nph transitions come from the nph-th power of the
pumping field. We define the function wnph

(εgap) which
gives the strength of the nph resonance for each given
gap-energy εgap, and is obtained from the leading term
of the square of the amplitude of the εgap/ℏ component
in the spectrum of the nph-th power of the pump pulse,
centered at nphωpu. With our pump, Eq. 69, it is given
by [49]

wnph
(εgap) = e

−
τ2
pu

8nph ln 2 (
εgap

ℏ −nphωpu)
2

. (H3)

This strength function is normalized so that at the exact
resonance, εgap = ℏnphωpu, it is equal to 1. Note that,
instead of the amplitude, its square is used, as in a pure
Rabi-oscillation with low Rabi frequency, the excitation
population is proportional to the square of the pump am-
plitude [49]. Nevertheless, one should be aware of the fact
that different frequency components of the pump pulse do
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Figure 11. Only intra-band transitions in the dynamics. (top row) Transient differential absorption coefficients and (bottom
row) transient relative differential reflectivities for three different pump-pulse frequencies: (left column) ℏωpu/∆ = 1, (middle
column)ℏωpu/∆ = 1.5 and (right column) ℏωpu/∆ = 3, and the rest of the parameter are similar to the corresponding panels
of Fig. 5.

not act independently, and hence our resonance assign-
ment should be considered as an approximation. Usually,
the gaps between the filled and empty bands are of inter-
est. At zero temperature, the nph-photon DORS is given
by

gnph
(ε) =

1

Ngrid

∑
k∈grid

∑
nC

L (ε− εk,nC
)

∑
nV

wnph
(εk,nC

− εk,nV
) , ε > εF (H4)

gnph
(ε) =

1

Ngrid

∑
k∈grid

∑
nV

L (ε− εk,nV
)

∑
nC

wnph
(εk,nC

− εk,nV
) , ε < εF (H5)

where nC (nV ) runs over the CBs (VBs) and εF is the
Fermi energy. For finite temperatures, we consider the
gaps between the filled and empty electronic states, and
consequently, generalize gnph

(ε) by obtaining it as,

gnph
(ε) =

1

Ngrid

∑
k∈grid

∑
nn′

[fk,n (1− fk,n′) + fk,n′ (1− fk,n)]

L (ε− εk,n)wnph
(|εk,n − εk,n′ |) . (H6)

Appendix I: Intra-band motion with different
pump-pulse frequencies

In Fig. 11, we show the transient differential absorp-
tion coefficient and relative differential reflectivity with
considering only intra-band transitions upon pumping,
for three different pump frequencies, ℏωpu/∆ =1, 1.5,
3, similar to Fig. 5. Clearly, the color maps are quali-
tatively very similar, i.e., the probe photon energies at
which positive or negative (red or blue, respectively) fea-
tures appear, are almost independent of the frequency of
the pump pulse, even though the details of the oscilla-
tions vary by varying it.
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