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Figure 1: Baseline pipeline, Proposed pipeline and Comparison of training GPU memory requirements and testing
inference time. (a) The baseline CGH generation pipeline directly processes the image input within the CGH network to
synthesize the phase-only hologram. (b) We propose a divide-conquer-and-merge strategy to enable current holographic pipelines
to generate higher-definition holograms at a faster speed. (c) We integrate our strategy into two state-of-the-art CGH generation
networks, namely HoloNet and CCNNs, to demonstrate the effectiveness of our strategy. Compared to the baseline pipelines, our
strategy meaningfully reduces the memory requirements during the training stage and significantly improves the inference time
in the testing stage. The Big Buck Bunny image comes from www.bigbuckbunny.org (© 2008, Blender Foundation) under the
Creative Commons Attribution 3.0 license (https://creativecommons.org/licenses/by/3.0/).

ABSTRACT

Recently, deep learning-based computer-generated holography
(CGH) has demonstrated tremendous potential in three-dimensional
(3D) displays and yielded impressive display quality. However, most
existing deep learning-based CGH techniques can only generate
holograms of 1080p resolution, which is far from the ultra-high
resolution (16K+) required for practical virtual reality (VR) and
augmented reality (AR) applications to support a wide field of view
and large eye box. One of the major obstacles in current CGH
frameworks lies in the limited memory available on consumer-grade
GPUs which could not facilitate the generation of higher-definition
holograms. To overcome the aforementioned challenge, we pro-
posed a divide-conquer-and-merge strategy to address the memory
and computational capacity scarcity in ultra-high-definition CGH
generation. This algorithm empowers existing CGH frameworks
to synthesize higher-definition holograms at a faster speed while
maintaining high-fidelity image display quality. Both simulations
and experiments were conducted to demonstrate the capabilities of
the proposed framework. By integrating our strategy into HoloNet
and CCNNs, we achieved significant reductions in GPU memory
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usage during the training period by 64.3% and 12.9%, respec-
tively. Furthermore, we observed substantial speed improvements
in hologram generation, with an acceleration of up to 3× and 2 ×,
respectively. Particularly, we successfully trained and inferred 8K
definition holograms on an NVIDIA GeForce RTX 3090 GPU for
the first time in simulations. Furthermore, we conducted full-color
optical experiments to verify the effectiveness of our method. We
believe our strategy can provide a novel approach for memory- and
time-efficient holographic displays

Index Terms: Computing Methodologies—Computer Graphics—
Computer-generated Holography

1 INTRODUCTION

Holographic displays, utilizing diffractive optical elements for light
modulation, enable pixel-level focus control, aberration correction,
and visual calibration, which are not achievable with other display
technologies [34]. Therefore, it holds the potential to become the
enabling technology for the next-generation virtual and augmented
reality (VR/AR) devices [6]. With advancements in computational
algorithms, computer- generated holography (CGH) has made signif-
icant progress in synthesizing holographic patterns through numeri-
cal simulation of light propagation. These patterns are loaded onto a
spatial light modulator (SLM) [44] in a sequential manner, enabling
the dynamic and precise reproduction of virtual object wavefronts.

Deep learning-based CGH methods have delivered exceptionally
high-fidelity and photorealistic holographic images without artifacts.
Peng et al. [27] and Chakravarthula et al. [5] proposed a novel
camera-in-the-loop (CITL) optimization strategy to enhance the
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display quality of optical experiments. Dong et al. [9] proposed a
Fourier-inspired neural module to improve cross-domain learning
in convolutional neural networks (CNNs) to improve the quality of
reconstructed images. Choi et al. [7] introduced a neural network-
parameterized multiplane wave propagation model based on CITL,
which achieved high-quality 3D holographic images. Shi et al. [30]
presented the lightweight residual CNN in supervised learning and
anti-aliasing double phase method (AA-DPM) to synthesize real-
time and photorealistic 3D holograms.

Despite these major advancements in display quality, it is still
a significant challenge to generate ultra-high-definition holograms.
For practical VR and AR applications, ultra-high-definition CGHs
(16 K+) are needed to support a wide field of view (FOV) and a large
eyebox [32]. However, the abovementioned holographic networks
are mostly limited on generating holograms with a definition of
1080p due to the substantial GPU memory requirements for training
epoch. Hence, it is crucial to investigate methodologies for alleviat-
ing GPU memory usage during training stage to achieve immersive
VR and AR experiences.

Recently, researchers have started exploring new holographic
network architectures to generate 4K definition holograms [37, 46].
Wu et al. [37] utilized a single auto-encoder network instead of
two sub-networks in HoloNet to generate 4K holograms. However,
this architecture exhibited a significant display quality degradation.
Specifically, compared to HoloNet, the PSNR of its reconstructed
images decreased by 6 dB. Zhong et al. [46] proposed the efficient
complex-value neural networks (CCNNs) to learn complex-valued
propagation for generating high-quality 4K holograms. While CC-
NNs achieved a favorable balance between network parameters and
reconstructed image quality, they did not further explore the genera-
tion of higher-definition holograms.

In this paper, we proposed a novel divide-conquer-and-merge
strategy to enable current holographic networks to generate higher-
definition holograms, as shown in Fig. 1. Specifically, in the “divid-
ing” stage, our method first applies a pixel-unshuffle layer on the
input image to obtain r2 sub-images, where r is the scale factor of
the pixel-unshuffle layer. It should be noted that the pixel-unshuffle
layer can be replaced by other operations with the same purpose,
such as a learnable layer or a CNN. Next, during the “conquering”
stage, we predict corresponding lower-definition holograms. Finally,
in the “merging” stage, these sub-images are rearranged to form a
higher-definition image. To alleviate the degradation in hologram
quality, we elaborate a cross-domain SR network that fully integrates
the information between neighboring pixels in sub-holograms to gen-
erate a large-scale hologram. Furthermore, our framework, like other
divide-and-conquer algorithms, can be implemented in a recursive
form to further improve the image quality as shown in Fig. 1. We im-
plemented our strategy both numerically and experimentally on two
SOTA networks (Holonet and CCNNs) to validate its effectiveness.
It turns out that our method can significantly reduce GPU memory
usage by 64.3% and 12.9% respectively during the training period,
while maintaining the displayed quality of reconstructions. Further-
more, HoloNet with our method achieves the faster generation speed
of 66 FPS for 1080p holograms, compared to the naı̈ve HoloNet’s
capability of only 16 FPS. Our approach achieves 2× and 1.5×
faster generation of 4K and 8K holograms, compared to the baseline
CCNNs. Particularly, we successfully trained and inferred 8K defini-
tion holograms on an NVIDIA GeForce RTX 3090 GPU card for the
first time in simulations. We believe that our proposed method offers
a new perspective on how to resolve the conflict between generating
high-definition holograms and the constraints imposed by limited
GPU memory.

Our primary contributions are as follows:

• We introduced a divide-conquer-and-merge strategy to address
the memory and computational capacity scarcity in ultra-high-
definition CGH generation while ensuring the generation of

high-quality phase-only holograms.

• We validated the effectiveness of our method through extensive
simulations. The simulation results demonstrated that integrat-
ing our method into the majority of existing CGH generation
frameworks led to smaller GPU memory requirements during
the training stage and faster hologram generation speeds in the
testing stage.

• We developed a full-color holographic display system to con-
duct optical experiments for a VR demo. Furthermore, we
implemented an AR setup to demonstrate the performance of
proposed strategy.

2 RELATED WORKS

2.1 Computer-generated Holography
CGH is a technique to produce holographic patterns by numerically
simulating the light propagation including diffraction and interfer-
ence. It shows great promise in replicating focus [7,30] and parallax
cues [4], as well as correcting visual and optical aberrations [23, 34].
CGH utilizes an SLM to reproduce the wavefront from the virtual
object. Unfortunately, the current commercial SLMs lack the capa-
bility to simultaneously modulate both amplitude and phase, and
phase-only SLMs are typically preferred due to their higher diffrac-
tion efficiency. Therefore, a meaningful challenge in CGH is how to
encode a high-quality phase-only hologram from a complex-valued
hologram while ensuring accurate reconstruction of the optical field.

In the past few decades, researchers have developed various CGH
algorithms in an attempt to achieve better display quality within
limited generation time. These conventional approaches can be
broadly divided into two categories: iterative methods [3, 11, 27]
and non-iterative methods [23, 24]. Common iterative algorithms,
such as Wirtinger holography [3] and stochastic gradient descent
(SGD) [27], have the potential to achieve high-quality images but are
often time-consuming. For instance, SGD can deliver exceptional
display quality, but it requires iterative optimization over an extended
period to achieve optimal results. While non-iterative algorithms,
such as dual-phase amplitude coding (DPAC) [23], provide faster
computation compared to iterative methods but can result in images
with lower contrast. In addition to the above algorithms, there are
also some other CGH approaches [28] which aim to reduce the
computational time and improve the display quality. However, to
date, a trade-off between the computational time and the display
quality existed among conventional CGH algorithms.

Recently, deep learning-based approaches have emerged as a
promising technique to balance the trade-off between image quality
and inference time in CGH. Horisaki et al. [13] first applied a CNN to
infer the hologram from handwritten digital images. Peng et al. [27]
proposed a new CGH architecture, HoloNet, that enabled real-time
2D holographic display with an image quality comparable to that
of previous iterative methods. Dong et al. [9] introduced a neural
module inspired by the Fourier transform to enhance cross-domain
learning in CNNs and improve the quality of reconstructed images.
Choi et al. [7] further developed the differentiable CITL model and
extended its application to multi-plane holography, achieving high-
quality 3D displays in optical experiments. Shi et al. [30] proposed
a residual network architecture that is more efficient to synthesize
real-time and photorealistic 3D holograms. However, due to the
substantial GPU memory requirements, the generated holograms in
the aforementioned approaches are primarily limited on a definition
of 1080p.

Simultaneously, there have been significant efforts to generate
high-definition holograms. Wu et al. [37] proposed an auto-encoder
architecture specifically designed for high-definition hologram gen-
eration. Similarly, Zhong et al. [46] utilized lightweight CCNNs to
achieve the same objective. Both methods achieved a GPU mem-
ory usage reduction by pruning the number of network parameters.
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Figure 2: An overview of our proposed framework. The method can be divided into two parts, which are inserted into the phase generator
and phase encoder sections of a CGH generation network, respectively. For the phase generator part, the module first performs a pixel-
unshuffle operation on an image of size H ×W to get r2 sub-images of size H/r ×W/r. Next, these sub-images are fed into the phase
generator of the original network to predict r2 phase sub-images, and then upsamples phase sub-images into a phase image of size H ×W
by a pixel-shuffle layer. For the phase encoder part, the module is similar to the phase generator part, moreover for the upsampling step a
lightweight SR network is used as a replacement for the pixel-shuffle layer to strengthen the quality of the generated hologram. The Big
Buck Bunny image comes from www.bigbuckbunny.org (© 2008, Blender Foundation) under the Creative Commons Attribution 3.0 license
(https://creativecommons.org/licenses/by/3.0/).

However, it is important to recognize that directly reducing net-
work parameters may result in a limited parameter space, potentially
hindering the high-quality hologram generation.

2.2 Image Super-resolution
Over the past few decades, numerous SR methods have been pro-
posed, which can be categorized into four main groups: interpolation-
based algorithms, reconstruction-based algorithms, CNN-based al-
gorithms, and vision transformer (ViT)-based algorithms [21].

Interpolation-based algorithms estimate the intensity on the up-
sampled grid using fixed kernels with local variance coefficients [15]
or adaptive structure kernels [22, 43]. However, due to their sim-
plicity, these methods often do not provide sufficient performance
to serve as holographic SR networks. Reconstruction-based algo-
rithms assume a prior degradation model and aim to find the inverse
model. Khattab et al. [16] categorized these approaches into three
groups: stochastic [18, 29, 41], deterministic [2, 38–40], and hy-
brid [10, 20, 45] methods. However, due to their reliance on prior
image models and the solution of inverse problems, it is challenging
to adapt these methods to holographic applications. Furthermore,
ViT-based algorithms utilize transformers as SR networks but are
not compatible with our overall framework.

On the other hand, CNN-based algorithms offer a promising
choice for our task due to their superior performance and the ability
to be jointly optimized. However, several challenges need to be
addressed. Firstly, most SR networks focus on amplitude image
SR, which may lead to a performance decline due to domain mis-
match. Secondly, we need to design a lightweight SR network to
accommodate the limitations of GPU memory.

3 PROPOSED METHOD

We proposed a novel CGH generation framework to synthesize high-
quality and ultra-high-resolution holograms, as shown in Fig. 2. The

framework consists of two main components, the phase generator
and the phase encoder. For the phase generator, we employ a divid-
ing strategy where the image is initially divided into r2 sub-images
with reduced resolution. These lower-definition sub-images are then
fed into the phase generator network to predict the corresponding
phases at the target plane. The phase and amplitude are upsampled
and merged to synthesize a complex-valued wave field, which is sub-
sequently propagated to the SLM plane using the angular spectrum
method (ASM) [25]. For the phase encoder, similar to the operations
of the phase generator, we continue to apply the divide-and-conquer
strategy to generate a phase-only hologram. Finally, the phase-only
hologram is propagated back to the target plane, and the parameters
of the networks are updated by calculating the loss between the
ground truth (GT) and the reconstructed image. The formulation of
each component of our method is as follows:

Ip = Uω (Oγ (Dθ (I))) (1)

where Ip is the predicted phase image, I is the input image of each
part, Uω (·) is the upsampling layer, Dθ (·) is the downsampling
layer, and Oγ (·) represents the original subnetwork of CGH neural
network. By this downsampling and upsampling procedure, GPU
memory usage can be saved significantly.

We will introduce the specific operations of the phase generator
part and the phase encoder part in Sect. 3.1 and Sect. 3.2, respec-
tively. Our proposed lightweight holographic SR network will be
introduced in Sect. 3.3. To further improve the image quality, we
elaborate a pyramid architecture to synthesize a large-scale phase-
only hologram in Sect. 3.4. The ablation study of our module will
be shown in Sect. 5.

3.1 Phase Generator
In our approach, we apply a pixel-unshuffle layer to the input am-
plitude image of size H ×W , splitting it into r2 sub-images of size
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Figure 3: An overview of our proposed light-weighted holographic SR network, namely local feature mixing network (LFMN). The core module
of LFMN is the local feature mixing module (LFMM) comprising a local feature modulation (LFM) module and a modified convolutional
channel mixer (CCM) [33] enhanced for local feature extraction.

H/r ×W/r. This step is important to avoid information loss, as
demonstrated by Gu et al. [12]. Here, H ×W represents the di-
mensions of the input amplitude image. It is worth noting that the
pixel-shuffle layer is only one of several potential approaches. For
instance, a learnable layer or a CNN could also be considered as vi-
able alternatives to fulfill the same objective. Then, these sub-images
are fed into the phase generator network to predict r2 correspond-
ing phase patterns. To recover the full resolution from sub-phase
images, we perform a pixel-shuffle layer to obtain the phase image
at the original definition. Finally, the phase is combined with the
input amplitude image to synthesize a complex-valued hologram
at the target plane. The complex-valued hologram at full definition
guarantees the retention of intricate details and enhances accuracy
throughout the ASM propagation process.

3.2 Phase Encoder
For the phase encoder part, a pixel-unshuffle layer is also employed
to prevent information loss in the downsampling step. The differ-
ence between the phase generator and the phase encoder lies in the
upsampling step. In contrast to the task of natural image SR, the
process of hologram generation entails the transformation from the
image domain (spatial domain) to the hologram domain (Fourier
domain) [9]. In other words, holograms and the target images do not
have a direct pixel-level correspondence. Therefore, it would lead
to severe degradation in the quality of the reconstructed images if
a simple pixel shuffle layer is employed. To ensure the quality of
generated holograms, we further design a lightweight SR network
that incorporates the information between neighboring pixels in sub-
holograms to generate a high-definition hologram. Similarly, the
number of input channels and output channels of the phase encoder
is also adjusted to r2 in order to match the number of sub-images.

3.3 Lightweight Holographic SR Network
As illustrated in Fig. 3, LFMN first transforms the r2 phase-only
holograms to feature maps. Then a global response normalization
(GRN) [36] is performed to normalize the feature map for better
inter-channel mixing and robustness of the model. Subsequently, the
normalized feature map is fed into a cascade of local feature mixing
modules (LFMMs) for the extraction and mixing of local features.
Finally, a pixel-shuffle operation is performed on these refined r2

sub-holograms to get a single hologram at high definition. The
overall architecture of our network can be formulated as follows:

F = Gα,β (Cω (Il))

Ih = PS(Cε (Lθ (F))+ Il)
(2)

Holo-SR
Network

Holo-SR
Network

Holo-SR
Network

Holo-SR
Network

Holo-SR
Network

(1)

(2)

Pyramid SR

Figure 4: Pyramid SR Network. We design a two-stage SR archi-
tecture to synthesize a large-scale CGH.

where Il are low-definition sub-holograms, Ih is the high-definition
hologram, Cω is the convolution parameterized by ω that transforms
sub-holograms to feature maps, Gα,β is GRN parameterized by α

and β , Lθ is LFMMs parameterized by θ , Cε is the convolution
parameterized by ε that converts feature maps back to the image
space, and PS is the pixel-shuffle layer.

Specifically, the LFMM block comprises the LFM and enhanced
CCM components, which draw inspiration from the spatial-adaptive
feature modulation network (SAFMN) [33]. These components
have undergone significant enhancements and modifications to im-
prove the local feature extraction and mixing capabilities within our
framework. A LFMM block can be formulated as follows:

F ′ = LFM(F)+F

F ′′ = ECCM(F ′)+F ′ (3)

3.3.1 Local Feature Modulation
In this module, inspired by the SAFM module [33], we adopt the
element-wise product to modulate the feature map. However, to im-
prove the extraction of local features, we introduce a new approach
to generate the attention map.

To begin with, we generate an attention map by extracting local
features from the feature map. This attention map is subsequently
employed to modulate the feature map using an element-wise prod-
uct. Specifically, the channels of the feature map are initially re-
duced by half using 3×3 convolutions. Then, the halved channels
undergo mixing through 3×3 convolutions. Subsequently, the chan-
nels are restored to their original number using 3×3 convolutions.
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Figure 6: Numerical simulations of holograms at 4K definition
generated by different methods. These images come from UHD8K
[42].

The attention map is activated using a Sigmoid activation function.
Moreover, the activation functions between hidden layers employ
the LeakyReLU activation with a slope of 0.1.

3.3.2 Enhanced Convolutional Channel Mixer

In this module, we further strengthen the mixing of channels by
using an enhanced CCM. We modify the CCM module to achieve
a better extraction of local features and less GPU memory usage.
Specifically, we modify the activation functions to the LeakyReLU
with the slope of 0.1 and just increase the number of channels by
1.25 for less GPU memory usage. Furthermore, we recompose
the second convolution from 1×1 to 3×3 which allows for better
extraction of spatially local contexts.

3.4 Recursive form

In this section, to demonstrate that our method, like other divide-
and-conquer algorithms, can be implemented in a recursive form, we

Table 1: Comparative Analysis: HoloNet vs. HoloNet w/ ours.
The comparison on the memory usage during training, inference
speed and the quality of generated image. Mem represents GPU
memory usage during training, measured in MiB. FPS represents the
inference speed, measured in Frames Per Second (FPS). The image
quality is evaluated using the metrics PSNR and SSIM. Bolded met-
ric denotes the best performance. GPU memory usage is measured
by nvitop [26].

Methods

HoloNet

1080p 4K

Mem↓ FPS↑ PSNR/SSIM↑ Mem↓ FPS↑ PSNR/SSIM↑

w/o 9355 16 30.47/0.93 Out-of-memory
w/ x2 5647 23 30.83/0.93 14455 8 40.29/0.96
w/ x4 3337 66 29.04/0.91 7299 20 38.05/0.98

w/ pyramid 5351 20 30.51/0.93 12083 8 39.41/0.95

design a pyramid framework to synthesize large-scale high-quality
holograms to illustrate this point. Since both the pixel-shuffle layer
and pixel-unshuffle layer are explicit, we only provide a pyramid
SR pipeline of how to recursively merge a high-definition holo-
gram from its sub-holograms, as illustrated in Fig. 4. The complete
pyramid structure can be found in the supplementary materials.

Specifically, taking the ×4 pixel unshuffle as an example, in stage
1, we divide 16 sub-holograms equally into four groups, and each
group passes through a lightweight SR network to obtain four ×2

Table 2: Comparative Analysis: CCNNs vs. CCNNs w/ ours.

Methods

CCNNs

4K 8K

Mem↓ FPS↑ PSNR/SSIM↑ Mem↓ FPS↑ PSNR/SSIM↑

w/o 5957 12 42.06/0.97 19573 4 46.41/0.99
w/ x4 5265 24 42.94/0.98 17041 6 46.31/0.98

www.bigbuckbunny.org
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upsampled holograms. Here we assume that the upsampling fusion
process is identical for each group, allowing the network parameters
of the four SR networks to be shared. Then, in stage 2, we combine
the four new holograms from stage 1 again through an SR network
to synthesize a large-scale hologram. It is important to note that the
SR networks used in different stages are independent of each other.

4 RESULTS AND ANALYSIS

4.1 Implementation Details
Datasets Following previous works [27, 46], we adopted the

DIV2K dataset [1] as the training data and utilized the DIV2K-val
dataset as the test data for holograms at 1080p definition. However,
for higher resolutions such as 4K and 8K, we randomly selected 800
images from the UHD8K training set [42] as our training data and
chose 100 images from the UHD8K test set as our test data.

Evaluation metrics To assess the quality of the reconstructed
images, we employed widely used evaluation metrics, peak signal-
to-noise ratio (PSNR) and structural similarity index (SSIM) [35].
These metrics provide quantitative measures to evaluate the fidelity
and similarity of the reconstructed images compared to the GT.
Furthermore, we analyzed GPU memory usage in real-time during
the training process using nvitop [26] and compared the inference
time of different methods for generating holograms.

Training Details The proposed framework was implemented
using Python 3.8.0, and PyTorch 1.8.0. During the training, the data
argumentation was performed on the input input images with random
horizontal and vertical flips. We used the Adam [19] optimizer with
β1 = 0.9 and β2 = 0.999 to update the parameter. For our method,
we set the learning rate to 5e-4. For holograms at 1080p definition,
we used a combination of l2 and perceptual loss [14] to train our
method. For holograms at 4K and 8K definitions, we used a MSE
loss to train our method. All simulations were trained and inferred
on an NVIDIA GeForce RTX 3090 GPU.

Modification of Phase Generator and Encoder Our
framework modified the architecture of the phase generator and
phase encoder to accommodate the division of the input image into
r2 sub-images. To ensure consistency, we adjusted the input channel
of both components accordingly and maintained the highest number
of channels in the phase generator and phase encoder unchanged.
The detailed information could be found in the supplementary mate-
rials.
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CL: Collimating lens
BE: Beam expander
ND: Neutral density
BS: Beam splitter
SLM: Spatial Light Modulator

Figure 7: Holographic display setup. The laser produces a coherent
wave field that is collimated by a collimating lens (CL). The beam
expander (BE) is used to ensure that the laser incident on the SLM
is as uniform as possible. Using a beam splitter (BS) cube, the field
is directed to the reflective spatial light modulator (SLM). All the
experimental reconstruction images were captured using a Canon
EOS M10 camera.

Optical Setup To further validate the effectiveness of our
method, we conducted VR and AR experiments in the real world.
The overall optical VR setup is shown in Fig. 7. The wavelengths of
the color laser sources are 680 nm, 520 nm, and 450 nm, respectively.
Specifically, to avoid color deviation, the emission intensities of
the red, green, and blue channels of the multi-wavelength laser
diodes are set to 100%, 5%, and 5% of their respective maximum
values of 40 mW in our optical setup. It should be noted that in
our implementation, the color images are captured by individually
exposing each wavelength and then merged in post-processing to
obtain the final color image. The SLM is a HOLOEYE GAEA-2-
VIS-036 with a resolution of 3840×2160 and a pixel pitch of 3.74
µm. This SLM has a refresh rate of 60 Hz (monochrome) and an
8-bit depth. The collimating lens (CL) is an achromatic doublet with
a focal length of 100 mm. The beam expander (BE) is used to ensure
that the laser incident on the SLM is as uniform as possible. The
neutral density (ND) filter is used to control the intensity of the laser,
while polarization filters are used to match the polarization direction
of the SLM. We provide a 4F system, where the first achromatic
lens has a focal length of 60 mm, and the second achromatic lens
has a focal length of 50 mm. An iris is positioned at the Fourier
plane to block excessive light diffracted by the grating structure
and higher-order diffractions. The focal length of the eyepiece is
50 mm. In this paper, all the experimental reconstruction images
were captured using a Canon EOS M10 camera. Moreover, in the
case of AR experiments, a key distinction from the VR setup is the
utilization of a beam splitter to optically route holographic images,
enabling their superposition onto the physical scene.

4.2 Comparisons against state-of-the-art
4.2.1 Numerical Simulations

In this section, we validated the effectiveness of our method by
integrating it into two SOTA methods, HoloNet and CCNNs, in
numerical simulations. We performed simulations at a resolution
of 1080p for HoloNet, considering scale factors of 2 and 4. For
CCNNs, we conducted simulations at a scale factor of 4 for both 4K
and 8K resolutions.

The quantitative results are shown in Table 1 and Table 2. For
HoloNet with the proposed method, we successfully trained and
inferred the 4K holograms, while naı̈ve HoloNet was unable to
achieve this due to insufficient GPU memory. As to the inference
time, HoloNet with the proposed method achieved a generation rate
of 66 FPS for 1080p holograms, while that of HoloNet was 16 FPS.
It was worth noting that our method could be executed in real time.
Moreover, HoloNet with our framework yielded a remarkable re-
duction in memory footprint by 64.3%. The PSNR of reconstructed
images was measured at 29.04 dB during the simulation, which was
1.43 dB slightly lower than that by the baseline HoloNet. To further
improve the image quality, in the pyramid architecture, we achieved
a PSNR of 30.51 dB for image reconstruction, which was 0.04 dB
higher than the baseline HoloNet. At the same time, our method also
reduced the required GPU memory by 42.8%. Similar trends were
observed in the CCNNs with the proposed method. By integrating
our method into CCNNs, we were able to reduce GPU memory by
12.9% while achieving a 0.88 dB higher PSNR for image reconstruc-
tion compared to CCNNs in the 4K definition. The inference time
of CCNNs with our method was 24 FPS, while the inference time
of CCNNs was only 12 FPS. Particularly, we successfully trained
8K definition holograms on a consumer-grade GPU card for the first
time in simulations. The 8K definition holograms and reconstructed
images can be found in the supplementary materials.

Furthermore, we compared the visual quality with the SOTA
method, as shown in Fig. 5 and Fig. 6. We observed our method
could achieve holographic image quality that matched or even sur-
passed SOTA methods, despite of the significantly reduced GPU
memory usage and accelerated hologram inference speed. These
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Figure 8: Optical VR experiments. Full-color holographic displays at 1080p resolution of holograms generated by different methods. The
second and third images come from www.bigbuckbunny.org (© 2008, Blender Foundation) under the Creative Commons Attribution 3.0
license (https://creativecommons.org/licenses/by/3.0/).

results unequivocally demonstrated that our proposed framework
facilitates more efficient utilization of available resources without
sacrificing performance.

4.2.2 Optical Experiments

In addition to the evaluation of simulated results, we conducted VR
experiments at 1080p resolution in scenes containing significant
texture details, as illustrated in Fig. 8. Deep learning-based CGH
methods can generate high-fidelity display images without speckle
noise because of the smooth phase distribution in the reconstructed
plane [9]. The observations clearly indicated that the holograms
generated by our method achieved display quality comparable to
that of HoloNet.Furthermore, our method demonstrated significant
advantages in terms of GPU memory usage and hologram generation
time. By employing a divide-conquer-and-merge strategy, we were
able to reduce memory usage by up to 64.3% and improve inference
speed by up to 3 × compared to baseline HoloNet. These improve-
ments allowed us to successfully train 4K holograms, as well as
generate real-time and high-quality 1080p holograms on consumer-
grade GPUs. More information can be found in the supplementary
video.

During hardware capture, we encountered challenges such as
ringing artifacts at the edges and color non-uniformity. These is-
sues hindered the reconstruction process from achieving results on
par with the simulated outcomes. It is important to note that these
challenges stem from the non-ideal nature of the hardware proto-
type itself and are unrelated to the framework. To address these
limitations, we intend to explore and implement CITL optimiza-
tion strategies in future work. By leveraging these strategies, we
aim to enhance the quality of our display and mitigate the observed
hardware-related issues. However, these are beyond the scope of
this work.

To further demonstrate the effectiveness of the proposed method,
we conducted the AR experiment at 4K resolution in the real world,
as shown in Fig. 9. Specifically, we placed a Pop-Mart toy at a
distance of 0.45m and projected the holographic display content
through an eyepiece at a distance of 10m. By adjusting the camera

parameters, we were able to observe the focusing and defocusing
effects of both real and virtual content at different distances. We can
clearly see that our method achieves display quality that is on par
with CCNNs, providing further evidence of the effectiveness of our
method.
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Figure 9: Optical AR experiments. An AR experiment at 4K
resolution. Specifically, we placed a Pop Mart toy at a distance of
0.45m and projected the holographic display content through an
eyepiece at a distance of 10m.

5 ABLATION STUDY

In this section, we further conducted ablation studies. The ablation
experiments were conducted under red light, and holograms were
at 1080p definition. The training set was DIV2K, and the results of
Table 3 was measured under DIV2K-val.

5.1 ASM Propagation at Full Definition
To verify the effectiveness of ASM propagation at full definition, we
propagated sub-holograms predicted by the phase generator respec-

www.bigbuckbunny.org
https://creativecommons.org/licenses/by/3.0/


Table 3: Ablation Study. We conducted ablation experiments to
validate the effectiveness of our proposed framework and SR net-
work LFMN. The definition of holograms was 1080p and the light
color was red in experiments. ECCM→CCM denotes that change
the strengthened CCM to the original CCM. ASM at low definition
denotes that the complex-valued sub-holograms generated by the
phase generator are directly propagated respectively at low definition
without upsampling by the pixel-shuffle layer.

Ablation (1080p) Variant Scale PSNR/SSIM

HoloNet / / 30.47/0.9257

Proposed / ×2 30.83/0.9312
/ ×4 29.04/0.9139

Framework

ASM at low definition ×2 16.63/0.4893
SR→None ×2 29.83/0.9165
SR→None ×4 28.55/0.9007

LFMN

LFM→None ×2 30.08/0.9147
ECCM→None ×2 30.35/0.9167
GRN→None ×2 30.13/0.9085

ECCM→CCM ×2 30.73/0.9244
LFM→SAFM ×2 30.21/0.9141

tively. It was important to note that during the propagation process,
the original size of the image was maintained by increasing the pixel
pitch of the SLM to p/r, where p represents the SLM pixel pitch.
We found that when we propagated sub-holograms at low defini-
tion respectively, there existed a significant decline in performance.
The results demonstrated the significance of propagating with high
accuracy.

5.2 SR Network LFMN
By substituting a pixel-shuffle layer for LFMN, we found a perfor-
mance decline of 1.0 dB and 0.49 dB for the scale factor of 2 and 4,
respectively. These results can validate the effectiveness of LFMN.

GRN, enhanced CCM and LFM. We observed that the re-
moval of GRN, enhanced CCM, and LFM resulted in performance
decreases of 0.7 dB, 0.48 dB, and 0.75 dB, respectively. Further-
more, when replacing the enhanced CCM and LFM with the original
modules in the SAFMN [33], we found performance decreases of
0.1 dB and 0.62 dB, respectively. These results highlighted the
effectiveness of our proposed modules in holographic SR.

Table 4: The memory utilization of different model components
within the CCNNs integrated with our proposed method during the
training of holograms at various definitions.

Components Memory(MiB)
1080p 4K 8K

ASM 396 1648 6548
Holo-SR 194 786 3130
CCNNs 158 642 2562

6 DISCUSSION

In this manuscript, to accurately calculate the inference time for
each network, we used torch.cuda.event to measure time on the
GPU. It is crucial here to utilize torch.cuda.synchronize(). This line
of code performs synchronization between the host and device (i.e.,
GPU and CPU), so the time recording takes place only after the
process running on the GPU is finished. This overcomes the issue of
unsynchronized execution.

7 LIMITATION AND FUTURE WORK

Firstly, we found that the improvements achieved by integrating our
method into CCNNs were not as significant as those obtained by
integrating it into HoloNet. To provide a more detailed analysis of
this phenomenon, we have listed the memory usage of each module
in CCNNs in Table 4. It can be observed clearly that the memory
usage of ASM propagation is higher than that of the neural network,
which indicates that the primary contributor to the overall memory
usage is the ASM propagation process. Therefore, the effectiveness
of our method in lightweight CGH networks may be diminished
to some extent. In the future, we will further explore methods to
reduce the memory requirements of ASM propagation to achieve
higher-definition hologram generation.

Secondly, in this manuscript, we only applied the divide-conquer-
and-merge strategy to the 2D CGH generation framework. Re-
cently, there have been a few SOTA 3D holographic generation
networks [30, 31] and holographic compression frameworks [8, 32].
Therefore, in the future, we will further integrate our method into
more holographic architectures to demonstrate the generalizability
of our approach and achieve real-time generation and transmission
of ultra-high-resolution holograms.

8 CONCLUSION

In conclusion, we proposed a divide-conquer-and-merge strategy to
address the memory and computational capacity scarcity in large-
scale CGH generation. By incorporating our proposed method into
current SOTA CGH neural networks, we achieved significant re-
ductions in GPU memory usage and improvements in the inference
time without compromising the image quality. In particular, we
successfully trained and inferred 8K definition holograms on an
NVIDIA GeForce RTX 3090 GPU for the first time. We believe that
our framework can provide a new way of thought for overcoming
the memory barrier encountered in ultra-high-definition hologram
generation. In the future, we aim to further optimize the memory
usage of current CGH neural networks to generate holograms at
16K+ definition.
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