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Abstract. Intrusion detection systems (IDS) are crucial security mea-
sures nowadays to enforce network security. Their task is to detect
anomalies in network communication and identify, if not thwart, pos-
sibly malicious behavior. Recently, machine learning has been deployed
to construct intelligent IDS. This approach, however, is quite challeng-
ing particularly in distributed, highly dynamic, yet resource-constrained
systems like Edge setups. In this paper, we tackle this issue from mul-
tiple angles by analyzing the concept of intelligent IDS (I-IDS) while
addressing the specific requirements of Edge devices with a special focus
on reconfigurability. Then, we introduce a systematic approach to con-
structing the I-IDS on reconfigurable Edge hardware. For this, we imple-
mented our proposed IDS on state-of-the-art Field Programmable Gate
Arrays (FPGAs) technology as (1) a purely FPGA-based dataflow pro-
cessor (DFP) and (2) a co-designed approach featuring RISC-V soft-core
as FPGA-based soft-core processor (SCP). We complete our paper with
a comparison of the state of the art (SoA) in this domain. The results
show that DFP and SCP are both suitable for Edge applications from
hardware resource and energy efficiency perspectives. Our proposed DFP
solution clearly outperforms the SoA and demonstrates that required
high performance can be achieved without prohibitively high hardware
costs. This makes our proposed DFP suitable for Edge-based high-speed
applications like modern communication technology.
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1 Introduction

An Intrusion Detection System (IDS) is crucial in fortifying network secu-
rity, such as, but not limited to inflicted Distributed Denial-of-Service attacks
(DDoS). Basically, an IDS acts as an additional defense layer, detecting and
responding to potential threats that may elude preemptive measures. It is also
defined [32,12] as a security tool that constantly monitors host or network traffic
or both to detect any suspicious behavior that violates the security policy and
compromises its confidentiality, integrity, and availability. The typical outcome
of the system is to generate alerts about detected malicious behavior to the host
or network administrators.

A successful DDoS attack that was reported in 2016 [8] leaves us with the
following conclusion “If there was a distributed intrusion detection system, it
might have been able to detect the attack at its early stage and limit the loss caused
by the attack.”[29]. This capability of distributed IDS encompasses identifying
malware, phishing attacks, and other cyber threats in an interactive manner.

IoT
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Fig. 1. (a) Conventional IDS vs (b) Distributed IDS on the Edge

Fig. 1 shows two deployment scenarios of IDS that we call conventional com-
pared to Distributed Edge-based. The distributed IDS should satisfy special re-
quirements to meet the hardware and power constraints of the edge level. How-
ever, it should be noted that conventional IDS leveraging reconfigurable hard-
ware dramatically improves the detection system’s performance [14]. Therefore,
reconfigurable hardware such as field-programmable gate arrays (FPGAs) has
become one of the foundations for IDS on the Edge as well.
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1.1 Machine Learning-based IDS on the Edge

Machine learning (ML) models, particularly deep neural networks (DNN),
have shown a potential to enhance the performance of intrusion detection
mechanisms[13]. For instance, support vector machines (SVM) [11] and Hid-
den Näıve Bayes (HNB) [17] were proposed to enhance the accuracy and speed
of the detection capability. The primary goal of ML-based IDS is to increase the
number of correct predictions [13], including the not-yet-known attacks (Zero-
day attacks), which makes it more efficient than signature-based methods. ML
model quality can be evaluated using metrics, notably accuracy and F1 score [13].
Three main technical obstacles stall the building of ML-based IDS on the edge:
(1) The considerable size of such a system renders implementations at the edge
level a technical challenge, (2) required inference throughput on the resource-
limited Edge-node hardware, and (3) update of the ML-based IDS requiring to
re-initiate the whole system. Several approaches have been proposed to overcome
these challenges, especially for the Edge-based deployment scenario. Therefore,
a need exists for a clear methodology and criteria to build an ML-based IDS
relying on reconfigurable Edge hardware.

1.2 Paper Contribution

In this paper, we present a systematic selection methodology to construct a ma-
chine learning-based intrusion detection system targeting reconfigurable Edge
hardware. In particular, we first investigate the pros and cons of the reconfig-
urable Edge hardware in Section 3. Two hardware configurations are selected:
an FPGA-based dataflow processor and a RISC-V soft-core as an FPGA-based
soft-core processor. Further, we establish hardware/software performance eval-
uation criteria for ML-based IDS (Intelligent IDS) on the Edge in Section 4.
Then, we construct several machine-learning models to serve as an Intelligent
IDS in Section 5. Finally, we validate the established criteria against the detec-
tion systems running on the two proposed hardware configurations and evaluate
their performance results in Section 5.3. Our approach aims at constructing an
intelligent IDS relying on reconfigurable Edge hardware and providing high in-
ference throughput to serve in high-performance Edge applications such as the
future generation of high-speed communication technology.

To the best of our knowledge, this is the first work that establishes a system-
atic methodology for selecting a highly accurate ML-based IDS realized on two
different configurations of reconfigurable Edge hardware.

2 Related Work

In the following, we highlight the main approaches that leverage the reconfig-
urable hardware to build an ML-based IDS.
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2.1 FPGA-based Dataflow Processor for ML-based IDS

While the demand for FPGA-based dataflow processors (FPGA-based DFP)
to accelerate ML and DNN algorithms using FPGAs grows, research on IDS
designs in this area remains limited. FPGA-based DFP for ML-based IDS has
been proposed in a few works, such as [26] and [31]. For example, a multilayer
perceptron (MLP) was implemented on a Xilinx Virtex-5 FPGA in [26]. The
proposed network was trained on a smaller model with only six features from
the NSL-KDD dataset [36]. It consists of two hidden layers. This MLP achieved a
maximum throughput of 9.86Gbps with packets containing 1500 bytes featuring
a speedup of 11.6× compared to a GPU. In [31], LogicNets “a methodology
that allows trained quantized networks to be directly converted to an equivalent
hardware” [31] was deployed to map a quantized MLP to hardware building
blocks. The resulting DFP achieves a highly efficient acceleration rate. In [20], a
convolutional neural network (CNN) topology on a PYNQ-Z2 was implemented.
A quantization technique to explore 8-, 4-, and 2-bit quantization was employed.
Extra pre-processing steps were also applied to reshape the raw data as an
image. The experimentation used the CICIDS2017 dataset to detect one of 13
possible attack categories. The demonstrated DFP achieved a throughput of 9635
inferences/s at 100MHz with 99.4% accuracy for the 2-bit quantized design.

2.2 FPGA-based Soft-Core Processor for ML-based IDS

The use of RISC-V in intrusion detection and IoT security is the subject of
recent research. A RISC-V SoC was proposed in [9] as a platform to build a test
environment for a man-in-the-middle attack simulation. In [21], a new RISC-V
SoC was built based on the previous RISC-V SoC [9] to construct a rule-based
intrusion detection engine. The system runs Linux and uses Snort [2] to capture
network packets. If a match with the rules is found, an alarm will be triggered,
and the event will be written into a log file.

Several RISC-V soft cores to be used as a SCP have been proposed for
performance-demanding and accelerated applications on the edge [10,35,16]. In
[7], an SCP (RISC-V CV32E41P) was synthesized to run at around 65MHz. The
core is coupled to an on-FPGA tracer and arbiter to build a host-based IDS[4].
Moreover, a different IDS implementation [7] traces the hardware performance
counters of the processor event values to detect any buffer overflow in the stack
or heap in the Long-Range Wide Area Network (LoRaWan) protocol stack.

Following the state-of-the-art, we developed our own approach towards
FPGA-based DFP and SCP for use in ML-based IDS targeting reconfigurable
edge hardware. We hence will first discuss the advantages of reconfigurable hard-
ware for IDS on the edge in the following section.

3 Reconfigurable Edge Hardware for IDS: Pros & Cons

Besides the relatively lower cost of hardware design deployment on reconfig-
urable hardware (RHW) compared to other technologies, RHW enables tuning
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the hardware to current application needs, offering flexible update and exten-
sion of an implemented design. This feature also reduces development and re-
engineering costs. FPGAs exhibit several advantages, such as low cost in the sil-
icon chip area, high performance, and low power consumption [19,5]. However,
there are several limitations of RHW, most notably temporal or operational
granularity. In the following, we highlight the pros and cons of FPGA-based
DFP and SCP.

FPGA-based DFP feature both a high level of parallelism and a need for
reconfigurability. Their design offers high performance and low energy consump-
tion, as highlighted by benchmarking studies [6], particularly in DNN acceler-
ation, making favorable comparisons with CPU and GPU platforms. However,
the reconfigurability of FPGAs, while advantageous for computational acceler-
ation, presents challenges due to the time- and power-consuming nature of the
reconfiguration process. A trade-off has to be made between the static (run-
ning) phase and reconfiguration phases. Despite the long-standing proposal of
reconfigurable computing architecture, it has not gained widespread popularity.
One reason for this is the requirement to use hardware design languages and
dedicated design environments adding complexity and costs for developers [33].
This is, however, mitigated by being able to perform a complete parallelization,
hence allowing true parallel execution of operations without sacrificing inference
accuracy. Parallelization and reducing an IDS’s computational complexity are
hence, the most prominent techniques used in an FPGA-based DFP.

FPGA-based SCP being software-programmable by nature, are easier ac-
cessible by software programmers.They, however, also come at some cost to be
considered when deciding to choose an IDS deployment platform. An FPGA-
based SCP implementation offers:

– Flexibility FPGA-based SCP can execute an IDS based on different com-
putation precisions offered by the employed soft-core, such as Float32, INT8,
or INT4. Orthogonally, soft-cores can be adjusted, enhanced, and extended,
meeting new IDS requirements whenever needed.

– Execution efficiency (performance) With the availability of vector ex-
tensions to exploit data-parallel workloads [10], very efficient intrusion de-
tection capability can be offered.

– Portability FPGA-based SCP can be implemented using cheaper FPGA
resources, reducing overall system cost. Also, the code designed to run on
a softcore might take advantage of high-level programming languages and
libraries, thus making the developed code easily portable to other platforms.

On the other hand, the development complexity and limited availability are just
examples of some disadvantages of FPGA-based SCP.

Table 1 shows a comparison between FPGA-based DFP and SCP based on
characteristics natively supported by the hardware, namely: computation preci-
sion, ML topology, ML parameter update, and required update time, that can
deliver the best achievable performance and allow reconfigurability.

FPGA-based DFP can easily accommodate ML hardware designs with float-
ing point (FP), fixed point (FxP), and integer (INT) thanks to their reconfig-
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Table 1. Comparison of FPGA-based DFP and SCP.

Reconfigurable Computation ML Topology ML Parameters
Hardware Precision Update Update

FPGA-based DFP Fixed Not On fly Partially

FPGA-based SCP Flexible On fly Flexible

urability. However, once an ML hardware design is programmed on the FPGA,
it cannot be updated easily on the fly. Here, partial-dynamic reconfiguration
could be a promising solution that allows a limited, predefined part of ML on an
FPGA to be reconfigured while others continue working. Like any other CPU,
FPGA-based SCP can easily accept any computation precision and update ML
topology. In contrast, FPGA-based DFP requires repeating the process of gener-
ating a new hardware design to update ML topology. The same goes for updating
trained parameters: FPGA-based DFP require a particular mechanism for exter-
nal parameter loading. This makes FPGA-based DFP partially able to update
trained parameters. In the case of FPGA-based SCP, updating the ML topology
or its trained parameters is comparatively less complicated, more straightfor-
ward, and less time-consuming.

4 Performance Evaluation Criteria for IDS on the Edge

To evaluate the performance of an IDS on the Edge, specific acceleration criteria
must be considered on both levels, i.e. algorithm and reconfigurable hardware.
We will detail this in the following two sections.

4.1 IDS Algorithm Evaluation Criteria

The IDS should be accurate from a software perspective, i.e., it should detect
an intrusion with high accuracy and negligible false alarms. In the case of intel-
ligent IDS, several metrics can be used to evaluate how efficiently the ML model
performs; these metrics can be highlighted as follows:

– Precision (P) This metric is fundamental as one goal of an intelligent IDS is
to minimize false positives. It measures how many of the positive predictions
made are correct (true positives)[24].

– Recall (R) It measures how many positive cases the classifier correctly
predicted over all the positive cases in the data. This metric is also important
because an IDS aims to detect as many attacks as possible. [22]

– F1 Score (F1) described as the harmonic mean of the metrics Precision
and Recall with both contributing equally to the score.[24].

Additionally, it should satisfy the following criterion: Even though there are
several types of intrusion with different occurrence frequencies, an IDS should
stay accurate when bias toward one attack over the other accrues.
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4.2 Reconfigurable Hardware Evaluation Criteria

In addition to meeting algorithmic requirements, also hardware criteria are to
be met, which are:

– Hardware Resource Utilization An ideal IDS for edge devices should
consume as few as possible resources, especially the DSP components, which
are the most power-demanding units. This criteria significantly impacts the
other hardware criteria, mainly computational density.

– Inference Throughput [25] This criterion measures how many packets
are processed by the intrusion detection system in a given amount of time.
The IDS throughput is measured by Packets/sec. It should be noted that
the network capacity limits this metric.

– Energy Efficiency [25] This criterion can be expressed as the inference
throughput over energy consumption. For instance, the energy efficiency of
the ML model for an IDS is evaluated by Packets/sec/Watt.

– Computational Density [25] Computational density is a metric used in
FPGA design, referring to the ratio of computations performed by a particu-
lar design over the number of resources utilized. In other words, this criterion
indicates whether the hardware design suffers from resource underutilization
or not. For instance, when two different accelerators deliver the same infer-
ence throughput, the one with the lower DSP usage is considered better
regarding computational density. The computational density is expressed as
Throughput/#DSP or Throughput/#LUT .

– Flexibility used to measure and compare the complexity of development,
maintenance, and new features implementation as well as maintainability
and adaptability to new ML models and to new network conditions.

Some of these criteria directly impact the others. For instance, the compu-
tational density is directly derived from throughput and resource utilization.
Likewise, resource utilization may indirectly decrease energy efficiency if the
resources are too power-demanding compared to the achieved throughput.

5 Proposed IDS Design Methodology

The previous discussion is applied to a 4-step approach in order to design, im-
plement, and evaluate FPGA-based DFP and SCP approaches. We 1) construct
several IDSs based on state-of-the-art algorithms in the ML domain, then 2) se-
lect ML models with high precision (P) and F1 scores and smaller model sizes in
terms of byte, before 3) implementing the chosen ML for IDS on FPGA-based
DFP and SCP and finally 4) analyzing these implementations regarding the
proposed hardware criteria and, following a dedicated edge use-case, choosing
the IDS implementation that matches the high-speed requirements of modern
communication technology.
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5.1 Step 1: Intelligent IDS

In this section, we outline the use and customization of several well-known ML
models and MLP, on which our IDS is based. Choosing and adjusting the right
model is paramount for both, detection quality and hardware use. As shown in
the evaluation section, the resulting Intelligent IDS can offer vast performance
at minimal hardware cost with NN capability at discerning intricate patterns in
extensive datasets.

The BOT-IoT Dataset Bot-IoT [18] was developed within a testbed environ-
ment, employing a constellation of virtual machines featuring diverse operating
systems, network firewalls, network taps, the Node-red, and the Argus tools
[27,28]. The Bot-IoT dataset is characterized by multiple sets and subsets, each
distinguished by file format, size, and feature count variations. Fig 2 shows the
dataset balance for each attack category and subcategory, reflecting the whole
dataset’s general imbalance. The BOT-IoT dataset includes several attack sce-
narios. From these, we select a subset that covers the following attacks: DoS
(TCP, HTTP), reconnaissance (service scan and OS fingerprinting), theft (key-
logging and data extraction), and intrusion-free.

TCP HTTP Service 
Scan

OS 
Fingerprint

Keylogging Data 
Exfiltration

Normal

Attack subcategories

102

103

104

105

106

107

C
ou

nt

Attack categories
DoS
Reconnaissance
Theft
Normal

Fig. 2. Attack categories and subcategories distribution of the BOT-IoT dataset

Intelligent IDS Construction This step involves partitioning the pre-
processed data into an 80% training set and a 20% set for testing and evalu-
ation. We first start with training XGBoost (XGB), Support Vector Machine
(SVM), Naive Bayes (NB), Random Forest Classifier (RFC), and Decision Tree
(DT). Additionally, three Multi-Layer Perceptron (MLP) models are trained,
each of them tailored to distinct classification targets: attacks, categories, and
subcategories. All of the three MLP models share a nearly identical topology,
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featuring an input layer with 24 inputs, followed by two hidden layers of sizes 32
and 64, respectively, and Rectified Linear Unit (ReLU ) activation functions. The
sole distinction among the MLP models resides in the configuration of the final
layer, i.e., the classification layer. The Attack model is designed to discern the
presence or absence of an attack; hence, its last layer has a size of 2 followed by
a Softmax activation. Analogously, the Category and Subcategory models’ clas-
sification layers exhibit sizes of 4 and 7, respectively, aligning with their distinct
classification objectives.

5.2 Step 2: Intelligent IDS Selection

According to the introduced algorithm evaluation criteria, a performance com-
parison for each ML model is made. Table 2 compares model detection accuracy
and size. NB exhibits a very low F1 Score. Therefore, it will be eliminated and
we focus on ML models with a high F1 Score. Overall, XGboost and MLP out-
perform other models.

Table 2. Evaluation of ML algorithms for IDS: ML Metrics vs Size.

Algorithm
Attack Category Subcategory

detection classification classification
P R F1 size P R F1 size P R F1 size

XGB 1.00 1.00 1.00 0.38 MB 1.00 1.00 1.00 1.15 MB 0.99 0.99 0.99 2.15 MB

SVM 0.99 0.99 0.99 164 KB 1.00 0.99 1.00 288 KB 0.97 0.89 0.92 5.7 MB

NB 0.57 0.96 0.62 1.35 KB 0.78 0.94 0.78 2.23 KB 0.78 0.70 0.60 3.62 KB

RFC 1.00 0.97 0.98 123 KB 1.00 0.95 0.97 157 KB 0.70 0.59 0.62 0.2 MB

DT 0.99 0.99 0.99 2.23 KB 1.00 0.99 1.00 3.25 KB 0.83 0.81 0.82 4.35 KB

MLP 1.00 1.00 1.00 15.2 KB 1.00 1.00 1.00 15.8 KB 0.99 0.93 0.96 16.6 KB

5.3 Step 3: FPGA-based Intelligent IDS Implementation

Here, we describe the experimental setup of the FPGA-based DFP and the
RISC-V soft-core as FPGA-based SCP. Both experiments are evaluated using
the Xilinx ZCU104 FPGA platform.

Experimental Setup The experimental setup, illustrated in Fig. 3, includes
the FPGA-based RISC-V SCP and the DFP experimental process. Opting for
a 64-bit Rocket core [3], configured through the Chipyard framework [1], the
Rocket core stands as a 5-stage single-issue in-order processor executing the
64-bit scalar RISC-V ISA[34]. This core can accommodate operating systems
and features an optional IEEE754-2008-compliant FPU for single- and double-
precision floating-point operations, including fused multiply-accumulate. MLP
models are saved as ONNX models, transformed into C code for seamless porting
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onto a RISC-V soft-core, and compiled using the appropriate RISC-V GNU
toolchain and flags1 for bare-metal execution.

In contrast, the approach for the FPGA-based DFP involved converting
trained models to HLS projects using hls4ml. Notably, hls4ml lacked inher-
ent support for Float32 conversion, prompting manual intervention to adjust
data types for different layers and activation functions. The Softmax function
is also modified to accommodate Float32 operations, ensuring a fair comparison
between the FPGA-based DFP and SCP. Subsequently, IPs for various MLP
models are generated and integrated into a corresponding FPGA design, and
the resulting Bitstreams are deployed on the FPGA platform for benchmarking.

convert to onnx
format

C/C++ code
generation Compilation  Run on RISC-V

softcore

convert to HLS
project

Synthesis & IP
generation

Bitstream
generation

Run design on
FPGA

Chipyard Rocket core
configuration

Bitstream
generation

Trained
model

RISC-V softcore
Dataflow Processor

Fig. 3. IDS Experimental Setup RISC-V Soft-core and the FPGA-based DFP.

5.4 Step 4: Systematic Implementation Comparison

Hardware Usage Comparison: Fig. 4-(a) shows the required hardware re-
sources to implement FPGA-based DFP as three individual MLP IPs. All the
IPs exhibit identical Block RAM (BRAM) utilization ratios for FPGA-based
DFP. This uniformity can be attributed to the shared topology among MLP
models, except for the last layer. The shared structure comprises two layers,
constituting the most memory-intensive part due to their incorporation of most
model parameters. However, slight variations in other resources arise from the
intentional partitioning of parameters and result arrays in the last Softmax layer,
mapped as Look-Up Tables (LUTs) and First-In-First-Out (FIFO) structures.
The size of the Softmax layer accounts for the marginal fluctuations in the use
of the Digital Signal Processors (DSP).

To compare FPGA-based DFP and RISC-V SCP, we implement them to op-
erate at the same frequency of 100MHz. Their respective hardware utilization
ratios are illustrated in Fig. 4-(b). The high parallelization of the FPGA-based
DFPs requires more resources than the FPGA-based RISC-V SCP, except for

1 $ riscv64-unknown-elf-gcc -std=gnu99 -O2 -Wall -lm -fno-common

-fno-builtin-printf -specs=htifnano.specs

$ riscv64-unknown-elf-gcc -static -T riscv64-unknown-elf/lib/htif.ld

-lm
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the BRAM units, which seem to be used more by the softcore for the caches. In
contrast, FPGA-based DFPs require more LUTs, FIFOs, and DSPs for paral-
lelized processing.

Attack
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MLP models
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23.09

48.04

9.07

18.05
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4.8
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Hardware resources
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DSPs
BRAM

(b)(a)

Fig. 4. Hardware Utilization of (a) our 3 MLPs on FPGA and (b) FPGA-based RISC-
V SCP vs. Overall MLPs as FPGA-based DFP.

Comparison of Throughput, Energy Efficiency & Logic density We
analyze and compare the two designs based on the earlier-defined criteria. The
FPGA-based DFP is configured so that every compute unit executes only four
multiply-accumulate operations sequentially, resulting in a higher parallelism. A
design parameter, namely Reuse factor, controls such a parallelism mechanism.
Additionally, the last Softmax layer was fully unrolled to compensate for the
extra latency overhead caused by using Float32 arithmetic. As a result, FPGA-
based DFP exhibits ≈ 6× higher throughput than the FPGA-based RISC-V
SCP, as shown in Table 3. FPGA-based RISC-V SCP, in the term, draws only
2.34W, almost half the power of the FPGA-based DFP. However, its throughput
superiority makes the latter ≈ 3×more energy efficient than FPGA-based RISC-
V SCP. Also, this is why it exhibits between 5 and 6x higher logic density. These
measures can undoubtedly be even higher with low-precision arithmetic such as
fixed-point and integer, especially for FPGA-based DFP.

Flexibility Comparison Both processing systems have been evaluated based
on their flexibility as detailed in Table 4. The flexibility comparison is dedicated
to the implemented processors and is based on the above-mentioned aspects:
precision, topology, and parameter updates. Additionally, we investigate the re-
quired time to update. The proposed FPGA-based DFP is very flexible regarding
computation precision, such as floating point (FP), fixed point (FxP), and in-
teger (INT) due to FPGA reconfigurability. The chosen FPGA-based RISC-V
SCP, in term, has a fixed data-path, which limits its precision capability to FP
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Table 3. FPGA-based DFP vs RISC-V SCP with Float32 Precision

MLP Model
Throughput Energy Efficiency Logic Density
Packets/sec Packets/sec/W Packets/sec/LUT

FPGA-based DFP

Attack 1166861 (1.16 M) 265799 (265 K) 24.55

Category 1135073 (1.13 M) 255589 (255 K) 23.44

Subcategory 1118568 (1.11 M) 249346 (249 K) 20.11

RISC-V SCP - Optimized Baremetal

Attack 202849 (202 K) 86650 (86 K) 4.157

Category 197500 (197 K) 84365 (84 K) 4.047

Subcategory 197342 (197 K) 84298 (84 K) 4.44

Table 4. Flexibility Comparison of FPGA-based DFP and RISC-V SCP.

Processor
Precision Topology Parameters Update

FP FxP INT update update time

FPGA-based DFP yes yes yes no no1 longer

FPGA-based RISC-V SCP yes no yes2 yes yes shorter
1 Only possible if the design includes an external weights loading mechanism.
2 Supports only a subset of integers, such as INT8/16/32.

and a specific set of integers, such as INT8, 16, and 32. Consequently, it offers
fewer options to optimize the ML-based IDS through quantization. However,
updating the ML topology or its trained parameters is significantly less compli-
cated and, therefore, more straightforward in the case of FPGA-based RISC-V
SCP; it only requires a new source-code compilation.

Table 5. State of the Art FPGA-based DFP for ML-based IDS.

References [20] [31] [26] [15] This work

FPGA xc7Z020 xc7Z020 xc5vtx xc7Z020 xczu7ev

Frequency
100 471 104 76 100

(MHz)

Dataset CICIDS2017[30] UNSW-NB15[23] NSL-KDD[36] NSL-KDD BOT-IoT[18]

ML topology CNN MLP MLP MLP MLP

Number 4×Conv +
5×FC 2×FC 3×FC 3×FC

of layers 2×FC

Intrusion Classes 13 2 2 2 2 4 7

Accuracy (%) 99.4 91.3 87.3 80.52 99.9 99.9 99.9

Throughput
9635 754292 821667 217074

1.16 1.13 1.11
(Packets/sec) M M M

LUT usage 24635 15494 117082 26463 47514 48413 55627

Usage ratio (%) 46.3 29.12 78.2 50 20.6 21 24.1

Proposed FPGA-based DFP Compared to the State of the Art Table 5
compares our proposed FPGA-based DFP for ML-based IDS and the state of
the art in this domain. The results show our proposed intelligent IDS detects 13
different intrusion classes, and its implementation as FPGA-based DFP exhibits
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very high throughput, yet low hardware resources. This makes it suitable for ap-
plication at the edge level and clearly demonstrates that such a high-performance
solution does not necessarily come at prohibitively high hardware costs.

6 Conclusion

Current modern approaches to intrusion detection systems (IDS) feature the
use of machine learning (ML). However, ML-based IDSs still face technical ob-
stacles such as their considerable size, and their update requires re-initiating
the whole IDS. In this paper, we investigate ML-based IDS targeting the edge
level, featuring reconfigurable edge nodes. Here, typically high throughput is
required in order to keep up with the real-time data transmissions, yet node
resource use is constrained. Orthogonally, intrusion detection in a reconfigurable
system also demands an equally flexible adaptability with respect to detection
itself. We hence construct a systematic approach to ML-based intrusion detec-
tion on the edge, leading to the proposed Intelligent IDS. We discuss two possi-
ble FPGA-based implementation scenarios, one plain hardware implementation
(FPGA-based dataflow processor, DFP) and one featuring a RISC-V softcore.
Both implementations are evaluated and compared to each other and the state
of the art. The results clearly demonstrate that the high performance of a hard-
ware implementation does not necessarily come at prohibitively high hardware
cost, with our solution exhibiting higher throughput, better energy efficiency,
and better logic density in addition to an overall better configurability. Our pro-
posed DFP hence can be employed in high-performance Edge-based applications
like modern communication technology.
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