
Decoupled Weight Decay for Any p Norm

Nadav Joseph Outmezguine 1 2 Noam Levi 3 4

Abstract
With the success of deep neural networks (NNs)
in a variety of domains, the computational and
storage requirements for training and deploying
large NNs have become a bottleneck for further
improvements. Sparsification has consequently
emerged as a leading approach to tackle these
issues. In this work, we consider a simple yet
effective approach to sparsification, based on the
Bridge, or Lp regularization during training. We
introduce a novel weight decay scheme, which
generalizes the standard L2 weight decay to any
p norm. We show that this scheme is compatible
with adaptive optimizers, and avoids the gradient
divergence associated with 0 < p < 1 norms.
We empirically demonstrate that it leads to highly
sparse networks, while maintaining generalization
performance comparable to standard L2 regular-
ization.

1. Introduction
Deep neural networks (NNs) have garnered unparalleled
success across a variety of domains ranging from vision
(He et al., 2016) to language (Vaswani et al., 2017; van den
Oord et al., 2016; Kalchbrenner et al., 2018). Modern net-
work performance has been shown to scale with both model
complexity and dataset size, now operating in the jointly
large parameter and large data size regime (Hestness et al.,
2017). The resources required to train and deploy large
NNs can, consequently, impose a bottleneck on further im-
provements (Kaplan et al., 2020). For instance, Inception-
V4 (Szegedy et al., 2016), requires 16 billion arithmetic
operations and 43 million parameters to be evaluated, while
GPT-4 (OpenAI et al., 2023) requires over 1.75 trillion

1Berkeley Center for Theoretical Physics, University of Cal-
ifornia, Berkeley, CA 94720, USA 2Theory Group, Lawrence
Berkeley National Laboratory, Berkeley, CA 94720, USA 3École
Polytechnique Fédérale de Lausanne (EPFL), Switzerland. 4 Ray-
mond and Beverly Sackler School of Physics and Astronomy,
Tel-Aviv University, Tel-Aviv 69978, Israel. Correspondence
to: Nadav J. Outmezguine <NJO@Berkeley.edu>, Noam Levi
<noam.levi@epfl.ch, noam@mail.tau.ac.il>.

parameters (2 TiB assuming 16 bits per parameter). Further-
more, training such models becomes increasingly expensive.
Large language models (LLMs) already require supercom-
puters for training, with costs potentially reaching tens of
millions of dollars per run, as cited in GPT-3 (Brown et al.,
2020). Moreover, these models induce tremendous energy
costs, as highlighted in the study on energy costs (de Vries,
2023). It is therefore critical to study sparsification dur-
ing the training process as an avenue to manage resources
during training and deployment (Hastie et al., 2015).

We define the sparsity of an NN as the fraction of its param-
eters that have a value of exactly zero. Higher sparsity there-
fore corresponds to fewer informative parameters, and thus,
potentially, lower computational and storage requirements.
With zero valued weights, any multiplications (which dom-
inate neural network computation) can be skipped, and
sufficiently sparse models can be stored and transmitted
compactly using sparse matrix formats. Sparse models are
required to store more information per parameter relative
to their denser counterparts. They may, therefore, be less
prone to overfitting, and exhibit better generalization per-
formance (e.g. LeCun et al., 1989; Hassibi & Stork, 1992;
Reed, 1993; Hoefler et al., 2021). It has been empirically
shown that deep NNs can perform effectively even with
high levels of sparsity (Han et al., 2015; Narang et al., 2017;
Ullrich et al., 2017; Gromov et al., 2024). This property
is leveraged to reduce costs and enable the deployment
of state-of-the-art models in resource-constrained environ-
ments (Theis et al., 2018; Kalchbrenner et al., 2018; Valin &
Skoglund, 2018). In particular, modern GPU architectures
like NVIDIA’s Ampere, equipped with Sparse Tensor Cores,
can leverage unstructured sparsity at levels as low as 50% to
achieve significant inference speedups (Mishra et al., 2021).
Additionally, recent research has demonstrated that apply-
ing sparsity in the fine-tuning of large language models can
lead to substantial inference acceleration on both CPUs and
GPUs, without compromising accuracy (Kurtic et al., 2023).

In recent years, various techniques for inducing sparsity
in NNs have been proposed, including post-training prun-
ing and dynamical regularization-based approaches (Kwon
et al., 2022; Lasby et al., 2024; Yin et al., 2023). Our work
falls in the latter category, focusing in particular on weight
regularization. Weight regularization methods methods in-
troduce a penalty term (regularizer) into the loss function

1

ar
X

iv
:2

40
4.

10
82

4v
2

 [
cs

.L
G

]
 2

2
A

pr
 2

02
4

Decoupled Weight Decay for Any p Norm

to constrain the magnitude of each of the model parame-
ters. This constraint implicitly biases the network towards
sparser, rather than denser model representations and gradu-
ally reduces the magnitudes of the network weights during
the training process. Generally, regularization methods can
be written as L′(x,w) = L(x,w) +R(w). Here, L is the
original loss function defined on the weights w and the data
samples x, while R is the regularizer term which acts only
on the weights.

The most common weight regularization method is L2.
While L2 regularization achieves smaller weights and better
generalization error at the end of the training process (e.g.
Plaut et al., 1986; Nowlan & Hinton, 1992; Krogh & Hertz,
1991; Moody, 1991; Wei et al., 2019), it does not result in a
sparse network representation. This is since the penalty term
is ’rotationally invariant’, meaning that it does not favor any
particular direction in the weight space. A ubiquitous regu-
larization method which does result in sparse networks is
L1, or Lasso regularization (Tibshirani, 1996). Elastic-net
regularization, which combines both L1 and L2 norms of
the weights, was suggested as a method that exhibits both
the sparsity of L1 and the generalization performance of
L2 (Zou & Hastie, 2005).

Towards a more general form of regularization, Frank &
Friedman (1993) proposed Bridge regularization, or Lp reg-
ularization, Rp ∼ ∥w∥pp, in which p is chosen based on
the problem at hand. This is the underlying regularization
method which we base our work upon. Bridge regression
enjoys some desirable statistical properties, such as spar-
sity and near-unbiased estimates for Lp norms in the range
p ∈ (0, 1) (Fan & Li, 2001; Sleem et al., 2024). Importantly,
when p < 1, the so-called p-norm does not adhere to the
triangle inequality. It does, however, satisfy the weaker con-
dition ∥x+ y∥ ≤ C × (∥x∥+ ∥y∥) for some C > 1, which
qualifies it as a quasi-norm. Additionally, in this range
of p < 1, the quasi-norm is non-convex, making it more
challenging to optimize (Zhang, 2010). Previous works
suggested variations on Bayesian sampling approaches to
bypass these issues for p ∈ (0, 1) (Polson et al., 2014; Lorı́a
& Bhadra, 2023). Despite these complexities, for ease of
notation, we refer to it as the p-norm throughout this paper.

In this work, we introduce a straightforward implementa-
tion of Lp regularization. This method maintains the key
benefits of Lp regularization, such as sparsification and gen-
eralization, while avoiding numerical instabilities caused
by exploding gradients at the small weights limit. Our ap-
proach integrates a single, simple step that complements
any modern optimizer with minimal computational over-
head. Furthermore, it can easily be adapted to more flexible
regularization schemes, including variants of the Elastic
Net.

Our main contributions are as follows:

• In Sec. 3, we illustrate how an Lp<2 regularized prob-
lem with N parameters is equivalent to another op-
timization problem with N additional auxiliary pa-
rameters. We show that the optimal solutions of both
problems coincide, and for p < 2 these solutions are
expected to be sparse.

• In Sec. 4, we introduce our main contribution, the ‘p-
norm Weight Decay’ (pWD), a novel weight decay
scheme for any p-norm regularization. We use a toy
example to demonstrate that, across all 0 ≤ p values,
pWD avoids gradient instabilities and stabilizes train-
ing dynamics. We then present the pWD algorithm
which implements this new weight decay method.

• In Sec. 5, we empirically assess the performance of
p-norm Weight Decay (pWD) across various tasks and
architectures, including comparisons with other sparsi-
fication methods. Our results show that pWD achieves
high levels of sparsity while maintaining excellent net-
work generalization.

• In Sec. 6, we discuss some limitations of pWD, sug-
gest possible extensions, and propose future research
directions.

2. Related Work
Regularization and sparsification: Besides linear regres-
sion, Bridge regularization has been applied to support vec-
tor machines (Liu et al., 2007), giving impressive results. As
a special case of Bridge regularization, L1/2 has been shown
to exhibit useful statistical properties including sparseness
and unbiasedness (Xu et al., 2010). Different training al-
gorithms have been proposed for training neural networks
with L1/2 weight penalty (Fan et al., 2014; Yang & Liu,
2018). In terms of Bayesian estimation, Ridge and Lasso
penalties imply a Gaussian and Laplacian prior on model
weights, respectively. On the other hand, an Lp penalty
corresponds to the Generalized Gaussian prior on the model
weights (Frank & Friedman, 1993).

Proximal operators: The proximal operator for the (lasso)
regularization, known as the soft thresholding operator, is
widely used in the literature (Daubechies et al., 2003). The
proximal operator for various other specific values of norms
has also been studied in the literature, for example in (Xu
et al., 2012; Chen et al., 2016), but result in cumbersome
schemes. Partially for that reason, approximated operators
were devised, for example in (O’Brien & Plumbley, 2018).

Bridge regression: First suggested by (Frank & Friedman,
1993), Bridge regression, or Lp regularization, has been
studied extensively. It has been shown that Bridge regular-
ization performs better than Ridge, Lasso and elastic-net in
certain regression problems (Park & Yoon, 2011). In recent

2

Decoupled Weight Decay for Any p Norm

years, works such as (Polson et al., 2012; Khan et al., 2018)
consider stochastic variations, while McCulloch et al. (2023)
integrate the concept of Lp regularization for subset selec-
tion with constitutive NNs to obtain sparse networks, and
(Zijun Guo & Song, 2023) consider an adaptive re-weighting
method. Of special importance is (Toh et al., 2023), which
proposes an analytic solution for Bridge regression based
on solving a penalized error formulation using a proximal
operator approach, closely in line with this work.

3. Equivalent Formulation of Lp

Regularization
Our starting point is the optimization problem of minimizing
the empirical risk, or loss function L(w), with respect to
the weights w ∈ RNw , where Nw is the total number of
weights (including biases), subject to an Lp regularization
term, Rp(w) = (λp/p) ∥w∥pp, where p > 0, λp ∈ R+ and
∥ · ∥p is the p-norm. In this section we introduce a higher
dimensional dual optimization problem, where the loss is
regularized instead by

Rp(w, s) =
λp

2

∑
i

[
siw

2
i +K(si)

]
, (1)

where wi, si ∈ R, i = 1, . . . , Nw. Here K(si) is a function
of si only, chosen such that the two regularization terms
satisfy the equality Rp(w) = mins Rp(w, s). Specifically,
for p ̸= 2, one suitable choice for K(si) is given by

K(si) =
2− p

p
s
p/(p−2)
i , (2)

under the restriction that si > 0. In App. A, we prove for-
mally that the extended optimization problem is equivalent
to the original one, in the sense that they share the same
global and local minima. By design, the minimum of the
original optimization problem coincides with that of the
extended one, namely,

min
w
L(w) + λpRp(w) = min

w,s
L(w) + λpRp(w, s). (3)

Before we move on, it is important to note that Rp(w, s)
is non-convex1. Therefore, even for p ≥ 1 the extended
optimization problem is non-convex.

The regularizer Rp(w, s) is what is known as a biconvex
function (Gorski et al., 2007). In simple terms, it is a convex
function of w for any fixed s > 0 and vice versa. Biconvex
functions can exhibit multiple local minima. Nevertheless,
we refer the reader again to App. A for a formal proof that
both local and global minima of the original and extended

1This can very easily be seen in the w → ∞ limit, where
Rp is given by λpsw

2, independent of K, and the hessian has
eigenvalues ±w.

optimization problems coincide. Specifically, for p < 1,
the generalized loss L(w) + λpRp(w, s) will exhibit local
minima at wi = 0, where the global minimum of Rp(wi, si)
is located. This is to be expected since it is also the case in
the original formulation of the p < 1 norm.

4. p-norm Weight Decay
Having established that the empirical risk minimization
problem with Lp regularization can be expressed as a bi-
convex optimization problem, we now turn to an important
implication of this formulation, which is based on the Al-
ternate Convex Search (ACS) algorithm. Alternate Convex
Search is a common strategy for optimizing biconvex func-
tions, in which we alternate between optimizing with respect
to one variable while keeping the other fixed. In each step,
standard convex optimization techniques can be used, and
the problem is guaranteed to converge to a (possibly local)
minimum (Gorski et al., 2007). Building upon this approach,
in this section we derive a weight decay step, analogous to
traditional L2 weight decay, but extended to any p norm.
We refer to this method as p-norm Weight Decay (pWD).

4.1. Proximal Operator Representation

As mentioned above, we will follow the ACS approach,
where we optimize over w and s sequentially. In each s
update step we set it to its optimal value,

sn = |wn|p−2, (4)

where the absolute value is taken element-wise, and the sub-
script n denotes the n-th iteration. Since we are dealing with
sparsity inducing regularization, we expect some weights
to vanish. For p < 2, we see that the si’s corresponding to
vanishing weights will diverge.

Moving now to optimize over w, following the ACS ap-
proach we hold s fixed at last value sn. Note that K(sn)
is also fixed and does not impact the optimization with
respect to w. Therefore, we can effectively optimize
L + (λp/2)

∑
i siw

2
i . This second term is seemingly a

standard L2 regularization term, however, the possible di-
vergence of some of the si’s calls for a subtle treatment

From this point on, we shall focus on gradient based opti-
mization methods, as they are most commonly used when
training NNs. Taking any gradient based approach, we will
have to include the gradient of Rp with respect to w, which
is given by

∇wRp(w, sn) = λpsn ◦w = λp|wn|p−2 ◦w, (5)

where “◦” denotes element-wise multiplication. For p <
1, this gradient will become very large for small weights,
rendering any finite learning rate approach unstable. Taking

3

Decoupled Weight Decay for Any p Norm

instead a decoupled weight decay approach (Loshchilov &
Hutter, 2019), we are tempted to write the w update step as

w ← (w − αδw) ◦ (1− αλpsn), (6)

where δw is either the gradient of L, or any other adaptive
step based on the unregularized loss L, and α ∈ R+ is
the learning rate. This update rule, however, still does not
ensure stability; weights that the regularization term drives
to zero will be multiplied by a divergent negative weight
decay factor, giving rise to an oscillatory behavior around 0.

To overcome this instability, we propose to use the proximal
operator of Rp(w, sn) with respect to w at fixed sn. We
review the basics of proximal operators in App. B, where
we also derive the proximal gradient step for Rp,

w ← w − αδw

1+ αλpsn
=

w − αδw

1+ αλp|wn|p−2
. (7)

In the equation above, division is carried out element-wise.
For αλpsn ≪ 1, this is equivalent to the decoupled weight
decay step in Eq. (6). However, here, the numerator is
always larger than 1, driving the weights to 0 for αλpsn ≫
1, as desired. As seen in Eq. (7), wn,i = 0 is a fixed point
of the proximal gradient step for all p < 2. The stability of
this fixed point is discussed in App. D, where we find it to
be stable only for p < 1, similar to the original problem.

Eq. (7) is the main result of this work, and we refer to this
method as p-norm Weight Decay (pWD).

4.2. Toy Example

To demonstrate the challenges of Lp regularization, and the
benefits of our approach, we start with a simple toy example.
Consider the single variable regularized loss function

L(w) = 1

2
(w − 1)2 +

λp

p
|w|p, w ∈ R. (8)

For any λp > 0 and p > 0, the minimum of L(w) lies on the
segment w ∈ [0, 1]. For λp ≥ 1 and p ≤ 1, the minimum is
found at w = 0. For simplicity, we consider simple gradient
descent as the update rule for w, leading to the equation

wt+1 = wt − α
[
wt

(
1 + λp|wt|p−2

)
− 1

]
. (9)

For p < 1, and λp > 1, the regularized loss gradient will
drive the weight to w = 0, leading to a divergent gradient.
We demonstrate this in Figure 1, where the evolution of the
weight under gradient descent for p = 0.6, λp = 1, and a
learning rate α = 0.1 is shown as a cyan line. The weight
starts flowing towards 0, until reaching a point where the
p-norm gradient becomes too large and the weight changes
sign, leading to an oscillatory behavior around 0. On the
contrary, the orange lines represent the evolution of the

0 10 20 30 40 50 60 70
Epoch

0.0

0.5

1.0

1.5

2.0

w

Direct p norm gradients

pWD, s updates before each epoch

pWD, s updates every 20 epochs

Figure 1: Toy example of weight evolution under gradient
descent for the loss L = (w − 1)2/2 + ∥w∥pp /p. Dotted
line: represents simple gradient descent where the norm is
added directly to the gradient. The weight fails to converge
to 0 due to the exploding gradient of the p-norm near 0. The
dashed line represents the evolution of the weight under
the update rule in Eq. (7), where we update s every 20 w
steps. The solid line represents the evolution of the weight
under the update rule in Eq. (7), where we update s at every
w step. The latter is an implementation of p-norm Weight
Decay (pWD). We see that in both implementations of our
method, the weight converges smoothly to 0.

weight under the update rule in Eq. (7). For the solid line we
update sn = |w|−1.4 before each wn step, which results in
a smooth convergence to 0. For the dashed line we initialize
s0 = 0.1 and update sn = |w|−1.4 once every 20 w steps.
We see that the weight converges smoothly to 0 in a step-
wise pattern, without any oscillations. In the remainder of
this work, we adopt the smoothest approach and update s at
every w step.

4.3. The pWD Algorithm

Based on the discussion above, we can now present our
proposed Lp weight decay algorithm, Algorithm 1. To limit
the scope of this work, we will focus only on the case where
s is updated at every w step. We note, however, that the al-
gorithm can be easily modified to update s every n w steps,
where n is a hyper-parameter. This modification, along
with few other variants, are discussed in Sec. 6. In App. E,
we provide an example PyTorch implementation of pWD
based on the Adam optimizer.

Lines 1− 8 of Algorithm 1 are the usual steps for any gra-
dient based optimizer, such as SGD (Robbins & Monro,
1951), Adam (Kingma & Ba, 2014), RMSprop (Tiele-
man et al., 2012) etc., encapsulated by the function
OptimizerWeightUpdate(t, gt), which may include momen-
tum or higher moments. We have also explicitly included

4

Decoupled Weight Decay for Any p Norm

Algorithm 1 Gradient Based pWD

1: given initial learning rate α ∈ R+, weight decay regu-
larization factor λp ∈ R+ weight norm number p ∈ R+,
gradient-based optimization algorithm and its hyper-
parameters

2: initialize time step t ← 0, parameter vector wt=0 ∈
Rn, schedule multiplier η ∈ R+

3: repeat
4: t← t+ 1
5: gt ←∇L(wt−1)
6: δwt ←OptimizerWeightUpdate(gt, t)
7: ηt ← SetScheduleMultiplier(t)
8: w̃t ← wt−1 − ηtαδwt

9: The pWD Step:

w ← |wt−1|2−p

|wt−1|2−p + ηtαλp
w̃t

10: until stopping criterion is met
11: return optimized parameters wt

learning rate scheduling. The novelty appears at Line 9,
where we impose the pWD weight decay step. This weight
decay step is the same as the one in Eq. (7), assuming the
auxiliary parameters s are set before every w step.

In App. C, we prove that gradient descent with the pWD step
guarantees that the original loss function is non-increasing.
We note that Lines 8 and 9 are split into two steps for clarity
of presentation, but in practice can be carried out simulta-
neously to avoid the memory overhead of storing θ̃t. As
discussed in Sec. 4.1 and App. D, the pWD step has a fixed
point at wi = 0 for all p < 2. Regardless of the stability of
this fixed point, it is important to stress that a parameter
initialized at wi = 0 will remain fixed to this value during
training. In the experiments presented in Sec. 5, we there-
fore avoid decaying parameter tensors that are initialized at
0, such as biases and batch normalization parameters.

5. Sparsity with pWD in Realistic Settings
In this section, we empirically test the performance of our
pWD scheme. We use Adam (Kingma & Ba, 2014) as
our base optimizer, and supplement it with the proposed
pWD step. We refer to this optimizer as pAdam. A simple
PyTorch implementation is described in App. E. Through-
out this work, we keep the Adam hyper-parameters fixed at
their default values. For all our experiments, we adopted
a learning rate schedule that combines a linear warm-up
phase with a subsequent cosine annealing. The precise ex-
perimental details, architectures, and hyper-parameters are
given in App. F.

The experiments were conducted on two standard

datasets: CIFAR-10 (Krizhevsky, 2012) and Tiny Shake-
speare (Karpathy, 2015). We employed two deep learning
models, for vision and text, namely ResNet18 (He et al.,
2015) and NanoGPT (Karpathy, 2023); a character-level
language based on GPT2 (Radford et al., 2019). We trained
both architectures with a cross-entropy loss, and used spar-
sity and accuracy as our main validation matrices2. We
trained our models using the pAdam optimizer for a range
of p values, and using AdamW (Loshchilov & Hutter, 2019)
as a point of reference for performance. For each optimizer
and each p value choice, we scanned over both the learning
rate and the weight decay λp. Importantly, we did not decay
one dimensional parameter tensors, such as biases and batch
normalization parameters. Such parameters are commonly
initialized at 0, which, as mentioned above, will remain
there during training under pWD. At the same time, they
constitute a small fraction of the total number of parameters,
and thus do not significantly affect the overall sparsity level.

5.1. Sparsity and Performance for pWD

The main results of this paper are shown in Figures 2 and 3,
where we show the validation accuracy against sparsity,
with sparsity defined as the fraction of weights smaller than
10−13. It is evident that pAdam finds sparse network rep-
resentations, with accuracy level gradually decreasing as
sparsity increases. For ResNet18 trained on CIFAR10, we
observe that models with sparsity as high as 99.5% have
achieved accuracy higher than 90%, significantly higher
than random guessing, which gives 10% accuracy. The
highest sparsity level we find for accuracy drop of less than
2% relative to the best AdamW accuracy was 94.4% for
ResNet18, and 89.9% for NanoGPT.

Different colors in Figures 2 and 3 represent different p
norms. We find that the sparsest networks are obtained at
values of p < 1 while the best generalizing networks are
found for 1 < p < 2. See discussion in Sec. 6 for possible
explanations and improvement strategies. These results
imply that for a given dataset and architecture, an optimal p
may be found, under a choice of accuracy/sparsity trade-off.
In the right panel of Figure 2, we show a concrete realization
of this trade-off, whereby a loss of 1% in accuracy is equal
to a 100% increase in sparsity, defined by

Trade-off Metric = Val. Acc.[%] + Sparsity. (10)

For ResNet18, the validation+Sparsity scatter exhibit a clear
peak at around a sparsity of 80%, indicating on the optimal
p ≃ 1.2 under such trade-off. The nanoGPT results are less
conclusive, and in general less well behaved, but still the
sparsity+accuracy scatter seem to be roughly constant up to
sparsity of ∼ 90%, achieved by p ≥ 0.8

2While accuracy might not be the first choice for token level
language model practitioners, we find it suitable and intuitive for
our character level language model experiments.

5

Decoupled Weight Decay for Any p Norm

0.0 0.2 0.4 0.6 0.8 1.0
Sparsity

90

91

92

93

94

95

V
al

id
at

io
n

A
cc

u
ra

cy

AdamW best accuracy

Magnitute Pruning

OTO best accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Sparsity

90

91

92

93

94

95

V
al

id
at

io
n

A
cc

u
ra

cy
+

S
p

ar
si

ty

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

p
n

orm

Figure 2: Validation accuracy vs. sparsity for ResNet18 trained on CIFAR-10. Each point represents a different instance of
the network trained for 100 epochs, with a different choice of p, λp, and learning rate α. Points of different colors indicate
different choices of p, optimizing over λp, α. The dashed-red line indicate the best accuracy achieved using AdamW. The
orange stars indicate the best accuracy runs obtained using Only Train Once (OTO, Chen et al., 2021). The green crosses
indicate the best accuracies obtained using iterative magnitude pruning. Left: Validation accuracy vs. sparsity. Right:
Example of the accuracy/sparsity trade-off given in Eq. (10).

Table 1: Accuracies above a given sparsity level for ResNet-
18 on CIFAR-10. Comparison of pWD to different sparsifi-
cation methods.

SPARSITY 0% 70% 80% 90%

MP 95.18% 94.73% 94.73% 94.24%
OTO 95.18% 93.49% 92.24% 87.82%
pWD 95.28% 94.74% 94.43% 93.79%

5.2. Comparison with Other Methods

Next, we compare the performance of pWD to other sparsifi-
cation methods. We focus on two methods for sparsificaiton
during training. The first is the Only Train Once (OTO, Chen
et al., 2021) method, which we apply only to the ResNet18
experiments. The second, which we apply to both ResNet18
and nanoGPT, is a simple iterative magnitude pruning (MP)
method. There, we simply set to 0 all weights smaller than
a certain threshold, once every fixed number of iterations.
For both MP and OTO, we use AdamW as the base opti-
mizer, and scan over the learning rate, weight decay, and
one pruning hyper-parameter (pruning threshold for MP
and pruning fraction for OTO). For both methods we start
pruning after 10% of the training epochs, and increase the
pruning threshold/fraction for the next 10% of the epochs.
The results are shown in Figure 2 and in Tables 1 and 2.
For ResNet18, we find that pWD outperforms OTO, but is
inferior to MP until a sparsity of about 90%, where pWD
retains higher accuracy. For nanoGPT, we find, much like
for ResNet18, that MP outperforms pWD until a sparsity of

about 95%, where pWD performs slightly better.

Overall, our findings indicate that pWD achieves results
comparable to MP and surpasses the performance of OTO.
It’s important to note, however, that the MP approach in-
volved an additional advantage: the use of AdamW com-
bined with iterative setting of small weights to zero. This
approach is akin to the Elastic Net (Zou & Hastie, 2005),
where sparsity is induced by the L1 term and optimiza-
tion stabilization and generalization are aided by the L2

term. In contrast, pWD employs a single regularization
term, with the parameter p effectively balancing sparsity
and generalization performance3. In the subsequent section,
we will explore how pWD can be elegantly extended to
simultaneously enhance both these aspects. As a simple
demonstration of the potential of an extended pWD, we ran
an additional nanoGPT experiment with p = 0.8, this time
using AdamW instead of Adam. We fixed the L2 weight
decay of 2×10−3 and scanned over the learning rate and the
pWD weight decay λ0.8. For sparsity of 90% we obtained
an accuracy of 57.15%. Improving over the pAdam result
and surpassing the MP result.

6. Limitations of pWD and Possible Variations
This paper, with the goal of establishing pWD as a viable
Lp regularization method, was focused on a specific imple-

3Since our goal was to highlight the utility of pWD alone, we
did not combine it with other sparsification methods, but this is
trivially done. In particular, combining iterative magnitude pruning
and pWD is as simple as performing MP with regular WD.

6

Decoupled Weight Decay for Any p Norm

0.0 0.2 0.4 0.6 0.8 1.0
Sparsity

46

48

50

52

54

56

58

60

V
al

id
at

io
n

A
cc

u
ra

cy

AdamW best accuracy

Magnitute Pruning

AdamW best accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Sparsity

46

48

50

52

54

56

58

60

V
al

id
at

io
n

A
cc

u
ra

cy
+

S
p

ar
si

ty

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

p
n

orm

Figure 3: Validation accuracy vs. sparsity for nanoGPT trained on Tiny Shakespeare. Each point represents a different
instance of the network trained for 5000 iterations, with a different choice of p, λp, and learning rate α. Points of different
colors indicate different choices of p, optimizing over λp, α. The dashed-red line indicates the best accuracy achieved
using AdamW. The green crosses indicate the best accuracies obtained using iterative magnitude pruning. Left: Validation
accuracy vs. sparsity. Right: Example of the accuracy/sparsity trade-off given in Eq. (10).

Table 2: Accuracies above a given sparsity level for
nanoGPT on Tiny Shakespeare. Comparison of pWD to
different sparsification methods.

SPARSITY 0% 80% 90% 95%

MP 59.11% 58.97% 57.07% 54.23%
pWD 58.79% 57.93% 56.49% 55.92%

mentation of pWD. In this implementation, s is updated to
its optimal value, given in Eq. (4), at every w update step.
We identify two aspects of pWD that call for further investi-
gation: The first is the existence of a fixed point at wi = 0
for all p < 2, which is also a local minimum for p < 1.
The second aspect is the generalization performance of the
resulting networks. In this section we discuss these two
aspects, and propose possible variations of pWD that might
improve the performance of the resulting networks. The
common theme of these variations is that they all involve
richer dynamics, which comes with a price of increased
complexity, and an increased number of hyper-parameters.

6.1. Avoiding the wi = 0 Fixed Point

The wi = 0 fixed point arises due to the large denominator
in Eq. (7) whenever wi → 0. The disadvantage of this fixed
point is especially important for parameters initialized at
wi = 0, which will remain frozen during training. At the
same time, the existence of this fixed point is crucial for the
algorithm to converge to the sparse solutions it was designed
to find. A successful algorithm will therefore avoid getting
stuck at the wi = 0 local minimum, while still converging to

wi = 0 when appropriate. Below we discuss a few possible
approaches to achieve this goal.

s dynamics: In the proposed pWD Algorithm 1, s in Eq. (7)
is updated to its optimal value before every w step. Here,
we suggest promoting s to a learnable parameter. From that
perspective, currently at each epoch s is updated according
to Eq. (4). Therefore, a weight initialized at wi = 0 will
force si → ∞, which will in turn force wi to remain at 0.
From the perspective of a dynamical system, we can say that
s is a ’fast’ variable, which reaches optimal value before the
’slow’ variable, w, has had enough time to update its value.
By ‘slowing down’ s, we can avoid the w = 0 fixed point.
We can initialize s = 1, which means that the network
starts evolving under a standard weight decay. Then, during
training we can let s evolve in a desired pace towards its
optimal value. This can be done either by updating s every
n steps of w updates, or by applying an SGD-like update
rule to s. In this case, if a weight passes through wi = 0,
it will be able to continue evolving as long as si is not too
large. We note that while this approach does come with a
small memory overhead. The computational overhead is
negligible as the gradients of s are trivial to compute and
implement.

p scheduling: It is clear from Eq. (7) that for p = 2 there
is no fixed point at wi = 0 and we revert to the standard
weight decay scheme. Having the network start training
with p = 2 for a few epochs, and then gradually decreasing
p towards a desired p < 2 value, would allow the network
to avoid the wi = 0 fixed point at initialization. At the same
time, the network will still be able to converge to wi = 0 at
later stages as p decreases. Further, restarting p to p = 2 and

7

Decoupled Weight Decay for Any p Norm

decreasing to a smaller value repeatedly, would allow the
network to explore the parameter region around the wi = 0
fixed point, and possibly escape it.

6.2. Generalization Performance:

One important observation from Figure 2 is that the best
generalizing networks are found for 1 < p < 2, while the
most sparse networks are found for p < 1. One possible ex-
planation is that p > 1 norms, such as AdamW, incur larger
penalties on larger weights than smaller ones, in contrast
to p < 1. The importance of regularizing large weights is
well known (for example Loshchilov & Hutter, 2019), and
perhaps 1 < p < 2 provide a better balance between the
two. This hypothesis is also supported by the performance
of MP with AdamW, which is essentially a combination of
p = 2 and p = 0 penalties.

Both p scheduling and s dynamics, discussed above, can
potentially achieve as similar effect even when p < 1. For
example, consider the case of p scheduling with restarts.
Upon each restart, larger weights will be penalized more
harshly, while the smaller ones will instead be regularized
towards the end of a cycle when p is small. Alternatively, if
we adopt slow s dynamics, large weights will be penalized
until s reaches its optimal value (which is small for large
weights).

Elastic Weight Decay: Another possible approach is to
use a variation of elastic net proposed in (Zou & Hastie,
2005). In the original elastic net, the loss is regularized
by a combination of L1 and L2 norms. Supposedly, this
combination allows the network to benefit from the sparsity
inducing properties of L1 regularization, while still benefit-
ing from the stability of L2 regularization. Repeating the
steps leading to Eq. (7), we can in principle add both an L1

and an L2 norm and achieve the following elastic net weight
decay step

w ← w − αδw

1+ α (λ1|w|−1 + λ2)
. (11)

Moreover, the flexibility of our proposed pWD allows us to
generalize the elastic net approach to any combination of
Lp<2 norms,

∑
p λp ∥w∥pp. In which case, the weight decay

step becomes

w ← w − αδw

1+ α
∑

p λp|w|p−2
. (12)

While our derivation of Eq. (7) relied on the specific con-
struction as presented in Eqs. (1) and (2), which is valid
only for p < 2, we see no reason why Eq. (12) should not
be valid for any p > 04. In principle, optimizing with a

4In the case of simple SGD, the w ̸= 0 fixed point of pWD is
given by the w solving 0 = ∇L(w) + λp|w|p−2 ◦ w. This is

combination of one p < 1 norm and one p > 1 norm, might
provide a better balance between the two, and improve the
generalization performance of the resulting network. As
mentioned in the previous section, a verification of this pre-
diction was tested on nanoGPT which essentially combined
p = 2 and p = 0.8 weight decay. The results were superior
to both MP and a single p implementation of pWD.

7. Conclusions
In this work, building upon the works of Frank & Fried-
man (1993) and Loshchilov & Hutter (2019), we devel-
oped a novel regularization-based sparsification scheme,
which we dubbed p-norm Weight Decay. Our method, a
proximal approximation of Lp regularization, dynamically
drives weights to zero during training within a stable op-
timization framework. pWD is as simple to implement
as any standard optimizer. It operates as a supplemental
weight decay step and is, therefore, compatible with any
modern optimizer. Additionally, it incurs negligible memory
and computational overhead. Our ultimate goal is to incor-
porate pWD into popular deep learning frameworks such
PyTorch and Tensorflow, therby to rendering sparse
training as straightforward as using any modern optimizer.

Through empirical evaluation, we demonstrate that our ap-
proach enables performance gains and high levels of sparsity.
Specifically, we are able to prune ResNet and NanoGPT
models to extremely sparse configurations while retaining
high accuracy. Our results clearly demonstrate that pWD
provides an effective approach for network sparsification,
competing with state-of-the-art methods in terms of main-
taining accuracy while achieving highly sparse networks.

This work is, however, only a first step towards unveiling
the full potential of pWD. Iterative magnitude pruning, for
example, outperformed some aspects of pWD in the ex-
periments presented in Sec. 5. As discussed in Sec. 6, we
believe that the performance of pWD can be further im-
proved by incorporating richer dynamics. We leave the
thorough exploration of these dynamics to future work.

Going beyond the scope of NNs, pWD is essentially a no-
val gradient based approximated optimization approach for
p ≤ 2 norms. As such pWD can be implemented on many
problems other than machine learning. One example may
lie in Variational Quantum Circuits (Cerezo et al., 2021),
where decreasing the number of parameters is desirable.

In conclusion, the straightforward implementation, flexibil-
ity, and potentially adaptive nature of pWD, have promise to
stimulate new areas of investigation into optimizing neural
networks and automated architecture design.

precisely the equation for the minimum of L(w) + (λp/p) ∥w∥pp,
assuming L is convex, regardless of the value of p.

8

Decoupled Weight Decay for Any p Norm

Impact Statement
The method suggested in this paper simplifies sparsification
in neural networks training. Thereby, potentially making ma-
chine learning more efficient and accessible in environments
with limited resources. By reducing energy and computa-
tional demands, our approach could have a wider impact,
facilitating sustainable AI technology use across various
sectors.

Acknowledgements
We would like to thank Andrey Gromov for useful discus-
sions and Ioannis Mavrothalassitis for assisting us to derive
some of the convergence proofs. NJO acknowledges sup-
port from the National Science Foundation under the grant
No. PHY-1915314. NJO further thanks B. Nachman for
computing resources. NL would like to thank G-Research
for the award of a research grant, as well as the CERN-TH
department for their hospitality during various stages of this
work.

References
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,

J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
In Advances in Neural Information Processing Systems,
2020.

Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C.,
Endo, S., Fujii, K., McClean, J. R., Mitarai, K.,
Yuan, X., Cincio, L., and Coles, P. J. Variational
quantum algorithms. Nature Reviews Physics, 3(9):
625–644, August 2021. ISSN 2522-5820. doi: 10.1038/
s42254-021-00348-9. URL http://dx.doi.org/
10.1038/s42254-021-00348-9.

Chen, F., Shen, L., and Suter, B. Computing the proximity
operator of the lp norm with 0 ¡ p ¡ 1. IET Signal Process-
ing, 10(5):557–565, July 2016. ISSN 1751-9675. doi:
10.1049/iet-spr.2015.0244. Publisher Copyright: © The
Institution of Engineering and Technology 2016.

Chen, T., Ji, B., Ding, T., Fang, B., Wang, G., Zhu, Z.,
Liang, L., Shi, Y., Yi, S., and Tu, X. Only train once: A
one-shot neural network training and pruning framework.
CoRR, abs/2107.07467, 2021. URL https://arxiv.
org/abs/2107.07467.

Daubechies, I., Defrise, M., and Mol, C. D. An iterative
thresholding algorithm for linear inverse problems with a
sparsity constraint, 2003.

de Vries, A. The growing energy footprint of artificial
intelligence. Joule, 7(10):2191–2194, 2023. ISSN

2542-4351. doi: https://doi.org/10.1016/j.joule.2023.09.
004. URL https://www.sciencedirect.com/
science/article/pii/S2542435123003653.

Fan, J. and Li, R. Variable selection via nonconcave pe-
nalized likelihood and its oracle properties. Journal of
the American statistical Association, 96(456):1348–1360,
2001.

Fan, Q., Zurada, J. M., and Wu, W. Convergence of online
gradient method for feedforward neural networks with
smoothing l1/2 regularization penalty. Neurocomputing,
131:208–216, 2014.

Frank, L. E. and Friedman, J. H. A statistical view of some
chemometrics regression tools. Technometrics, 35(2):
109–135, 1993.

Garrigos, G. and Gower, R. M. Handbook of convergence
theorems for (stochastic) gradient methods, 2024.

Gorski, J., Pfeuffer, F., and Klamroth, K. Biconvex
sets and optimization with biconvex functions: a sur-
vey and extensions. Mathematical Methods of Oper-
ations Research, 66(3):373–407, 2007. doi: 10.1007/
s00186-007-0161-1. URL https://doi.org/10.
1007/s00186-007-0161-1.

Gromov, A., Tirumala, K., Shapourian, H., Glorioso, P., and
Roberts, D. A. The unreasonable ineffectiveness of the
deeper layers, 2024.

Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both
weights and connections for efficient neural network. In
NIPS, pp. 1135–1143, 2015.

Hassibi, B. and Stork, D. Second order deriva-
tives for network pruning: Optimal brain sur-
geon. In Hanson, S., Cowan, J., and Giles, C.
(eds.), Advances in Neural Information Process-
ing Systems, volume 5. Morgan-Kaufmann, 1992.
URL https://proceedings.neurips.
cc/paper_files/paper/1992/file/
303ed4c69846ab36c2904d3ba8573050-Paper.
pdf.

Hastie, T., Tibshirani, R., and Wainwright, M. Statistical
Learning with Sparsity: The Lasso and Generalizations.
Chapman & Hall/CRC, 2015. ISBN 1498712169.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2016,
pp. 770–778, Las Vegas, NV, USA, June 27-30 2016.

9

http://dx.doi.org/10.1038/s42254-021-00348-9
http://dx.doi.org/10.1038/s42254-021-00348-9
https://arxiv.org/abs/2107.07467
https://arxiv.org/abs/2107.07467
https://www.sciencedirect.com/science/article/pii/S2542435123003653
https://www.sciencedirect.com/science/article/pii/S2542435123003653
https://doi.org/10.1007/s00186-007-0161-1
https://doi.org/10.1007/s00186-007-0161-1
https://proceedings.neurips.cc/paper_files/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf

Decoupled Weight Decay for Any p Norm

Hestness, J., Narang, S., Ardalani, N., Diamos, G. F., Jun,
H., Kianinejad, H., Patwary, M. M. A., Yang, Y., and
Zhou, Y. Deep learning scaling is predictable, empirically.
CoRR, abs/1712.00409, 2017.

Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and
Peste, A. Sparsity in deep learning: Pruning and growth
for efficient inference and training in neural networks,
2021.

Kalchbrenner, N., Elsen, E., Simonyan, K., Noury, S.,
Casagrande, N., Lockhart, E., Stimberg, F., van den Oord,
A., Dieleman, S., and Kavukcuoglu, K. Efficient neu-
ral audio synthesis. In Proceedings of the 35th Inter-
national Conference on Machine Learning (ICML), pp.
2415–2424, 2018.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models,
2020.

Karpathy, A. char-rnn. https://github.com/
karpathy/char-rnn, 2015.

Karpathy, A. nanogpt, 2023. URL https://github.
com/karpathy/nanoGPT.

Khan, N., Shah, J., and Stavness, I. Bridgeout: stochastic
bridge regularization for deep neural networks, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2014.

Krizhevsky, A. Learning multiple layers of fea-
tures from tiny images. University of Toronto, 05
2012. URL https://www.cs.toronto.edu/

˜kriz/learning-features-2009-TR.pdf.

Krogh, A. and Hertz, J. A simple weight decay can
improve generalization. In Moody, J., Hanson, S., and
Lippmann, R. (eds.), Advances in Neural Information
Processing Systems, volume 4. Morgan-Kaufmann,
1991. URL https://proceedings.neurips.
cc/paper_files/paper/1991/file/
8eefcfdf5990e441f0fb6f3fad709e21-Paper.
pdf.

Kurtic, E., Kuznedelev, D., Frantar, E., Goin, M., and Alis-
tarh, D. Sparse fine-tuning for inference acceleration of
large language models, 2023.

Kwon, W., Kim, S., Mahoney, M. W., Hassoun, J., Keutzer,
K., and Gholami, A. A fast post-training pruning frame-
work for transformers. In Oh, A. H., Agarwal, A.,
Belgrave, D., and Cho, K. (eds.), Advances in Neural
Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=0GRBKLBjJE.

Lasby, M., Golubeva, A., Evci, U., Nica, M., and Ioannou,
Y. Dynamic sparse training with structured sparsity, 2024.

LeCun, Y., Denker, J., and Solla, S. Optimal brain damage.
In Touretzky, D. (ed.), Advances in Neural Information
Processing Systems, volume 2. Morgan-Kaufmann,
1989. URL https://proceedings.neurips.
cc/paper_files/paper/1989/file/
6c9882bbac1c7093bd25041881277658-Paper.
pdf.

Liu, Y., Zhang, H. H., Park, C., and Ahn, J. Support vec-
tor machines with adaptive lq penalty. Computational
Statistics & Data Analysis, 51(12):6380–6394, 2007.

Lorı́a, J. and Bhadra, A. Sure-tuned bridge regression, 2023.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In Proceedings of the Seventh International
Conference on Learning Representations, 2019.

McCulloch, J. A., Pierre, S. R. S., Linka, K., and Kuhl, E.
On sparse regression, lp-regularization, and automated
model discovery, 2023.

Mishra, A., Latorre, J. A., Pool, J., Stosic, D., Stosic, D.,
Venkatesh, G., Yu, C., and Micikevicius, P. Accelerating
sparse deep neural networks, 2021.

Moody, J. The effective number of parameters: An
analysis of generalization and regularization in nonlinear
learning systems. In Moody, J., Hanson, S., and
Lippmann, R. (eds.), Advances in Neural Information
Processing Systems, volume 4. Morgan-Kaufmann,
1991. URL https://proceedings.neurips.
cc/paper_files/paper/1991/file/
d64a340bcb633f536d56e51874281454-Paper.
pdf.

Narang, S., Diamos, G. F., Sengupta, S., and Elsen, E. Ex-
ploring sparsity in recurrent neural networks. CoRR,
abs/1704.05119, 2017.

Nowlan, S. J. and Hinton, G. E. Simplifying neural networks
by soft weight-sharing. Neural Computation, 4:473–493,
1992. URL https://api.semanticscholar.
org/CorpusID:5597033.

O’Brien, C. and Plumbley, M. D. Inexact proximal op-
erators for ℓp-quasinorm minimization. In 2018 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 4724–4728, 2018. doi:
10.1109/ICASSP.2018.8462524.

OpenAI, :, Achiam, J., Adler, S., Agarwal, S., Ahmad, L.,
Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J.,
Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Bal-
aji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M.,

10

https://github.com/karpathy/char-rnn
https://github.com/karpathy/char-rnn
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://proceedings.neurips.cc/paper_files/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://openreview.net/forum?id=0GRBKLBjJE
https://openreview.net/forum?id=0GRBKLBjJE
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1991/file/d64a340bcb633f536d56e51874281454-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1991/file/d64a340bcb633f536d56e51874281454-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1991/file/d64a340bcb633f536d56e51874281454-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1991/file/d64a340bcb633f536d56e51874281454-Paper.pdf
https://api.semanticscholar.org/CorpusID:5597033
https://api.semanticscholar.org/CorpusID:5597033

Decoupled Weight Decay for Any p Norm

Belgum, J., Bello, I., Berdine, J., Bernadett-Shapiro, G.,
Berner, C., Bogdonoff, L., Boiko, O., Boyd, M., Brakman,
A.-L., Brockman, G., Brooks, T., Brundage, M., Button,
K., Cai, T., Campbell, R., Cann, A., Carey, B., Carlson,
C., Carmichael, R., Chan, B., Chang, C., Chantzis, F.,
Chen, D., Chen, S., Chen, R., Chen, J., Chen, M., Chess,
B., Cho, C., Chu, C., Chung, H. W., Cummings, D., Cur-
rier, J., Dai, Y., Decareaux, C., Degry, T., Deutsch, N.,
Deville, D., Dhar, A., Dohan, D., Dowling, S., Dunning,
S., Ecoffet, A., Eleti, A., Eloundou, T., Farhi, D., Fedus,
L., Felix, N., Fishman, S. P., Forte, J., Fulford, I., Gao, L.,
Georges, E., Gibson, C., Goel, V., Gogineni, T., Goh, G.,
Gontijo-Lopes, R., Gordon, J., Grafstein, M., Gray, S.,
Greene, R., Gross, J., Gu, S. S., Guo, Y., Hallacy, C., Han,
J., Harris, J., He, Y., Heaton, M., Heidecke, J., Hesse,
C., Hickey, A., Hickey, W., Hoeschele, P., Houghton, B.,
Hsu, K., Hu, S., Hu, X., Huizinga, J., Jain, S., Jain, S.,
Jang, J., Jiang, A., Jiang, R., Jin, H., Jin, D., Jomoto, S.,
Jonn, B., Jun, H., Kaftan, T., Łukasz Kaiser, Kamali, A.,
Kanitscheider, I., Keskar, N. S., Khan, T., Kilpatrick, L.,
Kim, J. W., Kim, C., Kim, Y., Kirchner, H., Kiros, J.,
Knight, M., Kokotajlo, D., Łukasz Kondraciuk, Kondrich,
A., Konstantinidis, A., Kosic, K., Krueger, G., Kuo, V.,
Lampe, M., Lan, I., Lee, T., Leike, J., Leung, J., Levy, D.,
Li, C. M., Lim, R., Lin, M., Lin, S., Litwin, M., Lopez, T.,
Lowe, R., Lue, P., Makanju, A., Malfacini, K., Manning,
S., Markov, T., Markovski, Y., Martin, B., Mayer, K.,
Mayne, A., McGrew, B., McKinney, S. M., McLeavey, C.,
McMillan, P., McNeil, J., Medina, D., Mehta, A., Menick,
J., Metz, L., Mishchenko, A., Mishkin, P., Monaco, V.,
Morikawa, E., Mossing, D., Mu, T., Murati, M., Murk, O.,
Mély, D., Nair, A., Nakano, R., Nayak, R., Neelakantan,
A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki,
J., Paino, A., Palermo, J., Pantuliano, A., Parascandolo,
G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng,
A., Perelman, A., de Avila Belbute Peres, F., Petrov, M.,
de Oliveira Pinto, H. P., Michael, Pokorny, Pokrass, M.,
Pong, V., Powell, T., Power, A., Power, B., Proehl, E.,
Puri, R., Radford, A., Rae, J., Ramesh, A., Raymond, C.,
Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez,
H., Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S.,
Sastry, G., Schmidt, H., Schnurr, D., Schulman, J., Sel-
sam, D., Sheppard, K., Sherbakov, T., Shieh, J., Shoker,
S., Shyam, P., Sidor, S., Sigler, E., Simens, M., Sitkin,
J., Slama, K., Sohl, I., Sokolowsky, B., Song, Y., Stau-
dacher, N., Such, F. P., Summers, N., Sutskever, I., Tang,
J., Tezak, N., Thompson, M., Tillet, P., Tootoonchian,
A., Tseng, E., Tuggle, P., Turley, N., Tworek, J., Uribe, J.
F. C., Vallone, A., Vijayvergiya, A., Voss, C., Wainwright,
C., Wang, J. J., Wang, A., Wang, B., Ward, J., Wei, J.,
Weinmann, C., Welihinda, A., Welinder, P., Weng, J.,
Weng, L., Wiethoff, M., Willner, D., Winter, C., Wolrich,
S., Wong, H., Workman, L., Wu, S., Wu, J., Wu, M.,
Xiao, K., Xu, T., Yoo, S., Yu, K., Yuan, Q., Zaremba,

W., Zellers, R., Zhang, C., Zhang, M., Zhao, S., Zheng,
T., Zhuang, J., Zhuk, W., and Zoph, B. Gpt-4 technical
report, 2023.

Park, C. and Yoon, Y. J. Bridge regression: adaptivity
and group selection. Journal of Statistical Planning and
Inference, 141(11):3506–3519, 2011.

Plaut, D. C., Nowlan, S. J., and Hinton, G. E. Experiments
on learning back propagation. Technical Report CMU–
CS–86–126, Carnegie–Mellon University, Pittsburgh, PA,
1986.

Polson, N. G., Scott, J. G., and Windle, J. The bayesian
bridge, 2012.

Polson, N. G., Scott, J. G., and Windle, J. The bayesian
bridge. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 76(4):713–733, 2014.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. 2019.

Reed, R. Pruning algorithms-a survey. IEEE Transactions
on Neural Networks, 4(5):740–747, 1993. doi: 10.1109/
72.248452.

Robbins, H. and Monro, S. A stochastic approximation
method. The Annals of Mathematical Statistics, 22(3):
400–407, 1951. ISSN 00034851. URL http://www.
jstor.org/stable/2236626.

Sleem, O. M., Ashour, M. E., Aybat, N. S., and Lagoa,
C. M. Lp quasi-norm minimization: algorithm and
applications. EURASIP Journal on Advances in Sig-
nal Processing, 2024(1):22, 2024. doi: 10.1186/
s13634-024-01114-6. URL https://doi.org/10.
1186/s13634-024-01114-6.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A.
Inception-v4, inception-resnet and the impact of residual
connections on learning, 2016.

Theis, L., Korshunova, I., Tejani, A., and Huszár, F. Faster
gaze prediction with dense networks and fisher pruning.
CoRR, abs/1801.05787, 2018. URL http://arxiv.
org/abs/1801.05787.

Tibshirani, R. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 58(1):267–288, 1996.

Tieleman, T., Hinton, G., et al. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4
(2):26–31, 2012.

11

http://www.jstor.org/stable/2236626
http://www.jstor.org/stable/2236626
https://doi.org/10.1186/s13634-024-01114-6
https://doi.org/10.1186/s13634-024-01114-6
http://arxiv.org/abs/1801.05787
http://arxiv.org/abs/1801.05787

Decoupled Weight Decay for Any p Norm

Toh, K.-A., Molteni, G., and Lin, Z. Deterministic
bridge regression for compressive classification.
Information Sciences, 648:119505, 2023. ISSN 0020-
0255. doi: https://doi.org/10.1016/j.ins.2023.119505.
URL https://www.sciencedirect.com/
science/article/pii/S0020025523010903.

Ullrich, K., Meeds, E., and Welling, M. Soft weight-sharing
for neural network compression. CoRR, abs/1702.04008,
2017.

Valin, J. and Skoglund, J. Lpcnet: Improving neu-
ral speech synthesis through linear prediction. CoRR,
abs/1810.11846, 2018. URL http://arxiv.org/
abs/1810.11846.

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K.,
Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A. W.,
and Kavukcuoglu, K. Wavenet: A generative model for
raw audio. The 9th ISCA Speech Synthesis Workshop, pp.
125, 2016.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems 30, pp. 6000–6010, 2017.

Wei, C., Lee, J. D., Liu, Q., and Ma, T. Regularization
matters: Generalization and optimization of neural nets
v.s. their induced kernel. In Wallach, H., Larochelle,
H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.
cc/paper_files/paper/2019/file/
8744cf92c88433f8cb04a02e6db69a0d-Paper.
pdf.

Xu, Z., Zhang, H., Wang, Y., Chang, X., and Liang, Y. L
1/2 regularization. Science China Information Sciences,
53:1159–1169, 2010.

Xu, Z., Chang, X., Xu, F., and Zhang, H. l1/2 regularization:
A thresholding representation theory and a fast solver.
IEEE Transactions on Neural Networks and Learning
Systems, 23(7):1013–1027, 2012. doi: 10.1109/TNNLS.
2012.2197412.

Yang, D. and Liu, Y. L1/2 regularization learning for
smoothing interval neural networks: Algorithms and con-
vergence analysis. Neurocomputing, 272:122–129, 2018.

Yin, L., Li, G., Fang, M., Shen, L., Huang, T., Wang, Z.,
Menkovski, V., Ma, X., Pechenizkiy, M., and Liu, S.
Dynamic sparsity is channel-level sparsity learner, 2023.

Zhang, C.-H. Nearly unbiased variable selection under
minimax concave penalty. The Annals of Statistics, 38
(2):894–942, 2010. ISSN 00905364, 21688966. URL
http://www.jstor.org/stable/25662264.

Zijun Guo, Mengxing Chen, Y. F. and Song, Y. A
general adaptive ridge regression method for gener-
alized linear models: an iterative re-weighting ap-
proach. Communications in Statistics - Theory and
Methods, 52(18):6420–6443, 2023. doi: 10.1080/
03610926.2022.2028841. URL https://doi.org/
10.1080/03610926.2022.2028841.

Zou, H. and Hastie, T. Regularization and variable selection
via the elastic net. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 67(2):301–320, 2005.

12

https://www.sciencedirect.com/science/article/pii/S0020025523010903
https://www.sciencedirect.com/science/article/pii/S0020025523010903
http://arxiv.org/abs/1810.11846
http://arxiv.org/abs/1810.11846
https://proceedings.neurips.cc/paper_files/paper/2019/file/8744cf92c88433f8cb04a02e6db69a0d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/8744cf92c88433f8cb04a02e6db69a0d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/8744cf92c88433f8cb04a02e6db69a0d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/8744cf92c88433f8cb04a02e6db69a0d-Paper.pdf
http://www.jstor.org/stable/25662264
https://doi.org/10.1080/03610926.2022.2028841
https://doi.org/10.1080/03610926.2022.2028841

Decoupled Weight Decay for Any p Norm

A. Proof of the Extended Problem Equivalence
In this appendix, we prove the equivalence between the original and the extended optimization problems. First, we show
that Rp(w, s) in Eq. (1) with K as in Eq. (2) satisfies Rp(w) = mins Rp(w, s), provided si > 0 and 0 < p < 2. We want
to show that

Rp(w) =
λp

p

∑
i

|wi|p = min
s>0

λp

2

∑
i

[
w2

i si +
2− p

p
sp/(p−2)

]
= min

s>0
Rp(w, s) . (13)

It is enough to show for a single component since the problem is separable. By taking second partial derivatives, the
bi-convexity of Rp(w, s > 0) is established. The minimum of Rp(w, s > 0) at fixed w is therefore unique and can be found
by setting ∂Rp(w, s > 0)/∂s = 0. This gives

∂Rp(w, s∗)

∂s∗
=

λp

2

[
w2 − s

2/(p−2)
∗

]
= 0 ⇒ s∗ = |w|p−2 ⇒ Rp(w, s∗) =

λp

p
|w|p . (14)

This shows that the minimum of Rp(w, s > 0) is indeed Rp(w), and therefore the equivalence in Eq. (13) holds. For future
reference, we note that the minimum of Rp(w, s > 0) at fixed w is unique and a continuous function of w.

The equivalence of the optimization problem is stated in the following theorem.

Theorem A.1. LetL : Rn → R, let R : Rn×Rn → R be a smooth bi-convex function. Define F (w, s) = L(w)+R(w, s),
and ŝ(·) = argmin

s
R(·, s). Assuming ŝ is continuous, the following holds:

(i) Let (w∗, s∗) be a local minimum of F (w, s). Then, w∗ is a local minimum of F (w, ŝ(w)).

(ii) Let w∗ be a local minimum of F (w, ŝ(w)). Then, (w∗, s∗) is a local minimum of F (w, s) with s∗ = ŝ(w∗).

(iii) In particular, the global minimum of F (w, ŝ(w)) is the same as the global minimum of F (w, s) and occurs at the same
value of w.

Proof.

(i) Assume that (w∗, s∗) is a local minimum of F (w, s). By the biconvexity of R, we have that F (w∗, s) is convex in s for
any fixed w∗. Therefore, s∗ = ŝ(w∗) is the unique minimizer of F (w∗, s) for any fixed w∗. We therefore know that the
there is a local minimum for F (w, ŝ(w)) at (w∗, s∗ = ŝ(w∗)). Since this is a local minimum, ∃ϵw > 0, ϵs > 0 such that
∀w, s with ∥w −w∗∥ < ϵw and ∥s− s∗∥ < ϵs we have F (w, s) ≥ F (w∗, s∗). To prove that w∗ is a local minimum of
F (w, ŝ(w)), we need to show that ∃ϵ > 0 such that ∀w with ∥w −w∗∥ < ϵw we have F (w, ŝ(w)) ≥ F (w∗, s∗). By the
continuity if ŝ, limw→w∗ ŝ(w) = s∗. Therefore, for small enough ∥w −w∗∥, we have ∥ŝ(w) − s∗∥ < ϵs. Thus, there
exists a neighborhood of w∗, 0 < δ ≤ min(ϵ, ϵw) such that ∀w with ∥w − w∗∥ < δ we have ∥ŝ(w) − s∗∥ < ϵs and
therefore F (w, ŝ(w)) ≥ F (w∗, s∗).

(ii) Assume next that w∗ is a local minimum of F (w, ŝ(w)). Meaning that ∃ϵW > 0 such that ∀w with ∥w −w∗∥ < ϵw
we have F (w, ŝ(w)) ≥ F (w∗, ŝ(w∗)). From the definition of ŝ(w), we know that F (w, s) ≥ F (w, ŝ(w)). Therefore,
∀w with ∥w −w∗∥ < ϵw we have F (w, s) ≥ F (w∗, ŝ(w∗)), making (w∗, ŝ(w∗)) a local minimum of F (w, s).

(iii) To show the value of the minima coincide, we use the definition of ŝ(w) to write

min
w

F (w, ŝ(w)) = min
w

[
min
s

F (w, s)
]
= min

w,s
F (w, s).

Next, assume that w∗ is the global minimum of F (w, ŝ(w)). Then we F (w, s) ≥ F (w, ŝ(w)) ≥ F (w∗, ŝ(w∗)), meaning,
(w∗, ŝ(w∗)) is a global minimum of F (w, s). The other direction is due to the following. Since F (w, s) ≥ F (w, ŝ(w))
the minimum of F (w, s) always satisfies s = ŝ(w). Therefore, the global minimum of F (w, s) is the same as the global
minimum of F (w, ŝ(w)).

13

Decoupled Weight Decay for Any p Norm

B. Proximal Operators
The Proximal Operator of a function f(w) is the functional

proxf (w) = argmin
u

[
f(u) +

1

2
(u− w)2

]
. (15)

Meaning, for any function f , it returns the u that minimizes f(u) + (u− w)2/2. Generalization from 1D to any space are
trivial.

In the case of regularized loss, proximal operators become handy once we observe the following. Say that the loss is
decomposed into an unregularized loss L0 and a regularizer R, namely L = L0 +R. For any α > 0, w∗ is an extremum of
ℓ if and only if

w∗ = proxαR(w
∗ − α∇L0(w

∗)) = argmin
u

[
αR(u) +

1

2
(u+ α∇L0(w

∗)− w∗)2
]
. (16)

Based on the definition of the proximal operator, it is a manner of simple algebra to show the above expression is equivalent
to ∇L(w∗) = 0. In case both L0 and R are convex, w∗ is therefore the global minimum of L.

In the context of learning, one can iteratively obtain w∗ through the sequence

w(t+1) = proxαR

[
w(t) − α∇L0

(
w(t)

)]
. (17)

In this context, α is identified with the learning rate. More generality, if we use some optimization algorithm to update our
weights (e.g. Adam), such that w ← w − α · δw. To incorporate a proximal operator of R as regularization, we will simply
update w as w ← proxαR(w − α · δw).
For the case of L2 regularization, the proximal operator is given in closed form by

proxαλ2|·|2/2(w) =
w

1 + αλ2
, (18)

this is the result we have used in deriving Eq. (7). For completeness, the proximal operator for the L1 norm is known as the
soft-thresholding operator, and is given by

proxαλ1|·|(w) = sign(w)max {|w| − αλ1, 0} . (19)

C. Non-increasing Loss under pWD
In this appendix, we show that the original loss function is non-increasing under the pWD step.

Lemma C.1. Let L : Rn → R be a continuous differentiable function,, assume the gradient of L is Lipschitz continuous
with constant L, namely ∥∇L(w) − ∇L(v)∥ ≤ L∥w − v∥. Let R : Rn → R be a convex function. Define F (w) =
L(w) +R(w).

The sequence w(t+1) = proxαR(w
(t) − α∇L(w(t))) satisfies

(i)

R(w(t+1)) ≤ R(w(t))− 1

2α
∥w(t+1) −w(t)∥2 −

〈
∇L(w(t)),w(t+1) −w(t)

〉
. (20)

(ii)

F (w(t+1)) ≤ F (w(t))− 1− αL

2α
∥w(t+1) −w(t)∥2. (21)

Proof. See (Garrigos & Gower, 2024, Thm. 11.3)

We prove the following theorem.

14

Decoupled Weight Decay for Any p Norm

Theorem C.2. Let L : Rn → R be a continuous differentiable function, assume the gradient of L is Lipschitz continuous
with constant L, namely ∥∇L(w)−∇L(v)∥ ≤ L∥w − v∥. Define F (w) = L(w) + (λp/p) ∥w∥pp. Then, the sequence

w(t+1) =
w(t) − α∇L(w(t))

1 + αλp|w(t)|p−2

is such that
F (w(t+1)) ≤ F (w(t))− 1− αtL

2αt
∥w(t+1) −w(t)∥2.

Clearly, it is non-increasing, provided αt ≤ 1/L.

Proof. We will use the generalized loss function F (w, s) = L(w) + Rp(w, s), where Rp(w, s) is defined in Eq. (1).
Importantly, F (w) = mins F (w, s). We assume the following update rule:

w(t+1) = proxαtRp(·,st)

(
w(t) − αt∇L(w(t))

)
=

w(t) − αt∇L(w(t))

1 + λpαts(t)
, s(t+1) = |w(t+1)|p−2,

where all the operations are done element-wise. We note that given the update rule of s above, the update rule of w is the
same as the one in the theorem. At fixed s = s(t), we can apply Lemma C.1 to F (w, s(t)), and obtain

F (w(t+1), s(t)) ≤ F (w(t), s(t))− 1− αtL

2αt
∥w(t+1) −w(t)∥2.

From App. A and Eq. (14), we know that the update rule for s is such that F (w(t)) = F (w(t), s(t)) ≤ F (w(t), s) for any
s. Therefore, we have

F (w(t+1)) ≤ F (w(t))− 1− αtL

2αt
∥w(t+1) −w(t)∥2.

We note that while very similar steps are the base for the proof of general convergence of proximal gradient methods (Garrigos
& Gower, 2024, E.g. Thm. 11.3), our case is more involved due to the s dependence of the proximal operator.

D. Stability of the wi = 0 Fixed Point
In this appendix, we discuss the stability of the wi = 0 fixed point of the proximal gradient step. We will focus on a single
weight case, the generalization to a higher dimension follows trivially. Starting from the proximal gradient step in Eq. (7),
we want to ask whether a point arbitrarily close to w = 0 will be driven to w = 0 by the proximal gradient step. We will
show that this is indeed the case for p < 1, while for p > 1 the fixed point is unstable. We assume that w = 0 is not the
global minimum of the unregularized loss, and assume that the weight prior to the proximal gradient step is small compared
to the weight update by the unregularized loss, namely,

w = ϵ : |ϵ| ≪ α|δw|. (22)

This means that the current proximal gradient step is given by

w ← ϵ− αδw

1 + αλpϵp−2
≃ − αϵ2−pδw

ϵ2−p + αλp
≃ −δwϵ2−p

λp
. (23)

In the last step we have assumed that αλpϵ
p−2 ≫ 1, which is a necessary condition for the proximal gradient step to drive

the weight to zero. The ratio of the updated weight to the original weight is thus given by∣∣∣w
ϵ

∣∣∣ ≃ |δw|
λp
|ϵ|1−p. (24)

For sufficiently small |ϵ|, the above ratio is smaller than 1 for p < 1, and larger than 1 for p > 1. This means that w = 0 is a
stable fixed point for p < 1, and an unstable for p > 1. For p = 1, the fixed point is stable for |δw| < λ1, as it should for L1

regularization.

15

Decoupled Weight Decay for Any p Norm

E. pAdam Code
Here, we provide an example for implementing pWD on the standard Adam algorithm.

Listing 1: PyTorch pAdam optimizer implementation

class pAdam(torch.optim.AdamW):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, lambda_p=1e-2,

p_norm=1, *args, **kwargs):
super(pAdam, self).__init__(params, lr=lr, betas=betas, eps=eps, weight_decay=0, *

args, **kwargs)
self.p_norm = p_norm
self.lambda_p = lambda_p

@torch.no_grad()
def step(self, closure=None):

Store the old params
old_params = []
for group in self.param_groups:

old_params.append({param: param.data.clone() for param in group[’params’] if
param.grad is not None})

Perform the standard AdamW step
loss = super(pAdam, self).step(closure)

Perform the pWD step
for group, old_group in zip(self.param_groups, old_params):

lambda_p_group = group.get(’lambda_p’, self.lambda_p) # support prams groups
if lambda_p_group > 0: # Apply regularization only for lambda_p > 0

for param in group[’params’]:
if param.grad is None:

continue

Use old parameters in the decay factor
param_old = old_group[param]
X = param_old.abs()**(2 - self.p_norm)
update_term = X / (X + self.p_norm * group[’lr’] * lambda_p_group)

pWD step
param.data.mul_(update_term)

return loss

F. Experimental Details
In this section, we provide additional details on the experimental setup and hyperparameters used in our experiments. We
include supplementary figures that were omitted from the main text.

In all experiments we used Adam as our base optimizer. We held the Adam hyperparameters constant for all experiments:

• β1 = 0.9.

• β2 = 0.999.

• ϵ = 10−8.

We used a learning rate schedule comprised of a linear warm-up, up to max lr, followed by a cosine annealing reaching a
minimum learning rate of min lr=max lr/100.

16

Decoupled Weight Decay for Any p Norm

10−6 10−5 10−4 10−3 10−2

λp

10−5

10−4

10−3

10−2

L
ea

rn
in

g
ra

te
p = 0.2

0
.5

0

0
.8

0

0
.8

0

4.5

5.0

5.5

6.0

6.5

E
rror

P
ercentage

(%
)

10−6 10−5 10−4 10−3 10−2

λp

10−5

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 0.3

0
.2

0

0
.5

0

0.80 4.5

5.0

5.5

6.0

6.5

E
rror

P
ercentage

(%
)

10−6 10−5 10−4 10−3 10−2

λp

10−5

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 0.4

0
.2

0

0.50

0
.8

0

0.80
4.5

5.0

5.5

6.0

6.5

E
rror

P
ercentage

(%
)

10−6 10−5 10−4 10−3 10−2

λp

10−5

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 0.5

0
.0

1

0
.2

0
0
.5

0

0
.8

0

4.5

5.0

5.5

6.0

6.5

E
rror

P
ercentage

(%
)

10−6 10−5 10−4 10−3 10−2

λp

10−5

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 0.6

0
.0

1

0
.2

0

0.50

0
.8

0

4.5

5.0

5.5

6.0

6.5

E
rror

P
ercentage

(%
)

10−6 10−5 10−4 10−3 10−2

λp

10−5

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 0.7

0
.0

1

0
.2

0

0
.5

0

0
.8

0

4.5

5.0

5.5

6.0

6.5

E
rror

P
ercentage

(%
)

10−6 10−5 10−4 10−3 10−2

λp

10−5

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 0.8

0
.0

1

0
.2

0

0
.5

0

0
.8

0

0.80

4.5

5.0

5.5

6.0

6.5

E
rror

P
ercentage

(%
)

10−6 10−5 10−4 10−3 10−2

λp

10−5

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 0.9

0
.0

1

0
.2

0

0
.5

0

0.80

4.5

5.0

5.5

6.0

6.5

E
rror

P
ercentage

(%
)

10−6 10−5 10−4 10−3 10−2

λp

10−5

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 1.0

0
.0

1

0.20

0
.5

0

0.80

4.5

5.0

5.5

6.0

6.5

E
rror

P
ercentage

(%
)

10−5 10−4 10−3 10−2 10−1 100 101

λp

10−5

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 1.2

0
.0

1

0.01

0.20

0.20

0.50

0.50

0.5
0

0.50

0.80

0
.8

0

0.8
0

0.80

4.5

5.0

5.5

6.0

6.5

E
rror

P
ercentage

(%
)

10−5 10−4 10−3 10−2 10−1 100 101

λp

10−5

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 1.5

0
.0

1

0.01

0
.2

0

0.20
0.50

0
.5

0

0.50

0.80

0
.8

0

4.5

5.0

5.5

6.0

6.5

E
rror

P
ercentage

(%
)

10−5 10−4 10−3 10−2 10−1 100 101

λp

10−5

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 1.9

0
.0

1

0
.2

0

0
.5

0

0
.8

0

4.5

5.0

5.5

6.0

6.5

E
rror

P
ercentage

(%
)

Figure 4: Contours of validation accuracy after 100 training epochs on the λp vs. learning rate plane, for ResNet18 on
CIFAR-10. White contours represent the [0.01, 0.2, 0.4, 0.8] sparisty levlel.

F.1. ResNet18 on CIFAR-10

We used the standard ResNet18 architecture for our experiments. We trained the network for 100 epochs with a batch size of
64, and 4 workers for data loading. The linear warm-up was set to 3 epochs. We scanned max lr and λp for a range of p
values. The accuracy contours are shown below in Figure 4.

F.2. nanoGPT on Tiny Shakespeare

We used the nanoGPT architecture for our experiments. We trained the network for 5000 iterations. We used a batch size
of 64, block size of 256, 6 attention heads, 6 layers, embedding dimension of size 384, and gradient clipping of 1.0. We
scanned max lr and λp for a range of p values. The linear warm-up was set to 100 iterations. The accuracy contours are
shown below in Figure 5.

17

Decoupled Weight Decay for Any p Norm

10−5 10−4 10−3 10−2

λp

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 0.5

0
.0

1

0
.2

0

0
.5

0

0.80

40

41

42

43

44

45

46

E
rror

P
ercentage

(%
)

10−5 10−4 10−3 10−2

λp

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 0.6

0
.0

1

0
.2

0

0
.5

0

0
.8

0

40

41

42

43

44

45

46

E
rror

P
ercentage

(%
)

10−4 10−3 10−2 10−1

λp

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 0.7

0
.0

1 0
.2

0

0
.5

0

0
.8

0

40

41

42

43

44

45

46

E
rror

P
ercentage

(%
)

10−4 10−3 10−2 10−1

λp

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 0.8

0
.0

1

0
.2

0

0
.5

0

0
.8

0

40

41

42

43

44

45

46

E
rror

P
ercentage

(%
)

10−4 10−3 10−2 10−1

λp

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 0.9

0
.0

1

0
.2

0

0
.5

0

0
.8

0

0.80

40

41

42

43

44

45

46

E
rror

P
ercentage

(%
)

10−4 10−3 10−2 10−1

λp

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 1.0

0
.0

1

0
.2

0

0.50 0.80

40

41

42

43

44

45

46

E
rror

P
ercentage

(%
)

10−3 10−2 10−1

λp

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 1.1

0
.0

1

0.20
0.50

0.80

40

41

42

43

44

45

46
E

rror
P

ercentage
(%

)

10−3 10−2 10−1

λp

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 1.2

0.01

0.20 0.50
0.80

40

41

42

43

44

45

46

E
rror

P
ercentage

(%
)

10−2 10−1 100

λp

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 1.3

0.01

0.20

0.20

0
.5

0

0.50

0.80

0.80

40

41

42

43

44

45

46

E
rror

P
ercentage

(%
)

10−2 10−1 100

λp

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 1.4

0.01

0.20

0.20

0
.5

0

0.50

0
.8

0

0
.8

0

40

41

42

43

44

45

46

E
rror

P
ercentage

(%
)

10−2 10−1 100

λp

10−4

10−3

10−2

L
ea

rn
in

g
ra

te

p = 1.5

0
.0

1

0.20

0.50 0.80

40

41

42

43

44

45

46

E
rror

P
ercentage

(%
)

Figure 5: Contours of validation accuracy after 5000 training iterations on the λp vs. learning rate plane, for nanoGPT on
Tiny Shakespeare. White contours represent the [0.01, 0.2, 0.4, 0.8] sparisty levlel.

18

