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Magnetic van der Waals (vdW) materials have opened new frontiers for realizing novel many-body
phenomena. Recently NiPS3 has received intense interest since it hosts an excitonic quasiparticle
whose properties appear to be intimately linked to the magnetic state of the lattice. Despite ex-
tensive studies, the electronic character, mobility, and magnetic interactions of the exciton remain
unresolved. Here we address these issues by measuring NiPS3 with ultra-high energy resolution
resonant inelastic x-ray scattering (RIXS). We find that Hund’s exchange interactions are primarily
responsible for the energy of formation of the exciton. Measuring the dispersion of the Hund’s
exciton reveals that it propagates in a way that is analogous to a double-magnon. We trace this
unique behavior to fundamental similarities between the NiPS3 exciton hopping and spin exchange
processes, underlining the unique magnetic characteristics of this novel quasiparticle.

INTRODUCTION

Two-dimensional (2D) vdW materials provide an ideal
platform for combining strong electronic correlations, low-
dimensional magnetism, and weak dielectric screening to
realize novel electronic quasiparticles and functionality [1–
3]. Recent years have seen the identification of excitons in
a host of closely related vdW compounds such as NiPS3,
CrSBr, NiI2, and MnPS3 [4–7]. Within this family, the
NiPS3 exciton exhibits several fascinating properties, in-
cluding strong interactions between the exciton lifetime
and magnetic order [4], thickness-dependent properties in
the few-layer-limit [8–10], coupling between magnetism
and exciton polarization [8, 11, 12], and unconventional
exciton-driven metallic behavior [13]. These observations
suggest that excitons in magnetic vdW materials such as
NiPS3 might have fundamentally different character from
other types of exciton, such as the Frenkel, Wannier, and
Hubbard varieties. Frenkel and Wannier excitons form
via Coulomb interactions between electrons and holes in
different Bloch states and propagate according to the de-
tailed form of the band-structure and electron-hole attrac-
tion [14]. Hubbard excitons, on the other hand, form from
strongly correlated many-body states and their propaga-
tion is expected to involve the scattering of spin waves
[15, 16].

In previous works, the NiPS3 exciton has been described
as a “Zhang-Rice” mode [4]. This terminology derives
from studies of cuprate superconductors, and refers to a
specific form of hybridized wavefunctions that have one
hole on the transition metal (Ni) site and one hole on
the ligand (S) site and describes the “Zhang-Rice exci-
ton” as a transition from a high-spin triplet to a low-spin
singlet [17]. However, the way the exciton changes with
applied magnetic field has been argued to be incompati-
ble with this picture [18]. A Zhang-Rice scenario also does
not address why the exciton has such a narrow linewidth
[8, 11, 19]. The unsettled and possibly unconventional ex-
citon electronic character suggests that the exciton may
also propagate in an exotic manner different to regular ex-
citons, but, to date, this has never been measured. Here,
we use ultra-high energy resolution RIXS to directly de-
tect the NiPS3 exciton momentum dispersion and discover
it propagates magnetically in a similar way to the double-
magnon excitation. Through detailed analysis of the exci-
ton wavefunction, we further reveal the different interac-
tions involved in its formation and establish that its pri-
mary character is that of a Hund’s exciton, distinct from
the Zhang-Rice and other scenarios.
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Fig. 1. Electronic character of the NiPS3 exciton. a, RIXS intensity map as a function of incident photon energy through
the Ni L3 resonance. The exciton is visible at an energy loss of 1.47 eV and reaches a maximum intensity at an incident energy of
853.4 eV. These data were taken at 40 K with π-polarized x-rays incident on the sample at θ = 22.6◦ and scattered to 2Θ = 150◦.
b, RIXS calculations for NiPS3 that capture the energy and resonant profile of the dd-transitions and exciton in the material. c,
Calculated unbroadened RIXS intensity (vertical lines) and broadened RIXS spectra (solid curve) at the main resonant incident
energy of the exciton peak (i.e., Ei = 853.4 eV). d–f, Description of the ground and excited states in NiPS3. d shows the hole
occupations of Ni 3d (denoted by d) and ligand (denoted by L) orbitals. e displays probabilities of having d8, d9L, and d10L2

configurations. f gives the expectation value of the total spin operator squared ⟨Ŝ2⟩. The orange (green) vertical lines in d–f
indicate the energy for the double-magnons (excitons). g,h, Wavefunction illustrations extracted from b for g the exciton and
h the ground state. The size of each orbital (3d for the central Ni site and 3p for the six neighboring S sites) is proportional

to its hole occupation. The color represents the expectation value of the spin operator along the z axis ⟨Ŝz⟩, again calculated
separately for the Ni and S states. Therefore, the change in spin state and the partial transfer of holes involved in the exciton
transition is encoded in the change in color and size of orbitals, respectively. We represent the ground state by only the down-spin
configuration, omitting the up-spin and spin-zero elements of the triplet.

RESULTS

Electronic character of the exciton

We start by measuring the incident energy dependence
of the Ni L3-edge RIXS spectrum of NiPS3 to identify the
different spectral features present (see Fig. 1a and Meth-

ods). The most intense peaks centered around 1.0, 1.1,
and 1.7 eV energy loss are dd excitations in which electrons
transition between different Ni 3d orbitals. A remarkably
sharp (almost resolution limited) peak is apparent at an
energy loss matching the known energy of the exciton at
1.47 eV. This excitation resonates strongly at 853.4 eV
and is well separated from other dd and the higher energy
charge-transfer excitations. We identify this feature as the



3

NiPS3 exciton, consistent with previous reports [4].

To facilitate our understanding of the exciton and its
interplay with magnetism, we constructed an effective
NiS6 cluster model representing NiPS3 (See Supplemen-
tary Note 1A). Our model includes Coulomb repulsion,
Hund’s coupling, crystal field, and Ni-S and S-S hopping.
As explained in the Methods section, the rich spectrum,
including the detailed splitting of the two dd-excitations
at 1.0 and 1.1 eV allows us to obtain a well-constrained
model Hamiltonian for NiPS3 (see Supplementary Note
1B and Supplementary Fig. 2).

To better understand the nature of the exciton, we plot
several expectation values describing the NiPS3 wavefunc-
tion in Fig. 1d–f, which reveal that NiPS3 has dominant
Hund’s rather than Zhang-Rice character. The plotted
expectation values include the hole occupations of the Ni
3d and ligand orbitals and the weights of the d8, d9L,
and d10L2 configurations (L stands for a ligand hole) that
make up each state. We also calculate the expectation val-
ues for the total spin operator squared Ŝ2, which, for two
holes, has a maximum value of S(S+1) = 2. The ground
state is close to this pure high spin state; while the spin
is strongly reduced in the exciton. We therefore confirm
that the exciton is dominantly a triplet-singlet excitation.
In the Zhang-Rice scenario, the leading character of the
ground state would be d9L. The dominant component is,
in fact, d8 revealing that the state has dominant Hund’s
character.

The ground state and the exciton wavefunctions ob-
tained from our model are illustrated in Fig. 1g,h and
are described in detail in Supplementary Note 2. We see
that substantial charge redistribution occurs during ex-
citon formation, which is partly crystal field and partly
a Ni-S charge transfer in nature (see Fig. 1d,e). As ex-
plained later in the discussion section, the fact that the
ground states have dominant Ni character (rather than
dominant Zhang-Rice character) plays a leading role in
the energy for exciton formation.

Exciton dispersion

Having clarified the character of the exciton, we study
its propagation by tuning the incident x-ray energy to
the exciton resonance at 853.4 eV and mapping out the
in-plane dispersion with high energy resolution (Fig. 2a
and b). The two high-symmetry in-plane reciprocal space
directions both exhibit a small upward dispersion away
from the Brillouin zone center with similar bandwidths
of ∼ 15 meV. This non-zero dispersion suggests that the
exciton excites low-energy quasiparticles as it propagates

through the lattice. We consequently, mapped out the
low energy excitations in Fig. 2c,d. The strongest feature
is the magnon, which was found to be consistent with
the prediction based on prior inelastic neutron scatter-
ing measurements [20, 21] (the white line, see Methods).
Intriguingly, we also found another broad low-energy dis-
persive feature at an energy scale roughly twice as large
as the magnon peak (the orange dots in Fig. 2c and d).
As we justify in detail later, the observed low-energy fea-
ture, in fact, corresponds to “double-magnon” excitations,
which is a process in which two spins are flipped on each
site making up the excitation to create a pair of magnons
with the same spin. By fitting the exciton and double-
magnon energy, we see that these two excitations show
similar dispersion despite their drastically different en-
ergy scales (Fig. 2e and f), indicating that the exciton
propagates in a way that is similar to the double-magnon.
Since the dispersive effects are subtle, we confirmed the
calibration of the spectra by verifying that the magnon
energy exactly reproduces the dispersion obtained in prior
inelastic neutron scattering experiments [20, 21]. We sim-
ilarly confirmed that the Brillouin zone center exciton en-
ergy is consistent with values from optical measurements
[4, 8, 11].

Temperature dependence

To substantiate the identity of the low energy excita-
tions we observe in NiPS3, we need to consider the RIXS
cross-section. Since RIXS is a photon-in photon-out scat-
tering process with each photon carrying one unit of angu-
lar momentum, it can couple to processes involving either
zero, one, or two spin flips [22–26]. While the spin-flip
processes are necessarily magnetic, the zero spin flip pro-
cess can either correspond to a phonon or to a so called
“bi-magnon” in which two magnons with opposite spins
are created on neighboring sites to make an excitation
with a net spin of zero. The most straightforward way to
distinguish magnetic and non-magnetic excitations is to
measure the dispersion above the Néel order temperature
of TN = 159 K, as presented in Fig. 3. Above TN the
exciton remains visible, but it becomes weaker and more
diffuse compared to the data at 40 K (see Fig. 3a and the
linecuts in Supplementary Fig. 10). Consequently, no dis-
persion is detectable. The double-magnon peak that was
observed at 40 K is replaced by a diffuse, over-damped
tail of intensity, contrary to what would be expected for a
phonon and corroborating its magnetic origin (see Fig. 3b
and the linecuts in Supplementary Fig. 9). The residual
intensity arises from short-range spin fluctuations, which
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Fig. 2. Low temperature exciton dispersion and comparison with double-magnons. a,b, RIXS intensity maps as
a function of the H and K in-plane momentum transfer, respectively, with an energy window chosen to isolate the exciton
dispersion. The overlaid green squares mark the peak positions of the exciton. c and d show the low energy dispersion at
equivalent momenta with the observed inelastic feature, including magnons (white lines) and double-magnons (orange circles).
Panels e and f, show that both the exciton and double-magnon have similar dispersion with an energy offset of ∼ 1.4 eV. All
the measurements were taken at T = 40 K using π-polarized incident x-rays at an incident energy of 853.4 eV corresponding to
the exciton resonance. The asterisks in panels e and f denote the reported exciton energy from optical measurements [4, 8, 11]
with error bars from our instrument energy calibration (one standard deviation). All other error bars are 1-σ confidence intervals
evaluated from the fitting as explained in the Methods. Detailed linecuts showing the fitting are provided in Supplementary
Figs. 3–5.

are expected to persist well above TN in quasi-2D magnets
as long as the thermal energy scale is well below the en-
ergy scale of the magnetic interactions [27]. We also note
that optical phonons in the 70–100 meV energy range in
NiPS3 are known to be minimally-dispersive [28], which
again suggests a magnetic origin.

Identifying double-magnons through their resonant
profile

Having established a magnetic origin for the dispersion,
we can use the energy-dependent resonant profile of RIXS
to distinguish different magnetic processes and substanti-
ate our assignment of the low-energy feature as the double-
magnon. Figure 4a plots the energy dependence of the
measured double-magnon feature alongside the magnon
and the exciton. We compare this with calculations of the
RIXS cross-section based on our model, which includes

processes involving zero, one, and two spin flips denoted
by ∆mS = 0, 1, and 2, respectively, as well as coupling to
the exciton. ∆mS = 0 reflects the cross section for either
elastic scattering or a bi-magnon, ∆mS = 1 corresponds
to a magnon, and ∆mS = 2 corresponds to the double-
magnon. Notably, since the double-magnon involves an
exchange of two units of spin angular momentum, RIXS
is especially suitable for detecting this process. The main
resonance around 853 eV shows partial overlap between
the double-magnon and bi-magnon resonance, so it does
not clearly distinguish between them. However, the pres-
ence of the excitation at the satellite resonance at 857.7 eV
is only compatible with a ∆mS = 2 double-magnon pro-
cess. We therefore suggest that the dominant character of
the excitation around 80 meV is that of double-magnons
substantiating our spectral assignment, although we can-
not exclude a small sub-leading contribution. Our assign-
ment is also supported by RIXS studies of NiO where
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the double-magnon was also found to be much more in-
tense than the bi-magnon [22, 24, 26, 29]. The satellite
resonance is generated by the exchange part of the core-
valence Coulomb interaction on the Ni site. This same in-
teraction creates the double-magnon because the angular
momentum state of the core-hole needs to vary in the in-
termediate state in order to allow two subsequent spin-flip
processes to occur in the photon absorption and emission
processes. The core-valence exchange interaction facili-
tates this change in the core-hole state by mixing of the
core-hole and valence eigenstates. This conclusion is also
borne out in studies of NiO where the same process occurs
[22, 24, 26, 29].

DISCUSSION

In this work we use high resolution RIXS to assess the
formation and propagation of the excitonic state of NiPS3.
By combining RIXS and exact diagonalization (ED) cal-
culations, we reveal that the primary mechanism behind
the exciton formation is the Hund’s interaction. As il-
lustrated in Fig. 1d-h the exciton forms from a ground
state with dominant d8 character and involves significant
charge transfer and crystal field changes. As such, the
state we identify is quite different from prior descriptions
of a Zhang-Rice exciton [4]. As we discuss later, the dis-
tinction between these models is crucial as it corresponds
to a different majority component of the wavefunction, dif-
ferent interactions playing the leading role in the exciton
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Fig. 4. Resonance behavior of magnons, double-
magnons and excitons. a, The measured RIXS spectral
weights of the magnon, double-magnon and exciton extracted
by fitting experimental RIXS spectrum for each incident en-
ergy. Error bars represent one standard deviation. Data were
taken at 40 K at a scattering angle of 2Θ = 150◦ and an in-
cident angle of θ = 22.6◦. b, The calculated RIXS spectral
weights of the exciton and low-energy zero-, one-, and two-
spin-flip transitions (∆ms = 0, 1, 2) as a function of incident
energy. The curves in both panels are scaled for clarity.

energy, and the possibility of realizing a model with phys-
ically reasonable parameters. These issues will be central
to efforts to manipulate the exciton energy and cross sec-
tion. We found that the difference in the prior identifica-
tion of the exciton arises from using an under-constrained
model. If one considers just the exciton energy and as-
sumes that Hund’s coupling can take any value, there are a
range of different Hund’s interactions and charge transfer
energy parameters that predict a 1.47 eV exciton. If one
adds a further constraint that the 1.0, 1.1, and 1.7 eV dd-
excitations must be reproduced within an accuracy similar
to their width, properly constrained solutions can be iden-
tified (see Supplementary Note 1F). Importantly, the so-
lution found here also yields a physically reasonable value
for Hund’s coupling JH = 1.24 eV corresponding to 87% of
the atomic value. This is relevant because the pure triplet
and singlet Zhang-Rice components of the wavefunctions
are energetically split by rather weak Ni-S exchange pro-
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propagation based on perturbation theory. The top row
represents the antiferromagnetic background and subsequent
rows show the time evolution of the state. a, After the singlet
|0, 0⟩ exciton forms (second row from the top) it exchanges
spin with neighboring sites such that it moves while flipping
spins and breaking magnetic bonds; free propagation to the
next nearest neighbor site (bottom row) is possible after four
spin exchanges, involving up to four magnons created in the
intermediate state (middle rows). b, After the double-magnon
excitation is created on the same site (second row from the
top), it can freely move to the next nearest neighbor (bottom
row) by four spin exchanges and exciting four magnons in the
intermediate state (middle rows). The similarities between the
propagation in a and b rationalize the experimentally observed
similar dispersion relation of the exciton and double-magnon.
These processes are mediated by the different spin-exchange
interactions, with the third nearest neighbor exchange process
playing the leading role.

cesses, so it is difficult to justify the 1.47 eV energy scale
of the exciton within a model with dominant Zhang-Rice
character. In Ref. [4] an unphysically large Hund’s cou-
pling corresponding to 120% of the atomic value was re-
quired.

Based on the wavefunction extraction performed in this
study, we can determine which electronic interactions play
the leading role in the exciton energy. To do this, we fac-
torized the wavefunctions into the singlet and triplet com-
ponents of the d8, d9L, and d10L2, configurations as de-
scribed in Supplementary Note 2. We can then compute
the contributions of Hund’s, charge transfer, and crys-
tal field to each of these components. We find that the
primary contribution to the exciton energy comes from
singlet-triplet splitting of the d8 component of the wave-
function, which means that it is best thought of as a
Hund’s exciton since its energy of formation is mostly
driven by Hund’s exchange. Our exciton character de-
rived here, also retains partial magnetic character com-

ing from a sizable contribution of states beyond the three
d-electron, Zhang-Rice, and ligand, singlet states. This
means that the exciton is expected to vary with applied
magnetic field compatible with recent observations [18]. It
also implies that future efforts to realize similar symme-
try excitons with different energies should target means to
modify the on-site Ni Hund’s exchange coupling and not
the Ni-S exchange processes that would be the leading
contribution to the energy of a Zhang-Rice exciton.

Our detection of exciton dispersion in NiPS3 proves that
the exciton is an intrinsic propagating quasiparticle and
excludes prior suggestions that the exciton might be a
localized phenomenon associated with defects [30]. The
most common form of exciton propagation in weakly cor-
related transition metal chalcogenides involves excitations
that are composed of bound pairs of specific Bloch states
[31, 32]. The NiPS3 exciton is quite different from the
more conventional excitons since it is bound by the lo-
cal Hund’s interactions described previously, rather than
long-range Coulomb attraction. Recent calculations that
work for many more conventional excitons, indeed fail to
capture our measured exciton dispersion [33]. We also
note that the two holes in the Ni eg manifold represent
what is in some sense the simplest way to realize a triplet-
singlet excitation. Consequently, NiPS3 has relatively few
excitations compared to other materials and the exciton
is energetically well separated from other transitions, such
that it interacts exclusively by magnons and not other
types of excitations. The exciton character is also dom-
inated by processes that rearrange spins on the Ni site,
rather than moving charge between more extended states,
which would tend to reduce the coupling of the exciton to
phonons. These factors may contribute to the long life-
time and narrow linewidth of the exciton.

A key result of this study is that the NiPS3 exciton
propagates like the double-magnon, even though the av-
erage energies of the exciton and double-magnon differ
by more than one order of magnitude. This remarkable
similarity can be understood by analyzing the exchange
processes involved in the motion of the quasiparticles. We
start by considering the spin-superexchange processes in-
volved in exciton motion, finding that the exciton can
swap its position with a spin (see Supplementary Note
4B for details). Consequently, when the exciton moves
through the antiferromagnetic lattice, it generates a string
of misaligned spins. Given that the exciton appears to
propagate freely, we should consider processes that heal
the misaligned spins in the wake of the exciton, which
leads to the image in Fig. 5a that illustrates the spin flips
involved in exciton motion. Similar considerations can be
applied to the motion of a double-magnon as shown in



7

Fig. 5b. Importantly, both exciton and double-magnon
motion involve four spin exchanges. If we consider the
sequence of different overlap integrals involved on the Ni
and ligand states, the amplitude of the exciton hopping
and double-magnon exchange processes are expected to
be quite similar (see Supplementary Notes 4A and 4C).
These considerations help us rationalize the similarities in
the propagation of the two quasiparticles. A simple em-
pirical tight-binding model fit to the exciton dispersion
(see Supplementary Note 5) reveals that the third nearest
neighbor interaction is the leading term in determining
the exciton dispersion, consistent with the third nearest
neighbor spin exchange being the dominant term in the
spin Hamiltonian [20, 21]. We note in passing that a sim-
ilar picture for a well-known free single magnon propaga-
tion in an antiferromagnet would require generating two
spin exchanges [34].

The coupling between the exciton and magnetism might
be relevant to why the 1.47 eV exciton feature is visible
in optics experiments. Since the exciton involves transi-
tions between d-orbitals, it is expected to be nominally
optically forbidden in a centrosymmetric crystal due to
dipole selection rules. However, these rules can be lifted
by perturbations that break the Ni-site symmetry, which
includes exciton-spin or exciton-lattice interactions. The
fact that there is a strong change in the optical cross sec-
tion through TN [35], whereas the RIXS is only modestly
broadened, also supports the interpretation that exciton-
spin interactions play a key role in the optical cross sec-
tion.

Overall, our measurements reveal a Hund’s excitonic
quasiparticle in NiPS3 that propagates in a similar manner
to a two-magnon excitation. Coming years will likely see
further instrumental developments that allow RIXS, and
exciton microscopy, measurement of NiPS3 to be extended
to the ultrafast pump-probe regimes [36, 37]. We believe
that this has outstanding potential for understanding new
means of using magnetic Hund’s excitons to realize new
forms of controllable transport of magnetic information.

METHODS

Sample information

NiPS3 bulk single crystal samples were procured from
2D Semiconductors, which synthesized the crystals by the
chemical vapor transport method. The full unit cell of
NiPS3 has a monoclinic symmetry (Space Group C2/m,
#12) with lattice parameters a = 5.8 Å, b = 10.1 Å,
c = 6.6 Å, and β = 107.0◦. We adopted this monoclinic-

unit-cell convention, and index reciprocal space using scat-
tering vector Q = (H,K,L) in reciprocal lattice units
(r.l.u.). Therefore, the reciprocal lattice vector c∗ is per-
pendicular to the ab plane.

Ni2+ ions in NiPS3 lie on a honeycomb lattice in the
ab plane and form with ABC-type stacking of the layers.
Such stacking breaks the three-fold rotational symmetry
of the monolayer structure which can be detected by mea-
suring structural Bragg peaks such as (0, 2, 4). NiPS3 is
prone to characteristic twinning involving three equiva-
lent domains rotated by 120◦ in the ab plane [20, 38].
Laboratory single-crystal x-ray diffraction measurements
confirmed the presence of three twin domains in our sam-
ples. Therefore, measured quantities should be a weighted
average over the three twin domains. We included these
domain-averaging effects in the ED and magnon energy
calculations. The apparent similarity in the measured dis-
persion between the two distinct directions (i.e., antiferro-
magnetic across the zig-zag chain and ferromagnetic along
the chain) can be ascribed to the domain averaging effect
due to the presence of structural twinning in the measured
sample.

NiPS3 orders magnetically below a Néel temperature of
TN = 159 K [38]. The magnetic unit cell is the same as the
structural unit cell. It has a collinear magnetic structure
consisting of antiferromagnetically coupled zigzag chains.

RIXS measurements

Ultra-high-energy-resolution RIXS measurements were
performed at the SIX 2-ID beamline of the National Syn-
chrotron Light Source II [39]. The surface normal of the
sample was c∗ axis (i.e., L direction). The in-plane ori-
entation was determined by Laue diffraction. Then the
pre-aligned sample was cleaved with Scotch tape in air to
expose a fresh surface and immediately transferred into
the RIXS sample chamber. Ni L3-edge RIXS measure-
ments were taken with linear horizontal (π) polarization
with a scattering plane of either (H0L) or (0KL). The
main resonance energy (around 853 eV) is common for Ni-
containing compounds [40–42] but different from the pre-
vious report [4]. This difference comes from the absolute
energy calibration of the beamline, but does not affect the
RIXS measurements and interpretations, which depend
only on the relative changes. The spectrometer was oper-
ated with an ultrahigh energy resolution of 31 meV full-
width at half-maximum (FWHM). The temperature of the
sample was kept at T = 40 K except for the temperature-
dependent measurements. Since the interlayer coupling in
NiPS3 is relatively weak, the dispersion measurement was
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taken at a scattering angle of 2Θ = 150◦ while varying
the incident angle of the x-rays. A self-absorption correc-
tion [43] was applied to the RIXS spectra, which, however,
does not affect peak positions.

Fitting of the RIXS spectra

In order to quantify the dispersion of the excitons and
double-magnons, we fitted these peaks in the measured
RIXS spectra to extract their peak positions. Although, in
principle both the exciton and double-magnon can contain
detailed substructure, we found that both features in our
spectra can be accurately fit with simple peak shapes.

In the double-magnon region, we used a Gaussian func-
tion for the elastic peak, a damped harmonic oscillator
(DHO) model for both the magnon and double-magnon
peaks, and a constant background. The width of the elas-
tic peak was fixed to the energy resolution, which was
determined by a reference measurement on a multilayer
heterostructure sample designed to produce strong elastic
scattering. The DHO equation for RIXS intensity S(Q, ω)
as a function of Q and energy ω is

S(Q, ω) =
ωχQ

1− exp(−ω/kBT )
· 2zQfQ
(ω2 − f2

Q)
2 + (ωzQ)2

(1)

where fQ is the undamped energy, χQ is the oscillator
strength, zQ is the damping factor, kB is the Boltzmann
constant, and T is temperature. This DHO was then con-
voluted with a resolution function (a Gaussian function
with peak width fixed to the energy resolution) to describe
the magnons and double-magnons. We used the fitted
value of fQ to represent the magnon or double-magnon
peak energy and used zQ to characterize the peak width.

In the exciton region, we resolved both the main ex-
citon and an additional exciton sideband separated by
∼ 40 meV as shown in Supplementary Fig. 3 (e.g., the
spectrum at K = −1.22 r.l.u.), consistent with a previ-
ous report [4]. Therefore, we fitted the data with two
Voigt peaks with a third order polynomial background.
The width of the Gaussian component was fixed to the
energy resolution, and we constrained the widths of these
two peaks to be the same. For the scans where the minor
peak is not obvious, we further fixed the spacing between
these peaks to the average value of 40 meV obtained from
other scans.

Exact diagonalization RIXS calculations

Our NiPS3 data were interpreted using standard ED
methods for computing the RIXS intensity [23]. The

Kramers-Heisenberg formula for the cross section was
used. This is derived by treating the interaction between
the photon and the material within second order pertur-
bation theory (as is required for scattering via an interme-
diate state resonance). We use the polarization-dependent
dipole approximation for the photon absorption and emis-
sion interactions and simulate the presence of a core hole
in the intermediate state with a core hole potential. In
strongly correlated insulators like NiPS3, accurate treat-
ment of the electron-electron interactions are particularly
important and the brief presence of a core hole means
that local processes dominate the scattering. These fac-
tors means that cluster approximations are particularly
appropriate and are widely used for this reason [23]. We
therefore perform calculations for a NiS6 cluster, which
can be projected onto Anderson impurity model (AIM)
with essentially no loss of accuracy. As explained in de-
tail in Supplementary Note 1, we were able to extract a
well-constrained effective model for NiPS3 from the data.
This was used to generate Fig. 1b based on the parame-
ters specified in Tab. I. The detailed definitions of these
parameters can be found in Supplementary Note 1.

Since the ED method employed involves directly com-
puting wavefunctions, the model can be used to extract
the wavefunctions plotted in Fig. 1g,h as outlined in Sup-
plementary Note 2. All the calculations were done using
the open-source software EDRIXS [44].

Magnetic cross-section calculations

With the validated model in hand, it can be used
to compute the resonance profile of the magnetic cross-
section. A small Zeeman interaction was applied to the
total spin angular momentum of the system, serving as
the effective molecular magnetic field in the magnetically
ordered state. The initially degenerate ground triplet con-
sequently splits into three levels separated based on the
spin state. After diagonalizing the Hamiltonian matrix,
we used the Kramers-Heisenberg formula in the dipole
approximation to calculate the incident-energy dependent
RIXS cross section for transitions between the different el-
ements of the triplet. The experimental geometry was ex-
plicitly included in the calculations. Three-fold twinning
was also accounted for, which in fact has no effect on the
final results due to the preserved cubic symmetry. We also
note that these results are independent of the magnitude
of the applied effective molecular magnetic field since this
interaction is much smaller than the splitting between the
ground state triplet and the lowest energy dd-excitation.
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TABLE I. Full list of parameters used in the AIM calculations. Units are eV.

10Dq ϵp Vpdσ Vppσ F 0
dd F 2

dd F 4
dd F 0

LL F 2
LL F 4

LL UdL F 0
dp F 2

dp G1
dp G3

dp ζi ζn ζc
0.42 7.5 0.95 0.8 7.88 10.68 6.68 0.46 2.59 1.62 1 7.45 6.56 4.92 2.80 0.083 0.102 11.4

DATA AVAILABILITY

The RIXS data generated in this study have been
deposited in the Zenodo database under access code
10791076 [45].

CODE AVAILABILITY

The calculations in this study were performed using the
open source code EDRIXS [44].
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Supplementary Note 1. Exact diagonalization calculations

Here we outline the detailed approach and values used in our RIXS calculations. Throughout this section, we represent
the model in hole (rather than electron) language.

A. Cluster model

Our cluster representation of NiPS3 uses six S atoms surrounding a central Ni atom. The orbital basis includes the
full set of ten Ni 3d spin-orbitals and six S 3p spin-orbitals for each of the six neighboring S ions. The Ni 2p3/2 core
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Supplementary Table I. Full list of parameters used for the NiS6 cluster model in the ED calculations. Units are eV.

On-site orbital energies and spin-orbit coupling On-site Coulomb interactions

ϵd(eg) ϵd(t2g) ϵp ζi ζn ζc F 0
dd F 2

dd F 4
dd F 0

pp F 2
pp

0 0.42 7.5 0.083 0.102 11.4 7.88 10.68 6.68 3.2 5

Hopping integrals Intersite Coulomb interactions Core-hole potential

Vpdσ Vppσ F 0
dp F 2

dp G1
dp G3

dp F 0
dp F 2

dp G1
dp G3

dp

0.95 0.8 1 0 0 0 7.45 6.56 4.92 2.80

states are included to simulate the resonant pathway involved in RIXS. The Hamiltonian for this model is

H = Êd + Êp + Ûdd + Ûpp + Ûdp + Ûq + T̂pp + T̂dp + ζ̂, (1)

which includes the on-site energies Êd and Êp for the Ni 3d and S 3p orbitals, respectively. Here, Ûdd and Ûpp are

on-site Coulomb interactions and Ûdp are the intersite interactions, and Ûq is the interaction between the core and

valence holes. Regarding the intersite hybridization, T̂pp indicates p–p hopping among S sites and T̂dp stands for p–d

hopping between Ni and S sites. The charge-transfer energy ∆ is included implicitly as discussed below. ζ̂ represents
spin-orbit coupling, which we include for the core and valence states.

The crystal field associated with the trigonal distortion in NiPS3 is on the order of only 1 meV [1, 2], We therefore
assumed cubic symmetry for simplicity. The t2g− eg-orbital energy splitting is further set by the Ni crystal field, and is
specified by 10Dq. To describe Ni-S hopping, we use the Slater-Koster parameters of Vppσ, Vppπ, Vpdπ, and Vpdσ, which
denote hopping between Ni d and S p states with either π or σ orbital symmetry. We denote the energy of the S 3p
orbitals measured relative to the Ni eg orbitals by ϵp and neglect the splitting between the 3pσ and 3pπ orbitals in the
cluster.

The Coulomb interactions in the model are specified using Slater integrals. Following standard methods, we include
F 0
dd, F

2
dd, and F 4

dd to describe interactions on Ni 3d orbitals. Similarly, we used F 0
pp and F 2

pp for S 3p orbitals. F 0
dp is

the intersite Coulomb interaction between Ni 3d and S 3p orbitals. In the RIXS intermediate states, we used F 0
dp, F

2
dp,

G1
dp, and G3

dp to describe the Coulomb interactions between Ni 3d and Ni 2p holes. Lastly, we also included spin-orbit

coupling terms of Ni 3d orbitals for the initial and intermediate states (ζi and ζn), as well as the much larger core-hole
coupling (ζc). An inverse core-hole lifetime Γc = 0.6 eV half-width at half-maximum (HWHM) was used in order to fit
the observed width of the resonance and the final state energy loss spectra are broadened using a Gaussian function
with a full-width at half-maximum (FWHM) of 0.05 eV, in order to match the observed width of the final states.

B. Determining the cluster model parameters

Although there are several parameters in the original Hamiltonian, they can be constrained by physical considerations
and by exploiting the richness of the NiPS3 RIXS spectra. We start by outlining the different constraints on the
parameters:

1. Coulomb interactions: The Slater integrals for Ni 3d Coulomb interactions can be recast into onsite Coulomb
repulsion U and Hund’s coupling JH . Since we work in the hole language, the on-site Coulomb repulsion for the
ligands is not crucial since double hole occupation on ligands is unlikely. Indeed, we get nearly zero probability
for the d10L2 (L stands for a ligand hole) configuration in our calculations, as shown in Fig. 1e in the main
text. Therefore, F 0

pp and F 2
pp do not influence our conclusions and are fixed to standard values appearing in the

literature [3]. Due to the distance between the Ni and S atoms the strength of the intersite Coulomb interaction
F 0
dp is expected to be much smaller than the Ni on-site Coulomb interactions and thus plays a negligible role.

We therefore fix this value to 1 eV, consistent with values often found in the literature [4]. The precise value of
this interaction is not crucial because its effect on the charge-transfer energy can also be absorbed into the S 3p
orbital energy ϵp.
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Supplementary Table II. Projection of the NiS6 cluster model to the AIM. Here, ϵL refers to the ligand orbital energies
determined by the S 3p orbital energy ϵp and Tpp = |Vppσ − Vppπ|. The hopping integrals V between Ni 3d orbitals and ligand
orbitals can be evaluated from p–d hoppings. Units are eV.

Symmetry ϵd ϵL V

eg ϵd(eg) ϵp − Tpp

√
3|Vpdσ|

t2g ϵd(t2g) ϵp + Tpp 2|Vpdπ|

2. Hopping integrals: Making use of the Slater-Koster scheme, all the hopping integrals can be derived from two
parameters, Vpdσ and Vppσ. Here, we fixed Vpdπ = −Vpdσ/2 and Vppπ = −Vppσ/4, which is common for transition
metal compounds [5].

3. Charge-transfer energy: In a multi-orbital system, this energy is defined as ∆ = ϵ(d9L) − ϵ(d8) = [ϵd(eg) +
ϵp + F 0

dp] − [ϵd(eg) × 2 + F 0
dd − 8F 2

dd/49 − F 4
dd/49]. Once the Ni 3d on-site Coulomb interactions and 10Dq are

chosen, the charge-transfer energy is only affected by the energy difference between the S 2p states and the Ni 3d
eg states, i.e. ϵp (recall we set the latter to zero).

4. Core-hole potential: The core-hole interactions are known to be only weakly screened in the solid state. We
initially set the values to 80% of their atomic values and further refined them based on the x-ray absorption
spectrum (XAS) (Supplementary Fig. 1) after we determined other above parameters from the RIXS spectra.

5. Spin-orbit coupling: The spin-orbit coupling terms for the Ni 3d orbitals are weak and have negligible effects
of the spectra. We consequently simply fixed them to their atomic values. The core-hole spin-orbit coupling
parameter is adjusted slightly to match the L2 peak position.

Aside from the core-hole potential, we have 10Dq, U , JH , Vpdσ, Vppσ, and ϵp as the only free parameters, which
have distinct effects on the RIXS spectra. The energy of the excitation around 1.0 eV is mostly sensitive to JH ,
while the position of the feature around 1.1 eV is primarily determined by 10Dq. The exciton energy is correlated
with a combination of JH , 10Dq, and U . Once JH and 10Dq are determined by the excitations around 1.0 and 1.1 eV,
respectively, we can tune the onsite Coulomb repulsion U to match the exciton energy. ϵp is constrained by the resonant
energy as well as the intensity of the exciton, while the hopping integrals can be determined mainly by the resonant
energy of satellite peaks. Using the above strategy, we successfully determine these parameters with estimated error
bars of ∼ 1 eV for all the Coulomb interactions and ∼ 0.2 eV for hopping integrals and 10Dq. The final parameters are
provided in Tab. I.

C. Anderson impurity model

The NiS6 cluster model can be effectively projected to an Anderson impurity model (AIM) using ligand field theory [6,
7]. The S 3p orbitals form 10 ligand orbitals that have the same symmetry as the Ni 3d orbitals through p–p hopping.
The ligand orbitals further hybridize with the Ni 3d orbitals, which can be parameterized based on p–d hopping integrals.
Correspondingly, the energies of the ligand orbitals and their hopping integrals with the Ni 3d orbitals can be evaluated
as shown in Tab. II. The missing piece is the onsite Coulomb interactions for the ligand orbitals, and we refined these
interactions using the same approach as for the cluster model. The full list of the parameters are shown in Tab. III.
We will show later that the AIM calculation results are, as expected, essentially identical to the NiS6 cluster results.

D. Single site atomic model

To test whether a simpler model might be able to capture the relevant physics, we also considered an atomic model
composed of a single Ni atom with 10 effective Ni 3d orbitals. In this case, these spin orbitals represent effective
hybridized Ni-S orbitals, so they are consequently quite different from the Ni orbitals in the above models. As expected,
with appropriate values of crystal field and Hund’s coupling, this model has a triplet ground state and a singlet excited
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Supplementary Table III. Full list of parameters used for the AIM in the ED calculations. Here, ζL is the spin-orbit
coupling strength for the ligand orbitals, UdL is intersite Coulomb interactions, and F 0

LL, F
2
LL, and F 4

LL are the Slater integrals
for ligand orbital onsite Coulomb interactions. Units are eV.

On-site orbital energies Spin-orbit coupling Hopping integral

ϵd(eg) ϵd(t2g) ϵL(eg) ϵL(t2g) ζi ζn ζc ζL Vpdσ

0 0.42 6.5 8.5 0.083 0.102 11.4 0 0.95

Coulomb interactions Core-hole potential

F 0
dd F 2

dd F 4
dd F 0

LL F 2
LL F 4

LL UdL F 0
dp F 2

dp G1
dp G3

dp

7.88 10.68 6.68 0.46 2.59 1.62 1 7.45 6.56 4.92 2.80

Supplementary Table IV. Full list of parameters used for the single site atomic model in the ED calculations. All
parameters are in units of eV.

ϵd(eg) ϵd(t2g) ζi ζn ζc F 0
dd F 2

dd F 4
dd F 0

dp F 2
dp G1

dp G3
dp

0 1.07 0.083 0.102 11.2 -0.70 5.26 3.29 0.26 6.18 2.89 1.65

state. We refined the parameters using a methodology similar to the one we used for our cluster model. However, we
found that the exciton energy could not be accurately reproduced with this model, which we will discuss in more depth
when we compare the models. The obtained values of these parameters are listed in Tab. IV.

E. Discussion of an alternative model

Reference [8] (which we will refer to as Ref. “A”) used a NiS6 cluster to calculate the RIXS spectra as we did here
but adopting different parameters. Most of the parameters are listed in that paper but two of them are not, namely
the energy different between Ni eg and S 3p orbitals and the core-hole potential parameter F 0

dp, which can be indirectly

inferred from ∆ = ϵ(d9L) − ϵ(d8) = 0.95 eV and ∆′ = ϵ(d10cL) − ϵ(d9c) = −0.55 eV where c stands for a core hole.
It can be easily concluded that ϵp − ϵd(eg) = 6.37 eV but it is tricky to obtain F 0

dp since it depends on how core-hole

potential is included in ∆′. We choose it to be 7.79 eV. Similarly, we inferred that a similar (but not identical) inverse
core-hole lifetime of 0.4 eV HWHM was used and their spectra were broadened using a Lorentzian function with FWHM
of 0.1 eV. Table V lists all the parameters. We have confirmed that our approach reproduces Ref. A’s results [8] when
we adopt their parameters.

Supplementary Table V. Full list of parameters used for the NiS6 cluster model in Ref. A [8]. The italic values are
parameters that are not directly listed in the paper but inferred from other parameters. Units are eV.

On-site orbital energies and spin-orbit coupling On-site Coulomb interactions

ϵd(eg) ϵd(t2g) ϵp ζi ζn ζc F 0
dd F 2

dd F 4
dd F 0

pp F 2
pp

0 1 6 .37 0.08 0.08 11.5 8 14.68 9.12 1 0

Hopping integrals Intersite Coulomb interactions Core-hole potential

Vpdσ Vpdπ F 0
dp F 2

dp G1
dp G3

dp F 0
dp F 2

dp G1
dp G3

dp

0.74 -0.4 0 0 0 0 7 .79 6.18 4.63 2.63
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F. Comparison of all the models

Supplementary Fig. 2 summarizes the calculation results for all the three models, as well as the one from Ref. A
[8]. The exciton at around 1.47 eV can only be captured in the models with ligand orbitals. Compared with the
combination of parameters used in Ref. A [8], our model (NiS6 cluster or equivalently AIM) better captures the dd
excitations at 1.0 and 1.1 eV. We also see that our model has the secondary satellite resonance at 857.7 eV, consistent
with the data, whereas the model of Ref. A [8] predicts this feature around 857 eV. Moreover, our model is compatible
with the previous optical work, which reported absorption peaks at 1.1, 1.7, 2.2, 3.5, and 4.6 eV [9]. On the contrary,
the calculated spectra using the model in Ref. A [8] cannot reproduce the energies of the last three excitations well.

If one considers the exciton in isolation, without requiring a precise reproduction of the shape of the dd-excitations,
our model and Ref. A [8] both obtain 1.47 eV consistent with the experimental energy of this mode. This observation
suggests that there is some ambiguity in determining the model parameters from the exciton energy alone. By analyzing
the different models, we found that this ambiguity arises from an anticorrelation between Hund’s interactions and charge
transfer energy, which produces a ranges of parameters that obtain the observed exciton energy. We note, however, that
the Hund’s energy is known to be weakly screened in solids and generally falls in a reasonably narrow range of values
around 70-90% of the values calculated for isolated atoms [10]. In fact, the onsite Coulomb interaction parameters for
Ni 3d orbitals in Ref. A [8], F 2

dd and F 4
dd, are 120% of atomic values, which is unphysical. Our parameters are 87% of

atomic values, which falls within the normal range for correlated insulators.

Although the ground state and exciton in all these models share similar overall symmetry, their electronic composition
varies appreciably. For example, our charge-transfer energy (2.50 eV) is larger than that reported in Ref. A (0.95 eV)
[8]. Correspondingly, the exciton in our model, which is a singlet, has 1.26 versus 0.74 holes occupying the Ni and S
sites, respectively. Conversely, it has 1.08 versus 0.92 holes occupying the Ni and S sites, respectively, in the model
of Ref. A [8]. As noted in the main text, the preferential Ni occupation of the exciton is vital for understanding the
interactions underlying the exciton formation.

Supplementary Note 2. Wavefuction analysis

As discussed in the main text, we performed a detailed wavefunction analysis for the AIM model to investigate the
nature of the exciton, but results are similar for both the AIM and cluster models.

Figure 1d–f plots several expectation values for the NiPS3 wavefunction, which reveals a significant portion of doubly
occupied d8 configuration and deviation from the pure d9L states. A full understanding of these effects can be obtained
by projecting the real wavefunctions onto those devised by Zhang and Rice to describe the d9L manifold [11]. The
Zhang-Rice singlet can be written as

|ZRS⟩ = 1

2
(|dx2−y2,↓Lx2−y2,↑| − |dx2−y2,↑Lx2−y2,↓|+ |dz2,↓Lz2,↑| − |dz2,↑Lz2,↓|). (2)

The Zhang-Rice triplet states are

|ZRT, Sz = 1⟩ = 1√
2
(|dx2−y2,↑Lz2,↑| − |dz2,↑Lx2−y2,↑|)

|ZRT, Sz = 0⟩ = 1

2
(|dx2−y2,↑Lz2,↓|+ |dx2−y2,↓Lz2,↑| − |dz2,↑Lx2−y2,↓| − |dz2,↓Lx2−y2,↑|)

|ZRT, Sz = −1⟩ = 1√
2
(|dx2−y2,↓Lz2,↓| − |dz2,↓Lx2−y2,↓|).

(3)

Since d8 states have a significant amount of weight in the wavefunction, these states must also be considered. We
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therefore define

|1A1, d⟩ =
1√
2
(|dx2−y2,↑dx2−y2,↓|+ |dz2,↑dz2,↓|)

|3A2, d, Sz = 1⟩ = |dx2−y2,↑dz2,↑|

|3A2, d, Sz = 0⟩ = 1√
2
(|dx2−y2,↓dz2,↑|+ |dx2−y2,↑dz2,↓|)

|3A2, d, Sz = −1⟩ = |dx2−y2,↓dz2,↓|.

(4)

Similar states exist with two ligand holes as

|1A1, L⟩ =
1√
2
(|Lx2−y2,↑Lx2−y2,↓|+ |Lz2,↑Lz2,↓|)

|3A2, L, Sz = 1⟩ = |Lx2−y2,↑Lz2,↑|

|3A2, L, Sz = 0⟩ = 1√
2
(|Lx2−y2,↓Lz2,↑|+ |Lx2−y2,↑Lz2,↓|)

|3A2, L, Sz = −1⟩ = |Lx2−y2,↓Lz2,↓|.

(5)

Using this basis, the ground state triplet can be described in terms of the d8 triplet state mixed with a Zhang-Rice
triplet, with only a small contribution from other states (which we denote | . . . ⟩). The wavefunctions are

|GS, Sz = −1⟩ = 0.757 |3A2, d, Sz = −1⟩+ 0.163 |3A2, L, Sz = −1⟩+ 0.625 |ZRT, Sz = −1⟩+ 0.099 | . . . ⟩
|GS, Sz = 0⟩ = 0.757 |3A2, d, Sz = 0⟩+ 0.163 |3A2, L, Sz = 0⟩+ 0.625 |ZRT, Sz = 0⟩+ 0.099 | . . . ⟩
|GS, Sz = 1⟩ = 0.757 |3A2, d, Sz = 1⟩+ 0.163 |3A2, L, Sz = 1⟩+ 0.625 |ZRT, Sz = 1⟩+ 0.099 | . . . ⟩.

(6)

The wavefunction of the exciton can be expressed as

|E⟩ = 0.430 |1A1, d⟩+ 0.209 |1A1, L⟩+ 0.766 |ZRS⟩+ 0.430 | . . . ⟩, (7)

which demonstrates that the exciton is primarily composed of the singlet components of the d8, d9L, and d10L2 states.
We also see a noticeable increase in the ligand character compared to the ground state. A further component arises
from mixing with a large number of other states.

This wavefunction analysis can further be used to understand the interactions underlying the exciton energy. While
the Zhang-Rice singlet and triplet are only split by quite weak exchange interactions, the exciton state has an appre-
ciable fraction of doubly occupied holes, which involve much stronger Hund’s exchange. To more accurately quantify
the contribution from Hund’s interaction JH , we compute the expectation value of the operator ĴH for the exciton
wavefunction, i.e., ⟨E|ĴH |E⟩. The calculated expectation value is 1.60 eV, which is indeed the leading factor to set the
exciton energy scale and compensated slightly by the charge-transfer process to give the exciton energy of 1.47 eV.

Supplementary Note 3. Detailed fitting procedures for the RIXS spectra

As noted in Methods Section, we use Voigt functions to fit the excitons, and use a damped harmonic oscillator (DHO)
convoluted with a Gaussian resolution function to fit the magnon as well as the double-magnon peaks. In this section,
we provide further details on our fitting procedures.

A. Energy zero determination

To ensure a reliable measurement of the subtle exciton dispersion we observe here, we require an accurate calibration
of the energy zero, which is often done by fitting the elastic line. However, in the current case of NiPS3 we only observe
quite weak elastic scattering and it is only possible to precisely fit the elastic line in a subset of the spectra. We
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consequently use the magnon peak position to perform the fine alignment of the spectra. The expected magnon peak
energy is calculated using spin wave theory [12] based on the weighted sum of the magnon branches predicted in the
Hamiltonian obtained in Ref. [13]. In this process, structural domain averaging introduces an error of ∼ 1 meV and the
errors of the neutron results themselves are ∼ 2 meV [13, 14]. For the spectra at |H(K)| ≤ 0.1, because the magnon
and elastic peaks are too close to each other, to make the fit converge, we have to manually fix the energy zero to the
value that gives the lowest χ2. In this case, we assign an estimated error bar of 5 meV for the energy zero because the
fits would severely deviate from the measured lineshapes if we shifted the energy zero by ±5 meV or more. The error
bars for the fitted double-magnon and exciton peak positions shown in Fig. 2 include not only their own fitting error
(0.5–1 meV for the exciton and ∼ 3 meV for the double-magnon) but also the fitting error of the energy zero (∼ 1 meV)
as well as the uncertainty of the calculated magnon energies (model differences and the twinning effect as explained
above).

B. Best fits to the low temperature momentum-dependent RIXS spectra

We present the best fits to the linecuts of the RIXS spectra measured at various in-plane momentum transfer at
T = 40 K in Supplementary Figs. 3–5. Particularly for the low-energy region, we display the three components used in
the fits to clarify the identify of different spectral features.

C. Cross-checks of the exciton and double-magnon dispersions

To verify the fitted exciton dispersion, we performed three tests. The first one is to check the consistency with the
reported zone-center exciton energy from optical measurements. The exciton energy from previous photoluminescence
and optical absorption spectra studies is 1.475 eV with uncertainty below 1 meV [8], which is in line with our fitting
results. Even after taking into account the uncertainty from the energy calibration of our spectrometer (∼ 2.5 meV at
this energy), this zone-center exciton energy taken from optical measurements still has smaller error bar than our fitting
results in this region and can help to see an energy difference between the zone-center exciton and excitons at higher
Q in Fig. 2. Since the fitted exciton energy heavily depends on the fitting quality of the low-energy region, we next
inspect the fitted elastic and magnon peak intensities. As shown in Supplementary Fig. 6, the fitted magnon intensity
matches calculated values quite well. The elastic peak becomes stronger near the zone center as expected for specular
reflection. The last check we performed is to test the null hypothesis in which we presume that the exciton is, in fact,
non-dispersive, and that the apparent dispersion comes from calibration errors. We find that this indeed leads to an
unphysical result in which the elastic line intensity drops at the specular (0, 0) position, when it would be expected to
increase or stay the same (Supplementary Fig. 6).

Similarly, we also did the null hypothesis test for the double-magnons. Even though the double-magnon peak is
broader than the exciton peak and therefore has larger fitting error for the peak positions, we can still exclude the
null hypothesis after carefully inspecting the fitted curves. This is most evident in the spectra near the Brillouin zone
center, where the fits assuming non-dispersive double-magnons clearly deviate from the best fits and fail to describe
the experimental data (Supplementary Fig. 7).

D. Magnon and double-magnon fits with Voigt functions

Although the DHO model are generally used to fit low-energy magnetic excitations in RIXS spectra, to avoid uncer-
tainties inherent in the model we used, we also investigate the Voigt model to fit the magnons and double-magnons.
The fitting result turns out to be quite similar to the original DHO fits (Supplementary Fig. 8). Since the magnon peak
is quite narrow, both DHO and Voigt models give nearly identical fitting results. Therefore, the change to the energy
zero calibration is minimal, so as to the fitted exciton peak positions. For the double-magnon peak, Voigt function gives
similar fitting quality but consistently lower peak positions (by ∼ 2 meV) as a consequence of increased peak width.
However, the existence of the double-magnon dispersion and its resemblance to the exciton dispersion are still valid in
the Voigt model fits.
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Despite that the low-temperature data set is unable to distinguish the two models, the DHO model is more appropriate
to fit the high-temperature data set, where the anti-stoke peaks on the negative energy loss side become more apparent
(Supplementary Fig. 9). For consistency, we therefore adopt the DHO model throughout the manuscript to fit the
magnon and double-magnon peaks.

E. Fits to the high-temperature spectra

Fitting the high-temperature spectra at 190 K is more difficult since the magnon peak is softened and cannot be used
for energy zero determination. Thanks to the enhanced elastic peak, we are able to fit the spectra at several large Q
positions (e.g., H = 0.69 r.l.u.) where the elastic, magnon, and double-magnon peaks are well separated. The magnon
peak is not only softened, but also broadened compared to the low temperature data. We then fix its damping factor
zQ to an average value of 16 meV. Supplementary Fig. 9 is the best fits we obtained for the low-energy region, although
the error bars for the energy zero determination could be as large as ∼ 5 meV. Then we fit the exciton peak as shown
in Supplementary Fig. 10, which has a clear softening and broadening. However, the existence of a dispersive mode is
ambiguous here due to the large error bars on the fitted peak positions.

F. Fits to the incident energy dependent spectra

To quantify the resonant behaviors of excitons and double-magnons, we also fit the incident energy dependence of the
RIXS spectra to extract their spectral weights (integrated intensities). As expected for a Raman-like process in RIXS
the peak energies were seen to be independent of incident energy, so this was used as an additional fitting constraint.
In Supplementary Fig. 11, we can see that the magnon peak intensity has only one maximum near the main resonance
peak around 853 eV. On the contrary, both the double-magnon peak (Supplementary Fig. 12) and the exciton peak
(Supplementary Fig. 13) have two maxima, one near the main resonance peak and the other around 857.7 eV. Such
distinct resonance behaviors have been summarized in Fig. 4a.

Supplementary Note 4. Double-magnon and exciton propagation

This section provides further analysis of the propagation of the exciton and double-magnon excitations illustrated
schematically in Fig. 5 of the main text. For clarity, we will refer to double-magnon propagation via exchange and
exciton propagation via hopping.

A. Double-magnon propagation

NiPS3 exhibits antiferromagnetic order on a honeycomb lattice with both easy-plane and easy-axis anisotropy in
addition to first (J1), second (J2), and third (J3) nearest-neighbor isotropic exchange interactions, with the latter being
the largest interaction [13, 14]. Despite these complexities, we can obtain a significant amount of insight by considering
a simplified picture, which nonetheless captures the essentials of the interactions at play. Propagation within NiPS3’s
zig-zag antiferromagnetic ground state can be conceptualized as propagation along either a ferro- or antiferro-magnetic
chain direction. We simplify matters further by considering only nearest-neighbor exchange processes in the discussion
that follows. (The same procedure applies to longer range exchange processes, as outlined below, so the effects of these
terms can also be deduced easily).

For a ferromagnetic chain, the double-magnon propagation occurs via the exchange of |1, 1⟩ and |1,−1⟩, where the
states are labeled as |S,mS⟩ following Fig. 5 of the main text. The amplitude for this process can be calculated using
second-order perturbation theory in the spin flip processes, with the intermediate state being nearest-neighbor single
magnon states with an energy cost proportional to the sum of the single-ion anisotropy ∝ D and the spin exchange
∝ J1. Altogether, we obtain that such a double-magnon can propagate along the ferromagnetic direction at the scale
of the order of ∝ J2

1/(2D + nJ1) ∼ J1, where n is the number of broken magnetic bonds in the intermediate state of
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perturbation theory. Although such a calculation is in principle only valid in the Ising-like limit, Ref. [15] has shown
that it can be extended also to the isotropic case.

The other propagation direction in the NiPS3 plane is the antiferromagnetic direction (see Fig. 5 of the main text).
For this case, we need to invoke a fourth order process in the spin flip terms with three intermediate states, with the
highest energy being equivalent to the cost of having two ‘extra’ double-magnons in a line. This multiplicity is due to
the fact that the double-magnon propagation is a composition of two processes along the antiferromagnetic direction,
namely 1) the exchange of the |1, 1⟩ and |1,−1⟩ states (illustrated in row 2 and 3 of Fig. 5b of the main text), and 2)
propagation of a double-magnon via an intermediate state with two ‘extra’ double-magnons on the nearest-neighbor
sites. A similar case for the magnon propagation in the antiferromagnet was discussed in Ref. [16]. Due to spin
exchanges entering both the denominator and numerator of the perturbative formulae, such a process again leads to an
effective propagation at the scale of the spin exchange J1.

These estimations for the exchange process have implicitly assumed that the double-magnon is a bound state, which
is formally justified only in the limit of large Ising anisotropy. For NiPS3, the double-magnon probably has high decay
rates into two nearest-neighbor single-magnon states. Fortunately, the latter should remain bound (due to attractive
interactions between magnons on nearest neighbor sites), so our analysis should remain a good order-of-magnitude
estimate.

We note that the leading J3 exchange process connects only antiferromagnetically aligned Ni spins, which would
suppress any difference between propagation along different directions in the lattice. This is in addition to the fact that
NiPS3 is structurally and magnetically twinned, meaning that the ferro- and antiferro-magnetic directions in the lattice
are not empirically distinguishable (see the methods section). Although technically very challenging, the development
of ultrahigh energy resolution RIXS under strain could be implemented to study specific magnetic monodomains to
more directly test whether the double-magnon is or is not a bound state.

B. Exciton hopping

Before discussing the amplitude of the exciton hopping, we first consider possible spin exchanges for the |1, 0⟩i
state with |1,±1⟩j between sites i and j, following the discussion in Ref. [17]. In this case, the relevant terms in the
Hamiltonian are

hspin-flip =
Ji,j
2

(
S+
i S−

j + h.c.
)

= Ji,j
(
|1, 1⟩j|1, 0⟩i j⟨1, 0|i⟨1, 1|+ |1,−1⟩i|1, 0⟩j i⟨1, 0|j⟨1,−1|+ h.c.

)
,

(8)

where Ji,j is the exchange coupling between sites i and j and S±
i are the raising and lowering spin operators on site i.

We now turn to the exciton hopping process. Since NiPS3 is a magnetically ordered insulator, an exciton at site i,
denoted by |0, 0⟩i, can only hop via an interchange process with the S = 1 states at a neighboring site j (denoted here
as |1,±1⟩j). The relevant terms in the Hamiltonian for exciton hopping are similar to Eq. (8), i.e.:

hhop = Ji,j
(
|1, 1⟩i|0, 0⟩j i⟨0, 0|j⟨1, 1|+ |1,−1⟩i|0, 0⟩j j⟨1,−1|i⟨0, 0|+ h.c.

)
, (9)

with the prefactors in Eqs. (8) and (9) being identical. The underlying reason for this key observation is that the
dominant processes involved are (super)exchange processes that take place on the ligand orbitals rather than the nickel
orbitals [17]. As a result, individual s = 1/2 spin flips cannot happen on the nickel atoms, leading to vanishing
amplitudes for terms that would differentiate between the |0, 0⟩ singlet hopping and the |1, 0⟩ triplet exchange.

C. Exciton propagation

We start by discussing exciton propagation along the ferromagnetic direction in the zigzag antiferromagnetic ground
state. In fact, once the exciton hopping is known [see Eq. (9) above], this propagation is the easiest to understand: it
merely amounts to the free hopping of the exciton in the ferromagnetic background with a hopping amplitude equal to
the spin exchange, similar to the double-magnon case.
A more complex situation is encountered for the antiferromagnetic direction. Here exciton propagation is also due to

the hopping process described by Eq. (9) but obtaining a coherent propagation is slightly intricate—as shown in Fig. 5a
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of the main text. This whole process can essentially be divided into two steps. First, the exciton interchanges twice with
the spin background, just as in the ferromagnetic background (second and third row of Fig. 5a of the main text). This
leads to the creation of an intermediate state with two ‘extra’ double-magnons situated next to each other. Second, the
double-magnons can be annihilated by two spin-exchange processes, in a similar manner as described in Supplementary
Note 4A above. In total, it requires four spin exchanges for the exciton to freely move to the next-nearest-neighbor
site, just as the double-magnon does. Such exciton propagation is also at the energy scale proportional to the spin
exchange.

Altogether, we observe strong similarities between the way the exciton and the double-magnon move through the
spin S = 1 zigzag antiferromagnetic honeycomb lattice—in particular, both motions require the same number of spin
exchanges and the energy scales are in both cases the same and proportional to the spin exchanges. As discussed in the
following section, the dominant exciton hopping is through the third nearest neighbors connected by antiferromagnet-
ically aligned spins, therefore, the dispersions along the in-plane H and K directions would be expected to be overall
rather similar, just like the double-magnon case.

Supplementary Note 5. Tight-binding model fit to the exciton dispersion

Tight-binding model approaches have been widely used to model exciton dispersion in molecular solids [18]. Although
the way the Hund’s exciton we studied here moves is different to the mechanism for Frenkel excitons (spin exchange
processes as discussed above instead of dipole–dipole interactions), tight-binding models can still be useful at a phe-
nomenological level to provide a simple, but informative empirical approach to extract the lengthscale of the effective
interactions governing the exciton dispersion.

Using the monoclinic unit-cell notation, we formulated a simplified effective tight-binding model on a two-dimensional
honeycomb lattice with isotropic effective “hopping” terms tn. We obtain three terms in the exciton dispersion (Et1,
Et2, and Et3) associated with first, second, and third nearest neighbor effective interactions (t1, t2 and t3), where

Et1 =t1
±
√
4 cos2(πH) + 4 cos(πH) cos(πK) + 1

Et2 =2t2{cos(2πH) + cos[π(H +K)] + cos[π(H −K)]}
Et3 =t3

±
√
4 cos2(2πH) + 4 cos(2πH) cos(2πK) + 1.

(10)

By co-fitting the measured low-temperature exciton dispersion along both H and K directions, we obtain the results
as shown in Supplementary Fig. 14. For Et1 and Et3, we selected the sign of the solution based on the empirically
observed upward-dispersion trend near the Brillouin zone center. We tested the individual contribution of the three
different functional forms and found that the fits with third nearest neighbor effective hopping alone can capture the
observed periodicity of the dispersion, indicating that third nearest neighbor interactions play the leading role in the
exciton dispersion. As stated before, this phenomenological model is an effective parameterization of a process that
fundamentally arises from magnetic exchange and not real hopping. Our observation of leading third nearest neighbor
interactions is consistent with the fact the third nearest neighbor spin exchange is dominant in the spin Hamiltonian of
NiPS3 [13, 14].
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Supplementary Figure 1. XAS spectra. The spectra was taken at 40 K using π-polarized x-rays in the total fluorescence yield
mode. The sample geometry was the same as the measurement for the RIXS energy map (i.e., θ = 22.6◦, 2Θ = 150◦, (0KL)
scattering plane) except that the photo diode detector was placed slightly above the scattering plane.
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Supplementary Figure 2. Comparison of RIXS energy maps calculated using different models. a–e, The measured and
calculated RIXS energy maps. f–j, Zoom-in of the measured and calculated RIXS maps in the region outlined by the dashed
box in panels a–e. The calculations assume a constant lifetime for the excitations, and omit the continuum of states needed to
accurately simulate the fluorescent processes that occur at high energies, so the transitions above 2 eV appear far narrower in
the calculations compared to the theory.
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Supplementary Figure 3. RIXS spectra measured at T = 40 K with an energy window chosen to isolate the exciton.
a, The exciton peak at various in-plane momentum transfer H measured in the (H0L) plane. b, The exciton peak at various in-
plane momentum transfer K measured in the (0KL) plane. All the measurements were taken with linear horizontal π polarization
of the incident x-rays at the resonant energy of 853.4 eV for excitons. The data is the same as the intensity maps shown in
Fig. 2a and b. The solid lines are fits to the data with details in Methods Section. Data are shifted vertically for clarity. Error
bars represent one standard deviation.
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Supplementary Figure 4. RIXS spectra measured in the (H0L) plane at T = 40 K with an energy window chosen
to isolate the magnon and double-magnon. Each panel displays the spectra at a specific in-plane momentum transfer H
measured in the (H0L) plane. The solid lines are best fits to the data with three components, i.e., the elastic line (gray), the
magnon peak (blue), and the double-magnon peak (orange). The detailed description of the fitting can be found in the Methods
Section and Supplementary Note 3. The vertical dashed line in each panel labels the energy zero. Error bars represent one
standard deviation.
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Supplementary Figure 5. RIXS spectra measured in the (0KL) plane at T = 40 K with an energy window chosen
to isolate the magnon and double-magnon. Each panel displays the spectra at a specific in-plane momentum transfer K
measured in the (0KL) plane. The solid lines are best fits to the data with three components, i.e., the elastic line (gray), the
magnon peak (blue), and the double-magnon peak (orange). The detailed description of the fitting can be found in the Methods
Section and Supplementary Note 3. The vertical dashed line in each panel labels the energy zero. Error bars represent one
standard deviation.
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Supplementary Figure 6. Fitting result comparison between the best fit (blue circle), which gives a dispersive
exciton mode, and the fit assuming a null hypothesis of a non-dispersive exciton (red square) coming from a
miscalibration of the spectra. a–b, Integrated Intensity of the magnon peak measured in (H0L) plane a and (0KL) plane
b, respectively. The black solid lines are the calculated magnon intensities as described in the Methods Section, with the same
scaling factor for both panels. c–d, Integrated Intensity of the elastic peak measured in (H0L) plane c and (0KL) plane d,
respectively. We see that the best fit is in good accord with the calculated magnon intensity, whereas the null hypothesis can
be excluded as it implies an unphysical decrease in the elastic line intensity at (0, 0), which is the point at which the elastic line
intensity would usually be maximized.
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Supplementary Figure 7. Representative fitting comparisons between the best fits (blue lines), which give a dis-
persive double-magnon mode, and the fits assuming a null hypothesis of a non-dispersive double-magnon (red
lines). a–c, RIXS spectra measured in the (H0L) plane at T = 40 K at three representative in-plane momentum transfers H.
d–f, RIXS spectra measured in the (0KL) plane at T = 40 K at three representative in-plane momentum transfers K. We can
clearly see that red lines assuming non-dispersive double-magnons are worse compared to the best fits (blue lines) which give
dispersive double-magnons. The vertical dashed line in each panel labels the energy zero. Error bars represent one standard
deviation.



17

0.5 0.0 0.5
H (r.l.u.)

1.470

1.475

1.480

1.485

1.490

1.495

1.500
Ex

cit
on

 p
ea

k 
po

sit
io

n 
(e

V)

Do
ub

le
-m

ag
no

n 
pe

ak
 p

os
iti

on
 (e

V)

a

DHO fit

0.5 0.0 0.5
H (r.l.u.)

1.470

1.475

1.480

1.485

1.490

1.495

1.500

Ex
cit

on
 p

ea
k 

po
sit

io
n 

(e
V)

Do
ub

le
-m

ag
no

n 
pe

ak
 p

os
iti

on
 (e

V)

c

Voigt fit

1 0 1
K (r.l.u.)

1.470

1.475

1.480

1.485

1.490

1.495

1.500
b

1 0 1
K (r.l.u.)

1.470

1.475

1.480

1.485

1.490

1.495

1.500
d

0.070

0.075

0.080

0.085

0.090

0.095

0.100

0.070

0.075

0.080

0.085

0.090

0.095

0.100

0.070

0.075

0.080

0.085

0.090

0.095

0.100

0.070

0.075

0.080

0.085

0.090

0.095

0.100

Supplementary Figure 8. Fit comparison between the DHO and Voigt models used for the magnon and double-
magnon peaks. a–b, fitted peak positions of the excitons (green squares) and double-magnons (orange circles) using the DHO
model for the magnon and double-magnon peaks. The data is the same as the dispersion plots shown in Fig. 2e and f. c–d, fitted
peak positions of the excitons (green squares) and double-magnons (orange circles) using the Voigt function for the magnon and
double-magnon peaks. The fitting results based on the two different functional forms for the magnons and double-magnons are
quite similar, validating the robustness of the exciton and double-magnon dispersions.
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Supplementary Figure 9. RIXS spectra measured in the (H0L) plane at T = 190 K with an energy window chosen
to isolate the magnon and double-magnon. Each panel displays the spectra at a specific in-plane momentum transfer H
measured in the (H0L) plane at T = 190 K, above its magnetic ordering temperature. We used linear horizontal π polarization
of the incident x-rays at the resonant energy of 853.4 eV for excitons. These data are the same as the intensity maps shown in
Fig. 3b and are provided to show the linecuts directly. The solid red lines are best fits to the data with three components, i.e.,
the elastic line (gray), the magnon peak (blue), and the double-magnon peak (orange). These are provided to clarify the identity
of different spectral features. The blue dashed line shows fits to the 40 K data for comparison. The vertical dashed line in each
panel labels the energy zero. Error bars represent one standard deviation.
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Supplementary Figure 10. RIXS spectra measured at T = 190 K with an energy window chosen to isolate the
exciton. The measurements were taken at various in-plane momentum transfer H in the (H0L) plane at T = 190 K, above its
magnetic ordering temperature. We used linear horizontal π polarization of the incident x-rays at the resonant energy of 853.4 eV
for excitons. These data are the same as the intensity maps shown in Fig. 3a and are provided to show the linecuts directly. The
solid lines are fits to the data. The dashed lines show the fitted curves to the corresponding 40 K data for comparison. Data are
shifted vertically for clarity. Error bars represent one standard deviation.
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Supplementary Figure 11. Incident energy dependence of the RIXS spectra with an energy window chosen to
highlight the intensity change of the magnon peak. Each panel displays the spectra with a specific incident photon energy
through the Ni L3 resonance measured in the (0KL) plane at T = 40 K with linear horizontal π polarization of the incident
x-rays. These data are the same as the intensity maps shown in Fig. 1a and are provided to show the linecuts directly. The
solid red lines are best fits to the data with three components, i.e., the elastic line (gray), the magnon peak (blue), and the
double-magnon peak (orange). The vertical dashed line in each panel labels the energy zero. Error bars represent one standard
deviation.
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Supplementary Figure 12. Incident energy dependence of the RIXS spectra with an energy window chosen to
highlight the intensity change of the double-magnon peak. Each panel displays the spectra with a specific incident
photon energy through the Ni L3 resonance measured in the (0KL) plane at T = 40 K with linear horizontal π polarization of
the incident x-rays. These data are the same as that shown in Supplementary Fig. 11 but zoomed in on the double-magnon peak
(orange). Error bars represent one standard deviation.
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Supplementary Figure 13. Incident energy dependence of the RIXS spectra with an energy window chosen to
highlight the intensity change of the exciton peak. The measurements were taken at various incident photon energy
through the Ni L3 resonance measured in the (0KL) plane at T = 40 K with linear horizontal π polarization of the incident
x-rays. These data are the same as the intensity maps shown in Fig. 1a and are provided to show the linecuts directly. The solid
lines are the fits to the data with details in Methods Section. Data are shifted vertically for clarity. Error bars represent one
standard deviation.
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Supplementary Figure 14. Tight-binding model fits to the exciton dispersion. Each column displays tight-binding model
fits with only first (a–b), second (c–d), and third (e–f) nearest neighbor interactions, respectively. The green squares are the
measured exciton dispersion as a function of the H and K in-plane momentum transfer, respectively. The black lines are fitted
curves. The best fitted values are t1 = 1.4(5) meV, t2 = −0.5(1) meV, and t3 = 1.7(3) meV, respectively. Error bars represent
one standard deviation.
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