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We perform a theoretical investigation of the spin susceptibility of unconventional superconduc-
tivity on the kagome lattice. Despite the existence of a sign-changing gap structure, which sums
to zero over the Fermi surface, we show that such unconventional pairing states may exhibit a
Hebel-Slichter peak in the temperature-dependent spin-lattice relaxation rate. It originates from
destructive sublattice interference effects. For the same reason, unconventional pairing states on the
kagome lattice tend not to exhibit a neutron resonance peak. These results supplement previous
theoretical studies of the surprising robustness of sign-changing gap structures to disorder on the
kagome lattice. Taken together these findings imply that unconventional superconductivity on the
kagome lattice is deceptive in the sense that its properties may appear similar to conventional non-
sign-changing superconductivity. These results may be of relevance to the superconducting state of
the kagome superconductors AV3Sb5 (A: K, Rb, Cs) and CsTi3Bi5.

I. INTRODUCTION

For progress in the understanding of unconventional
superconductivity it is crucial to experimentally deter-
mine the nature of the superconducting ground state.
This is a demanding collective task that requires agree-
ment between a vast range of different experimental
probes. Pinpointing the pairing state includes determi-
nation of the spin structure of the Cooper pairs and their
relative spatial dependence, i.e. the realized irreducible
representation of the associated crystal point group [1–
3]. Together these properties hold valuable clues to the
dominant fluctuations driving the Cooper pairing [4–8].
In this endeavor, it is important to identify any possi-
ble sign changes of the gap function, which is experi-
mentally challenging as most probes are insensitive to
the phase of the superconducting order parameter. An
exception is scattering off impurities or sample edges
which does allow for access to the phase. Likewise, two-
particle correlation functions can be phase sensitive as
evidenced for example by the spin susceptibility featuring
a Hebel-Slichter peak in the nuclear magnetic resonance
(NMR) spin-lattice relaxation rate, and the neutron res-
onance peak detected by inelastic neutron scattering ex-
periments. We return to a discussion of these signatures
further below, demonstrating that for the kagome lat-
tice the phase-sensitiveness is wiped out by destructive
sublattice interference effects.

In recent years, the discussion of possible uncon-
ventional superconductivity on the kagome lattice has
been motivated by the discovery of superconductivity
in vanadium-based kagome metals AV3Sb5 (A: K, Rb,
Cs) [9–11]. The kagome lattice is particularly interest-
ing since the associated band structure exhibits a flat
band, van Hove singularities, and Dirac points, as seen
in Fig. 1. Importantly, the distribution of sublattice
weights of the eigenstates on the Fermi surface, also
illustrated in Fig. 1c, plays an important role in de-
termining the leading instabilities arising from interac-
tions [12, 13]. This may be relevant for the AV3Sb5
materials where superconductivity appears in proxim-

ity to a charge-density wave phase [14–25]. For the su-
perconducting phase, theoretical studies have explored
Cooper pairing arising both from purely electronic fluc-
tuations [12, 19, 20, 22, 26–33] and via the importance
of phonon contributions [34–39]. From pairing via spin-
and charge-fluctuations, the E2 irreducible representa-
tion with d-wave (or d± id) pairing symmetry stands out
as a leading candidate [30].

Experimentally, the nature of the superconducting
ground state in the AV3Sb5 compounds remains unre-
solved at present [40], with conflicting evidence for both
standard nodeless non-sign-changing gaps and nodal
unconventional superconducting order [17, 41–45]. A
Knight shift suppression and the existence of a Hebel-
Slichter peak below Tc in the spin-lattice relaxation
rate measured by NMR experiments were interpreted as
evidence for s-wave spin-singlet superconductivity [46].
This agrees with recent laser ARPES measurements
reporting isotropic (momentum-independent) spectro-
scopic gaps [47]. Penetration depth data and specific
heat measurements on CsV3Sb5 have been analysed in
terms of an anisotropic, but non-sign-changing gap with
a finite small minimum gap [10, 48–51]. Reference 50
measured electron irradiation effects on the penetra-
tion depth and found no evidence for disorder-generated
low-energy density of states enhancements, as expected
from sign-changing gap functions. Likewise, a non-sign-
changing gap function appears consistent with the ab-
sence of in-gap bound states near nonmagnetic impuri-
ties [42] and a weak dependence of the critical transition
temperature Tc on the residual resistivity ratio (sample
quality) [52].

Indeed, the response of superconductivity to disorder
can play an important role in determining the nature
of superconductivity since it typically acts as a phase-
sensitive probe [53–57]. Disorder effects can be stud-
ied both from the possible generation of impurity bound
states detectable by local probes and an overall disorder-
averaged response verified by thermodynamic probes or
transport measurements. When nonmagnetic disorder
generates in-gap bound states or if it strongly reduces Tc,
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it is traditionally a strong indicator of an unconventional
superconducting condensate. These conclusions about
the effects of disorder on unconventional sign-changing
gap structures are, however, partly invalidated on the
kagome lattice. As recently demonstrated, the sublat-
tice weight of the band eigenstates play a crucial role for
determining the response of superconductivity to disor-
der on the kagome lattice [58]. Specifically, even though
the unconventional gap function averages to zero over
the Fermi surface,

∑
k ∆(k) = 0, atomic-scale disorder

only scatters to a limited allowed region of the Fermi
surface. For even-parity (spin-singlet) superconductivity
this has important consequences, including the absence of
in-gap bound states and a slow Tc-suppression rate [58].
In this light, unconventional (spin-singlet) superconduc-
tivity on the kagome lattice is protected from nonmag-
netic disorder, a fact that may be of importance for the
interpretation of several of the experiments mentioned
above [42, 50, 52].

In this paper we study the spin susceptibility in the
superconducting state on the kagome lattice within a
minimal tight-binding model. Based on the evidence for
spin-singlet Cooper pairs, we focus on the spin-lattice re-
laxation rate in the even-parity states: A1 (s-wave) and
E2 (d-wave) superconducting order. Surprisingly, despite
a fully compensated sign-changing gap structure, the re-
laxation rate exhibits a pronounced Hebel-Slichter peak
upon entering the superconducting state. In addition,
the neutron resonance peak expected for sign-changing
gap structures is largely wiped out [59–63]. The origin
of these effects can be traced to the peculiar properties
of the matrix elements from sublattice to band space on
the kagome lattice. Thus, in short, unconventional spin-
singlet superconductivity on the kagome lattice takes the
deceptive appearance of a conventional superconductor.
This conclusion is in line with the unusual disorder ef-
fects mentioned above [58]. Our results lead to a re-
consideration of the superconducting state of kagome su-
perconductors under current investigations, and specifi-
cally invalidates the conclusion that a Hebel-Slichter peak
implies conventional s-wave superconductivity for these
compounds.

II. BASIC BAND STRUCTURE OF THE
KAGOME LATTICE

The minimal tight-binding model of electronic states
on the kagome lattice is shown in Fig. 1. The Hamilto-
nian of the tight-binding model is given by

H0 =
∑
k,σ

ψ†
kσH0(k)ψkσ, (1)

where ψkσ =
(
ckσA ckσB ckσC

)T
and

H0(k) = −

 µ t cos k3 t cos k1
t cos k3 µ t cos k2
t cos k1 t cos k2 µ

 . (2)

C A

(a)

(b)

n=3

n=2

n=1
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a3a2
B

(c)

|uA(k)|
2 |uB(k)|

2 |uC(k)|
2

FIG. 1. (a) Illustration of the kagome lattice with sublattice
vectors an. (b) Energy bands of the tight-binding model along
the path shown in the inset. The dark gray lines inside in the
Brillouin zone (BZ) define the Fermi surface at µ = 0. (c)
Distribution of the sublattice weights across the BZ for the
middle band (n = 2). The colors refer to the same sublattices
shown in (a). The dashed lines sketch the area where the
sublattice weights are zero.

Here kn = k · an, where a1 = 1
2
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1 0

)
, a2 = 1
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)
and a3 = 1

2

(
− 1

2

√
3
2

)
, and µ and t refer to the chemi-

cal potential and the NN hopping integrals, respectively.
The Hamiltonian is diagonalized by a unitary transfor-
mation, u∗nα(k)H0,αβ(k)uβm(k) = ξn(k)δnm yielding the
band energies ξn(k) and the eigenstates unα(k) of band
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n. The resulting band structure is shown in Fig. 1(b) and
features a Dirac point at the K point and two van Hove
singularities at the M point. In addition, for the nearest-
neighbor (NN) tight-binding model there is a flat band
that acquires dispersion upon including further neighbor
hoppings. The kagome lattice is endowed with a property
which has become known as sublattice interference [12]
for which specific hopping trajectories interfere destruc-
tively and result in electronic wavefunctions that localize
on specific sites inside the unit cell. Specifically, elec-
tronic states at the upper van Hove singularity, at µ = 0,
are localized on only one of the three sublattice sites in
the unit cell, as illustrated in Fig. 1(c). By contrast,
states at the lower van Hove singularity near µ = −2
localize on two of the three sublattice sites.

III. SPIN-LATTICE RELAXATION RATE

A. Revisiting the one-band square lattice

In order to set the stage for the discussion of the su-
perconducting spin susceptibility on the kagome lattice,
we start by briefly revisiting basic properties of the spin
susceptibility in the superconducting state on the square
lattice. In that case, the bare retarded BCS spin sus-
ceptibility χ+−

0 (q, ω) at momentum q and frequency ω is
given by

χ+−
0 (q, ω) =

1

N
∑

k,E>0

[(
1−

ξkξk+q+∆∗
k+q∆k

EkEk+q

)
1−f(Ek)−f(Ek+q)

ω+Ek+q+Ek+iη
+

(
1−

ξkξk+q+∆∗
k+q∆k

EkEk+q

)
f(Ek)+f(Ek+q)−1

ω−Ek+q−Ek+iη

+

(
1+

ξkξk+q+∆∗
k+q∆k

EkEk+q

)
f(Ek)−f(Ek+q)

ω+Ek+q−Ek+iη
+

(
1+

ξkξk+q+∆∗
k+q∆k

EkEk+q

)
f(Ek+q)−f(Ek)

ω+Ek−Ek+q+iη

]
, (3)

where N denotes the number of points summed over in
the Brillouin zone (BZ), and η is an infinitesimal posi-
tive factor arising from the analytical continuation. Ad-
ditionally, ξk is the electron dispersion, ∆k the super-
conducting order parameter, Ek =

√
ξ2k +∆2

k denotes
the energy of superconducting quasiparticles, and f(Ek)
is the Fermi-Dirac distribution function. Because of the
Nambu particle-hole symmetry, we can sum only over
positive Ek.

The spin-lattice relaxation rate is related to the imag-
inary part of spin susceptibility χ+−

0 (q, ω) by [64, 65]

α ≡ 1

T1T
∝ lim

ω→0

1

N
∑
q

Im
χ+−
0 (q, ω)

ω
. (4)

The tight-binding model of the square lattice is

H0 =
∑
kσ

[−2t (cos kx + cos ky)− µ] c†kσckσ. (5)

For the purpose of illustration, we consider two dis-
tinct superconducting cases: 1) a conventional isotropic
s-wave order parameter ∆s

k = ∆0 = 0.2, and 2) a
sign-changing d-wave order parameter given by ∆d

k =
∆0

2 (cos kx − cos ky). In Eq. (3), only the last two terms
can give non-zero values for the imaginary part in the su-
perconducting states in the limit ω → 0 [66]. In addition
to a sharp onset of the order parameter at Tc, the factors
in the associated brackets(

1+
ξkξk+q+∆∗

k+q∆k

EkEk+q

)
, (6)

are key to the existence of a Hebel-Slichter peak. We can
illustrate this by defining a factor

B(q,kn) =
∆∗

kn+q∆kn

Ekn
Ekn+q

, (7)

where kn is a k-point on the Fermi surface, here cho-
sen by the point that gives the largest contribution to
χ+−
0 (q, ω). Figure 2 shows that

∑
qB(q,kn) is a finite

value between 0 and 1 in the s-wave case, which enhances
χ+−
0 (q, ω) and contributes to a Hebel-Slichter peak, as

seen from Fig. 3. By contrast, for the d-wave case it gives
no enhancement because the positive and negative con-
tributions cancel, as evident from Fig. 2. Consequently,
as is well-known, there is essentially no Hebel-Slichter
peak for the d-wave order parameter as seen from Fig. 3.

B. The kagome lattice

Superconductivity on the kagome lattice can be de-
scribed through the usual Nambu formalism

H =
∑
k

Ψ†
kĤ(k)Ψk, (8)

where

Ĥ(k) =

(
H0(k) −∆(k)
−∆(k)† −HT

0 (−k)

)
, (9)

and Ψ†
k =

(
c†k↑ c−k↓

)
with c†kσ =

(
c†kσA c†kσB c†kσC

)
.

For on-site (OS) Cooper pairing, the superconducting or-
der parameters with A1 (s-wave), and E2 (dx2−y2 - and
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qk(a)

s-wave

d-wave

(c)

(d)(b)

FIG. 2. Panels (a) and (b) display the s-wave and dx2−y2 -
wave order parameters in k-space in the first BZ for the square
lattice. The black lines indicate the Fermi surface at µ =
0. Panels (c) and (d) display B(q,kn) defined in Eq. (7)
in q-space for the s-wave and dx2−y2 -wave order parameters,
respectively. The chosen momentum point kn is shown by
the black dot in (a) and (b). The numbers below (c) and (d)
indicate the sum

∑
q B(q,kn).

dxy-wave) symmetries are [58]

∆Γ = ∆0fOS,Γ, (10)

where

fOS,s =
1√
3

+1 0 0
0 +1 0
0 0 +1

 , (11)

fOS,dx2−y2 =
1√
6

+1 0 0
0 −2 0
0 0 +1

 , (12)

fOS,dxy
=

1√
2

+1 0 0
0 0 0
0 0 −1

 . (13)

The dx2−y2 and dxy orders belonging to the 2D E2 ir-
reducible representation can also be obtained via NN
pairing. These harmonics, however, are zero on the
Fermi surface near the upper van Hove point [30, 58, 67],
and since only states close to the Fermi surface con-
tribute to the imaginary part of the spin susceptibility
Imχ+−

0 (q, ω), we consider only the on-site d-wave pair-
ing terms. Additionally, below we will also address the
time-reversal symmetry breaking superposition d+id de-
fined by

∆d+id =
∆0√
2

(
fOS,dx2−y2 + ifOS,dxy

)
, (14)

FIG. 3. Temperature dependence of the spin-lattice relax-
ation rate ratio αs/αn for the simple square lattice. Here, αs

and αn denote the relaxation rates 1/T1T of the supercon-
ducting state and normal states, respectively. As seen, the
sign-changing gap of the dx2−y2 form wipes out the Hebel-
Slichter peak.

which is expected to be the preferred solution at suf-
ficiently low temperatures T within the E2 irreducible
representation. In the following, we set ∆0 = 0.2.
We can apply the unitary transformation that diago-

nalizes H0 to transform the order parameter from sub-
lattice space to band space

∆nm(k) = u∗nα(k)∆αβu
∗
mβ(−k), (15)

where unα(k) is the eigenstate of H0(k) in band n. Since
only the middle band (n = m = 2) crosses the Fermi
surface near the upper van Hove point at µ = 0, we can
ignore interband pairing and use an effective Hamiltonian
with solely this band

Heff(k) =

(
ξ2(k) −∆22(k)

−∆∗
22(k) −ξ2(k)

)
. (16)

In Appendix A, we show that this approximation agrees
well with the numerical result obtained from the full
Hamiltonian Ĥ(k). For simplicity, we use the notation
ξk ≡ ξ2(k) and ∆k ≡ ∆22(k) in the following expressions.
The spin susceptibility of the kagome lattice is

χ+−
0 (q, τ) =

1

N 2

∑
kk′

αβ

⟨Tτ c†α,k+q↑cα,k↓c
†
β,k′−q↓(τ)cβ,k′↑(τ)⟩.

(17)

In order to simplify this expression, we can perform the
transformation from sublattice to band space. In band
space, the approximation that only the middle band is
chosen can further simplify it. Additionally, by perform-
ing a Fourier transformation, the spin susceptibility can
be written in the frequency domain
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χ+−
0 (q, ω) =

1

N
∑

k,E>0

[(
1−

ξkξk+q+∆∗
k+q∆k

EkEk+q

)
1−f(Ek)−f(Ek+q)

ω+Ek+q+Ek+iη
+

(
1−

ξkξk+q+∆∗
k+q∆k

EkEk+q

)
f(Ek)+f(Ek+q)−1

ω−Ek+q−Ek+iη

+

(
1+

ξkξk+q+∆∗
k+q∆k

EkEk+q

)
f(Ek)−f(Ek+q)

ω+Ek+q−Ek+iη
+

(
1+

ξkξk+q+∆∗
k+q∆k

EkEk+q

)
f(Ek+q)−f(Ek)

ω+Ek−Ek+q+iη

]∑
αβ

gαβ(k,q), (18)

which is the same expression as for the square lattice,
except for an extra factor

∑
α,β gαβ(k,q) arising from

the transformation from sublattice to band space with

gαβ(k,q) = u2α(k+ q)u2β(k+ q)u2α(k)u2β(k). (19)

We can write the eigenvectors without considering com-
plex conjugation because they are real under the basis
choice in Eq. (2). For the kagome lattice, it is custom-
ary to use another basis that is periodic in the first BZ.
As discussed in Appendix B, care must be exerted for
obtaining the spin susceptibility in that basis.

Similar to the discussion of the square lattice, we
can define a (dressed) spin-susceptibility coherence factor
given by

Bd(q,kn) =

∑
αβ gαβ(kn,q)

Z

∆∗
kn+q∆kn

Ekn
Ekn+q

, (20)

where Z is a normalization factor defined by

Z =
1

N 2

∑
k,q

∑
αβ

gαβ(k,q). (21)

For comparison, we also define a bare coherence factor
without the matrix element dressing from gαβ(k,q)

Bb(q,kn) =
∆∗

kn+q∆kn

EknEkn+q
. (22)

In Fig. 4 we show both the bare and dressed coher-
ence factors for the s- and d-wave pairing states on the
kagome lattice. Considering first the A1 s-wave case seen
in Fig. 4(a,d,g), even though the dressing factor gαβ(k,q)
changes the distribution of Bb(q,kn) in q-space, the
summed value

∑
qBd(q,kn) remains substantial and un-

changed. Therefore, the corresponding 1/T1T curve re-
mains the same in both the bare and dressed cases of s-
wave superconductivity, both exhibiting a Hebel-Slichter
peak as expected, see Fig. 5.

By contrast, for the d-wave case the dressing factor
gαβ(k,q) originating from the sublattice to band space
transformation becomes crucial as seen from comparing
Fig. 4(e,f) to Fig. 4(h,i). There we compare the coher-
ence factors Bb(q,kn) and Bd(q,kn) for the two k-points
highlighted in Fig. 4(b,c). Evidently, gαβ(k,q) destroys
the compensation (the near cancellation between posi-
tive and negative regions) seen in Fig. 4(e,f) and leads
to substantial summed values of

∑
qBd(q,kn), as seen

qk(a)

s-wave

dx2-y2

dx2-y2

(d) (g)

(e) (h)

(f) (i)

(b)

(c)

q

FIG. 4. The s-wave order parameter (a) and the dx2−y2 order
parameter (b)-(c) in k-space in the first BZ for the kagome
lattice. The black lines indicate the Fermi surface at µ = 0.
Panel (d) displays the bare Bb(q,kn) for the s-wave order
parameter in q-space and panels (e)-(f) are for the dx2−y2

order parameter. Panel (g) displays the dressed Bd(q,kn) in
q-space for the s-wave order parameters and panels (h)-(i) are
for the dx2−y2 order parameter. The chosen kn for (d)-(i) is
indicated by the black dots in (a)-(c) in the same row. The
numbers below (d)-(f) and (g)-(i) display the summed values∑

q Bb(q,kn) and
∑

q Bd(q,kn), respectively.

from Fig. 4(h,i). This implies that while the bare d-wave
case should not exhibit a Hebel-Slichter peak, the full
(dressed) case should. Indeed, as seen from Fig. 5 this is
the case. As a result, there exists a pronounced Hebel-
Slichter peak in the case of d-wave superconductivity on
the kagome lattice. This is the main result of the present
paper. This conclusion is both valid for the nodal d-wave
cases and the nodeless TRSB d+ id order. For the d+ id
case,

∑
qBd(q,kn) remains real, even though the order

parameter itself is complex. This is further discussed in
Appendix C.

As seen from Fig. 4, the summed values
∑

qBd(q,kn)
are smaller in the dressed d-wave cases as compared
to the s-wave case, resulting in slightly smaller Hebel-
Slichter peaks in d-wave cases. This, however, is only a
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FIG. 5. Temperature dependence of the spin-lattice relax-
ation rate ratio αs/αn for superconductivity on the kagome
lattice. The solid lines show the results calculated from the
full χ+−

0 (q, ω), while the dashed lines display the results ob-
tained from the spin susceptibility without the dressing factor
gαβ(k,q). As seen, gαβ(k,q) restores the Hebel-Slichter peak
even for the d-wave cases.

quantitative difference, the important point being that
unlike the bare case or d-wave order on the square lat-
tice, the Hebel-Slichter peak is not wiped out despite the
sign-changing gap. In summary, because of the kagome
sublattice structure, which appears as the dressing fac-
tor gαβ(k,q), the enhancement factor

∑
qBd(q,kn) in

χ+−
0 (q, ω) becomes substantial and d-wave superconduc-

tivity supports a Hebel-Slichter peak on the kagome lat-
tice, as seen from Fig. 5.

IV. DISCUSSION AND CONCLUSIONS

We have demonstrated the existence of a Hebel-
Slichter peak in the spin-lattice relaxation rate for d-wave
superconductivity on the kagome lattice, and explained
its existence from cancellation effects due to the peculiar
sublattice-to-band space matrix elements. This result is
in line with previous theoretical studies of the robustness
of sign-changing gap structures to disorder on the kagome
lattice [58]. Another example of unusual response is ex-
emplified by the neutron resonance peak [59–63], i.e. a
collective resonant spin state inside the 2∆ gap of the
spin susceptibility at some pronounced scattering vec-
tor q, that depends on the band structure at hand. For
the neutron resonance peak, it is the first two terms of
Eqs. (3) and (18) that are important. Therefore the rel-
evant coherence factor is given by(

1−
ξkξk+q+∆∗

k+q∆k

EkEk+q

)
, (23)

highlighting the absence (presence) of a neutron reso-
nance mode for momentum vectors q connecting same-
sign (opposite-sign) gap regions. For the kagome lat-
tice, the factor gαβ(k,q) will significantly reduce con-
tributions coming from ∆∗

k+q∆k even though q connect
opposite signs of the gap. Therefore, the superconduct-
ing susceptibility is not expected to be significantly en-
hanced compared to the normal state, and in this sense
the neutron resonance peak is wiped out.
Similar unusual properties may be expected in other

correlation functions for crystal structures where the im-
portant contributing states exhibit pronounced sublat-
tice differentiation. For the kagome lattice, important
effects of the matrix elements may be expected also for,
for example, the behavior of the penetration depth and
thermal conductivity since these quantities are obtained
from two-particle correlation functions.
At present, it remains an open question what is the rel-

evance of the findings in the present paper to the AV3Sb5
(A: K, Rb, Cs) and CsTi3Bi5 kagome superconductors
under intense current investigations. To the best of our
knowledge, these materials may turn out to host con-
ventional s-wave superconductivity despite their many
other unusual electronic properties [40]. However, the
results in this paper, combined with Ref. [58], highlight
the somewhat deceptive behavior of unconventional su-
perconductivity on the kagome lattice, rendering it ”con-
ventional” in appearance. Specifically, d-wave supercon-
ductivity exhibits a Hebel-Slichter peak, no pronounced
neutron resonance mode, and very weak Tc-suppression
in response to nonmagnetic disorder. Therefore, from
this perspective, the question of the pairing symmetry
of the above-mentioned kagome superconductors remains
open at present.

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with M. H. Chris-
tensen, P. J. Hirschfeld and S. C. Holbæk. A.K. ac-
knowledges support by the Danish National Committee
for Research Infrastructure (NUFI) through the ESS-
Lighthouse Q-MAT.

Appendix A: Three-band model without
approximation

Apart from performing the sublattice-to-band trans-
formation shown in Eq. (15) and (16), which results in the
dressing factor gαβ(k,q), one can also numerically diag-
onalize the BdG Hamiltonian Eq. (9) in sublattice space

directly. The matrix that diagonalizes Ĥ(k) through

U−1(k)Ĥ(k)U(k) is
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U(k) =



u∗A,1,k u∗A,2,k u∗A,3,k −vA,1,k −vA,2,k −vA,3,k

u∗B,1,k u∗B,2,k u∗B,3,k −vB,1,k −vB,2,k −vB,3,k

u∗C,1,k u∗C,2,k u∗C,3,k −vC,1,k −vC,2,k −vC,3,k

v∗A,1,k v∗A,2,k v∗A,3,k uA,1,k uA,2,k uA,3,k

v∗B,1,k v∗B,2,k v∗B,3,k uB,1,k uB,2,k uB,3,k

v∗C,1,k v∗C,2,k v∗C,3,k uC,1,k uC,2,k uC,3,k

 , (A1)

which can be obtained numerically. The spin susceptibility in this basis is

χ+−
0 (q, ω) =

1

N
∑

k,m,m′

αβ

[
(v∗α,m,k+qvβ,m,k+qu

∗
α,m′,kuβ,m′,k − v∗α,m,k+quβ,m,k+qu

∗
α,m′,kvβ,m′,k)

1− f(Ek+q,m)− f(Ek,m′)

ω + Ek+q,m + Ek,m′ + iη

+ (uα,m,k+qu
∗
β,m,k+qu

∗
α,m′,kuβ,m′,k + uα,m,k+qv

∗
β,m,k+qu

∗
α,m′,kvβ,m′,k)

f(Ek+q,m)− f(Ek,m′)

ω + Ek,m′ − Ek+q,m + iη

+ (v∗α,m,k+qvβ,m,k+qvα,m′,kv
∗
β,m′,k + v∗α,m,k+quβ,m,k+qvα,m′,ku

∗
β,m′,k)

f(Ek,m′)− f(Ek+q,m)

ω + Ek+q,m − Ek,m′ + iη

+(uα,m,k+qu
∗
β,m,k+qvα,m′,kv

∗
β,m′,k − uα,m,k+qv

∗
β,m,k+qvα,m′,ku

∗
β,m′,k)

f(Ek+q,m) + f(Ek,m′)− 1

ω − Ek+q,m − Ek,m′ + iη

]
. (A2)

FIG. S1. Temperature dependence of the spin-lattice relax-
ation rate ratio αs/αn for superconductivity on the kagome
lattice. The blue and purple lines show the results calculated
from the effective Hamiltonian Heff(k). The respective lines
with open symbols show the results obtained from the com-

plete three-band Hamiltonian Ĥ(k).

There is no approximation in this expression. We com-
pare the results obtained from two methods in Fig. S1.
As seen, they are very similar despite the approximation
made in Eq. (16) that only considers the middle band
relevant at the Fermi level. The result from the com-
plete model is slightly larger than the effective model
because of small contributions of the other bands. Thus,
the Hebel-Slichter peak is larger in the complete model
compared to the effective model.

Appendix B: Basis choice and associated phase
factors

The Hamiltonian in Eq. (2) is not periodic in the first
BZ, meaning that while the eigenvalues are periodic, the
eigenvectors are not. We can remedy this issue by choos-
ing the size of the k-grid twice that of the first BZ.
Alternatively, we can apply the unitary transformation
T−1(k)H0(k)T (k), where

T (k) =

e−ik1 0 0
0 e−ik2 0
0 0 1

 , (B1)

and the Hamiltonian matrix in the new basis becomes

H̃0(k) = −

 µ t(1+e2ik3) t(1+e−2ik1)
t(1+e−2ik3) µ t(1+e−2ik2)
t(1+e2ik1) t(1+e2ik2) µ

 ,

(B2)

which is periodic in the first BZ. The Nambu Hamil-
tonian can also be transformed to the new basis by

T−1
Nambu(k)Ĥ(k)TNambu(k), where

TNambu(k) =

(
T (k) 0
0 TT (−k)

)
. (B3)

This transformation introduces extra phase factors in the
spin susceptibility. We can recover the susceptibility un-
der basis Eq. (2) by considering the phase factors

χ+−
0,αβ(q, ω)=

 χ̃+−
0,AA ei(q2−q1)χ̃+−

0,AB e−iq1 χ̃+−
0,AC

ei(q1−q2)χ̃+−
0,BA χ̃+−

0,BB e−iq2 χ̃+−
0,BC

eiq1 χ̃+−
0,CA eiq2 χ̃+−

0,CB χ̃+−
0,CC

,
(B4)
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q(a) (b) q

FIG. S2. Panel (a) displays Imχ+−
0,AB(q, ω) with the basis

Eq. (2). Panel (b) displays Im χ̃+−
0,AB(q, ω) with the basis

choice of Eq. (B2). (a) conserves the C2 symmetry by a rota-
tion of π around the principal axis; (b) breaks this symmetry.

where χ̃+−
0,αβ(q, ω) is the spin susceptibility in the new

basis, and qn = q · an.
It is straightforward to use the basis in Eq. (2) for

spin susceptibility calculations, while direct use of the
basis Eq. (B2) breaks, for example, the C2 symmetry by
a rotation of π around the principal axis. As shown in
Fig. S2(a), the spin susceptibility for sublattice index AB
calculated from the basis in Eq. (2) is invariant under a
C2 rotation, which is a symmetry of the Hamiltonian.
Figure S2(b) shows that the basis Eq. (B2) breaks this
symmetry because the negative and positive parts cannot
be mapped onto each other by this symmetry operation.
However, by including the phase factors of Eq. (B4) one
recovers the correct susceptibility. This symmetry break-
ing by an inappropriate choice of basis is also discussed

in Ref. [68].

Appendix C: Absence of imaginary part of B factor

For d+ id superconductivity, ∆d+id is a complex num-
ber. Thus, in principle, the imaginary part of B(q,k)
might contribute to χ+−

0 (q, ω). If only the real part of
B(q,k) contributes to χ+−

0 (q, ω), then only the imagi-
nary part of the Fermi function term, which is only non-
zero near the Fermi surface, contributes to the imaginary
part of χ+−

0 (q, ω). We define

∆k = ∆′
k + i∆′′

k, (C1)

where ∆′
k and ∆′′

k denote the real and imaginary parts of
∆k. Both ∆′

k and ∆′′
k have the time-reversal symmetry,

while ∆k breaks the time-reversal symmetry. B(q,k) can
be written as

B(q,k) =
(∆′

k+q − i∆′′
k+q)(∆

′
k + i∆′′

k)

EkEk+q
, (C2)

and the imaginary part is

ImB(q,k) =
∆′

k+q∆
′′
k −∆′′

k+q∆
′
k

EkEk+q
. (C3)

Since we sum over k in χ+−
0 (q, ω), we can do k → −k−q

for the first term of Eq. (C3). Due to the even parity
property ∆′

k = ∆′
−k, ∆

′′
k = ∆′′

−k and Ek = E−k together,
the imaginary part gives zero. Thus for ∆d+id, we can
still only consider ReB(q,k).
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