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Abstract — In communication-deprived disaster scenarios, this 
paper introduces a Micro-Unmanned Aerial Vehicle (UAV)-
enhanced content management system. In the absence of cellular 
infrastructure, this system deploys a hybrid network of stationary 
and mobile UAVs to offer vital content access to isolated 
communities. Static anchor UAVs equipped with both vertical and 
lateral links cater to local users, while agile micro-ferrying UAVs, 
equipped with lateral links and greater mobility, reach users in 
various communities. The primary goal is to devise an adaptive 
content dissemination system that dynamically learns caching 
policies to maximize content accessibility. The paper proposes a 
decentralized Top-k Multi-Armed Bandit (Top-k MAB) learning 
approach for UAV caching decisions, accommodating geo-
temporal disparities in content popularity and diverse content 
demands. The proposed mechanism involves a Selective Caching 
Algorithm that algorithmically reduces redundant copies of the 
contents by leveraging the shared information between the UAVs. 
It is demonstrated that Top-k MAB learning, along with selective 
caching algorithm, can improve system performance while making 
the learning process adaptive. The paper does functional 
verification and performance evaluation of the proposed caching 
framework under a wide range of network size, swarm of micro-
ferrying UAVs, and heterogeneous popularity distributions.   
 

Keywords — Micro-Unmanned Aerial Vehicles, Multi-Armed 
Bandit, Disaster, Content Popularity, Content Dissemination. 

I. INTRODUCTION 
Disasters such as earthquakes, floods, wars, and other 

catastrophic events can have devastating effects on people’s 
lives and properties, as well as communication infrastructures. 
In such situations, people may be forced to migrate to areas 
without proper communication infrastructure, leaving them 
without access to important information such as the state of the 
disaster, rescue and relief operations, weather reports, 
rehabilitation efforts, etc. This paper proposes the use of Micro-
Unmanned Aerial Vehicles (Micro-UAVs) as an alternative 
content provisioning platform when fixed communication 
infrastructure such as cellular phone towers is unavailable. 
Micro-UAVs, however, bring their own limitations in storage 
capacity, flight time, etc., which add new challenges to UAV 
based content storage and dissemination system.  

The paper presents swarm of Micro-UAVs as content carriers 
in a dissemination system that uses Multi-armed Bandit 
Learning to perform optimal caching in communication-
challenged environments. With the rapid surge in miniaturized 
UAV technology, their viability and usage has increased 
because of their low cost and [1], [2] small footprints. Studies 
have also shown that due to their relatively smaller size, the 
power dissipation and recharge time of micro-UAVs are lower 
as compared to larger UAVs [1]. Additionally, their low altitude 

flight capability makes them apt for unimpeded short-range 
communication which can be a key in post-disaster scenarios. 
These attributes have motivated this work, where a UAV-aided 
content dissemination system uses a large population of low-
cost micro-UAVs for enhanced content availability in the 
absence of fixed communication infrastructure.  

The proposed system employs Multi-Armed Bandit 
Learning-based caching with a multi-dimensional reward 
structure in order to learn any inherent patterns in the user 
content requests as experienced by the UAVs. The local 
learning model within a UAV aims to maximize the cumulative 
reward [3], which helps in caching decision-making thus 
improving content dissemination performance.  

The proposed framework specifically focuses on scenarios 
where disaster/war-stricken populations are stranded and 
geographically clustered into multiple communities that may 
not have access to surviving cellular base stations. In such 
scenarios, the request patterns at different communities and the 
tolerable access delay (TAD) [4] can be different for different 
contents based on the type and urgency of the requested 
information. The proposed MAB learning solution deploys 
UAV-micro-UAV-based tactical content service provisioning 
that can make caching decisions on the fly without prior 
knowledge of content request pattern.  

The proposed content provisioning system uses a two-tier 
architecture consisting of relatively larger anchor-UAVs (A-
UAVs) and Micro-ferrying-UAVs (MF-UAVs). Each disaster-
isolated user community is served by a A-UAV with expensive 
vertical connectivity, such as a satellite link [5], while MF-
UAVs ferry and distribute content across the A-UAVs. To be 
noted that that the role of A-UAVs can be served by ground 
vehicles with similar communication equipment. The goal is to 
provide high-availability content access to all the communities 
without incurring the cost of excessive vertical link usage by 
the A-UAVs. To achieve this, the paper attempts to answer the 
following questions. First, what is the benchmark for content 
caching policies at both A-UAVs and the swarm of MF-UAVs 
in order to maximize content availabilities to the users. Second, 
which content should be transferred from A-UAVs to the MF-
UAVs to support such caching policies. The proposed policy 
attempts to address these questions using on-the-fly learning 
using Top-k Multi-armed Bandit learning.  

Existing work [6], [7], [8], [9] on content provisioning using 
UAVs have suggested high-performance communication 
equipment which adds to the payload of UAVs. Such heavy 
payloads lead to rapid power dissipation, which poses 
operational impediments for UAVs. Also, due to high 
deployment costs of relatively larger UAVs, their population in 
a content dissemination system can limited. The proposed 
system sets out to address these shortcomings by using swarm 
of low-cost micro-UAVs as content carriers across anchor A-
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UAVs and do not require high-performance long distance 
communication equipment. This keeps their operational energy 
budgets to be low. Also, the performance degradation due to the 
losses of a few such micro-UAVs from a swarm can be limited. 
These features make the micro-UAVs ideal for a content 
dissemination system as proposed here.    

The key contributions of the paper are as follows. First, a 
content dissemination system using swarm of Micro-UAVs is 
designed for on-demand content dissemination in a 
communication challenged environment. Second, a specific 
version of learning, namely Top-k Multi-armed Bandit, is 
deployed for on-the-fly learning of optimal caching policies in 
UAVs. Third, a multi-dimensional reward structure for the Top-
k MAB model is developed based on shared information via 
micro-UAVs. These rewards take local and global context of 
content popularities into consideration while learning optimal 
caching policies. Fourth, a selective caching algorithm is 
designed for joint geographical deployment of Micro-UAVs to 
manage the trade-off between effective caching capacity and 
UAV accessibility. Fifth, the interactions between learnt 
caching policies and QoS expectation, namely, Tolerable 
Access Delay, is studied and characterized. Finally, simulation 
experiments and analytical models are developed for functional 
verification and performance evaluation of the proposed 
caching and content dissemination framework.  

II. RELATED WORK 
Substantial amount of work has been done in exploring the 

usage of micro-UAVs in various applications. Most significant 
applications related to micro-UAVs are imaging application 
like surveillance, terrestrial-imaging, precision agriculture etc. 
The authors in [1] surveys the utility of autonomous micro-
UAVs in precision agriculture via yield estimation, crop 
fertilization, and crop monitoring. Similar work in [2], raises 
questions on the usability of relatively larger UAVs and 
proposes micro-UAVs as potential solutions in precision 
agriculture. In many works, the image acquisition and 
processing ability of micro-UAVs have been explored for its 
own landing and maneuvering. Like the work in [10] presents a 
way for autonomous landing of micro-UAV by incorporating 
model predictive control, vision-based localization, and 
extended Kalman filter for path following. The authors of [11] 
propose a comprehensive UAV identification database called 
Det-Fly which is used to train deep neural networks. This model 
helps to achieve vision-based micro-UAV swarming, malicious 
UAV detection, UAV collision avoidance etc. Considerable 
work has been done in energy optimization of micro-UAVs to 
enhance their task-oriented performance. A paper on dynamic 
leader selection in master-slave architecture of micro-UAVs 
proposed reduction in communication overhead via limiting 
communication with swarm leader [12]. The authors of [13] 
propose RF power transfer along with the model sharing 
between base-station and micro-UAVs. The energy harvested 
from the transferred RF power is utilized in training of the 
model. The aforementioned capabilities of micro-UAVs in 
conjunction with UAV-based caching approaches in the 

existing literature can be explored for content dissemination 
paradigms. 

In recent years, a significant amount of research has been 
conducted on UAV-caching. Such works can be broadly 
classified into two categories, namely, platform enhancements 
and algorithmic optimization. On the platform front, a study in 
[4] demonstrated that the effective caching capacity of UAVs 
can be significantly improved by using solid-state drives 
(SSDs) due to their higher storage density and lower power 
consumption. The work presented in [6] shows how the caching 
capacity of UAVs can be improved by increasing the 
communication range between the UAVs and the ground nodes. 
It was shown in [7] that UAVs flying at higher altitudes can 
cover larger areas, which can also increase the effective caching 
capacity of a system. The study also proposed a multi-UAV 
caching strategy that utilized multiple UAVs flying at different 
altitudes to optimize the caching capacity and coverage for 
specific applications. The authors in [8], [9] use energy-aware 
multi-armed bandit algorithms to select user hotspots such that 
the data transmission rate can be maximized without incurring 
severe UAV flight/hover energy expenditure. All the above 
approaches mostly rely on UAV platform-related 
enhancements and are not in line with the objectives of this 
specific article, which approaches the cache optimization 
problem in an algorithm-centric manner.  

From an algorithmic perspective, the work in [14] proposes 
flight trajectory optimization, communication scheduling, 
service coverage extension using optimized UAV hovering 
time, and multi-hop relaying through multiple UAVs. The 
authors in [15] target similar objectives for IoT networks using 
multi-hop device-to-device (D2D) routing for coverage 
extension for energy-constrained UAVs. While addressing 
coverage extension solutions, these works do not deal with 
content placement and caching issues, which are central to our 
work in this paper.  

The problem of content placement and caching are handled 
in [16], [17], [18], [19]. The paper in [16] proposes a way of 
using named data networking (NDN) architecture in IoT 
networks, in which UAVs collect data from the IoT field and 
deliver to interested recipients to avoid retransmission. In [17] 
UAVs pro-actively transmits content to an algorithmically 
selected subset of ground nodes that cooperatively cache all the 
required contents. The paper in [18] proposes a probabilistic 
cache placement technique to maximize cache hit probabilities 
in networks in which wireless nodes are placed using a 
homogeneous Poisson Point Process. The work in [19] 
primarily focuses on the security and denial of service attacks 
while using UAVs for communication. These mechanisms do 
not consider the impacts of storage space and UAV trajectory 
design, thus making them not suitable for the problem 
addressed in this paper. 

To expand the research from the algorithmic perspective, 
traffic offloading methods and learning based caching strategies 
have been explored. The authors in [20] show that the effective 
caching capacity of UAVs can be enhanced by considering the 
popularity and size of the content being stored. The study in 
[21] proposes a UAV-enabled small-cell network in which data 
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traffic is offloaded from the small-cell base-stations (SBSs) to 
UAVs. The most popular contents are proactively cached 
within the UAVs, and delivered to the user directly as needed. 
The authors in [22] did similar work where they attempt to 
reduce the traffic load on ground base-stations via UAV-
caching. The approach in [23] uses a joint caching and UAV 
trajectory optimization using particle swarm optimization by 
modeling each caching strategy as a particle. The paper in [24] 
develops a technique to minimize content delivery delay by 
joint optimization of UAV trajectory and radio resource 
allocation. A deep Q-learning based approach is used for such 
optimization in large networks with exploding state-action 
pairs. Though [20], [21], [22], [23], [24] solve the caching 
decision problem by employing traffic-offloading and learning-
based methods, they don’t consider heterogeneity in content 
popularity. These methods may have limited use in scenarios 
where the content popularity changes according to geolocation 
of the users.  

From the work in [25], a UAV trajectory control mechanism 
makes the decision of whether to continue to serve the users 
along the trajectory or to return to the charging station 
according to real-time observations. In a similar joint 
optimization study, [26] uses a reinforcement learning-based 
approach for UAV-caching decision-making where the content 
requests, storage, and availability in the storage buffer are used 
for defining states in a Markov Decision Process. The dynamic 
nature of defining trajectory in [25], [26] uses learning based 
adaptive methods to deal with the trajectory planning issues. 
The authors, however, do not focus on characterizing the 
impacts of disaster geography, demand heterogeneity, and the 
effects of F-UAV trajectories on caching policy. The work in 
this paper addresses these issues. 

While some of these UAV-based caching mechanisms [21, 
22] are useful for partial infrastructure destruction, they are less 
likely to work well when all communication infrastructures are 
destroyed, and a fully functional alternative is needed. 
Additionally, most of the above mechanisms [20], [21], [22] 
consider temporally static global content popularity [22], which 
misses capture the real-world heterogeneity and time-

variability of content demands in disaster scenarios. The 
optimization mechanisms in [23], [24], [25], [26] use long-term 
estimation methods which fundamentally lack the promptness 
and adaptability with changing network and demand 
conditions. Explicit attempts for effective cache space 
maximization, and reduction of expensive from-server 
downloads using vertical links are also absent in the prior 
published works on UAV-caching.   

To address those issues, a Top-k Multi-Armed Bandit learning 
model is developed for UAV-caching decisions that take geo-
temporal differences in content popularity and heterogeneity in 
demand into consideration. The approach also employs a 
selective caching approach that improve system performance 
by algorithmically utilizing sharing information among anchor 
UAVs and micro-ferrying UAVs.   

III. SYSTEM MODEL 

A. UAV Hierarchy 

As shown in Fig. 1, a two-tiered UAV-assisted content 
dissemination system is deployed. Each community is served 
by a dedicated A-UAV that uses a lateral wireless connection 
(i.e., WiFi etc.) to communicate with users in that community. 
The system introduces a set of low-power-budget Micro-UAVs 
for the role of ferrying (MF-UAVs). These are unlike A-UAVs 
which operate with a much larger power budgets. MF-UAVs 
are mobile and possesses only lateral communication links such 
as Wi-Fi. Unlike the A-UAVs, the MF-UAVs do not possess 
expensive vertical communication interfaces such as satellite 
links etc. Effectively, the MF-UAVs act as content transfer 
agents across different user communities by selectively 
transferring content across the A-UAVs through their lateral 
links.  

B. Content Demand and Provisioning Model  

The content popularity distribution, quality of services and 
content provisioning are outlined below. 

Content Popularity: Research has shown that user content 
request patterns often follow a Zipf distribution [27], [28], 

Fig. 1. a) Coordinated UAV system for content caching and distribution in environments without communication infrastructure; b) Zipf Popularity Distribution 
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where the popularity of a content is proportional to the inverse 
of its rank, and is a geometric multiple of the next popular 
content. Popularity of content ‘𝑖’ is given as:  

𝑝!(𝑖) = &
1
𝑖(

!

)&
1
𝑘(

!

"∈$

+ 																														(1) 

The Zipf parameter, 𝛼, determines the distribution’s skewness, 
while the total number of contents in the pool is represented by 
the parameter 𝑁. The inter-request time from a user follows the 
popular exponential distribution [27].  

Tolerable Access Delay: For each requested content, the user 
specifies a Tolerable Access Delay (𝑇𝐴𝐷) [4], which serves as 
a quality-of-service parameter and represents the amount of 
time the requesting user can wait before the content is 
downloaded. 

Content Provisioning: Upon receiving a request from one of 
its community users, the relevant A-UAV first searches its local 
storage for the content. If the content is not found, the A-UAV 
waits for a potential future delivery by a traveling MF-UAV. If 
no MF-UAV arrives with the requested content within the 
specified TAD, the A-UAV then proceeds to download it 
through its vertical link. Since vertical links such as satellite 
links are expensive, smart caching strategies that can make the 
content accessible from the UAVs can be effective in reducing 
content provisioning costs.  

IV. CACHING BASED ON CONTENT PRE-LOADING AT A-UAVS  
This section discusses caching policies based on content pre-

loading at A-UAVs that assumes pre-assigned, static, and 
globally known content popularities. After understanding the 
limitations of these caching policies, the paper proposes a 
runtime, dynamic, and adaptive Top-k Multi-armed Bandit 
based caching mechanism, which is explained in a Section V.  

A. Pre-loading Policies at Anchor UAVs (A-UAVs)  

The Fully Duplicated (FD) mechanism [27] is a naive 
approach that allows A-UAVs to download content from 
vertical links upon request by local users. FD has major 
limitations including content duplication, high vertical link 
download costs, and underutilization of UAV cache space. This 
means that with a cache size of 𝐶% contents per UAV, the total 
caching capacity of the system is limited to 𝐶%. Smart Exclusive 
Caching (SEC) [27], [28] overcomes those limitations of FD by 
storing a set number of unique contents in all A-UAVs and 
sharing them among communities via traveling MF-UAVs. 
Assuming globally known homogeneous content popularity 
across all user communities, the SEC mechanism divides the 
cache into two segments of size 𝐶&' and 𝐶&(. Segment-1 
contains the top 𝐶&' = 𝜆. 𝐶% popular contents cached in all A-
UAVs, while Segment-2 contains unique contents 𝐶&( = (1 −
𝜆). 𝐶%, where 𝜆 is a Storage Segmentation Factor. This results 
into 𝐶&()*)+, = 𝑁%. (1 − 𝜆). 𝐶% number of total Segment-2 
contents stored across all 𝑁% number of A-UAVs, and these can 
be shared across all user communities via the mobile MF-
UAVs. This factor needs to be adjusted and fine-tuned based on 

various network, content, and demand conditions. Total number 
of contents in the system as per SEC is given as:   

𝐶-.- = 𝜆. 𝐶% +𝑁%. (1 − 𝜆). 𝐶%																													(2) 

Popularity-Based Caching (PBC) [29] is employed when 
different communities have different content preferences. 
Considering the heterogeneous popularity sequence of a 
community, the PBC approach, like SEC, divides the cache 
space of the local A-UAV into two segments of size 𝐶&' and 
𝐶&(. Segment-1 caches the most popular contents, which can be 
exclusive to a A-UAV (𝐶/) or non-exclusive i.e., may be cached 
across multiple A-UAVs (𝐶$/), such that, 𝐶&' = 𝐶/ + 𝐶$/. To 
be noted that according to the exclusivity of contents in 𝐶&', the 
total number of exclusive contents across all A-UAVs is termed 
as 𝐶/)*)+,. Segment-2 is the same as that in SEC. Therefore, by 
modifying Eq. 2, the total number of contents in the system can 
be expressed as:  

𝐶-.- = 𝐶$/ + 𝐶/)*)+, +𝑁%. (1 − 𝜆). 𝐶% 

⇒ 𝐶-.- ≥ 𝜆. 𝐶% +𝑁%. (1 − 𝜆). 𝐶%																							(3)  

Value-Based Caching (VBC) [29] further enhances the caching 
policy by storing top-valued contents in Segment-1 of the A-
UAVs, where value of contents comprises of their popularity 
and tolerable access delay. Value of a content ‘𝑖’ is calculated 
as:  

𝑉(𝑖) = 𝜅𝜐∗ ×
𝑝!(𝑖)
𝑇𝐴𝐷(𝑖)											 

= 𝑉(𝑖) = 𝜅 ×
𝑇𝐴𝐷123
𝑝!(1)

×
𝑝!(𝑖)
𝑇𝐴𝐷(𝑖)													(4) 

In this equation, 𝑝!(𝑖) represents the content’s popularity as per 
the Zipf distribution, 𝑇𝐴𝐷(𝑖) is the content’s tolerable access 
delay, 𝜅 is a scalar weight that increases as popularity 
decreases, and 𝜐∗ is a normalization constant. The 
normalization constant is calculated for a given Zipf 
(popularity) parameter 𝛼 using the minimum possible 𝑇𝐴𝐷 
(𝑇𝐴𝐷123 ) and the maximum possible popularity, which is 
𝑝!(1), i.e., 𝜐∗ = 𝑇𝐴𝐷123 𝑝!(1)⁄ . The value of 𝑉(𝑖) is bounded 
between [0,1], and it increases as 𝑝!(𝑖) increases and 𝑇𝐴𝐷(𝑖) 
decreases. The content’s value presents a holistic quantifiable 
measure for caching decision.  

The caching policy for micro-ferrying UAVs remains the 
same for all the above-discussed caching policies for A-UAVs, 
which will be discussed in the forthcoming Section V.  An MF-
UAV ferries content across the A-UAVs it visits along its 
trajectory. The caching policy of A-UAVs determines the utility 
of MF-UAVs where every A-UAV should maintain sufficient 
contents in its cache space to maximize the MF-UAV cache 
space utilization.  

B. Limitations of Cache Pre-loading at A-UAVs 

   The caching policies discussed in this section rely on pre-
loading content into A-UAVs, which has certain limitations. 
These approaches assume a priori knowledge of the popularity 
distribution of all the content in the system, which can hinder 
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practical feasibility during deployment. Local popularity 
estimation of requested content within individual A-UAVs can 
partially alleviate this issue, but it cannot adjust the crucial 
storage segmentation factor (𝜆) (see Section IVA) for 
maximizing availability across the entire system of A-UAVs 
and their communities. Collaborative global popularity 
estimation can be introduced, but it fails to capture locally 
meaningful demand heterogeneity across different 
communities.  

V. DECENTRALIZED CACHING WITH MULTI-ARMED BANDIT 
This section presents a plausible solution for the 

aforementioned shortcomings by using Top-k Multi-Armed 
Bandit learning for caching decisions at the A-UAVs. This 
facilitates faster learning and is adaptive to heterogeneous user 
demand patterns through information sharing via micro-UAVs. 
Based on the forthcoming mechanism, the caching policy for 
micro-ferrying UAVs is also modified to leverage their 
ubiquity, which is discussed later.  

A. Top-k Multi-Armed Bandit Learning  

Multi-Armed Bandit is a classic problem in reinforcement 
learning [3] and decision-making. At each round 𝑡, an agent 
chooses an arm 𝐴) out of 𝑁 arms, denoted by 𝐴', 𝐴(, . . . , 𝐴$, 
and observes a reward 𝑅). Each arm 𝑖 has an unknown reward 
distribution with mean 𝜇2 and variance 𝜎2(. The agent’s goal is 
to maximize the total expected reward 𝑅4 over 𝑇 rounds, where 
𝑇 is the total number of rounds (time horizon):   

𝑅4 = 𝑚𝑎𝑥	)𝐸[𝑅)]
4

)5'

																															(5)	

This paper uses a variant of MAB called Top-k Multi-Armed 
Bandit [30]. Here, the agent has to choose 𝑘 arms 
simultaneously out of a larger set of 𝑁 arms, and it receives a 
reward for each arm in the chosen set. This is in contrast to 
choosing only one arm in classical MAB approaches. The goal 
of the agent is to maximize the total cumulative reward 𝑅4 

obtained over a finite time horizon 𝑇:  

𝑅4 = 𝑚𝑎𝑥	))𝐸[𝑅),2]
"

25'

4

)5'

																						(6)	

B. Caching at A-UAV using Top-k Multi-Armed Bandit 

In the scenario of UAV-caching, there is a Top-k MAB agent 
in each A-UAV. Here, choosing each content for caching 
corresponds to choosing an arm. The ‘k’ of Top-k MAB agent 
corresponds to the caching capacity of A-UAV, i.e., 𝑘 = 𝐶%. 
The agent’s aim is to select ‘𝐶%’ contents out of the total pool 
of ‘𝑁’ contents to be cached in an A-UAV such that the content 
availability to the users can be maximized.  Here, the UAV-
aided content dissemination system is the learning environment 
where the A-UAVs interact through their actions of choosing 
specific sets of contents to be cached. The feedback from the 
environment for the taken actions are in the form of 
rewards/penalties. Micro-ferrying UAVs play a crucial role in 
transferring information across the UAV-aided system, which 
helps in the computation of appropriate rewards/penalties, as 
shown in Fig. 2. Actions are rewarded when cached contents 
are requested by the users and are served to the users within the 
given tolerable access delay or penalized otherwise. The top 𝐶% 
contents that accumulate most reward from the corresponding 
community and other communities are chosen to be cached at a 
A-UAV. It should be noted that the Top-k MAB agents in the 
A-UAVs are provided with no a priori information about the 
content popularity at the corresponding user communities.  

A good choice for learning decision epoch in each Top-k 
MAB agent is according to the MF-UAVs accessibility at the 
corresponding community (i.e., an MF-UAV’s visiting 
frequency). This is because the MF-UAVs carry the content 
availability information from the communities in its trajectory. 
Such information is leveraged for learning at the A-UAVs’ Top-
k MAB agents using appropriately designed multi-dimensional 
rewards. The agent learns to cache contents via the multi-
dimensional reward structure which has three parts, namely, 
local, ferrying, and global rewards. Let 𝕃, 𝔽 and 𝔾 denote the 

Fig. 2. Top-k Multi-Armed Bandit Learning for Caching Policy at A-UAVs 
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sets of locally requested contents, contents requested at other 
communities, and contents requested across all communities, 
respectively. These contents can be served to the users directly 
by a A-UAV or indirectly via the visiting MF-UAVs. If a 
cached content is served to a user within the given TAD and an 
increase in content availability is observed, the content is 
rewarded. The type of reward is determined by the set to which 
the cached content belongs. The expressions for three types of 
rewards are given as follows: 

𝑅2,𝕃 = 𝕀'(𝑖 ∈ 𝕃, 𝛿𝕃 ≥ 0) + 𝕀8'(𝑖 ∉ 𝕃, 𝛿𝕃 < 0)																(7) 

𝑅2,𝔽 =
1

𝑁% − 1
) 𝕀'(𝑖 ∈ 𝔽, 𝛿𝔽 ≥ 0)
$!

:5',:;𝕏

																																			 

+
1

𝑁% − 1
) 𝕀8'(𝑖 ∉ 𝔽, 𝛿𝔽 < 0)
$!

:5',:;𝕏

								(8) 

𝑅2,𝔾 =
1
𝑁%
)𝕀'(𝑖 ∈ 𝔾, 𝛿𝔾 ≥ 0)
$!

:5'

																																															 

+
1
𝑁%
)𝕀8'(𝑖 ∉ 𝔾, 𝛿𝔾 < 0)
$!

:5'

																					(9) 

𝑤ℎ𝑒𝑟𝑒, 𝕀!(𝐴) = +		1, 𝑖𝑓	𝐴	𝑖𝑠	𝑡𝑟𝑢𝑒
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

The above equations compute the reward according to 
increase in availability due to content ‘𝑖’ cached at A-UAV ‘𝕏’. 
Here, 𝑅2,𝕃, 𝑅2,𝔽, and 𝑅2,𝔾 are local, ferrying, and global rewards 
respectively. The terms 𝛿𝕃, 𝛿𝔽 and 𝛿𝔾 correspond to the increase 
in local availability, ferried content availability and global 
availability respectively. Each type of reward is contingent 
upon the condition in the indicator function 𝕀'/8'(𝑖). The first 
terms in Eqns. 7, 8 and 9 represent the reward accumulated by 
caching content ‘𝑖’ at A-UAV ‘𝕏’, whereas the second term is 
the penalty associated with adverse condition. To be noted that 
𝑅2,𝔽, and 𝑅2,𝔾 are higher if the content ‘𝑖’ is requested and served 
at more communities.  
 Learning is achieved using a tabular method where a Q-table 
is maintained for all contents in the A-UAVs. The value 
corresponding to each content is called a Q-value or action-
value [3]. The agent updates the Q-value for a content at every 
learning epoch according to the multi-dimensional rewards in 
Eqns. 7-9 from the interaction with the environment (UAV-
aided content dissemination system) and learns the best actions 
(contents cached). The recursive expression which explains Q-
value update for a content ‘𝑖’ at A-UAV ‘𝕏’ is given as follows: 

𝒬)?'(𝑖) = (1 − 𝛼)𝒬)(𝑖) 																																																					
+ 𝛼 \𝑅),2,𝕃 + 𝕀'(𝛿)]𝑅),2,𝔽 + 𝑅),2,𝔾^_							(10) 

Here, 𝒬)(𝑖) represents the Q-value of a content ‘𝑖’ at 𝑡)@ epoch; 
𝑅),2,_ is the respective reward received by caching content ‘𝑖’; 𝛿 
represents the condition for the indicator function 𝕀'(𝜇) which 
is 1 if micro-ferrying UAVs are present in the communication 
range of A-UAV ‘𝕏’ or 0 otherwise; 𝛼 is a hyper-parameter 

which controls the learning rate. The Q-values for all contents 
are initialized with zero to ensure no a priori information for a 
Top-k MAB agent. Also, it ensures equal importance to all 
contents for caching decisions. As learning progresses, Q-
values improve and best contents with highest Q-values are 
cached with the aim of maximizing accumulated reward which 
improves the caching policy and thus increases content 
availability.  

Note that there can be very large number, i.e.,  ]$"^, of 
combinations of contents to be sampled by the Top-k MAB 
agent for caching. Consequently, the reward estimation for each 
individual content combination occurs infrequently, only after 
large intervals. This can lead to a weak estimates of reward 
distribution, as the global content population size 𝑁 increases. 
This issue is handled by empirically selecting 𝜖 and its decay 
rate in the 𝜖-greedy action selection policy [30]. To reduce the 
dependence of a caching policy on the choice of 𝜖, an Upper 
Confidence Bound (UCB) strategy is used [30]. The Top-k 
MAB agent maintains an upper confidence bound on the 
expected reward of each content, and selects the set of 𝐶% 
contents with the highest UCB at each epoch. 

𝒰)(𝑖) = 𝒬)(𝑖) + b
𝛼B log(𝑡)
𝑁)(𝑖)

																												(11)	

Here, 𝒰)(𝑖) is the UCB of content ‘𝑖’ at epoch ‘𝑡’; 𝒬)(𝑖) is the 
updated Q-value at epoch ‘𝑡’; 𝛼B is a hyperparameter that 
controls the degree of exploration; 𝑁)(𝑖) is the number of time 
content ‘𝑖’ has been requested till epoch ‘𝑡’. The first term 
represents the reward estimate, and the second term depicts the 
uncertainty in reward estimate. UCB selects the content that has 
high potential for high reward but hasn’t been requested 
frequently. This promotes exploration without externally 
inducing an exploration parameter such as 𝜖. For this paper, 
𝒰)(𝑖) is used in place of 𝒬)(𝑖) to cache content ‘𝑖’, as shown in 
Step 7-14 in Algorithm 1.  

The following pseudo code explains the caching policy at a 
micro-ferrying UAV with a Top-k MAB agent.  

Algorithm 1 Caching policy at a A-UAV with Top-k MAB 
Learning  
1. Initialization: 

a. N: Total contents in the system 
b. 𝐶%: Caching capacity of an A-UAV 
c. 𝒰: Size |𝐶%| initialized with 0’s (Q-table with 

UCB) 
d. 𝛼: Learning rate for Q-table update 
e. 𝛼B: Degree of exploration (in UCB) 

2. Load A-UAV’s cache with 𝐶% randomly chosen contents. 
3. while True: 
4.     Check for learning epoch at A-UAV i.e., at 𝑡)@ epoch 
5.     if True then do 
6.         for 𝑖 = 0	𝑡𝑜	𝑙𝑒𝑛𝑔𝑡ℎ(A-UAV cache size 𝐶%) do 
7.             Get reward 𝑅),2,_	 \\ according to Eqns. 7-9 
8.             Update 𝒰(𝑖)       \\ from eqns. 10 and 11 
9.         end for 
10.         𝑣𝑎𝑙𝑢𝑒	 = 	𝒄𝒐𝒑𝒚(𝒰) \\ make a copy of UCB values  
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        \\ Reload contents (Select arms) 
11.         for 𝑖 = 0	𝑡𝑜	𝑙𝑒𝑛𝑔𝑡ℎ(A-UAV cache size 𝐶%) do 
12.              𝑐1+C = 𝒂𝒓𝒈𝒎𝒂𝒙(𝑣𝑎𝑙𝑢𝑒) 
13.              Load 𝑐1+C to A-UAV 
14.              Set 𝑣𝑎𝑙𝑢𝑒[𝑐1+C] = −∞ 
15.         end for 
16.     end if 
17. end while 

C. Proof of convergence 

Within a finite time horizon, the Top-k MAB agent at a A-
UAV converges to a caching policy which approaches the 
benchmark caching policy asymptotically. The proof of 
convergence lies in the intrinsic regret minimizing 
characteristics of MAB [3], which is shown below.  

𝐶% = {𝑖|𝑖 ∈ 𝑁, 1 ≤ 𝑖 ≤ 𝑘} = argmin
"

]𝑅𝑒𝑔𝑟𝑒𝑡(𝑇)^ 

= argmin
"

�)�max
"
)𝑅),2∗
"

25'

−)𝑅),2

"

25'

�
4

)5'

�			(12) 

where, 𝑇 is the total number of epochs (time horizon); 𝑘 is the 
number of contents cached at each epoch; 𝑖∗ represents the 
optimal caching action; 𝑖 is the caching action selected by the 
Top-k MAB agent at 𝑡)@ epoch. Eqn. 12 shows the difference 
between the reward obtained by the algorithm and the reward 
obtained by caching with benchmark policy. Post-convergence, 
the instantaneous regret should be minimum, which is 
experimentally proven in this paper. Ideally for a perfectly 
designed reward structure the regret should asymptotically 
vanishes, i.e., lim

4→E

FGHIG)(4)
4

= 0 [31]. 
The convergence of estimated rewards (Q-values) to the true 

values (expected reward) in a MAB setup, including Top-k 
MAB scenarios, can be analyzed using the Law of Large 
Numbers (LLN) [32] and concepts of stochastic approximation. 
For simplicity, this work initially considers the proof for a 
single arm and then extend the idea to all ‘𝑘’ arms in the Top-k 
selection. According to weak law of large numbers [32], the 
estimated value of a content ‘𝑖’ will be at a minute offset ‘𝜖2’ 
from its true value, which is shown in the following expression: 

� lim
4→E

𝒬)?'(𝑖)� − 𝜇2∗ < 𝜖2 

= � lim
4→E

1
𝑛)�𝑅),2,𝕃 + 𝕀'(𝛿)]𝑅),2,𝔽 + 𝑅),2,𝔾^�

3

)5'

� − 𝜇2∗ < 𝜖2 		(13) 

Here, a single content/arm ‘𝑖’ has a true value of 𝜇2∗ , and 
𝒬)?'(𝑖) represent the estimated reward (Q-value) of content ‘𝑖’ 
after it has been selected ‘𝑛’ times. The reward is taken from 
the second term (weighted reward) of Eqn. 10. For 
convergence, the weight ‘𝛼’ is chosen empirically in such a way 
that it satisfies the Robbins-Monro stochastic approximation 
condition [31] for non-constant ‘𝛼’, namely, ∑ 𝛼3(𝑖) = ∞3  and 
∑ 𝛼3(𝑖)( < ∞3 . To be noted that the weight ‘𝛼’ is 
manifestation of ‘1/𝑛’ in Eqn. 13. Now, extending the concept 
to all top ‘𝑘’ contents, Eqn. 13 can be modified using Eqn. 6: 

� lim
4→E

1
𝑛)�)𝒬)?'(𝑖)

"

25'

�
3

)5'

� −)𝜇2∗
"

25'

<)𝜖2

"

25'

 

⇒ � lim
4→E

1
𝑛)�)�𝑅),2,𝕃 + 𝕀'(𝛿)]𝑅),2,𝔽 + 𝑅),2,𝔾^�

"

25'

�
3

)5'

� 

−)𝜇2∗
"

25'

<)𝜖2

"

25'

	(14) 

   The convergence proof for each of the top ‘𝑘’ contents 
individually follow the same logic as for the single content, 
provided each content is sampled infinitely often. Each content, 
including the top ‘𝑘’ contents, must be selected infinitely often 
as the number of total selections 𝑇 → ∞. This requirement is 
met in practice by exploration strategies (like 𝜖-greedy/UCB) 
that ensure all arms are explored sufficiently over time. 
 With an assumption on the success of the Top-k MAB based 
caching policy, let’s say that the ideal sequence of contents are 
cached at A-UAVs, which is 𝐶% = {𝑖∗|𝑖∗ ∈ 𝑁, 1 ≤ 𝑖∗ ≤ 𝑘}. For 
this caching decision, ∑ 𝜖2"

25' = 0, according to the expression 
given in Eqn. 14. Therefore, the instantaneous regret post-
convergence can be derived from Eqn. 12 and 14, as follows: 

max
"
)�𝑅),2∗,𝕃 + 𝕀'(𝛿)]𝑅),2∗,𝔽 + 𝑅),2∗,𝔾^�
"

25'

 

−)�𝑅),2,𝕃 + 𝕀'(𝛿)]𝑅),2,𝔽 + 𝑅),2,𝔾^�
"

25'

≈ 0				(15) 

   The evidence of convergence, supporting the above 
expression is shown in Fig. 6, where near-optimal contents 
cached at A-UAVs leads to ∑ 𝜖2"

25' ≈ 0. According to the learnt 
caching policy, the cached contents can boost content 
availability at their respective communities as well as at other 
distant communities via MF-UAVs. 

 
Fig. 3. Algorithmic selection of cached contents at MF-UAVs in conjunction 

with Top-k Multi-Armed Bandit learning at A-UAV 

D. Selective Caching at Micro-Ferrying UAVs (MF-UAVs) 

Ideally, the purpose of the MF-UAVs is to ferry around a 
subset of 𝐶/)*)+, +𝑁%. (1 − 𝜆). 𝐶% number of contents stored 
across 𝑁%	number of A-UAVs (see Section IV). Due to the 
limitation of per-MF-UAV caching space (i.e.,	𝐶LM), its 
caching policy should be determined based on its trajectories, 
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learnt caching policy at A-UAVs, content request patterns, and 
the 𝑇𝐴𝐷𝑠 associated with the contents to be cached.  
MF-UAV caching policy is explained in the pseudocode below. 

Algorithm 2 MF-UAV Caching Algorithm with Top-k MAB 
learning-based caching policy at A-UAVs 
1. Input: Total A-UAVs in its trajectory, 𝑇𝐴𝐷, next A-UAV 

‘𝑥’, present A-UAV ‘𝑥 − 1’  
2. Output: 𝐶LM contents for MF-UAV ‘𝑦’ 
3. Caching at A-UAVs using Top-k MAB policy (Algorithm 

1) 
4. while True: 
5.       if MF-UAV leaving for next A-UAV ‘𝑥’ then do 
                // Contents that are not in the future visiting A-UAV 
6.             Update ferrying content knowledge 
                // Function call from the present A-UAV ‘𝑥 − 1’ 
7.             Call content-wise_TAD ( )   
                // Present A-UAV sends MF-UAV visiting frequency             
8.             Call MF-UAV_visiting_frequency ( )   
                // Check what content the last MF-UAV ferried 
9.             Call Check_previous_MF-UAV_roster ( )  

                  Return roster contents with respective TADs  
                // Compute request interval for last MF-UAV roster 
10.             Calculate least popular content’s request interval 
11.             Check if request time is less than its TAD and  

              MF-UAV visiting duration 
12.             if True then do 
13.                   Cache same roster 
14.             else 
15.                   Cache next best roster 
16.             end if 
17.             Check if other MF-UAVs flying with MF-UAV ‘𝑦’ 
18.             for 𝑙 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(MF-UAVs flying together) do 
19.                 for 𝑘 = 0	𝑡𝑜	𝑙𝑒𝑛𝑔𝑡ℎ(A-UAV ‘𝑥’ cache 𝐶%C) do 
20.                       Check if 𝑘 in 𝐶LM cache space of  

                       MF-UAV ‘𝑦’ 
21.                       if True then do  
22.                           Replace ‘𝑘’ with highest value content  

                             from 𝐶%C8' not cached in MF-UAV ‘𝑦’  
                             and A-UAV ‘𝑥’ 

23.                       end if 
24.                 end for   
25.                 Cache next best roster  
26.              end for 
27.       end if 
28.       Update next A-UAV ‘𝑥’, present A-UAV ‘𝑥 − 1’  
29. end while 

The role of MF-UAVs is to ferry contents from the 
previously visited A-UAVs to the future visiting A-UAV such 
that the future visiting A-UAV gets the benefit of contents 
cached at other A-UAVs. In Algorithm 2, this process is 
described in detail. Fig. 3 shows the impact of this collaborative 
algorithm. 

Consider a situation in which an MF-UAV ‘𝑦’ is ready to 
leave the A-UAV ‘𝑥 − 1’. Before caching contents, it needs the 
following information from A-UAV ‘𝑥 − 1’; 1) What are the 

contents eligible for ferrying; 2) What is the MF-UAVs visiting 
frequency; 3) What roster of ferrying content did the last MF-
UAV ferry, where roster is the grouping of contents based on 
their popularity or value; 4) Are the next roster contents likely 
to be requested within the given TAD; and 5) Are MF-UAVs 
flying in close proximity with each other. Based on these 
information MF-UAV ‘𝑦’ selectively caches contents while 
maintaining diversity in the contents cached by other MF-
UAVs in its proximity. This means, if MF-UAVs are flying 
while maintaining proximity with each other or in groups, they 
ferry contents from consecutive rosters. To be noted that the 
size of a roster is same as an MF-UAV’s cache size. Therefore, 
if MF-UAVs are flying in groups of 𝑁LMN  (group size), then the 
number of contents cached by the group is 𝑁LMN × 𝐶LM. Such 
selective caching policy at MF-UAVs ensures content 
availability maximization by avoiding redundant cache 
duplication.  

VI. EXPERIMENTAL RESULTS AND CONTENT  
DISSEMINATION PERFORMANCE 

Simulation experiments are performed to analyze the 
performance of the proposed Top-k MAB learning-based 
caching mechanism and selective caching at the micro-ferrying 
UAVs. An event-driven simulator accomplishes content 
request generation while maintaining an intra-event interval 
according to exponential distribution and following a Zipf 
popularity distribution (refer to Eqn. 1). To capture 
heterogeneity in content popularity sequence at different 
communities, contents are swapped with pre-decided 
probability [29] and the difference between the sequences are 
determined using Smith-Waterman Distance [29]. The default 
experimental parameters for the proposed Top-k MAB learning 
based caching and cache pre-loading policies are listed in Table 
I.  

The performance evaluation of the proposed mechanism is 
accomplished via the following metrics. 
   Content Availability (𝑃+O+2,): Defined as the ratio between 
cache hits and generated requests for a given tolerable access 
delay. Cache hits are the content provided to the users from the 
contents cached in the UAV-aided caching system (without 
download). Therefore, content availability indirectly indicates 
the content download cost of a systems as well. 

Cache Distribution Optimality (CDO): This determines the 
optimality of the learnt caching policy in terms of the caching 
sequence. Jaro-Winkler Similarity (JWS) [29] is used to 
represent CDO, by computing the similarity between the 
content sequence from the learnt caching policy and content 
sequence according to cache pre-loading. It is computed by 
calculating the number of matches, number of transpositions 
required within the matches and the similarity in prefix of both 
sequences. It is a normalized similarity measure where 1 
represents optimal caching and 0 means non-optimal caching. 

Access Delay (𝐴𝐷): Performance of Top-K MAB model and 
selective caching policy for micro-ferrying UAVs is also 
evaluated based on the access delay which is the end-to-end 
delay between the generation of content request and its 
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provisioning from the cached contents in the UAVs. This paper 
reports the epoch-wise average access delay to show the 
improvement in caching policy as learning progresses.   

A. Effect of Exploration Strategies on Learnt Caching Policy 

In order to understand the viability of the proposed Top-k 
MAB learning-based caching policy in scenarios with demand 
heterogeneity, two type of content popularity sequence are 
used. This is achieved with adjacent communities having  
different popularity sequences. For UCB exploration strategy, 
the degree of exploration is set to 𝛼B = 2. Also, to show the 
effectiveness of selective caching at micro-ferrying UAVs 
(MF-UAVs), TAD Ratio 𝑅4%P for contents {51 − 75} are kept 
lower than the default 𝑅4%P i.e., 1/8	. To be noted that TADs 
are represented as a ratio with respect to trajectory time 
(𝑇4I+:GQ)*I.) to ensure generalizability of the proposed 
algorithms. Fig. 4 shows the convergence behavior of the learnt 
caching policy with Top-k MAB model at the A-UAVs, and 
selective caching at the MF-UAVs.  

The convergence behavior is shown in terms of content 
availability from the learnt caching policy. The observations 
from Fig. 4 are as follows. First, the figure shows that by 

employing Top-k MAB agent at every A-UAV and selective 
caching at MF-UAVs, a caching policy can be learnt which can 
provide content dissemination performance closer to the 
benchmark performance [29]. The algorithm is able to leverage 
the multi-dimensional reward structure, as explained in Eqns. 
7-9, to learn the caching policy on-the-fly (see Section VB). 
Second, the selective caching policy at micro-ferrying UAVs 
leverages the shared information between themselves and with 
the A-UAVs to boost the content availability closer to the 
benchmark performance by approximately 9% (see Fig. 4b). It 
utilizes the currently visiting A-UAV’s caching information 
and the preceding MF-UAV’s caching decision to 
algorithmically select its own contents for caching, which is 
also shown in Fig. 3. Such selective caching will reduce the 
redundancy of multiple copies of the same content available 
through multiple sources at the same time. Difference in the 
effectiveness of selective caching can be observed in Fig. 4a 
and 3b, where caching decisions at MF-UAVs differ due to the 
difference in 𝑅4%P in both scenarios. Third, when the agent uses 
UCB exploration strategy, during the initial learning epochs the 
content availability increases promptly due to high upper 
confidence value of all contents, which avoids excessive 

TABLE I.   

DEFAULT VALUES FOR MODEL PARAMETERS 

# Variables Default Value 

1 Total number of contents, 𝐶 2000 

2 Number of A-UAVs, 𝑁% 4 

3 Number of MF-UAVs, 𝑁LM 8 

4 A-UAV’s Cache space (as number of contents), 𝐶% 200 

5 MF-UAV’s Cache space (as number of contents), 𝐶LM 25 

6 Poisson request rate parameter, 𝜇 (in request/sec) 1 

7 Hover rate of MF-UAV, 𝑅R*OGI = 𝑇R*OGI/𝑇4I+:GQ)*I. 1/6 

8 Transit rate of MF-UAV, 𝑅4I+3-2) = 𝑇4I+3-2)/𝑇4I+:GQ)*I. 1/12 
9 Zipf parameter (Popularity), 𝛼 0.4 

10 Micro Ferrying UAV Trajectory Round-robin 

 

 

Here, 𝜂𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 	𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 	𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦

With lower 𝑅𝑇𝐴𝐷 for some contents, selective
caching policy modifies the Micro-ferrying
UAV caching roster accordingly.

(a) (b)

About 9% increase in
content availability
with Top-k MAB and
Selective Caching

About 5% increase in
content availability with
Top-k MAB

Fig. 4. (a) Increase in Content Availability with Top-k MAB and Selective Caching Policy, (b) Responsiveness of Selective caching to user demand i.e., TAD 
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exploitation. This is due to low sampling of requests. As 
learning progresses, the sparse request for unpopular contents 
keeps the upper confidence value high which maintains 
consistent exploratory behavior. Fig. 4a shows that such 
exploration strategy alone helps to boost the content availability 
closer to the benchmark performance by approximately 5% 
more than popular estimation-based methods [23], [24], [25], 
[26].  

 
Fig. 5. Delay with Top-k MAB and Selective Caching Policy 

Similarly, Fig. 5 shows the convergence behavior of the Top-
k MAB learning-based caching agent at the A-UAVs and 
selective caching at micro-ferrying UAVs in terms of access 
delay. It is observed that as learning progresses, the access delay 
for requested contents reduces while the content availability 
increases. This shows the improvement in learnt caching policy 
over the learning epochs and its effect on content access delay. 
The best reduction in access delay is observed when Upper 
Confidence Bound (UCB) exploration is used at the Top-k 
MAB agent of A-UAVs and selective caching is applied at 
micro-ferrying UAVs.  

 
Fig. 6. Learnt cached content sequence’s similarity with benchmark sequence 

B. Cache Similarity of Learnt Sequence with Best Sequence 

The effects of learning on the cached content sequence are 
demonstrated in Fig. 6. It plots Cache Distribution Optimality 
(CDO) of the cached content sequences for all the A-UAVs in 
terms of Jaro-Winkler Similarity (JWS). The key observation 
are as follows. First, the average 𝐶𝐷𝑂 between the benchmark 
caching sequence from cache pre-loading policy (see Section 
IV) and the cached content sequences learnt by the Top-k MAB 
agents at A-UAVs converge near 0.9, although with a certain 

variance. Physically, this represents higher degree of similarity 
after convergence, where 1 indicates complete similarity and 0 
implies no similarity. Second, the cached contents improve over 
epochs as learning progresses. Lower 𝐶𝐷𝑂 values after the 
initial epochs signify that the A-UAVs have no a priori local or 
global content popularity information. As the MAB agents 
learn, over epochs of generated content requests, the cached 
contents in the A-UAVs become more similar to the best 
caching sequence. Third, 𝐶𝐷𝑂 is an indirect representation of 
the storage segmentation factor (𝜆), which is used to decide the 
segment sizes according to cache pre-loading policies [29]. A 
higher 𝐶𝐷𝑂 implies that, along with learning, the caching 
policy, the Top-k MAB agents learn to emulate the said 
segmentation behavior. Finally, the partial dissimilarity of the 
cached content sequence can be ascribed to the uncertainty (or 
regret) associated with the Q-values of contents with low 
popularity. Also, this leads to an oscillatory convergence of 
𝐶𝐷𝑂 for the A-UAVs.  

The impacts of selective caching at micro-ferrying UAVs can 
be distinctly seen in Fig 6. Selective caching at the MF-UAVs 
along with Top-k MAB caching agent at A-UAVs leads to a 
𝐶𝐷𝑂 of nearly 0.9. Note that this depends on effective caching 
capacity of the MF-UAVs, which is dictated by the 𝑇𝐴𝐷s 
associated with content requests and the MF-UAVs visiting 
frequency at A-UAVs (refer Algorithm 2). The dependance of 
contents’ Q-values on such information also adds to the post-
convergence oscillation. To be noted that for the computation 
of 𝐶𝐷𝑂, the benchmark caching sequence is derived by 
considering the same effective caching capacity as the selective 
caching algorithm at the micro-ferrying UAVs.  

 
Fig. 7. (a) Best learnt 𝐶"#

$%% for 𝑅&'( = 1/6, (b) for 𝑅&'( = 1/8 

C. Leveraging the Micro-Ferrying UAVs for Better Effective 
Caching Capacity 

To elaborate on the ability of selective caching at micro-
ferrying UAVs to exploit effective caching capacity, 
experiments are conducted with different TAD Ratios 𝑅4%P. 
The comparison of performance is done with a scenario where 
there is one relatively larger ferrying UAV (F-UAV). Such F-
UAVs can have sophisticated communication equipment as 

With Top-k MAB and
Selective caching policy, the
content access delays are
substantially less than the
TAD of 600 seconds.

With TAD of 450 seconds
for contents {51-75}, the
learnt caching policy
adjusts to provide lower
content access delay.

Initial oscillations
with all caching methods
indicate no a-priori content
popularity information

The post-convergence oscillations show
the sensitive Q-values of the contents
ferried by micro-ferrying UAVs.
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payload including a larger caching capacity (≥ total caching 
capacity of all MF-UAVs). The content availability according 
to the learnt caching policy with 24 MF-UAVs is shown in Fig. 
7. The remaining parameters are set according to the default 
values provided in Table I. Following observations can be made 
from Fig. 7a. First, for a given 𝑅4%P =1/6, the best content 
availability achieved is with effective caching capacity of 
4. 𝐶LM i.e., four times the caching capacity of an MF-UAV. 
Physically, this means that the 4 MF-UAVs fly very close to 
each other. Within the fleet of such closely flying MF-UAVs 
none of the pending content requests, for the ones cached at the 
MF-UAVs, expire by exceeding their respective TADs. Second,  
content availability increases with increase in effective caching 
capacity up to a certain point beyond which it decreases with 
further increase in effective caching capacity. This is due to two 
opposing effects: a) low availability period [27] for a content 
increases with increase in effective caching capacity which 
eventually decreases content availability, and b) with increase 
in effective caching capacity content availability increases due 
to more types of contents cached at MF-UAVs. Therefore, 
selective caching at the MF-UAVs handles the trade-off 
between these opposing behaviors by choosing a caching policy 
that increases the effective caching capacity without increasing 
the low availability period of contents cached at MF-UAVs. 

Note that the previous explanation is valid for a particular 
𝑅4%P. The best learnt effective caching capacity differs when 
the 𝑇𝐴𝐷𝑠 associated with the content requests change. This is 
demonstrated in Fig. 7b where due to a decrease in 𝑅4%P from 
1/6 to 1/8, the best learnt effective caching capacity decreases. 
Therefore, it can be said that the learning capability of the Top-
k MAB agents at A-UAVs have an indirect dependence on the 
effective caching capacity of the MF-UAVs.  

This also emphasizes the motivation behind employing 
micro-UAVs in the role of ferrying contents. With a given cost 
budget for UAVs in a content dissemination system, micro-
UAVs provide flexibility in caching policies such that their 
effective caching capacity can be altered to fit to the users’ 
needs. This facility cannot be leveraged with relatively larger 
and pricier UAVs, especially under equipment cost constraints.  

VII. SUMMARY AND CONCLUSION 
In this paper, a micro-UAV aided content dissemination 

system is proposed which can learn caching policies on-the-fly 
without a priori content popularity information. Two types of 
UAVs are introduced for content provisioning in a disaster/war-
stricken scenario viz. anchor UAVs and micro-ferrying UAVs. 
Cache-enabled anchor UAVs are stationed at each stranded 
community of users for uninterrupted content provisioning. 
Micro-ferrying UAVs act as content transfer agents across the 
anchor UAVs. A decentralized Top-k Multi-Armed Bandit 
Learning-based caching policy is proposed to ameliorate the 
limitation of existing caching methods. It learns the caching 
policy on-the-fly by maximizing the estimated multi-
dimensional reward for the increase in local and global content 
availability. It is shown that a Top-k MAB learning based 
caching policy achieves a content availability of »82% of 

maximum achievable content availability. To improve the Q-
value estimates, Selective Caching Algorithm is introduced at 
micro-ferrying UAVs. This method combines the shared 
information between anchor UAVs and micro-ferrying UAVs 
to reduce redundant copies of contents and to produce a better 
estimate of top popular content at a community. Selective 
caching at micro-ferrying UAVs along with Top-k MAB 
learning-based caching policy at anchor UAVs boosts the 
content availability to »87% of maximum achievable content 
availability. With the proposed caching policies, a scaled-up 
micro-UAV aided network is shown to attain a content 
availability of nearly 95% of maximum achievable content 
availability. Future work on this research includes 
algorithmically coping with time-varying content popularity 
and adaptive trajectory planning in the presence of operational 
unreliabilities of the UAV. 
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