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SAMPLE COMPLEXITY OF THE LINEAR QUADRATIC REGULATOR: A

REINFORCEMENT LEARNING LENS

AMIRREZA NESHAEI MOGHADDAM, ALEX OLSHEVSKY, AND BAHMAN GHARESIFARD

Abstract. We provide the first known algorithm that provably achieves ε-optimality within rOp1{εq function
evaluations for the discounted discrete-time LQR problem with unknown parameters, without relying on two-
point gradient estimates. These estimates are known to be unrealistic in many settings, as they depend on
using the exact same initialization, which is to be selected randomly, for two different policies. Our results
substantially improve upon the existing literature outside the realm of two-point gradient estimates, which

either leads to rOp1{ε2q rates or heavily relies on stability assumptions.

1. Introduction

The Linear-Quadratic Regulator (LQR) has been used as a benchmark in optimal control theory since the
sixties, see [15]. The key distinguishing property of LQR problems is that the optimal controller is linear
and can be fully characterized by the celebrated Riccati equation [3]. Naturally, with the recent increase in
interest in model-free and data-driven methods, the study of LQR problems has resurfaced in the literature in
scenarios where the model parameters are unknown and either need to be estimated, or model-free strategies
need to be used. Even though such settings fall within the realm of adaptive control, the majority of classical
studies addressing this issue have concentrated on system identification or examining asymptotic outcomes [13,
6, 7, 5, 4].

Recently, the problem has been examined from a machine learning standpoint in both online and offline
contexts. In online settings, least-square estimators have been demonstrated to achieve sublinear regret. This
area has seen extensive research focusing on the details of these estimations [1, 8, 18, 2, 20]. This paper focuses
on the offline setting and builds on a sequence of breakthrough results through a reinforcement learning lens,
starting with [10]. By establishing a gradient domination/Polyak-Lojasiewicz property, the results of [10] first
demonstrate that exact gradient descent, in the model-based case, converges to the global optimal solution,
despite the non-convex landscape of the LQR problem under study. Using this and in the model-free settings,
gradient estimations are derived from samples of the cost function value, leading to policy gradient methods.
For the undiscounted discrete-time LQR under the random initialization setting, global convergence guarantees
are provided using so-called one-point gradient estimates. As also explicitly pointed out in later work [17],

the convergence rate for obtaining an ε-optimal policy established in [10] is only of the order rOp1{ε4q in zero-
order evaluations. Note that by zero-order methods, we mean a setup where gradients are not available and
can only be approximated using samples of the function value. The two most common such methods in the
LQR problem are the one-point and two-point estimates where the former is obtained from a single function
evaluation and the latter from two different such evaluations1.

1To elaborate further, we provide the formulation of these two methods here. The one-point estimate at a policy K P R
mˆn

is computed as

g
1

r
pKq :“ CinitpK ` rU ;x0q

m.n

r
U,

for some smoothing radius r P R and a random matrix U P R
mˆn drawn uniformly over matrices with unit Frobenius norm.

Likewise, the two-point estimate at a policy K P R
mˆn is given by

g
2

r
pKq :“ rCinitpK ` rU ;x0q ´ CinitpK ´ rU ;x0qs

m.n

2r
U,

1
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The next significant development related to our work is presented in [17], which considers the discounted
discrete-time LQR and employs zero-order methods for gradient estimation. For the essential case of one-point
gradient estimation, an enhanced analysis is proposed. This analysis does not rely on stability assumptions

yet improves the convergence rate reported in [10] from rOp1{ε4q to rOp1{ε2q. Remarkably, with a two-point

gradient estimate, ε-optimality can be achieved using only rOp1{εq function evaluations. Similar findings are
reported in [19], which are somewhat restrictive in terms of scaling of probability bounds with respect to
dimensions. The substantial improvement in [17] stems from the application of sharp probabilistic estimates
on stability regions using martingale techniques, a method we also heavily rely on. It should be noted that
in both mentioned works, a constant learning rate is employed for the policy update. Interestingly, it is
not difficult to observe that there is no advantage in using time-varying learning rates when the technique
developed in [17] is applied directly.

It is worth pointing out the literature related to the discrete-time LQR problem with time-average cost. For

instance, [25] employs an actor-critic approach to achieve a sample complexity of rOp1{ε5q. Similarly, using

actor-critic methods, [26] demonstrates that a sample complexity of rOp1{εq is achievable, assuming almost
sure stability and boundedness of the policy size throughout the algorithm. However, the assumption of
boundedness may not always be realistic, and more so is the assumption on stability, considering the inherently
noisy dynamics. For example, this issue is echoed in the recent work [11], which presupposes the boundedness
of policies at every iteration.

As part of our contributions, and somewhat inspired by REINFORCE [24, 23], we propose a different gradient
estimate scheme, which relies on a new take on using policy gradient for gradient estimation by appropriately
sampling the deterministic policies. We are able to achieve high-probability upper bounds on our gradient
estimations using moment concentration inequalities. Coupled with the adoption of time-varying learning

rates, our methodology enables us to reach a rOp1{εq convergence rate, circumventing the need for two-point
gradient estimations.

2. Problem statement

We start with a few mathematical notations that will be used throughout. For arbitrary matrix M P R
mˆn,

we use ‖M‖, ‖M‖F , and σminpMq to denote the 2-norm, Frobenius norm, and the minimum singular value

of M respectively. In addition, for a square matrix M̃ P R
nˆn, trpM̃q represents the trace of M̃ , and KpM̃ q

denotes the Kreiss constant of M̃ :

(1) KpM̃q :“ sup
|z|ą1,zPC

p|z| ´ 1q‖pzI ´ M̃q´1‖.

We also use xM1,M2y :“ trpMJ
1 M2q to denote the inner product of the matrices M1,M2 P R

mˆn.

Let us now define the problem under study. We consider the discrete-time infinite-horizon discounted LQR
problem

(2) minE

«ÿ

tě0

γtpxJ
t Qxt ` uJ

t Rutq
ff

s.t. xt`1 “ Axt ` But ` zt,

where xt P R
n is the system state at time t, initialized, deterministically or randomly at x0, ut P R

m is the
control input at time t, zt P R

n is the additive noise of the system at time t, A P R
nˆn and B P R

nˆm are the
system matrices, and Q P R

nˆn and R P R
mˆm are positive-definite matrices that parameterize the quadratic

costs. In most of what follows, we assume that the pair pA,Bq is controllable.

which requires cost evaluations of implementing two different policies K ` rU and K ´ rU with respect to the same initial state
x0.
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As noted above, randomness is introduced in two different ways in the above problem formulation: through the
initialization or as an added disturbance to the dynamics. This has led to two separate scenarios considered
in the literature:

‚ Random initialization: where it is assumed that the additive noise zt is zero for all t ě 0, and
that the initial state x0 is randomly chosen from an initial distribution D0. Given the initial state x0,
we let Cinit,γpK;x0q be the random variable representing the cost of implementing the linear policy
K P R

mˆn, i.e., choosing ut “ ´Kxt for t ě 0, from the initial state x0:

(3) CinitpK;x0q :“
8ÿ

t“0

γtpxJ
t Qxt ` uJ

t Rutq,

where 0 ă γ ď 1 is the discount factor, and the dynamics is given by (2) with zt “ 0. That is, in this
case the trajectories satisfy the dynamics

xt`1 “Axt ` But,

ut “ ´ Kxt.(4)

Naturally, the objective is to minimize the population cost defined as

(5) CinitpKq :“ Ex0„D0
rCinitpK;x0qs

over choices of the policy K.
‚ Noisy dynamics: where it is assumed zt is drawn i.i.d. for each t from a distribution Dadd, and that

the initial state x0 is set deterministically to zero. Given a sequence of random variables Z “ tztutě0,
we let CdynpK;Zq be the random variable representing the cost of implementing the linear policy K

on a system where the additive noise is drawn from Z, i.e.,

(6) CdynpK;Zq :“
8ÿ

t“0

γtpxJ
t Qxt ` uJ

t Rutq,

where we have set x0 “ 0, the dynamics is given by (2) with ut “ ´Kxt for each t ě 0, and 0 ă γ ă 1

is the discount factor. In contrast to the random initialization setting, the discount factor in this
setting obeys γ ă 1 to ensure that the costs sum to something finite. Once again, the objective is to
minimize the population cost

(7) CdynpKq :“ EZ„DN

add
rCdynpK;Zqs.

By classical results in optimal control theory, see e.g., [12, 15], the optimal controller in both cases is linear
and can be expressed as ut “ ´K˚xt where t ě 0 and K˚ P R

mˆn is the controller gain, and can be explicitly
computed. When the system matrices are known, which is not the case in this paper, the policy K˚ can be
derived as follows

(8) K˚ “ γpR ` γBJPBq´1BJPA,

where P denotes the unique positive definite solution to the discounted discrete-time algebraic Riccati equa-
tion [3]:

(9) P “ γAJPA ´ γ2AJPBpR ` γBJPBq´1BJPA ` Q.

Throughout this paper, we closely follow the notation and terminology that is introduced in the seminal
work [17]. To start, for a random variable v „ D where D P tD0,Daddu, we assume that

(10) Ervs “ 0, ErvvJs “ I, and ‖v‖2 ď Cm a.s.

where as per usual, “a.s.” refers to almost surely. The assumption on the covariance being identity is without
loss of generality, see [17]. Moreover, it is noteworthy to mention that using the definition (3) with the
trajectories following (4), the cost for the random initialization setting can be rewritten as

(11) CinitpK;x0q “ xJ
0 PKx0,
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where PK is the symmetric positive semi-definite solution to the fixed point equation:

(12) PK “ Q ` KJRK ` γpA ´ BKqJPKpA ´ BKq.
Consequently, it also holds that

CinitpKq “ Ex0„D0
rCinitpK;x0qs

“ Ex0„D0
rxJ

0 PKx0s
“ Ex0„D0

rtrpPKx0x
J
0 qs

“ trpPKEx0„D0
rx0x

J
0 sq

piq“ trpPKq,(13)

where (i) follows from assumption (10) on the randomness. Although this formulation is stated for the cost
under the random initialization setting, it turns out that the two costs are essentially equivalent when the
respective systems are driven by noise with the same first two moments, in the sense that is shown in Lemma 2.4
to follow. For this reason, we focus on the random initialization scenario henceforth.

Let us now state the problem that we consider throughout this paper. We recall here that we assume that
the pair pA,Bq is controllable, however, unknown. A policy K is said to stabilize the system pA,Bq if we
have ρpA ´ BKq ă 1. Note that by the controllability assumption, there exists some policy K satisfying the
condition ρpA´BKq ă 1. Furthermore, we assume access to some stable policy K0; this is a mild assumption
that can be satisfied in a variety of ways; we refer the reader to [10, 9]. We use K0 to initialize our algorithms,
which we shortly introduce.

With this in mind, the main objective of this paper is to find an ε-optimal policy K̂, i.e., one satisfying

CinitpK̂q ´ CinitpK˚q ď ε,

where K˚ is an optimal policy. The proposed scheme in the literature crucially involves forming form an
estimation of the gradient of the cost function (3), which then is used for a gradient update with an appropriate
learning rate. In accordance with this, we also propose an algorithm here, displayed as Algorithm 1, where
we use an estimate inspired by the REINFORCE method [24, 23] with a time-varying learning rate to achieve
ε-optimality.

2.1. Regularity properties. We introduce some notations related to the regularity properties of the cost
functions; these will play a crucial role in some of our bounds; the next few results are borrowed from [17].

Lemma 2.1 (LQR Cost is locally Lipschitz). [17, Lemma 4] Given any linear policy K with finite cost, there

exist positive scalars pλK , ĂλK , ζKq, depending on the function value CinitpKq, such that for all policies K 1

satisfying ‖K 1 ´ K‖F ď ζK , and for all initial states x0, we have

|CinitpK 1q ´ CinitpKq| ďλK‖K 1 ´ K‖F , and(14a)

|CinitpK 1;x0q ´ CinitpK;x0q| ď ĂλK‖K 1 ´ K‖F .(14b)

Lemma 2.2 (LQR Cost has locally Lipschitz Gradients). [17, Lemma 5] Given any linear policy K with finite
cost, there exist positive scalars pβK , φKq, depending on the function value CinitpKq, such that for all policies
K 1 satisfying ‖K 1 ´ K‖F ď βK , we have

‖∇CinitpK 1q ´ ∇CinitpKq‖F ď φK‖K 1 ´ K‖F .(15)

Lemma 2.3 (LQR satisfies PL). [17, Lemma 6] There exists a universal constant µlqr ą 0 such that for all
stable policies K, we have

‖∇CinitpKq‖2F ě µlqr pCinitpKq ´ CinitpK˚qq ,(16)

where K˚ is a global minimizer of the cost function Cinit.



SAMPLE COMPLEXITY OF THE LINEAR QUADRATIC REGULATOR: A REINFORCEMENT LEARNING LENS 5

For the sake of exposition, these properties are stated here without specifying the various smoothness and

PL constants. The explicit expressions for tλK , ĂλK , φK , βK , ζK , µlqru in terms of the parameters of the LQR
problem are provided in [17, Appendix A]. Remark 2.1 to follow will provide further elaboration on these
parameters as well.

Lemma 2.4 (Equivalence of population costs up to scaling). [17, Lemma 7] For all policies K, we have

CdynpKq “ γ

1 ´ γ
CinitpKq.

This result shows that the noisy dynamics and random initialization population costs behave identically when
their respective sources of randomness have the same first two moments. Therefore, we focus on the random
initialization cost from now on and remind the reader that CpKq :“ CinitpKq for ease of notation.

We define the set

(17) Glqr :“ tK | CpKq ´ CpK˚q ď 10CpK0qu.

Since C is pζK , λKq locally Lipschitz and pβK , φKq locally smooth, both properties hold simultaneously within
a Frobenius norm radius ωK :“ mintβK , ζKu of a point K P Glqr. We define the quantities

φlqr :“ sup
xPGlqr

φK , λlqr :“ sup
KPGlqr

λK , and ωlqr :“ inf
KPGlqr

ωK .

It is noteworthy to mention that these values are non-zero and finite, and their explicit formulation is provided
in [17, Appendix A], see Remark 2.1 to follow for further clarification.

Observe that by the definition of these quantities, one can immediately show that for any K P Glqr and
K 1 P R

mˆn such that ‖K 1 ´ K‖F ď ωlqr, we have that

|CpK 1q ´ CpKq| ďλlqr‖K
1 ´ K‖F , and

‖∇CpK 1q ´ ∇CpKq‖F ďφlqr‖K
1 ´ K‖F .

Remark 2.1. We now describe how to specify the set of parameters tλK , ĂλK , φK , βK , ζK , µlqru in our setting.
We start by recalling that a set of parameters tcK0

, cK1
, . . . , cK9

u is defined in [17, Appendix A], which notably
depend on CpKq. Subsequently, by replacing said CpKq with supKPGlqr CpKq, they obtain a set of constants
tĄcK0

, ĄcK1
, . . . , ĄcK9

u which are independent of K. For ease of access for the reader, we point out that

(18) ωlqr “ ĄcK9
, φlqr “ ĄcK7

, and λlqr “ ĄcK8
.

Moreover, it holds that maxt‖K‖, }∇CpKq}Fu ď ĄcK1
for any K P Glqr, see [17, Appendix A] and [10,

Lemma 22]. Note that the only required modification in the values of ĄcK0
, ĄcK1

, . . . , ĄcK9
for our case is having

10CpK0q `CpK˚q as supKPGlqr CpKq instead of [17]’s 10CpK0q ´9CpK˚q, due to the difference in our definition

of Glqr in (17). ˛

We now provide an informal statement of our main result, which shows that our proposed algorithm obtains

an ε-optimal policy after rOp1{εq iterations. As we outline precisely later, this algorithm forms an estimate
y∇CpKtq of the gradient at a given time t and updates the policy Kt with a time-varying learning rate αt.

Theorem 2.1. (Informal Statement of Our Main Result): If the step-size is chosen as αt “ C 1
t`N

with N “large enough”, i.e., N „ O
`
plog 1

δ
q3{2

˘
for any chosen δ, and C being a known constant, then after

T “ O pN{εq iterations, provided the discount factor is close enough to 1, we have that

(19) CpKT q ´ CpK˚q ď ε

with a probability of at least 4{5´ δT . In particular, choosing δ proportional to 1{T , we attain CpKT q ´CpK˚q
with a constant probability with a sample complexity of rO p1{εq.
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Let us first point out that this result substantially improves the ones in the literature by achieving a rOp1{εq
rate without any additional assumptions. The best previous result achieves a convergence rate of rOp1{ε2q
[17] in this setting. Indeed, rOp1{εq rates were only available using so-called two-point estimates which re-use
randomness (e.g., require being able to initialize the system at a given x0). As a result, one must have perfect
control over a simulator to use such estimates; one cannot implement them for systems which need to learn
in the real world, for example. In contrast, our result only uses gradient estimates with a single zero-order
evaluation at each step.

We now begin the process of collecting the essentials needed to articulate our theorem precisely and to prove
this result, beginning with a fresh examination of the policy gradient that we employ for gradient estimation.

3. Policy Gradient

Most formulations of the policy gradient require probabilistic policies; in contrast, as can be seen in (4), we
have used a deterministic policy given by ut “ ´Kxt. To remedy, we utilize the control input ut̂, to be defined

shortly, where t̂ is sampled at random from the distribution µγptq :“ p1´γqγt, where t P t0, 1, 2, ¨ ¨ ¨ u. Keeping
this in mind, we now compute

(20) x∇CpKq :“ 1

1 ´ γ
QKpxt̂, ut̂q∇K log πKput̂|xt̂q,

where the control input ut̂ is randomly chosen from the Gaussian distribution N p´Kxt̂, σ
2Imq for some σ ą 0

only for the selected iteration t̂, and xt̂ “ pA ´ BKqt̂x0 with x0 „ D as before. Note that

(21) Et̂„µγ

”
x∇CpKq

ı
“

8ÿ

t“0

γtQKpxt, utq∇K log πKput|xtq,

where

(22) πKput|xtq “ 1a
p2πqmpσ2qm

e´
put`KxtqJput`Kxtq

2σ2 ,

and

QKpxt, utq :“ xJ
t Qxt ` uJ

t Rut ` γCinitpK;Axt ` Butq
piq“ xJ

t Qxt ` uJ
t Rut ` γpAxt ` ButqJPkpAxt ` Butq,(23)

where (i) is on account of (11). Note that we can also rewrite ut̂ „ N p´Kxt̂, σ
2Imq as

(24) ut̂ “ ´Kxt̂ ` σηt̂,

where ηt̂ „ N p0, Imq. Moreover, we have the following lemma to provide an alternative way of represent-
ing (20).

Lemma 3.1. The gradient estimate in (20) can be modified to get

(25) x∇CpKq “ ´ 1

σp1 ´ γqQ
Kpxt̂,´Kxt̂ ` σηt̂qηt̂xJ

t̂
.
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Proof. Following (20), we have that

x∇CpKq “ 1

1 ´ γ
QKpxt̂, ut̂q∇K log πKput̂|xt̂q

piq“ 1

1 ´ γ
QKpxt̂, ut̂q∇K

ˆ
´ put̂ ` Kxt̂qJput̂ ` Kxt̂q

2σ2

˙

“ 1

1 ´ γ
QKpxt̂, ut̂q∇K

˜
´
uJ
t̂
ut̂ ` 2uJ

t̂
Kxt̂ ` xJ

t̂
KJKxt̂

2σ2

¸

“ 1

1 ´ γ
QKpxt̂, ut̂q∇K

˜
´
tr

`
2xt̂u

J
t̂
K

˘
` tr

`
xt̂x

J
t̂
KJK

˘

2σ2

¸
,(26)

where (i) follows from (22). Now note that

(27) ∇K tr
`
2xt̂u

J
t̂
K

˘
“ ∇K tr

´`
2ut̂x

J
t̂

˘J
K

¯
“ ∇K

@
2ut̂x

J
t̂
,K

D
“ 2ut̂x

J
t̂
,

and

∇K tr
`
xt̂x

J
t̂
KJK

˘
“∇K1

tr
`
xt̂x

J
t̂
KJK1

˘
` ∇K2

tr
`
xt̂x

J
t̂
KJ

2 K
˘

“∇K1
tr

´`
Kxt̂x

J
t̂

˘J
K1

¯
` ∇K2

tr
`
KJ

2

`
Kxt̂x

J
t̂

˘˘

“∇K1

@
Kxt̂x

J
t̂
,K1

D
` ∇K2

@
Kxt̂x

J
t̂
,K2

D

“2Kxt̂x
J
t̂
.(28)

As a result, combining (27) and (28) with (26) yields

x∇CpKq “ 1

1 ´ γ
QKpxt̂, ut̂q

ˆ
´ 1

2σ2

`
2pKxt̂x

J
t̂

` ut̂x
J
t̂

q
˘˙

“ 1

1 ´ γ
QKpxt̂, ut̂q

ˆ
´ put̂ ` Kxt̂q

σ2
xJ
t̂

˙

piq“ ´ 1

σp1 ´ γqQ
Kpxt̂,´Kxt̂ ` σηt̂qηt̂xJ

t̂
,

where (i) follows from (24). This finishes the proof. �

Taking the alternative formulation of our gradient estimate provided in Lemma 3.1 into consideration, we
introduce the algorithm

Algorithm 1 LQR with Policy Gradient

1: Given iteration number T ě 1, initial policy K0 P R
mˆn, noise parameter σ, and step size αt ą 0

2: for t P t0, 1, . . . , T ´ 1u do
3: Sample x0 „ D, t̂ „ µγ , and ηt̂ „ N p0, Imq
4: Simulate Kt for t̂ steps starting from x0 and observe xt̂.
5: ut̂ Ð ´Ktxt̂ ` σηt̂
6: x∇CpKtq Ð ´ 1

σp1´γqηt̂x
J
t̂
QKtpxt̂, ut̂q

7: Kt`1 Ð Kt ´ αt
x∇CpKtq

return KT

Before we state the next result, note that one can compute

(29) ∇CpKq “ 2ppR ` γBJPKBqK ´ γBJPKAqEx0„D

«
8ÿ

t“0

γtxtx
J
t

ff
;
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a proof can be found in [10] for the undiscounted case, where γ “ 1, and in [17] for the discounted case. The
following proposition plays a key role in our constructions.

Proposition 3.1. Suppose ut̂ „ N p´Kxt̂, σ
2Imq as before. Then for any given K,

(30) Er x∇CpKqs “ ∇CpKq.

Proof. Following (25),

Er x∇CpKqs

“ Et̂„µγ

„
Ex0„D

„
Eηt̂„N p0,Imq

”
x∇CpKq

ˇ̌
t̂, x0

ı ˇ̌
ˇ̌t̂



piq“ Et̂„µγ

„
Ex0„D

„
´ 1

σ2p1 ´ γqEηt̂„N p0,Imq

“
Qpxt̂,´Kxt̂ ` σηt̂qpσηt̂q

ˇ̌
t̂, x0

‰
xJ
t̂

ˇ̌
ˇ̌t̂



piiq“ 1

1 ´ γ
Et̂„µγ

«
Ex0„D

«
Eηt̂„N p0,Imq

«
´∇uQ

Kpxt̂, uq
ˇ̌
ˇ̌
u“´Kxt̂`σηt̂

ˇ̌
t̂, x0

ff
xJ
t̂

ˇ̌
ˇ̌t̂

ffff
,(31)

where (i) follows from xt̂ being determined when given x0 and t̂, and (ii) from Stein’s lemma [22]. Using (23),
we compute

∇uQ
Kpxt̂, uq “∇u

`
xJ
t̂
Qxt̂ ` uJRu ` γpAxt̂ ` BuqJPKpAxt̂ ` Buq

˘

“2Ru ` 2γBJPKBu ` 2γBJPKAxt̂,

which evaluated at u “ ´Kxt̂ ` σηt̂ yields

∇uQ
Kpxt̂, uq

ˇ̌
ˇ̌
u“´Kxt̂`σηt̂

“ 2
`
pR ` γBJPKBqp´Kxt̂ ` σηt̂q ` γBJPKAxt̂

˘
.

Substituting in (31), we obtain

Er x∇CpKqs

“ 1

1 ´ γ
Et̂„µγ

„
Ex0„D

„
2

`
pR ` γBJPKBqK ´ γBJPKA

˘
xt̂x

J
t̂

ˇ̌
ˇ̌t̂



“ 2

1 ´ γ
Et̂„µγ

„`
pR ` γBJPKBqK ´ γBJPKA

˘
pA ´ BKqt̂Ex0„Drx0x

J
0 s

´
pA ´ BKqt̂

¯J


“ 2
`
pR ` γBJPKBqK ´ γBJPKA

˘ 8ÿ

t“0

γtpA ´ BKqtEx0„Drx0x
J
0 s

`
pA ´ BKqt

˘J

piq“ 2
`
pR ` γBJPKBqK ´ γBJPKA

˘
Ex0„D

«
8ÿ

t“0

γtpA ´ BKqtx0x
J
0

`
pA ´ BKqt

˘J

ff

piiq“ 2
`
pR ` γBJPKBqK ´ γBJPKA

˘
Ex0„D

«
8ÿ

t“0

γtxtx
J
t

ff

piiiq“ ∇CpKq,
where (i) is done by utilizing the linearity of expectation along with replacing t̂ by t as it is just a sum variable
from that equation forward, (ii) is due to xt “ pA ´ BKqtx0, and (iii) follows from (29). �

Before moving on to the next result, we define the undiscounted cost

(32) CundpKq “ Ex0„D

«
8ÿ

t“0

pxJ
t Qxt ` uJ

t Rutq
ff
,

subject to (4).



SAMPLE COMPLEXITY OF THE LINEAR QUADRATIC REGULATOR: A REINFORCEMENT LEARNING LENS 9

Lemma 3.2. Suppose K0 is stable and suppose that

γ P
ˆ
1 ´ σminpQq

11CundpK0q , 1
˙
.

Then

(33) sup
KPGlqr

ρpA ´ BKq ď 1?
γ

d
1 ´ σminpQq

10CpK0q ` CpK˚q ;

in particular, the set Glqr in (17) only contains stable policies.

Before we provide the proof, we point out that the condition of stability of K0 readily implies that CundpK0q
is finite.

Proof. Suppose K̃ satifies ρpA ´ BK̃q ě 1. Then we have

CpK̃q “ Ex0„D

«
8ÿ

t“0

γtpxJ
t Qxt ` uJ

t Rutq
ff

ě
8ÿ

t“0

γtσminpQqE‖pA ´ BK̃qtx0‖
2

“
8ÿ

t“0

γtσminpQqErtrpppA ´ BK̃qtqJpA ´ BK̃qtx0x
J
0 qs

piq“
8ÿ

t“0

γtσminpQq‖pA ´ BK̃qt‖2F

ě
8ÿ

t“0

γtσminpQqρppA ´ BK̃qtq2

piiq
ě

8ÿ

t“0

γtσminpQq

“ σminpQq
1 ´ γ

,(34)

where (i) comes from the linearity of expectation along with the assumption on the noise from (10), and (ii)

follows from the instability of K̃ and that ρpAtq “ pρpAqqt which holds for any square matrix A. Now as a

result of this, if we also show supKPGlqr CpKq ă σminpQq
1´γ

, we have proved stability of every K in the set Glqr.

We do so as follows:

σminpQq
1 ´ γ

piq
ą 11CundpK0q

piiq
ě 11CpK0q ě 10CpK0q ` CpK˚q

piiiq
ě sup

KPGlqr

CpKq,

where (i) comes from the assumption on γ, (ii) from the fact that for a given policy, the undiscounted cost
is not less than the discounted cost, and (iii) from the definition of the set Glqr from (17). This proves the
second claim.
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For the first part, since for any K P Glqr we have that ρpA ´ BKq ă 1, we conclude that

CpKq “ Ex0„D

«
8ÿ

t“0

γtpxJ
t Qxt ` uJ

t Rutq
ff

piq
ě

8ÿ

t“0

γtσminpQqρppA ´ BKqtq2

“ σminpQq
8ÿ

t“0

pγpρpA ´ BKqq2qt

piiq“ σminpQq
1 ´ γpρpA ´ BKqq2 ,

where (i) is done the same way as (34) and (ii) follows from γpρpA ´ BKqq2 ă 1 for K P Glqr. As a result, for
K P Glqr, we have that

1 ´ γpρpA ´ BKqq2 ě σminpQq
CpKq ñ

γpρpA ´ BKqq2 ď 1 ´ σminpQq
CpKq ñ

ρpA ´ BKq ď 1?
γ

d
1 ´ σminpQq

CpKq ,

which after taking a supremum gives

sup
KPGlqr

ρpA ´ BKq ď 1?
γ

sup
KPGlqr

d
1 ´ σminpQq

CpKq “ 1?
γ

d
1 ´ σminpQq

10CpK0q ` CpK˚q ,

concluding the proof. �

We next introduce a high probability upper bound on our gradient estimate on any K P Glqr.

Lemma 3.3. Suppose δ P p0, 1
e

s, and γ is chosen as in Lemma 3.2. Then for any K P Glqr, we have that

(35) ‖ x∇CpKq‖F ď ξ3

1 ´ γ

ˆ
log

1

δ

˙3{2

with probability at least 1 ´ δ, where ξ1, ξ2, ξ3 P R are given by

ξ1 :“
´
‖Q‖ ` 2‖R‖ĄcK1

2 ` 2γp10CpK0q ` CpK˚qq
¯
e3n3K̄3C3{2

m(36)

ξ2 :“
`
2‖R‖ ` 2γ‖B‖2p10CpK0q ` CpK˚qq

˘
enK̄C1{2

m(37)

ξ3 :“ 1

σ

´
ξ15

1{2m1{2
¯

` σ
´
ξ25

3{2m3{2
¯
,(38)

where K̄ is a positive constant. Moreover,

(39) E‖ x∇CpKq‖2F ď ξ4

p1 ´ γq2 ,

where

ξ4 :“ 1

σ2
ξ21m ` 2ξ1ξ2mpm ` 2q ` σ2ξ22mpm ` 2qpm ` 4q.(40)
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Proof. Using the formulation of x∇CpKq derived in (25), we have

‖ x∇CpKq‖F “
ˇ̌
ˇ̌
ˇ̌
ˇ̌ 1

σp1 ´ γqηt̂x
J
t̂
QKpxt̂,´Kxt̂ ` σηt̂q

ˇ̌
ˇ̌
ˇ̌
ˇ̌
F

ď 1

σp1 ´ γq‖ηt̂‖‖xt̂‖Q
Kpxt̂,´Kxt̂ ` σηt̂q.(41)

First, note that

(42) ‖xt̂‖ “ ‖pA ´ BKqt̂x0‖ ď ‖pA ´ BKqt̂‖‖x0‖
piq
ď sup

tě0

‖pA ´ BKqt‖C1{2
m ,

where (i) follows from the assumption on the initial state noise mentioned in (10).

Sublemma 3.1. We have that

(43) sup
KPGlqr

sup
tě0

‖pA ´ BKqt‖

is finite.

Proof of Sublemma 3.1. We start by arguing that Glqr is a compact set. First, note that since }K} ď ĄcK1
(see

Remark 2.1) for any K P Glqr, the set Glqr is bounded. Secondly, since CpKq is locally Lipschitz in Glqr, it is
also continuous, and hence, by the definition of Glqr in (17), we have that Glqr is the pre-image of the closed
interval r0, 10CpK0q`CpK˚qs under a continuous map C : Glqr Ñ R, implying Glqr is closed as well. As a result
of this, we have that Glqr is compact. Now we move on to show why (43) is finite.

First, let us define

Spx0;Kq :“
8ÿ

t“0

}xt}2,

where xt`1 “ pA ´ BKqxt. Moreover, we let

SpKq :“ Ex0„DSpx0;Kq

“ Ex0„D

«
8ÿ

t“0

}xt}2
ff

“ Ex0„D

«
8ÿ

t“0

}pA ´ BKqtx0}2
ff

“
8ÿ

t“0

Ex0„D

”
tr

´`
pA ´ BKqt

˘J pA ´ BKqtx0x
J
0

¯ı

“
8ÿ

t“0

‖pA ´ BKqt‖2F

ě
8ÿ

t“0

‖pA ´ BKqt‖2,

which after taking the square root of both sides gives

a
SpKq ě

gffe
8ÿ

t“0

‖pA ´ BKqt‖2

ě sup
tě0

}pA ´ BKqt}.

As a result, we have that

sup
tě0

}pA ´ BKqt} ď
a
SpKq,
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which after taking a supremum over Glqr yields

(44) sup
KPGlqr

sup
tě0

}pA ´ BKqt} ď sup
KPGlqr

a
SpKq.

Now it suffices to show supKPGlqr

a
SpKq is finite, which we prove by contradiction. Suppose that this is not

the case. Therefore, there exists a sequence tKju8
j“1 such that

a
SpKjq jÑ8ÝÝÝÑ 8. By compactness, we can

pick a convergent subsequence whose limit we denote by K̄. We will abuse notation and henceforth use Kj to

refer to the subsequence; observe that Kj should also satisfy
a
SpKjq jÑ8ÝÝÝÑ 8.

Now since K̄ P Glqr, we have from Lemma 3.2 that A´BK̄ is strictly stable, and thus, there exists a Lyapunov
function V pxq “ xJP̄ x where P̄ is a positive definite matrix that satisfies

pA ´ BK̄qJP̄ pA ´ BK̄q ´ P̄ “ ´I.

Therefore, for j large enough,

pA ´ BKjqJP̄ pA ´ BKjq ´ P̄ ĺ ´p1{2qI.

Then

V ppA ´ BKjqxq ´ V pxq “ xT pA ´ BKjqP̄ pA ´ BKjqx ´ xT P̄ x

ď ´p1{2q}x}2

“ ´ 1

2λmaxpP̄ q
`
λmaxpP̄ q}x}2

˘

piq
ď ´ 1

2λmaxpP̄ qV pxq,

where (i) is due to the fact that V pxq ď λmaxpP̄ q}x}2. Thus,

(45) V ppA ´ BKjqxq ď
ˆ
1 ´ 1

2λmaxpP̄ q

˙
V pxq.

As a result, we have that

Spx0;Kjq “
8ÿ

t“0

}xt}2

piq
ď 1

λminpP̄ q

8ÿ

t“0

V ppA ´ BKjqtx0q

piiq
ď 1

λminpP̄ q

8ÿ

t“0

ˆ
1 ´ 1

2λmaxpP̄ q

˙t

V px0q

ď 2λmaxpP̄ q
λminpP̄ q V px0q

ď 2λ2
maxpP̄ q

λminpP̄ q }x0}2,
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where (i) follows from V pxq ě λminpP̄ q}x}2 and (ii) from (45). Now taking an expectation over x0 „ D yields

SpKjq ď 2λ2
maxpP̄ q

λminpP̄ q Ex0„D}x0}2

“ 2λ2
maxpP̄ q

λminpP̄ q Ex0„D trpx0x
J
0 q

“ 2λ2
maxpP̄ q

λminpP̄ q tr
`
Ex0„Drx0x

J
0 s

˘

“ 2λ2
maxpP̄ q

λminpP̄ q trpInq

“ 2nλ2
maxpP̄ q

λminpP̄ q ,

and hence,

b
SpKjq ď

d
2nλ2

maxpP̄ q
λminpP̄ q ,

which is finite, resulting in a contradiction, concluding the proof of (43) being finite. ˛
We now continue with the proof of lemma. Let us first make a remark. By the Kreiss matrix theorem [16, 21],
we have that

(46) KpA ´ BKq ď sup
tě0

‖pA ´ BKqt‖ ď e n KpA ´ BKq.

Consequently, we can define the following constant

(47) K̄ :“ sup
KPGlqr

KpA ´ BKq,

which is finite as a result of (46) along with the finiteness of supKPGlqr suptě0‖pA ´ BKqt‖. Combining (46)
and (47) with (42) gives

(48) ‖xt̂‖ ď e n C1{2
m KpA ´ BKq ď e n C1{2

m K̄,

for any t̂ ě 0. Moreover,

QKpxt̂,´Kxt̂ ` σηt̂q “xJ
t̂
Qxt̂ ` p´Kxt̂ ` σηt̂qJRp´Kxt̂ ` σηt̂q

` γppA ´ BKqxt̂ ` σBηt̂qJPKppA ´ BKqxt̂ ` σBηt̂q
piq
ď‖Q‖e2n2K̄2Cm ` ‖R‖‖´Kxt̂ ` σηt̂‖

2 ` γ‖PK‖‖xt̂`1 ` σBηt̂‖
2

piiq
ď‖Q‖e2n2K̄2Cm ` 2‖R‖

`
‖K‖2‖xt̂‖

2 ` σ2‖ηt̂‖
2
˘

` 2γCpKq
`
‖xt̂`1‖

2 ` σ2‖B‖2‖ηt̂‖
2
˘

piiiq
ď

´
‖Q‖ ` 2‖R‖ĄcK1

2 ` 2γp10CpK0q ` CpK˚qq
¯
e2n2K̄2Cm

`
`
2σ2‖R‖ ` 2γσ2‖B‖2p10CpK0q ` CpK˚qq

˘
‖ηt̂‖

2,(49)

where (i) follows from (48), (ii) from ‖PK‖ ď trpPKq along with trpPKq “ CpKq as shown in (13), and (iii)
from the fact that ‖K‖ ď ĄcK1

for any K P Glqr (see Remark 2.1) along with reapplying (48) and utilizing
the upper bound obtained on CpKq by the definition of the set Glqr. Now applying the derived bounds (48)
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and (49) on (41), we conclude that

‖ x∇CpKq‖F ď

´
‖Q‖ ` 2‖R‖ĄcK1

2 ` 2γp10CpK0q ` CpK˚qq
¯
e3n3K̄3C

3{2
m

σp1 ´ γq ‖ηt̂‖

` σ2
`
2‖R‖ ` 2γ‖B‖2p10CpK0q ` CpK˚qq

˘
enK̄C

1{2
m

σp1 ´ γq ‖ηt̂‖
3

“ 1

1 ´ γ

ˆ
1

σ
ξ1‖ηt̂‖ ` σξ2‖ηt̂‖

3

˙
.(50)

Furthermore, since ηt̂ „ N p0, Imq for any t̂, ‖ηt̂‖
2 is distributed according to the chi-squared distribution

with m degrees of freedom (‖ηt̂‖
2 „ χ2pmq for any t̂). Therefore, the standard [14] bounds suggest that for

arbitrary y ą 0, we have that

(51) Pt‖ηt̂‖2 ě m ` 2
?
my ` 2yu ď e´y.

Now since by our assumption 0 ă δ ď 1{e, it holds that y “ m log 1
δ

ě m and thus

Pt‖ηt̂‖2 ě 5yu ď Pt‖ηt̂‖2 ě m ` 2
?
my ` 2yu ď e´y,

which after substituting y with its value m log 1
δ

gives

Pt‖ηt̂‖2 ě 5m log
1

δ
u ď e´m log 1

δ “ δm ď δ.

As a result, we have ‖ηt̂‖ ď 51{2m1{2plog 1
δ

q1{2 and consequently

‖ηt̂‖
3 ď 53{2m3{2plog 1

δ
q3{2

with probability at least 1 ´ δ, which after applying on (50) yields

‖ x∇CpKq‖F ď 1

1 ´ γ

˜
1

σ
ξ15

1{2m1{2

ˆ
log

1

δ

˙1{2

` σξ25
3{2m3{2

ˆ
log

1

δ

˙3{2
¸

ď 1

1 ´ γ

ˆ
1

σ
ξ15

1{2m1{2 ` σξ25
3{2m3{2

˙ ˆ
log

1

δ

˙3{2

“ ξ3

1 ´ γ

ˆ
log

1

δ

˙3{2

,

proving the first claim.

As for the second claim, note that using (50), we have

‖ x∇CpKq‖2F ď 1

p1 ´ γq2
ˆ

1

σ2
ξ21‖ηt̂‖

2 ` 2ξ1ξ2‖ηt̂‖
4 ` σ2ξ22‖ηt̂‖

6

˙
.(52)

Now since ‖ηt̂‖ „ χpmq whose moments are known, taking an expectation on both sides of (52) results in

E‖ x∇CpKq‖2F ď 1

p1 ´ γq2
ˆ

1

σ2
ξ21E‖ηt̂‖

2 ` 2ξ1ξ2E‖ηt̂‖
4 ` σ2ξ22E‖ηt̂‖

6

˙

“ 1

p1 ´ γq2
ˆ

1

σ2
ξ21m ` 2ξ1ξ2mpm ` 2q ` σ2ξ22mpm ` 2qpm ` 4q

˙

“ ξ4

p1 ´ γq2 ,

concluding the proof. �
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Following Lemma 3.3, we now define the following event for each iteration t of Algorithm 1:

(53) At “
#

} x∇CpKtq}F ď ζ3

1 ´ γ

ˆ
log

1

δ

˙3{2
+
.

Having this, we introduce the following lemma:

Lemma 3.4. Suppose δ P p0, e´3{2s, and γ is chosen as in Lemma 3.2. Then for any given Kt P Glqr, we
have that

(54) }Er x∇CpKtq1At
s ´ ∇CpKtq}F ď 3ζ3

1 ´ γ
δ

ˆ
log

1

δ

˙3{2

.

Proof. Following Proposition 3.1, we have that

∇CpKtq “Er x∇CpKtqs
“Er x∇CpKtq1At

s ` Er x∇CpKtq1Ac
t
s.

Therefore,

}Er x∇CpKtq1At
s ´ ∇CpKtq}F

“ }Er x∇CpKtq1Ac
t
s}F

piq
ď E

”
} x∇CpKtq1Ac

t
}F

ı

“ E

”
} x∇CpKtq}F 1Ac

t

ı

piiq
ď E

»
—–} x∇CpKtq}F 1#

}y∇CpKtq}F ě
ζ3plog 1

δ q3{2

1´γ

+

fi
ffifl

“ P

#
} x∇CpKtq}F ě ζ3

`
log 1

δ

˘3{2

1 ´ γ

+
E

«
} x∇CpKtq}F

ˇ̌
ˇ̌} x∇CpKtq}F ě ζ3

`
log 1

δ

˘3{2

1 ´ γ

ff
,(55)

where (i) follows from Jensen’s inequality and (ii) from the fact that

Ac
t “

#
} x∇CpKtq}F ą ζ3

1 ´ γ

ˆ
log

1

δ

˙3{2
+

Ď
#

} x∇CpKtq}F ě ζ3

1 ´ γ

ˆ
log

1

δ

˙3{2
+
.

Moreover, it holds that

E

«
} x∇CpKtq}F

ˇ̌
ˇ̌} x∇CpKtq}F ě ζ3

`
log 1

δ

˘3{2

1 ´ γ

ff

“ζ3
`
log 1

δ

˘3{2

1 ´ γ
`

ş
8

ζ3
1´γ plog 1

δ q3{2 Pt} x∇CpKtq}F ě zu dz

P

"
} x∇CpKtq}F ě ζ3plog 1

δ q3{2

1´γ

* .(56)

Now recall from Lemma 3.3 that

(57) P

#
} x∇CpKtq}F ě ζ3

1 ´ γ

ˆ
log

1

δ

˙3{2
+

ď δ

for arbitrary δ, which implies

(58) P

!
} x∇CpKtq}F ě z

)
ď e

´
´

zp1´γq
ζ3

¯
2{3

.
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Now combining (58), (56), and (55) yields

}Er x∇CpKtq1At
s ´ ∇CpKtq}F

ďP

#
} x∇CpKtq}F ě ζ3

`
log 1

δ

˘3{2

1 ´ γ

+
ζ3

`
log 1

δ

˘3{2

1 ´ γ
`

ż
8

ζ3
1´γ plog 1

δ q3{2

e
´

´
zp1´γq

ζ3

¯
2{3

dz

piq
ď ζ3

1 ´ γ
δ

ˆ
log

1

δ

˙3{2

` ζ3

1 ´ γ

ż
8

plog 1
δ q3{2

e´u2{3

du

“ ζ3

1 ´ γ
δ

ˆ
log

1

δ

˙3{2

` ζ3

1 ´ γ

˜
3

2
δ

ˆ
log

1

δ

˙1{2

` 3

4

?
π erfc

˜c
log

1

δ

¸¸

piiq
ď ζ3

1 ´ γ

˜
δ

ˆ
log

1

δ

˙3{2

` 3

2
δ

ˆ
log

1

δ

˙1{2

` 3

4

?
πδ

¸

piiiq
ď 3ζ3

1 ´ γ
δ

ˆ
log

1

δ

˙3{2

,(59)

where (i) follows from (57) along with a change of variables u “
´

1´γ
ζ3

¯
z in the integral, (ii) from the fact

that erfc
´b

log 1
δ

¯
ď δ, and (iii) from δ ď e´3{2. This concludes the proof. �

Before introducing the next lemma, let us denote the optimality gap of iterate t of the algorithm by

(60) ∆t :“ CpKtq ´ CpK˚q.

Moreover, let Ft denote the σ-algebra containing the randomness up to iteration t of Algorithm 1 (including

Kt but not x∇CpKtq). We then define

(61) τ1 :“ min tt | ∆t ą 10CpK0qu ,

which is a stopping time with respect to Ft.

Lemma 3.5. Suppose δ P p0, e´3{2s, γ is as suggested in Lemma 3.2, and the update rule follows

(62) Kt`1 “ Kt ´ αt
x∇CpKtq

with a step-size αt such that for all t P t0, 1, 2, . . . u,

αt ď ωlqr

ζ3
1´γ

`
log 1

δ

˘3{2
.

Then for any t P t0, 1, 2, . . . u, we have

(63) Er∆t`11At
|Fts1τ1ąt ď

˜
p1 ´ µlqrαtq∆t ` 3ζ3ĄcK1

1 ´ γ
δ

ˆ
log

1

δ

˙3{2

αt ` φlqrα
2
t

2

ξ4

p1 ´ γq2

¸
1τ1ąt,

where ∆t and At are defined in (60) and (53) respectively.

Proof. First, note that by the definition of τ1 in (61), τ1 ą t implies Kt P Glqr. In addition, since αt ď
ωlqr

ζ3
1´γ plog 1

δ q3{2 , the event At implies that

}Kt`1 ´ Kt}F “ }αt
x∇CpKtq}F ď ωlqr.
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Thus, by local smoothness of CpKtq, see Lemma 2.2, it holds that

p∆t`1 ´ ∆tq1τ1ąt1At
“pCpKt`1 ´ CpKtqq1τ1ąt1At

ď
ˆ

x∇CpKtq,Kt`1 ´ Kty ` φlqr

2
‖Kt`1 ´ Kt‖

2
F

˙
1τ1ąt1At

“
ˆ

´αt

A
∇CpKtq, x∇CpKtq

E
` φlqrα

2
t

2
‖ x∇CpKtq‖2F

˙
1τ1ąt1At

,

which after taking an expectation conditioned on Ft gives

Er∆t`11τ1ąt1At
|Fts ´ Er∆t1τ1ąt1At

|Fts

ď ´ αt

A
∇CpKtq,Er x∇CpKtq1τ1ąt1At

|Fts
E

` φlqr

2
α2
tEr} x∇CpKtq}2F 1τ1ąt1At

|Fts.

Since ∆t and 1τ1ąt are determined by Ft,

Er∆t`11At
|Fts1τ1ąt

ď
ˆ
∆tEr1At

|Fts ´ αt

A
∇CpKtq,Er x∇CpKtq1At

|Fts
E

` φlqr

2
α2
tEr} x∇CpKtq}2F 1At

|Fts
˙
1τ1ąt

piq
ď

ˆ
∆t ´ αt

A
∇CpKtq,Er x∇CpKtq1At

|Fts
E

` φlqr

2
α2
tEr} x∇CpKtq}2F |Fts

˙
1τ1ąt

“∆t1τ1ąt ´ αt

A
∇CpKtq,∇CpKtq ` Er x∇CpKtq1At

|Fts ´ ∇CpKtq
E
1τ1ąt

` φlqr

2
α2
tEr} x∇CpKtq}2F |Fts1τ1ąt

“∆t1τ1ąt ´ αt x∇CpKtq,∇CpKtqy 1τ1ąt

´ αt

A
∇CpKtq,Er x∇CpKtq1At

|Fts ´ ∇CpKtq
E
1τ1ąt ` φlqr

2
α2
tEr} x∇CpKtq}2F |Fts1τ1ąt

piiq
ď∆t1τ1ąt ´ αt}∇CpKtq}2F 1τ1ąt

` αt}∇CpKtq}F }Er x∇CpKtq1At
|Fts ´ ∇CpKtq}F 1τ1ąt ` φlqr

2
α2
t

ζ4

p1 ´ γq2 1τ1ąt

piiiq
ď ∆t1τ1ąt ´ αtµlqr∆t1τ1ąt ` 3ζ3ĄcK1

1 ´ γ
δ

ˆ
log

1

δ

˙3{2

αt1τ1ąt ` φlqr

2
α2
t

ζ4

p1 ´ γq2 1τ1ąt

“
˜

p1 ´ µlqrαtq∆t ` 3ζ3ĄcK1

1 ´ γ
δ

ˆ
log

1

δ

˙3{2

αt ` φlqrα
2
t

2

ξ4

p1 ´ γq2

¸
1τ1ąt,

where (i) follows from 1At
ď 1, (ii) from Lemma 3.3, and (iii) from applying the PL inequality (16), the

fact that }∇CpKtq}F ď ĄcK1
for any Kt P Glqr (see Remark 2.1), and Lemma 3.4. This finishes the proof of

Lemma 3.5. �

We are now in a position to state a precise version of our main result.

Theorem 3.1. Suppose K0 is stable and γ is as suggested in Lemma 3.2. If the step-size αt is chosen as

αt “ 2

µlqr

1

t ` N
for N “ max

#
N1,

2

µlqr

ξ3
`
log 1

δ

˘3{2

p1 ´ γqωlqr

+
,(64)

where

N1 “ max

#
2,

4φlqrξ4

µ2
lqrp1 ´ γq2

2

CpK0q

+
,(65)
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then for a given error tolerance ε such that CpK0q ě ε
20

, and δ chosen arbitrarily to satisfy

δ ď min

#
2 ˆ 10´5,

ˆ
φlqrζ4ωlqr

960ζ23 ĄcK1
CpK0q

˙3

ε3,

ˆ
φlqrζ4

480p1 ´ γqµlqrζ3ĄcK1
N1CpK0q

˙3

ε3,

ˆ
µlqrp1 ´ γq
240ζ3ĄcK1

˙3

ε3

+
,(66)

the iterate KT of the Algorithm 1 after

(67) T “ 40

ε
NCpK0q

steps satisfies

(68) CpKT q ´ CpK˚q ď ε

with a probability of at least 4{5 ´ δT .

It is essential to re-emphasize that, as also evident from the statement of Theorem 3.1, there is no reliance
on a stability assumption; rather, the result is proven to hold with a certain probability. In particular, the
instances of the algorithm that lead to instability at any iteration before T are factored into the failure
probability 1{5 ` δT .

The proof of Theorem 3.1 relies on an intermediate result, namely Proposition 3.2, which we establish next.
Before doing so, we provide some observations regarding the statement of the theorem. First, we have the
following remark for δ:

Remark 3.1 (Selection of δ for the probability of failure). The δT term in the probability of failure stated
in Theorem 3.1 can be adjusted arbitrarily; however, since T depends on N which depends on δ itself, we add
some further discussion here. If we want the δT term to be less than some arbitrary small δ1, it needs to hold
that

δT “ δ
40

ε
max

#
N1CpK0q, 2ζ3CpK0q

µlqrωlqrp1 ´ γq

ˆ
log

1

δ

˙3{2
+

ď δ1.

Therefore, δ first needs to satisfy

40

ε
N1CpK0qδ ď δ1 ñ δ ď δ1ε

40N1CpK0q ,(69)

and secondly,

80ζ3CpK0q
µlqrωlqrp1 ´ γq

1

ε
δ

ˆ
log

1

δ

˙3{2

ď δ1 ñ δ

ˆ
log

1

δ

˙3{2

ď µlqrωlqrp1 ´ γq
80ζ3CpK0q δ1ε.(70)

Now since a3
`
log 1

a3

˘3{2 ď a for any a P p0, 1q, for (70) to hold, it would suffice to have

(71) δ ď
ˆ
µlqrωlqrp1 ´ γq
80ζ3CpK0q

˙3

pδ1εq3.

Note that (71) is only a loose sufficient bound on δ that can be improved (for instance, the exponents in (71)
can be reduced from 3 to 2 considering the other requirements on δ in (66)); however, since the dependence of
T on δ is logarithmic, the looser requirement only adds a constant and does not change the order.

As a result, adding (69) and (71) to the existing requirements on δ in (66), we will have

δ ď min

#
2 ˆ 10´5,

ˆ
φlqrζ4ωlqr

960ζ23 ĄcK1
CpK0q

˙3

ε3,

ˆ
φlqrζ4

480p1 ´ γqµlqrζ3ĄcK1
N1CpK0q

˙3

ε3,

ˆ
µlqrp1 ´ γq
240ζ3ĄcK1

˙3

ε3,
δ1ε

40N1CpK0q ,
ˆ
µlqrωlqrp1 ´ γq
80ζ3CpK0q

˙3

pδ1εq3
+
,(72)
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which will lead to the result of Theorem 3.1 holding with probability 4{5 ´ δ1 after

T „ N

ε
„ O

˜
1

ε

ˆ
log

1

pδ1εq3
˙3{2

¸
“ O

˜
1

ε

ˆ
log

1

δ1
` log

1

ε

˙3{2
¸

“ rO
ˆ
1

ε

˙

iterations of Algorithm 1. ˛

Secondly, we find it worthwile to provide the following observation on the choice of σ:

Remark 3.2 (Selection of σ and its impact on T ). Note that the value of σ in (22) is at our discretion, so
one natural question would be regarding the asymptotic analysis of σ and its impact on our rate T . Observe
that the only effect of σ on T is through ξ3 and ξ4 defined in (38) and (40) respectively. Taking everything else
as constants, following the choice of T and N suggested in Theorem 3.1, we have that T ě O pmaxtξ3, ξ4uq.
Now since both ξ3 and ξ4 will grow unbounded as σ approaches either zero or infinity, so does T . Therefore,
we choose a non-zero value for σ instead. An optimal value can be derived, but given that this only affects the
constants in the rate, we opt for σ “ 1. ˛

Thirdly, note that for any Kt P Glqr, by our choice of αt and N in Theorem 3.1, we have

‖Kt`1 ´ Kt‖F “‖αt
x∇CpKtq‖F

“ 2

µlqr

1

t ` N
‖ x∇CpKtq‖F

ď 2

µlqr

1

N
‖ x∇CpKtq‖F

piq
ďωlqr

‖ x∇CpKtq‖F
ξ3

1´γ

`
log 1

δ

˘3{2
,(73)

where (i) follows from (64). Now applying Lemma 3.3 on (73) yields

(74) ‖Kt`1 ´ Kt‖F ď ωlqr “ inf
KPGlqr

ωK

with probability at least 1 ´ δ, where ωK “ mintβK , ζKu. This implies that the local Lipschitzness and local
smoothness properties of the cost hold for the update at iteration t with probability at least 1 ´ δ.

Fourthly, to help unravel the logical reasoning elucidated in the proof, we introduce the following stopping
times:

τ2 :“ min

#
t ě 1

ˇ̌
ˇ ‖ x∇CpKt´1q‖F ą ξ3

1 ´ γ

ˆ
log

1

δ

˙3{2
+

τ :“ mintτ1, τ2u,(75)

with τ1 previously defined in (61). Essentially, one can observe that as long as t ă τ1 and t ` 1 ă τ2, it holds
that Kt P Glqr and ‖Kt`1 ´Kt‖F ď ωlqr, implying that local Lipschitzness and local smoothness properties of
the cost hold until that iteration. By the definition of τ in (75), we have that

(76) 1τąt “ 1τ1ąt1τ2ąt.

Moreover, following the definition of At in (53), it also holds that

(77) 1τ2ąt`1 “ 1τ2ąt1At
.

Finally, we note that the idea of introducing a stopping time (75), which helps identify the failure of the
algorithm and is also used to define a stopped process later on, is inspired by [17]. However, despite the
similarity of our forthcoming statements to those in the proof of [17, Theorem 8], the paths we take to prove
said statements are considerably different due to the differences in how we defined our stopping time (and
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subsequently the stopped process to be defined later on), our gradient estimation method, the time-varying
learning rate, etc.

Having covered all of the above, we are now ready to present the following proposition:

Proposition 3.2. Under the parameter settings of Theorem 3.1, we have

Er∆T 1τąT s ď ε

20
.

Furthermore, the event tτ ą T u happens with a probability of at least 17
20

´ δT .

Proof. The following provides us with a stepping stone for proving the first claim:

Sublemma 3.2. Under the parameter settings of Theorem 3.1, we have that

(78) Er∆t1τąts ď ε

40
` NCpK0q

t ` N
,

for all t P rT s.

Proof of Sublemma 3.2. We prove this result by induction on t as follows:

Base case (t “ 0):

∆01τą0 ď ∆0 ď CpK0q “ NCpK0q
0 ` N

ď ε

40
` NCpK0q

0 ` N
,

which after taking expectation proves the claim for t “ 0.

Inductive step: Let k P rT ´ 1s be fixed and assume that

(79) Er∆k1τąks ď ε

40
` NCpK0q

k ` N

holds (the inductive hypothesis). Observe that

Er∆k`11τąk`1s piq“ Er∆k`11τ1ąk`11τ2ąk`1s
piiq
ď Er∆k`11τ1ąk1τ2ąk1Ak

s
“ ErEr∆k`11τ1ąk1τ2ąk1Ak

|Fkss
piiiq“ ErEr∆k`11Ak

|Fks1τ1ąk1τ2ąks,(80)

where (i) follows from (76), (ii) from equation (77) along with the fact that 1τ1ąk`1 ď 1τ1ąk, and (iii) is due
to 1τ2ąk and 1τ1ąk being determined by Fk. By Lemma 3.5, we have that

pEr∆k`11Ak
|Fks1τ1ąkq 1τ2ąk

ď
˜˜

p1 ´ µlqrαkq∆k ` 3ζ3ĄcK1

1 ´ γ
δ

ˆ
log

1

δ

˙3{2

αk ` φlqrα
2
k

2

ξ4

p1 ´ γq2

¸
1τ1ąk

¸
1τ2ąk

piq“
˜ˆ

1 ´ 2

k ` N

˙
∆k ` 6ζ3ĄcK1

δ
`
log 1

δ

˘3{2

µlqrp1 ´ γq
1

k ` N
` 2φlqrξ4

p1 ´ γq2µ2
lqr

1

pk ` Nq2

¸
1τąk,(81)

where (i) follows from(76) along with replacing αk with its value in (64). Now due to the choice of δ in (66),
we have that

δ ď
ˆ
µlqrp1 ´ γq
240ζ3ĄcK1

˙3

ε3,
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which after noting that a3
`
log 1

a3

˘3{2 ď a for any a P p0, 1q implies

(82) δ

ˆ
log

1

δ

˙3{2

ď µlqrp1 ´ γq
240ζ3ĄcK1

ε ñ 6ζ3ĄcK1
δ

`
log 1

δ

˘3{2

µlqrp1 ´ γq ď ε

40
.

Applying (82) on (81) yields

Er∆k`11Ak
|Fks1τ1ąk1τ2ąk

ď
˜ˆ

1 ´ 2

k ` N

˙
∆k ` ε

40

1

k ` N
` 2φlqrξ4

p1 ´ γq2µ2
lqr

1

pk ` Nq2

¸
1τąk

ď
ˆ
1 ´ 2

k ` N

˙
∆k1τąk ` ε

40

1

k ` N
` 2φlqrξ4

p1 ´ γq2µ2
lqr

1

pk ` Nq2 ,

which after taking expectation results in

ErEr∆k`11Ak
|Fks1τ1ąk1τ2ąks

ď
ˆ
1 ´ 2

k ` N

˙
Er∆k1τąks ` ε

40

1

k ` N
` 2φlqrξ4

p1 ´ γq2µ2
lqr

1

pk ` Nq2 .(83)

Combining the hypothesis (inequality (79)) and inequality (80) with (83), we obtain

Er∆k`11τąk`1s

ď
ˆ
1 ´ 2

k ` N

˙ ˆ
ε

40
` NCpK0q

k ` N

˙
` ε

40

1

k ` N
` 2φlqrξ4

p1 ´ γq2µ2
lqr

1

pk ` Nq2

ď ε

40
`

ˆ
1 ´ 1

k ` N

˙
NCpK0q
k ` N

´ 1

pk ` Nq2

˜
NCpK0q ´ 2φlqrξ4

p1 ´ γq2µ2
lqr

¸

piq
ď ε

40
`

ˆ
k ` N ´ 1

pk ` Nq2
˙
NCpK0q

ď ε

40
` NCpK0q

k ` N ` 1
,

where (i) follows from the fact that

NCpK0q ě N1CpK0q ě
˜

4φlqrξ4

µ2
lqrp1 ´ γq2

2

CpK0q

¸
CpK0q “ 8φlqrξ4

p1 ´ γq2µ2
lqr

ě 2φlqrξ4

p1 ´ γq2µ2
lqr

.

This proves the claim for k ` 1, completing the inductive step. ˛
Now utilizing Sublemma 3.2 and the choice of T from (67) in Theorem 3.1,

Er∆T 1τąT s ď ε

40
` NCpK0q

T ` N
ď ε

40
` NCpK0q

T
“ ε

20
,

which finishes the proof of the first claim of Proposition 3.2. Now before moving on to the second claim, we
introduce the following sublemma:

Sublemma 3.3. Under the parameter setup of Theorem 3.1, we have that for all t P rT s,

(84)
3ζ3ĄcK1

1 ´ γ
δ

ˆ
log

1

δ

˙3{2

αt ` φlqrζ4

2p1 ´ γq2α
2
t ` 4φlqrζ4

p1 ´ γq2µ2
lqr

1

t ` N ` 1
ď 4φlqrζ4

p1 ´ γq2µ2
lqr

1

t ` N
.
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Proof of Sublemma 3.3. First, substituting αt with its value in (64), inequality (84) becomes

6ζ3ĄcK1
δ

`
log 1

δ

˘3{2

p1 ´ γqµlqr

1

t ` N
` 2φlqrζ4

p1 ´ γq2µ2
lqr

ˆ
1

pt ` Nq2 ` 2

t ` N ` 1

˙
ď 2φlqrζ4

p1 ´ γq2µ2
lqr

ˆ
2

t ` N

˙

ðñ 6ζ3ĄcK1
δ

`
log 1

δ

˘3{2

p1 ´ γqµlqr

1

t ` N
ď 2φlqrζ4

p1 ´ γq2µ2
lqr

ˆ
2

t ` N
´ 2

t ` N ` 1
´ 1

pt ` Nq2
˙

ðñ 6ζ3ĄcK1
δ

`
log 1

δ

˘3{2

p1 ´ γqµlqr

1

t ` N
ď 2φlqrζ4

p1 ´ γq2µ2
lqr

ˆ
2

pt ` Nqpt ` N ` 1q ´ 1

pt ` Nq2
˙

ðñ 6ζ3ĄcK1
δ

`
log 1

δ

˘3{2

p1 ´ γqµlqr

1

t ` N
ď 2φlqrζ4

p1 ´ γq2µ2
lqr

ˆ
t ` N ´ 1

pt ` Nq2pt ` N ` 1q

˙

ðñ δ

ˆ
log

1

δ

˙3{2

ď φlqrζ4

3ζ3ĄcK1
p1 ´ γqµlqr

ˆ
t ` N ´ 1

pt ` Nqpt ` N ` 1q

˙
.(85)

Note that for the right-hand side of (85), we have for all t P rT s that

φlqrζ4

3ζ3ĄcK1
p1 ´ γqµlqr

ˆ
t ` N ´ 1

t ` N

1

t ` N ` 1

˙
piq
ě φlqrζ4

6ζ3ĄcK1
p1 ´ γqµlqr

ˆ
1

t ` N ` 1

˙

ě φlqrζ4

6ζ3ĄcK1
p1 ´ γqµlqr

ˆ
1

T ` N ` 1

˙

piiq
ě φlqrζ4

12ζ3ĄcK1
p1 ´ γqµlqr

ˆ
1

T

˙
,(86)

where (i) follows from the fact that t`N´1
t`N

ě 1
2

which is due to N ě 2 (see (64) and (65)), and (ii) from

CpK0q ě ε
20

under the settings of Theorem 3.1, which results in

T “ 40

ε
NCpK0q ě 2N ě N ` 1 ñ 1

T ` N ` 1
ě 1

2T
.

As a result of (85) and (86), in order to conclude the proof Sublemma 3.3, it would suffice to show that

δ

ˆ
log

1

δ

˙3{2

ď φlqrζ4

12ζ3ĄcK1
p1 ´ γqµlqr

ˆ
1

T

˙

“ φlqrζ4

12ζ3ĄcK1
p1 ´ γqµlqr

ε

40

1

NCpK0q

“ φlqrζ4

12ζ3ĄcK1
p1 ´ γqµlqr

ε

40

1

max

"
N1CpK0q, 2CpK0q

µlqr

ξ3plog 1
δ q3{2

p1´γqωlqr

*

“ φlqrζ4

12ζ3ĄcK1
p1 ´ γqµlqr

ε

40
min

#
1

N1CpK0q ,
µlqrωlqrp1 ´ γq

2CpK0qζ3
`
log 1

δ

˘3{2

+
.(87)

For (87) to hold, we need two inequalities to hold as a result of the mint., .u operator. First, we require

(88) δ

ˆ
log

1

δ

˙3{2

ď φlqrζ4

480ζ3ĄcK1
p1 ´ γqµlqrN1CpK0qε.

Now since a3
`
log 1

a3

˘3{2 ď a for all a P p0, 1q and the choice of δ in (66), i.e.,

δ ď
ˆ

φlqrζ4

480ζ3ĄcK1
p1 ´ γqµlqrN1CpK0q

˙3

ε3,

we conclude that (88) holds for the parameter setup of Theorem 3.1.
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Secondly, it needs to hold that

δ

ˆ
log

1

δ

˙3{2

ď φlqrζ4ωlqr

960ζ23 ĄcK1
CpK0q

`
log 1

δ

˘3{2
ε

ðñ δ

ˆ
log

1

δ

˙3

ď φlqrζ4ωlqr

960ζ23 ĄcK1
CpK0qε.(89)

Now if
φlqrζ4ωlqr

960ζ23 ĄcK1
CpK0qε ď 0.028,

for any δ ď
´

φlqrζ4ωlqr

960ζ2
3 ĆcK1

CpK0q

¯3

ε3, we have that

δ

ˆ
log

1

δ

˙3

ď φlqrζ4ωlqr

960ζ23 ĄcK1
CpK0qε,

and if
φlqrζ4ωlqr

960ζ23 ĄcK1
CpK0qε ą 0.028,

it would suffice to have that

δ

ˆ
log

1

δ

˙3

ď 0.028,

which would hold for any δ ď 2 ˆ 10´5. As a result, due to the choice of δ in (66), i.e.,

δ ď min

#
2 ˆ 10´5,

ˆ
φlqrζ4ωlqr

960ζ23 ĄcK1
CpK0q

˙3

ε3

+
,

we have that (89) will also hold under the parameter setup of Theorem 3.1. Finally, since both (88) and (89)
hold for δ as chosen in (66), inequality (87) is satisfied, finishing the proof. ˛
We now prove the second claim. Even though our proof strategy mimics the one in [17], the structure of the
stopping times in (61) and (75) makes the arguments more involved. Note that this difference in the definition
of the stopping time (and subsequently the stopped process) can be attributed to the fact that in contrast to
[17]’s one scenario (leaving the stable region) which may lead their algorithm to fail, there are two possible
scenarios that may cause the failure of our algorithm. We start by introducing the stopped process

(90) Yt :“ ∆τ1^t1τ2ąt ` 4φlqrξ4

p1 ´ γq2µ2
lqr

1

t ` N
for each t P rT s.

We next show that this process is a supermartingale. First, we have that

ErYt`1|Fts

“Er∆τ1^t`11τ2ąt`1|Fts ` 4φlqrξ4

p1 ´ γq2µ2
lqr

1

t ` N ` 1

“Er∆τ1^t`11τ2ąt`1 p1τ1ďt ` 1τ1ątq |Fts ` 4φlqrξ4

p1 ´ γq2µ2
lqr

1

t ` N ` 1

“Er∆τ1^t`11τ2ąt`11τ1ďt|Fts ` Er∆τ1^t`11τ2ąt`11τ1ąt|Fts ` 4φlqrξ4

p1 ´ γq2µ2
lqr

1

t ` N ` 1
.(91)

Then for the first term on the right-hand side of (91), it holds that

Er∆τ1^t`11τ2ąt`11τ1ďt|Fts ďEr∆τ1^t`11τ2ąt1τ1ďt|Fts
“1τ2ątEr∆τ1^t`11τ1ďt|Fts
“1τ2ątEr∆τ1^t1τ1ďt|Fts
“∆τ1^t1τ2ąt1τ1ďt.(92)
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As for the second term, we have

Er∆τ1^t`11τ2ąt`11τ1ąt|Fts
piq“Er∆τ1^t`11τ1ąt1τ2ąt1At

|Fts
“Er∆t`11τ1ąt1τ2ąt1At

|Fts
“Er∆t`11At

|Fts1τ1ąt1τ2ąt

piiq
ď

˜
p1 ´ µlqrαtq∆t ` 3ζ3ĄcK1

1 ´ γ
δ

ˆ
log

1

δ

˙3{2

αt ` φlqrα
2
t

2

ξ4

p1 ´ γq2

¸
1τ1ąt1τ2ąt

“
˜ˆ

1 ´ 2

t ` N

˙
∆t ` 3ζ3ĄcK1

1 ´ γ
δ

ˆ
log

1

δ

˙3{2

αt ` φlqrα
2
t

2

ξ4

p1 ´ γq2

¸
1τ1ąt1τ2ąt

piiiq
ď ∆t1τ1ąt1τ2ąt ` 3ζ3ĄcK1

1 ´ γ
δ

ˆ
log

1

δ

˙3{2

αt ` φlqrα
2
t

2

ξ4

p1 ´ γq2

pivq“ ∆τ1^t1τ1ąt1τ2ąt ` 3ζ3ĄcK1

1 ´ γ
δ

ˆ
log

1

δ

˙3{2

αt ` φlqrα
2
t

2

ξ4

p1 ´ γq2 ,(93)

where (i) follows from (77), (ii) from Lemma 3.5, (iii) from 1τ1ąt1τ2ąt ď 1 along with the fact that 2
t`N

ď 1

for all t P rT s, and (iv) from ∆t1τ1ąt “ ∆τ1^t1τ1ąt.

Combining (91), (92), and (93), we obtain that for all t P rT s,

ErYt`1|Fts ď∆τ1^t1τ2ąt1τ1ďt ` ∆τ1^t1τ1ąt1τ2ąt

` 3ζ3ĄcK1

1 ´ γ
δ

ˆ
log

1

δ

˙3{2

αt ` φlqrα
2
t

2

ξ4

p1 ´ γq2 ` 4φlqrξ4

p1 ´ γq2µ2
lqr

1

t ` N ` 1

piq
ď∆τ1^t1τ2ątp1τ1ďt ` 1τ1ątq ` 4φlqrζ4

p1 ´ γq2µ2
lqr

1

t ` N

“∆τ1^t1τ2ąt ` 4φlqrζ4

p1 ´ γq2µ2
lqr

1

t ` N

“Yt,

where (i) follows from Sublemma 3.3. This proves the claim that Yt is a supermartingale. Moreover, define
the following events:

E1 :“ tτ2 ď τ1 and τ2 P rT su(94)

E2 :“ tτ1 ă τ2 and τ1 P rT su(95)

E3 :“
"
max
tPrT s

∆τ1^t1τ2ąt ě 10CpK0q
*
,(96)

and hence, we have Ptτ ď T u “ PpE1q ` PpE2q. Now since τ2 ď τ1 in E1 suggests that ‖ x∇CpKτ2´1q‖F ą
ξ3

1´γ

`
log 1

δ

˘3{2
despite ∆τ2´1 ď 10CpK0q (which implies Kτ2´1 P Glqr), after applying union bound on the

result of Lemma 3.3, we have

(97) PpE1q ď δT.

Furthermore, note that τ1 ă τ2 in E2 implies that ∆τ1^τ11τ2ąτ1 “ ∆τ1 and since τ1 P rT s, it holds that

max
tPrT s

∆τ1^t1τ2ąt ě ∆τ1^τ11τ2ąτ1 “ ∆τ1

piq
ą 10CpK0q,



SAMPLE COMPLEXITY OF THE LINEAR QUADRATIC REGULATOR: A REINFORCEMENT LEARNING LENS 25

where (i) follows the definition of τ1. As a result of this, we have that E2 implies E3, and consequently,
PpE2q ď PpE3q. Finally, since Yt ě ∆τ1^t1τ2ąt for all t P rT s, we have that

PpE2q ďPpE3q

“P

"
max
tPrT s

∆τ1^t1τ2ąt ě 10CpK0q
*

ďP

"
max
tPrT s

Yt ě 10CpK0q
*

piq
ď ErY0s
10CpK0q

“
∆τ1^01τ2ą0 ` 4φlqrξ4

p1´γq2µ2
lqr

1
N

10CpK0q
piiq
ď ∆0 ` CpK0q{2

10CpK0q

ďCpK0q ` CpK0q{2
10CpK0q

“ 3

20
,(98)

where (i) follows from applying Doob/Ville’s inequality for supermartingales, and (ii) from the condition on
the choice of N in Theorem 3.1. Utilizing the acquired probability bounds (97) and (98), we observe that

Ptτ ď T u “PpE1q ` PpE2q

ďδT ` 3

20
,

which verifies the second claim of Proposition 3.2, concluding the proof. �

The proof of our main result is a straightforward corollary:

Proof of Theorem 3.1. We now show how Proposition 3.2 can be employed to validate the claims of Theo-
rem 3.1. Note that

P t∆T ě εu ďP t∆T 1τąT ě εu ` P t1τďT “ 1u
piq
ď 1

ε
Er∆T 1τąT s ` P tτ ď T u

piiq
ď 1

20
` 3

20
` δT “ 1

5
` δT,

where (i) follows from Markov’s inequality and (ii) follows from Proposition 3.2. �

4. Summary and Discussion

We have provided an algorithm with ε-optimality guarantees with a provable convergence rate of rOp1{εq for
the discounted discrete-time LQR problem in the model-free setting. This was made possible by employing a
gradient estimation technique inspired by REINFORCE, combined with a time-varying step-size. Our results
contrast from the ones obtained by two-point methods – which make the stronger assumption of assuming
access to cost for two different policies with the same realization of the initial conditions – as well as results
that assume stability of the policies.

An interesting future direction would be to investigate an actor-critic approach that could maintain the rate
without requiring further assumptions. Moreover, one could consider an extension of the presented results for
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the undiscounted case; in particular, the current analysis of gradient estimation with one zero-order evaluation
per iteration heavily relies on sampling from a distribution whose definition relies on the discount factor be
strictly less that one.
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