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SAMPLE COMPLEXITY OF THE LINEAR QUADRATIC REGULATOR: A
REINFORCEMENT LEARNING LENS

AMIRREZA NESHAEI MOGHADDAM, ALEX OLSHEVSKY, AND BAHMAN GHARESIFARD

ABsTrRACT. We provide the first known algorithm that provably achieves e-optimality within 6(1/&) function
evaluations for the discounted discrete-time LQR problem with unknown parameters, without relying on two-
point gradient estimates. These estimates are known to be unrealistic in many settings, as they depend on
using the exact same initialization, which is to be selected randomly, for two different policies. Our results
substantially improve upon the existing literature outside the realm of two-point gradient estimates, which
either leads to O(1/22) rates or heavily relies on stability assumptions.

1. INTRODUCTION

The Linear-Quadratic Regulator (LQR) has been used as a benchmark in optimal control theory since the
sixties, see [15]. The key distinguishing property of LQR problems is that the optimal controller is linear
and can be fully characterized by the celebrated Riccati equation [3]. Naturally, with the recent increase in
interest in model-free and data-driven methods, the study of LQR problems has resurfaced in the literature in
scenarios where the model parameters are unknown and either need to be estimated, or model-free strategies
need to be used. Even though such settings fall within the realm of adaptive control, the majority of classical

studies addressing this issue have concentrated on system identification or examining asymptotic outcomes [13,
6,7, 5, 4].

Recently, the problem has been examined from a machine learning standpoint in both online and offline
contexts. In online settings, least-square estimators have been demonstrated to achieve sublinear regret. This
area has seen extensive research focusing on the details of these estimations [1, 8, 18, 2, 20]. This paper focuses
on the offline setting and builds on a sequence of breakthrough results through a reinforcement learning lens,
starting with [10]. By establishing a gradient domination/Polyak-Lojasiewicz property, the results of [10] first
demonstrate that exact gradient descent, in the model-based case, converges to the global optimal solution,
despite the non-convex landscape of the LQR problem under study. Using this and in the model-free settings,
gradient estimations are derived from samples of the cost function value, leading to policy gradient methods.
For the undiscounted discrete-time LQR under the random initialization setting, global convergence guarantees
are provided using so-called one-point gradient estimates. As also explicitly pointed out in later work [17],
the convergence rate for obtaining an e-optimal policy established in [10] is only of the order (5(1 /e*) in zero-
order evaluations. Note that by zero-order methods, we mean a setup where gradients are not available and
can only be approximated using samples of the function value. The two most common such methods in the
LQR problem are the one-point and two-point estimates where the former is obtained from a single function

evaluation and the latter from two different such evaluations!.

176 elaborate further, we provide the formulation of these two methods here. The one-point estimate at a policy K € R™*"

is computed as
m.n
gL(K) := Cinit(K + U, Z‘O)TU,
for some smoothing radius » € R and a random matrix U € R™*" drawn uniformly over matrices with unit Frobenius norm.
Likewise, the two-point estimate at a policy K € R™*™ is given by
m.n
&2(K) := [Cinit (K + 7U;x0) — Cinit (K — rU; 20)] ?U,
1
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The next significant development related to our work is presented in [17], which considers the discounted
discrete-time LQR and employs zero-order methods for gradient estimation. For the essential case of one-point
gradient estimation, an enhanced analysis is proposed. This analysis does not rely on stability assumptions
yet improves the convergence rate reported in [10] from O(1/%) to O(1/e2). Remarkably, with a two-point
gradient estimate, e-optimality can be achieved using only (5(1 /€) function evaluations. Similar findings are
reported in [19], which are somewhat restrictive in terms of scaling of probability bounds with respect to
dimensions. The substantial improvement in [17] stems from the application of sharp probabilistic estimates
on stability regions using martingale techniques, a method we also heavily rely on. It should be noted that
in both mentioned works, a constant learning rate is employed for the policy update. Interestingly, it is
not difficult to observe that there is no advantage in using time-varying learning rates when the technique
developed in [17] is applied directly.

It is worth pointing out the literature related to the discrete-time LQR problem with time-average cost. For
instance, [25] employs an actor-critic approach to achieve a sample complexity of (5(1 /€®). Similarly, using
actor-critic methods, [26] demonstrates that a sample complexity of O(1/¢) is achievable, assuming almost
sure stability and boundedness of the policy size throughout the algorithm. However, the assumption of
boundedness may not always be realistic, and more so is the assumption on stability, considering the inherently
noisy dynamics. For example, this issue is echoed in the recent work [11], which presupposes the boundedness
of policies at every iteration.

As part of our contributions, and somewhat inspired by REINFORCE [24, 23], we propose a different gradient
estimate scheme, which relies on a new take on using policy gradient for gradient estimation by appropriately
sampling the deterministic policies. We are able to achieve high-probability upper bounds on our gradient
estimations using moment concentration inequalities. Coupled with the adoption of time-varying learning
rates, our methodology enables us to reach a (5(1 /€) convergence rate, circumventing the need for two-point
gradient estimations.

2. PROBLEM STATEMENT

We start with a few mathematical notations that will be used throughout. For arbitrary matrix M € R™*"™
we use ||M||, ||M||F, and omin(M) to denote the 2-norm, Frobenius norm, and the minimum singular value
of M respectively. In addition, for a square matrix M € R™*", tr(M) represents the trace of M, and K(M)
denotes the Kreiss constant of M:

(1) K) = sup (|2 = D=L = M)~

|z|>1,zeC

We also use (M, My) := tr(M, My) to denote the inner product of the matrices My, My € R™*™.

Let us now define the problem under study. We consider the discrete-time infinite-horizon discounted LQR
problem

(2) minE Z iz Qrs + u Ruy) s.t. w1 = Axy + Buy + 2z,

t=0

where z; € R" is the system state at time ¢, initialized, deterministically or randomly at z¢, u; € R™ is the
control input at time ¢, z; € R™ is the additive noise of the system at time ¢, A € R®*™ and B € R™"*™ are the
system matrices, and Q € R™*™ and R € R™*™ are positive-definite matrices that parameterize the quadratic
costs. In most of what follows, we assume that the pair (A, B) is controllable.

which requires cost evaluations of implementing two different policies K + rU and K — rU with respect to the same initial state
z0.
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As noted above, randomness is introduced in two different ways in the above problem formulation: through the
initialization or as an added disturbance to the dynamics. This has led to two separate scenarios considered
in the literature:

¢ Random initialization: where it is assumed that the additive noise z; is zero for all ¢ > 0, and
that the initial state xg is randomly chosen from an initial distribution Dy. Given the initial state xq,
we let Cinit,v(K; o) be the random variable representing the cost of implementing the linear policy
K e R™*™ i.e., choosing uy = —Kxy for t = 0, from the initial state zq:

o0
(3) Cinit (K5 20) := Z ”yt(xtTth + utTRut),
t=0

where 0 < v < 1 is the discount factor, and the dynamics is given by (2) with z; = 0. That is, in this
case the trajectories satisfy the dynamics
Ti41 =Axy + Buy,
(4) up = — Kuy.
Naturally, the objective is to minimize the population cost defined as
(5) Cinit (K) := Egy~p, [Cinit (K5 20)]

over choices of the policy K.

e Noisy dynamics: where it is assumed z; is drawn i.i.d. for each ¢ from a distribution D,q4, and that
the initial state xg is set deterministically to zero. Given a sequence of random variables Z = {z:}:>0,
we let Cayn(K; Z) be the random variable representing the cost of implementing the linear policy K
on a system where the additive noise is drawn from Z| i.e.,

[e¢]
(6) Cayn(K; Z) = Z vz Qi + uf Ruy),
t=0
where we have set xg = 0, the dynamics is given by (2) with u; = —Kx; foreacht > 0,and 0 <y < 1

is the discount factor. In contrast to the random initialization setting, the discount factor in this
setting obeys v < 1 to ensure that the costs sum to something finite. Once again, the objective is to
minimize the population cost

(7) Cayn(K) = E5 s [Cayn(K: 2)].

By classical results in optimal control theory, see e.g., [12, 15|, the optimal controller in both cases is linear
and can be expressed as u; = —K*x; where t > 0 and K* € R™*" is the controller gain, and can be explicitly
computed. When the system matrices are known, which is not the case in this paper, the policy K* can be
derived as follows

(8) K* =~(R+~B"PB)"'BT PA,

where P denotes the unique positive definite solution to the discounted discrete-time algebraic Riccati equa-
tion [3]:

(9) P=~yATPA—-~*A"PB(R+~+yB"PB)"'B"PA + Q.

Throughout this paper, we closely follow the notation and terminology that is introduced in the seminal
work [17]. To start, for a random variable v ~ D where D € {Dy, Daqd}, we assume that

(10) E[v] =0, E[vv'] =1, and ||v|]®> < C,, a.s.

where as per usual, “a.s.” refers to almost surely. The assumption on the covariance being identity is without
loss of generality, see [17]. Moreover, it is noteworthy to mention that using the definition (3) with the
trajectories following (4), the cost for the random initialization setting can be rewritten as

(11) Cinit (K 20) = 3 Pxo,
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where Pk is the symmetric positive semi-definite solution to the fixed point equation:
(12) Px =Q+ K'RK +~(A— BK)" Pg(A — BK).
Consequently, it also holds that
Cinit (K) = Egy~p, [Cinit (K 70) ]

= Euy~p, [0 Pro]

= Eypy~po [tr(Pr oz )]

= tr(PrEoy~p, [T02q ])
(13) © tr(Pro),

where (i) follows from assumption (10) on the randomness. Although this formulation is stated for the cost
under the random initialization setting, it turns out that the two costs are essentially equivalent when the
respective systems are driven by noise with the same first two moments, in the sense that is shown in Lemma 2.4
to follow. For this reason, we focus on the random initialization scenario henceforth.

Let us now state the problem that we consider throughout this paper. We recall here that we assume that
the pair (A, B) is controllable, however, unknown. A policy K is said to stabilize the system (A, B) if we
have p(A — BK) < 1. Note that by the controllability assumption, there exists some policy K satisfying the
condition p(A— BK) < 1. Furthermore, we assume access to some stable policy Ky; this is a mild assumption
that can be satisfied in a variety of ways; we refer the reader to [10, 9]. We use K| to initialize our algorithms,
which we shortly introduce.

With this in mind, the main objective of this paper is to find an e-optimal policy K , i.e., one satisfying
Cinit(K) — Cinie (K*) < e,

where K* is an optimal policy. The proposed scheme in the literature crucially involves forming form an

estimation of the gradient of the cost function (3), which then is used for a gradient update with an appropriate

learning rate. In accordance with this, we also propose an algorithm here, displayed as Algorithm 1, where

we use an estimate inspired by the REINFORCE method [24, 23] with a time-varying learning rate to achieve
e-optimality.

2.1. Regularity properties. We introduce some notations related to the regularity properties of the cost
functions; these will play a crucial role in some of our bounds; the next few results are borrowed from [17].

Lemma 2.1 (LQR Cost is locally Lipschitz). [17, Lemma 4] Given any linear policy K with finite cost, there

exist positive scalars (A\k, Ak, Ck), depending on the function value Cinit(K), such that for all policies K’
satisfying ||K' — K||r < Cx, and for all initial states xq, we have

(14a) |Cinit (K) — Cinit(K)| <Ak || K’ — K|, and
(14b) |Cinit (K5 20) — Cinie (K 20)| <Ak | K — K| .

Lemma 2.2 (LQR Cost has locally Lipschitz Gradients). [17, Lemma 5] Given any linear policy K with finite
cost, there exist positive scalars (B, ¢x ), depending on the function value Cinit(K), such that for all policies
K’ satisfying | K' — K||r < Bk, we have

(15) [ VCinit(K') = VCinit(K)||F < ¢k || K" — K| £

Lemma 2.3 (LQR satisfies PL). [17, Lemma 6] There exists a universal constant piqg > 0 such that for all
stable policies K, we have

(16) 1V Cinit (K) 1% = ptigr (Cinit (K) — Cinie (K*))

where K* is a global minimizer of the cost function Ciyig.
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For the sake of exposition, these properties are stated here without specifying the various smoothness and

PL constants. The explicit expressions for {Ax, X\I/(, ¢r, BK,CK, iqr} In terms of the parameters of the LQR
problem are provided in [17, Appendix A]. Remark 2.1 to follow will provide further elaboration on these
parameters as well.

Lemma 2.4 (Equivalence of population costs up to scaling). [17, Lemma 7| For all policies K, we have

Cdyn(K) = Cinit (K) .

1—7

This result shows that the noisy dynamics and random initialization population costs behave identically when
their respective sources of randomness have the same first two moments. Therefore, we focus on the random
initialization cost from now on and remind the reader that C(K) := Cin(K) for ease of notation.

We define the set
(17) Gl .= (K | C(K) — C(K*) < 10C(Ko)}-

Since C is (Cx, Ak ) locally Lipschitz and (8xk, ¢k ) locally smooth, both properties hold simultaneously within
a Frobenius norm radius wx := min{Bx, (x} of a point K € G'9. We define the quantities

Qlgr := SUpP Pk, Algr := sup Ag, and wyg = inf wg.
reGlar KeGlar KegGlar

It is noteworthy to mention that these values are non-zero and finite, and their explicit formulation is provided
in [17, Appendix A], see Remark 2.1 to follow for further clarification.

Observe that by the definition of these quantities, one can immediately show that for any K € G'% and
K' e R™ " such that | K’ — K||r < wiqr, we have that

IC(K') — C(K)| <M\g:||K’ — K||F, and
IVC(K') = VC(K)||p <¢rae[| K — K| F.
Remark 2.1. We now describe how to specify the set of parameters { A, /i\;{, Or s Br, CK» Migr} in our setting.

We start by recalling that a set of parameters {ck,,CK,,---,Ck,} is defined in [17, Appendix A], which notably
depend on C(K). Subsequently, by replacing said C(K) with supgcgir C(K), they obtain a set of constants

{CKosCKys - - -, CKqy Which are independent of K. For ease of access for the reader, we point out that
(18) Wigr = /C_[?;, (blqr = EI\(;a and )\lqr = EI\(;'

Moreover, it holds that max{|| K|, |VC(K)|r} < ¢r, for any K € G, see [17, Appendix A] and |10,

Lemma 22]. Note that the only required modification in the values of Cxy,CEy, - - -, CK, for our case is having
10C(Ko) +C(K™) as supgegiar C(IK) instead of [17)’s 10C(Ko) —9IC(K™), due to the difference in our definition
of GY" in (17). o

We now provide an informal statement of our main result, which shows that our proposed algorithm obtains
an e-optimal policy after O(1/e) iterations. As we outline precisely later, this algorithm forms an estimate
VC(K;) of the gradient at a given time ¢ and updates the policy K; with a time-varying learning rate .

Theorem 2.1. (Informal Statement of Our Main Result): If the step-size is chosen as o = CHLN

with N “large enough”, i.e., N ~ O ((log%)?’m) for any chosen §, and C being a known constant, then after
T = O (N/e) iterations, provided the discount factor is close enough to 1, we have that
(19) C(KT) — C(K*) <e¢

with a probability of at least 4/5 — 0T . In particular, choosing 6 proportional to 1/T, we attain C(Kr)—C(K*)
with a constant probability with a sample complexity of O (1/e).
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Let us first point out that this result substantially improves the ones in the literature by achieving a O(1/e)
rate without any additional assumptions. The best previous result achieves a convergence rate of O(1/z2)
[17] in this setting. Indeed, O(1/e) rates were only available using so-called two-point estimates which re-use
randomness (e.g., require being able to initialize the system at a given z(). As a result, one must have perfect
control over a simulator to use such estimates; one cannot implement them for systems which need to learn
in the real world, for example. In contrast, our result only uses gradient estimates with a single zero-order
evaluation at each step.

We now begin the process of collecting the essentials needed to articulate our theorem precisely and to prove
this result, beginning with a fresh examination of the policy gradient that we employ for gradient estimation.

3. PoLicy GRADIENT

Most formulations of the policy gradient require probabilistic policies; in contrast, as can be seen in (4), we
have used a deterministic policy given by u; = —Kz;. To remedy, we utilize the control input u;, to be defined
shortly, where # is sampled at random from the distribution s () := (1 —~)7¢, where t € {0,1,2, - - }. Keeping
this in mind, we now compute

~ 1
(20) VC(K) = EQK(%%W)VK log 7 (ug|2),

where the control input u; is randomly chosen from the Gaussian distribution N (—Kx;, 0%1,,) for some o > 0
only for the selected iteration ¢, and z; = (A — BK)'zy with zg ~ D as before. Note that

0
(21) Eicu, [VC(K)] = Z Y QF (w4, us) Vi log mre (w2,
=0
where
1 (ui+Kzg) " (up+Kap)
22 i (Ut|xy) = ————e—e" 252 ,
(22) K (we|ze) RR
and

Q" (w,u) == ] Quy + uf Rup + YCinie(K; Azy + Buy)
(23) O x] Qs +ul Rus + v(Az; + Buy) ' Pi(Azy + Buy),
where (i) is on account of (11). Note that we can also rewrite u; ~ N'(—Kx;,0%1,,) as
(24) u; = —Ka; + ony,

where n; ~ N(0,I,,). Moreover, we have the following lemma to provide an alternative way of represent-
ing (20).

Lemma 3.1. The gradient estimate in (20) can be modified to get

(25) VC(K) = —mQ%, —Kux; + onp)m]
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Proof. Following (20), we have that

~ 1
VC(K) =EQK($£7 up)V e log mx (ug|zg)

&_Q (27, u;) Vi (_ (u; + Kxf;(:guf + Kfo))

1 uTu,g + QUTK:E,g + xTKTKxi
TQK(%W)VK <— ‘ o
1 K tr (2xfugK) + tr (xfa:;:rKTK)
(26) ZEQ (3, u;) Vi <— 552 ;
where (i) follows from (22). Now note that
(27) Vi tr (2x5u;:rK) = Vg tr ((ngxg)T ) Vi <2utx Ky = 2ut
and

Vi tr (arfx;fKTK) =V, tr (:ct KTKl) + Vg, tr (xtzzr K;K)
=Vg, tr ((K:C:v) Kl) + Vg, tr (K2 (K:Ct:vtT))
=Vk, <thx K1>+VK2 <thxt ,K2>

(28) =2K:17£:17£
As a result, combining (27) and (28) with (26) yields
1
VC(K) =TQK( i up) ( 52 (2(thxt +utxtT)))
1 % (u; + Kay)
:TQ (xta t) <_ L 2 L £

® 1 K T
®_ o —Ka; + on)na]
0(177)62 (w5, —Kx; + on)nx;

where (i) follows from (24). This finishes the proof.

O

Taking the alternative formulation of our gradient estimate provided in Lemma 3.1 into consideration, we

introduce the algorithm

Algorithm 1 LQR with Policy Gradient

1: Given iteration number 7" > 1, initial policy Ky € R™*", noise parameter ¢, and step size a; > 0
2: forte {0,1,...,T—1} do
3: Sample zog ~ D, t ~ iy, and n; ~ N(0, I,,)
Simulate K for £ steps starting from xo and observe ;.
uj —Kiz; + on;
VC(Kt) «— —ﬁnfngKt (,Tg, u£)
7 Kt+1 <« Kt - at%(Kt)
return Kr

Before we state the next result, note that one can compute

a0
(29) VC(K) = 2((R+yB"PxkB)K — yB' Pg A)Ey, 1 lz Ay, ] :
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a proof can be found in [10] for the undiscounted case, where v = 1, and in [17] for the discounted case. The
following proposition plays a key role in our constructions.

Proposition 3.1. Suppose u; ~ N(—Kuz;,0%1,,) as before. Then for any given K,
(30) E[VC(K)] = VC(K).

Proof. Following (25),
E[VC(K)]

= [EWD [IE NI [vc )i, :vo]

ol

@) .
= ]Ef~,u.y |:Em0~p [_mEnt"NN(OJm) [Q(l’f, _Kl'f + O"I]E)(O"I]f)h, (EO] X

1
(31) = SEMV lEWD lEmﬁ*N (0.1m)

fVuQK(xi, u)

u=—Kx;+on;

where (i) follows from z; being determined when given xq and ¢, and (ii) from Stein’s lemma [22]. Using (23),
we compute

VuQ" (z5,u) =V, (z] Qu; + u" Ru+ v(Az; + Bu)' P (Az; + Bu))
=2Ru + 2yB' Px Bu + 2yB' Pg Ax;,
which evaluated at u = —Ka; + on; yields

VuQ (27, 1) =2((R+~B"PxB)(—Kz; + on;) + vB' P Ax;) .

u=—Kx;+on;

Substituting in (31), we obtain

E[VC(K)]
= %Ef~uw [E10~D |:2 ((R + "YBTPKB)K - ’}/BTPKA) xixg 1?:”
= &E%M [((R+WBTPKB)K —yBT P A) (A — BK)'Eyyplzorg | ((A BK) >T]

7(A - BK)'E OND[I()IO] ((A BK) )

18

=2((R++B"PxB)K — vB' Pk A)

-
Il
=)

7'(A - BK)! xoxo ((A BK)) 1

18

D9 ((R++BTPxB)K — BT Pk A) Eyywp

t=0
(i) S
= 2((R++B"PxB)K —yB" Pk A)Eyyp lz 'ytxtx:}
t=0
(111 VC( )
where (i) is done by utilizing the linearity of expectation along with replacing { by t as it is just a sum variable
from that equation forward, (ii) is due to z; = (A — BK)'zg, and (iii) follows from (29). O

Before moving on to the next result, we define the undiscounted cost
0

(32) Cund (K) = EI0~'D lZ( th + Uy RUt)

t=0

subject to (4).
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Lemma 3.2. Suppose K is stable and suppose that

”ye(lM,l).

11Cuna(Ko)
Then

1 Umin(Q)
33 A—BK)< —,/1— ;
(33) }f;iﬁﬂ ) ﬁ\/ 10C(Ko) + C(K*)

in particular, the set G'9 in (17) only contains stable policies.

Before we provide the proof, we point out that the condition of stability of K readily implies that Cypna(Ko)
is finite.

Proof. Suppose K satifies p(A — BK) > 1. Then we have

a0
C(K) = Eayop | 2, 7' (2] Qi + u/ Ruy)
t=0

7' Gmin(Q)EI|(A — BR)' o

18

=

~+
Il
o

Y o min (Q)E[tr(((A — Bf()t)T(A — Bf()tzzroxoT)]

[
18

~+
Il
o

'Ytomin(Q)”(A - BK)tH%

1=
s

~
Il
o

’Ytamin(Q)p((A - BK)t)z

WV
D18

~+

WV
s L

—~
=

Vtamin (Q)
in(Q)

~
Il
=)

(34)

Q
—|g
W

)

2

where (i) comes from the linearity of expectation along with the assumption on the noise from (10), and (ii)
follows from the instability of K and that p(A*) = (p(A))! which holds for any square matrix A. Now as a
result of this, if we also show supgcgiar C(K) < %@, we have proved stability of every K in the set G9r.
We do so as follows:

min i (@) D
01 (3) O 11Cuma(Ko) 2 11C(Ky) = 10C(Ky) + C(K*) = sup C(K),
— Keglar

where (i) comes from the assumption on +, (ii) from the fact that for a given policy, the undiscounted cost
is not less than the discounted cost, and (iii) from the definition of the set G'9" from (17). This proves the
second claim.
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For the first part, since for any K € G'% we have that p(4 — BK) < 1, we conclude that
0
C(K) = EI0~D Z 'Yt(«r;ert + u;rRut)
=0
0SS, o
> Y7 omin(Q)p((A — BK)")

= owin(Q) ), (7(p(A — BK))?)"

[ = (p(A— BE)}'

where (i) is done the same way as (34) and (ii) follows from v(p(A — BK))? < 1 for K € G, As a result, for
K € G'9* we have that

1 y(p(A~ BK)) > “22‘}@?) ~
v(p(A—BK))><1— 021(1}({632) N

1 Umin(Q)
p(A—BK) < 7 1,m7

which after taking a supremum gives

1
sup p(A—BK)< — sup 4/1— =
Keglar ﬁ Keglar C(K) ﬁ

concluding the proof. 0

Umin(Q) o L\/l . Umin(Q)
10C(Ko) + C(K*)’

We next introduce a high probability upper bound on our gradient estimate on any K € G'9.

Lemma 3.3. Suppose 6 € (0, %], and 7 is chosen as in Lemma 3.2. Then for any K € GY7, we have that

. 53 1 3/2
< —

(35) IFe() e < 1= (1os 3
with probability at least 1 — §, where &1,&2,&3 € R are given by
(36) &= (110l + 20 RIER” + 29(10C(Ko) + C(K*)) ) *n* K C3?
(37) & = (2IR]| + 27/ BJ*(10C(Ko) + C(K*))) enKCy/?

_ 1 1/2, 1/2 3/2, 3/2
(38) & ._;(515 m )+a(§25 m )

where K is a positive constant. Moreover,

€
=P

(39) E||VC(K)|% <
where

(40) &4 = %ffm + 261E&m(m + 2) + o2Em(m + 2)(m + 4).
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Proof. Using the formulation of @(K ) derived in (25), we have

—~ 1
IVC(E)|r = || ==z { Q (27, =K + o)
U(l—’}/) Tt t t t »
1
(41) <m||ﬁf||||xf||QK($£7*K$£+U77£)-
First, note that
(42) 23]l = (A = BK)'xol| < [|(A - BK)' HH%H Supll(A BK)'[|C)?,

where (i) follows from the assumption on the initial state noise mentioned in (10).

Sublemma 3.1. We have that

(43) sup supl||(A — BK)'||
KegGlar t=0

is finite.

Proof of Sublemma 3.1. We start by arguing that G'9' is a compact set. First, note that since | K| < ¢x, (see
Remark 2.1) for any K € G, the set G'9" is bounded. Secondly, since C(K) is locally Lipschitz in G'9, it is
also continuous, and hence, by the definition of G'% in (17), we have that G'%* is the pre-image of the closed
interval [0, 10C(Kp) +C(K*)] under a continuous map C : G'4* — R, implying G'¢* is closed as well. As a result

of this, we have that G'% is compact. Now we move on to show why (43) is finite.

First, let us define

S(wo; K Z e,

where z; 11 = (A — BK)z;. Moreover, we let
S(K) :=E;y~pS(xo; K)

e}
=Eyzy~p [Z thlﬂ
t=0

= EI)O"’D [Z H(A - BK)t:EOP]

t=0

[
18

EIOND[ (((A BK))" (A - BK) xoxo)]

t=0
0

= Ia-BE)'|%
t=0
0
> Y (A - BK)?,
t=0

which after taking the square root of both sides gives

e}
S(K) = Z (A— BK)t|]2
=0

> sup (A K)'|.

As a result, we have that
sup (A — BK)'| < +/S(K),

t=0

11
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which after taking a supremum over G4 yields

(44) sup sup (A — BK)"| < sup +/S(K).

KeGlar t=0 Keglar

Now it suffices to show supgcgiar 4/ S(K) is finite, which we prove by contradiction. Suppose that this is not

the case. Therefore, there exists a sequence {K;}7, such that /S(Kj;) 2%, . By compactness, we can
pick a convergent subsequence whose limit we denote by K. We will abuse notation and henceforth use K j to

refer to the subsequence; observe that K; should also satisfy 1/S(K) 1290, o

Now since K € G9r, we have from Lemma 3.2 that A— BK is strictly stable, and thus, there exists a Lyapunov
function V(x) = 2" Px where P is a positive definite matrix that satisfies

(A-BK)"P(A—BK)—P = —1I.
Therefore, for j large enough,
(A— BK;)"P(A— BK;)— P < —(1/2)I.
Then

V((A—- BK;)x) —V(z) = 2" (A~ BK;)P(A — BK;)z — 2" Px

< —(1/2)]=)?

1 > 2
SR (o) (Amax(P)[z]?)
(i) 1
< _mv(x)v

where (i) is due to the fact that V() < Amax(P)|z]?. Thus,
(45) V((A—- BKj)x) < (1 - 7> V(z).

As a result, we have that

oe]
S(wo; Kj) = ) il
t=0

1 t
S Nen(P) 4 (1 B 2Amax(P>) Vi)
2 max (P)
Amin (P)
202 (P)

< PonaxP)y 1o

)\min (P)

S
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where (i) follows from V(z) = Apin(P)||z|? and (ii) from (45). Now taking an expectation over zg ~ D yields

202 (P)
S(K;) g Zfmaxy Jg 2
( J) )\mln(P) 0 DH‘/LDH
2\ (P)
- meOND tr(zoxg)
2\ %hax(P)
= m tr (Ezo~D [I(ﬂ?g])
202 (P)
— —_max\ /¢ [n
)\min(P) r( )
_ 2. (P)
B )\min(p) ’
and hence,
2nX2,. (P)
S(K;) <y | —=—,
( ]) )\mln(P)
which is finite, resulting in a contradiction, concluding the proof of (43) being finite. o

We now continue with the proof of lemma. Let us first make a remark. By the Kreiss matrix theorem [16, 21],
we have that

(46) K(A - BK) < sup|(A — BK)!|| <en K(A - BK).

t=0

Consequently, we can define the following constant

(47) K:= sup K(A- BK),
Keglqr

which is finite as a result of (46) along with the finiteness of sup gegiar Sup;~¢||(A — BK)'||. Combining (46)
and (47) with (42) gives

(48) |z;| <en CY? K(A—-BK)<en CY?K,
for any ¢ > 0. Moreover,
QK(xg, —Kz; 4 on;) =3:£TQI£ + (—Kz; + Unf)TR(—Kxg + on;)
+7((A — BK)z; + 0Bn;)" Px((A — BK)x; + o Bn;)
QIQUen2R2Cr + | RI||~ K2z + o + WPk x4y + o Bgl*
QN2 C + 2RI (1272 + 02 1)
+29C(K) (w4112 + o[BI [Ime 1)
< (lQl+ 2 RIE? + 2v(100(K0) + C(K™))) n?K2C,,
(49) + (20| Rl + 2v0®(| B||*(10C(Ko) + C(K*))) [|In¢]1*,

where (i) follows from (48), (ii) from || Pk|| < tr(Px) along with tr(Px) = C(K) as shown in (13), and (iii)
from the fact that | K| < cg, for any K € G'o (see Remark 2.1) along with reapplying (48) and utilizing
the upper bound obtained on C(K) by the definition of the set G'9". Now applying the derived bounds (48)
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and (49) on (41), we conclude that

(lQIl + 2 RIIER? + 2v(10C(Ko) + C(K*))) et K3 Cl?

IVeE)|r < =) 1
, @ QAR + 27| BI*(10C(Ko) +C(K*) enKC? el
(1) b
1 /1 )
(50) 1o, ;fl”ﬁf” + o&llmll” ) -

Furthermore, since 1; ~ N(0,1,,,) for any £, ||n;]|? is distributed according to the chi-squared distribution
with m degrees of freedom (||n;||? ~ x?(m) for any #). Therefore, the standard [14] bounds suggest that for
arbitrary y > 0, we have that

(51) P{||n;l|* = m + 2y/my + 2y} < eV,

Now since by our assumption 0 < § < 1/e, it holds that y = mlog 3 > m and thus
P{lln:ll* = 5y} < P{llngll* = m + 2y/my + 2y} < 7,

which after substituting y with its value mlog% gives

1
P{[|n;]|> = 5mlog 5} <emlogd _gm < 5.

1/2 and consequently

As a result, we have [|n;]| < 5/2m!/2(log %)
1
Il < 592210 )72

with probability at least 1 — d, which after applying on (50) yields

. 1 1 1\ M2 1\ 32
[VC(K)||lr <—— | =&5Y2mY? (log < + 0&:5%2m>? (log =
1—v\o 1 4]

1 Lot 1 3/2, 3/2 1\*?
<—— | =657 m Y7 + 08357 m log —
11—~y \o é
1\ 32
= 53 1Og_ )
1—7 1)
proving the first claim.
As for the second claim, note that using (50), we have
= 1 1
(52) IFCR < s (esilonl? + 266all + o€l

Now since ||n;]| ~ x(m) whose moments are known, taking an expectation on both sides of (52) results in

o~ 1 1
BISCUON <=z €Il + 26 &l + Gl

=(1_%)2 (%{fm + 2616m(m + 2) + o2&m(m + 2)(m + 4))
&
(1 =)

concluding the proof. O
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Following Lemma 3.3, we now define the following event for each iteration ¢ of Algorithm 1:

N 3/2
(53) A = {|VC(K1&)F < 1<_37 <1og%> }

Having this, we introduce the following lemma:

Lemma 3.4. Suppose § € (0,673/2], and ~y is chosen as in Lemma 3.2. Then for any given K, € G497, we
have that

. 3¢ 1\ 32
(54) [E[VC(Ki)1a] = VE(K)|F < § _375 <logg> :

Proof. Following Proposition 3.1, we have that
VC(K;) =E[VC(Ky)]
—E[VC(K)14,] + E[VC(K:)14c].
Therefore,
[E[VC(K)1a,] = VC(K)|
= [E[VC(K:)1ag] |
< B[V L]

—E [HVAC(Kt)HFlAs]

(i) -
<E |VC(Kt)|F1{

1—

o ox L)3/2
chumuw%}

IVC(KL)| e

3/2
(55) - {vAc<Kt>|F > %} £

1 3/2
IVC ()| > %1 ,

where (i) follows from Jensen’s inequality and (ii) from the fact that

= (3 1\%? —~ (3 1\
A§={VC(Kt)IF>1_7(log5) }g{|vc<m>|p>m(1og5> }

Moreover, it holds that

E||[VC(K)|r

1—7

ISCK) | > M]

w ~
s PYVC(KY)| P =2} d
<s(1og%)3/2+gf%oog;>\/ (IVC(Elr > 2} d=

— — oz 1132
t=1 P{WC(Kt)F > M}

(56) =

Now recall from Lemma 3.3 that

. 3/2
(57) ]P’{VC(Kt)F > % (log%) } <9

for arbitrary §, which implies

z(1—v)

(58) P{\\@(Kt)\\F > z} < e_(T)m.
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Now combining (58), (56), and (55) yields

~

|E[VC(Ki)1a,] = VC(KL)| P

V( l 3/2 l 3/2 . z(1—~ 2/3
<IED{va(KtHF > oloed) } e +J e

1—7 1—~ <3 1)3/2

=2 (log }

o0

M) 1\%/? \

< G 1) (log —) + —CB e du
1_'7 0 1_’7 (log%)?’/z

¢ N2 ¢ (3 1\'"? 3 [T1
—1_75 log6 + T 25 log6 + 4ﬁerfc 1og(S
(W) ¢ 1\*? 3 1\'"? 3

< T—7 <(5 (log 5) + 5(5 (log 5) + Zﬁé

(i) 3¢ 1\*?
< log =) .
(59) 1_75(0g6)

3
that erfc (4 /log %) < 8, and (i) from 6 < e=%2. This concludes the proof. O

where (i) follows from (57) along with a change of variables u = (ﬂ> z in the integral, (ii) from the fact

Before introducing the next lemma, let us denote the optimality gap of iterate ¢ of the algorithm by

Moreover, let F; denote the o-algebra containing the randomness up to iteration ¢ of Algorithm 1 (including
K, but not VC(K;)). We then define

(61) 71 :=min{t | A; > 10C(Ky)},
which is a stopping time with respect to F;.

Lemma 3.5. Suppose 6 € (0, 6_3/2], v is as suggested in Lemma 3.2, and the update rule follows

(62) Kt+1 = Kt - atﬁ\C(Kt)
with a step-size a; such that for all t € {0,1,2,...},
Wigr
QO S ——————7.
/2
ERTY

Then for any t € {0,1,2,...}, we have

3Gsei 1\ gig0? €
(63) E[At+11At|Ft]1Tl>t<<(1uquat)Athl%:lé <1og5> g + zq2 t(l_ig)? 1rot,

where Ay and Ay are defined in (60) and (53) respectively.

Proof. First, note that by the definition of 71 in (61), 71 > ¢ implies K; € G, In addition, since a; <

m, the event A; implies that

|Kev1 — Kil[p = |0 VC(EL) | F < wigr-
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Thus, by local smoothness of C(K}), see Lemma 2.2, it holds that
(A1 — A1y sl g, =(C(Kip1 — C(Ki))1r>ila,
¢1qr

<(<vc<Kt>,Kt+1Kt>+ 1Kor - Ktn%) Lnoela,

rQ
= ( at <VC Kt VC > JF d)lq ! |VC(Kt)|F) T1>t1.At7
which after taking an expectation conditioned on F; gives
E[A¢+11r,5e1 4, |Fe] — E[ALr 5014, F]

<~ a0 (VC(KL) E[VC(K) L1 | 7)) + 2 2B 1oL a, | i)

Since A; and 1,,~; are determined by F,

E[Avy114,[Fe]lr >

< (MBI - a0 (Ve BITC(R L 71 + S PBIITOURD L4 7 1

¢lqr

i

< (At Y <VC(Kt E[VC(K})1,|F] >+

—~
=

2E[|vAc<Kt>|%|ft]) Lo

:At171>t — O <VC(Kt), VC(Kt) + E[VC(Kt)lAt |Ft] — VC(Kt)> 17'1>t

+ 2 2RI TC (K [ )L

:At1n>t — Ot <VC(Kt)a vc(Kt)> 17’1>t

¢lqr

— o <VC(Kt),E[€C(Kt)1At|]:t] — VC(Kt)> Lot + 2o E[|VC(K ) |3 | Fi]lr, e

(ii)
<AL s — OétHVC(Kt)H2F1n>t

+ 0ul VO [BLTC) 14, 7] = VU o + Sotod it

(i) 3¢scit, 1\*? Sar 2 G
< A¢lpst — oppigrADile >t + 1= ’Yl 0 | log 3 arly >t + 2q G%W1ﬁ>t

3CCR, 1\ %2 a2
= <(1 — fiqrow) Ay + %5 (10g g) ot + Plar 0 b 2) 17>t

1 2 (1-9)
where (i) follows from 14, < 1, (ii) from Lemma 3.3, and (iii) from applying the PL inequality (16), the
fact that |VC(K:)|r < ¢, for any K; € G'9 (see Remark 2.1), and Lemma 3.4. This finishes the proof of
Lemma 3.5. O

We are now in a position to state a precise version of our main result.

Theorem 3.1. Suppose Ky is stable and vy is as suggested in Lemma 3.2. If the step-size oy is chosen as

3/2
1
(64) oy = 2 L for szax{]\]l, 2 M},

Higr t+ N Higr (1 W)qur

where

(65) N; = max {2, H%qr(l — )2 (Ko

Aty 2 }
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then for a given error tolerance € such that C(Ky) = and § chosen arbitrarily to satisfy

£
207

DrgrCawy ’
§ < min{ 2 1070, [ ar>2iar 3
’“”1{ S (960<§6R:C(Aw>) o

(66) ( Pigra )3 3 (qur(l —7) ) ’ 3
480(1 — ) puigrCscr, N1C(Ko) "\ 240Gsek, 7
the iterate K1 of the Algorithm 1 after

(67) T t—ONC(KO)

steps satisfies
(68) C(Kr)—C(K*)<e
with a probability of at least 4/5 — 6T .

It is essential to re-emphasize that, as also evident from the statement of Theorem 3.1, there is no reliance
on a stability assumption; rather, the result is proven to hold with a certain probability. In particular, the
instances of the algorithm that lead to instability at any iteration before T' are factored into the failure
probability 1/5 + 6T

The proof of Theorem 3.1 relies on an intermediate result, namely Proposition 3.2, which we establish next.
Before doing so, we provide some observations regarding the statement of the theorem. First, we have the
following remark for 9:

Remark 3.1 (Selection of § for the probability of failure). The §T term in the probability of failure stated
in Theorem 8.1 can be adjusted arbitrarily; however, since T' depends on N which depends on § itself, we add
some further discussion here. If we want the T term to be less than some arbitrary small &', it needs to hold

that 32
4 2 K, 1
5T — 620 max d NiC(Fp), —2CUH) <log —) <0
€ Mlqrwlqr(l - ’7) 0

Therefore, § first needs to satisfy

40 , d'e
(69) ?NIC(KO)(S <d=6< WONC(Ky)’

and secondly,

m@aMﬂ].< 1f” : ( 1>” pigwigr(1 =)
70 —— -5 |log~ <d =0|log= < —————"f'c.
(70) paco (-7 20 %5 o S0GC(Ko)

Now since a® (log %)3/2 < a for any a € (0,1), for (70) to hold, it would suffice to have
1) 5<<mﬂﬂﬂlzﬂ)ﬂy@s
80¢3C(Ko)

Note that (71) is only a loose sufficient bound on § that can be improved (for instance, the exponents in (71)
can be reduced from 3 to 2 considering the other requirements on 6 in (66)); however, since the dependence of
T on § is logarithmic, the looser requirement only adds a constant and does not change the order.

As a result, adding (69) and (71) to the existing requirements on § in (66), we will have
. _ Srgrlawigr \° Pigra ’
0 <min< 2 x 10 5, (% 53, >t 53,
{ 960<3CKIC(K0) 480(1 - 'Y)qurCBCKlNlC(KO)

Higr(1 —7) ’ d'e Higrwigr(1 —7) ’ /
(72) (W) 83’4ON16(K0)’< et ) (55)3}7
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which will lead to the result of Theorem 8.1 holding with probability 4/5 — ¢ after

N 1 1 \*? 1 1 1\*?\ /1
T~—~0|=-(log-——= =0| - (log—= +log - =0|-
€ <5 (og (5’5)3> ) (a (og 5 Oga) (5)
iterations of Algorithm 1. o

Secondly, we find it worthwile to provide the following observation on the choice of o:

Remark 3.2 (Selection of o and its impact on T'). Note that the value of o in (22) is at our discretion, so
one natural question would be regarding the asymptotic analysis of o and its impact on our rate T. Observe
that the only effect of o on T is through & and &4 defined in (38) and (40) respectively. Taking everything else
as constants, following the choice of T and N suggested in Theorem 3.1, we have that T > O (max{s,&4}).
Now since both &5 and &4 will grow unbounded as o approaches either zero or infinity, so does T'. Therefore,
we choose a non-zero value for o instead. An optimal value can be derived, but given that this only affects the
constants in the rate, we opt for o = 1. o

Thirdly, note that for any K; € G'9°, by our choice of a; and N in Theorem 3.1, we have

[Kt+1 — Killr =llee VC(Ky)|| F
21

_qurt-i——N

2

IVC(Ky)||

<

1 —~
—|[VC(K

oMLl
M [IVCEllr

(73) <qur£37t13/27
1;7 (logg)

where (i) follows from (64). Now applying Lemma 3.3 on (73) yields

(74) [Kiv1 — Ki|lp < wigr = Kielgqr WK

with probability at least 1 — §, where wx = min{Sk,(x}. This implies that the local Lipschitzness and local
smoothness properties of the cost hold for the update at iteration ¢ with probability at least 1 — §.

Fourthly, to help unravel the logical reasoning elucidated in the proof, we introduce the following stopping

times:
. & 1) %2
To = min<t>1 ‘ ch(thl)”F > m <10g 5)

(75) 7 := min{ry, 72},

with 71 previously defined in (61). Essentially, one can observe that as long as t < 7 and ¢ + 1 < 79, it holds
that K; € G'9 and ||Kyy1 — Ky||r < wigr, implying that local Lipschitzness and local smoothness properties of
the cost hold until that iteration. By the definition of 7 in (75), we have that

(76) 1T>t = 17'1>t17'2>t'
Moreover, following the definition of A; in (53), it also holds that
(77) 17'2>t+1 = 17'2>t1.At-

Finally, we note that the idea of introducing a stopping time (75), which helps identify the failure of the
algorithm and is also used to define a stopped process later on, is inspired by [17]. However, despite the
similarity of our forthcoming statements to those in the proof of [17, Theorem 8|, the paths we take to prove
said statements are considerably different due to the differences in how we defined our stopping time (and
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subsequently the stopped process to be defined later on), our gradient estimation method, the time-varying
learning rate, etc.

Having covered all of the above, we are now ready to present the following proposition:

Proposition 3.2. Under the parameter settings of Theorem 3.1, we have

€
E[Arl ~7] < 20°
Furthermore, the event {T > T} happens with a probability of at least %—g —oT.

Proof. The following provides us with a stepping stone for proving the first claim:

Sublemma 3.2. Under the parameter settings of Theorem 3.1, we have that

£ NC(KQ)
< — 4 2
(78) E[At17—>t] O m

for allt e [T].

Proof of Sublemma 3.2. We prove this result by induction on ¢ as follows:
Base case (¢t = 0):

_ NC(Ko) _ & | NC(Ko)

T 0+N 40 0+ N

which after taking expectation proves the claim for ¢t = 0.

Inductive step: Let k € [T — 1] be fixed and assume that

= NC(Ko)
E[Aylag] < = 4+ om0
(79) [Blri] < 35+ 5N

holds (the inductive hypothesis). Observe that

E[Ars11lrsk41] o E[Ars1lrskt1lrskt1]

(i)
< E[Aks1lr561m>k614, ]

=E[E[Art11lnsklnsila, | Fil]

(80) D BIE[A 114, [Fellror Lo,

where (i) follows from (76), (ii) from equation (77) along with the fact that 1., ~x+1 < 15,5, and (iii) is due
to 1;,~% and 1,, > being determined by F;. By Lemma 3.5, we have that

(E[AIH—I 1a, |]:k]17'1>k?) Lry>k
3¢, N pged &
< | | (1= pgron) Ay + ﬁ5 log 5 art T s Irsk | sk

(1—=7)?
(81) 2 (1 -2 ) A, + B30 (o 3)"" 1 + 2t ! 1
- k+N) mae(1—7)  k+N (1=, k+N)2 ) ™"

where (i) follows from(76) along with replacing aj, with its value in (64). Now due to the choice of § in (66),

we have that
3
5 < /’qur(l :Z) &_37
240¢3ck,
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which after noting that a® (log %)3/2 < a for any a € (0,1) implies
3/2 - 6¢3e3,0 (log 1)*°
(82) ) <log l) < a1 ,\2)5 = S ( o8 5) < i.
1) 240¢s¢ck, Higr(1 —7) 40

Applying (82) on (81) yields
E[Ag+114, | Frllrsklesk
2 € 1 2014r€4 1
< 1-— A — 1,
(( k+N) k+40k+N+(177)2ufqr(k+N)2 =F

e 1 2¢1qr€4 1
<(1- Apl, — d
< k+N> TR N T A2, (e N

which after taking expectation results in
E[E[Ak+11a4, | Fellr>klr>k]

(83) < (1 - ]HLN) E[Ax1r>k]

+ i 1 2¢1qr§4 1
AOk+N  (1-7)2p, (k+N)*

Combining the hypothesis (inequality (79)) and inequality (80) with (83), we obtain

E[Ag+11r5541]

(i 2 ) (L XKy e 1 Wb
k+N 40 k+N 40k+N  (1-7)%ug, (k+N)?

<i+<1— ! )Nc(KO)— ! 2<NC(K0)—72¢M§4 )

40 E+N) k+N  (k+N) (1—7)%ud,
() e k+N-—-1
< 9 NC(KQ)

40 B+ N+ 1
where (i) follows from the fact that

8¢1qr§4 > 2¢lqr€4
(L=, — (A =7)2pi,

NC(Ke) > NiC(Ko) > ( 24¢1qr§4 2

R c<Ko>> €i¥o) =

This proves the claim for k£ + 1, completing the inductive step.
Now utilizing Sublemma 3.2 and the choice of T from (67) in Theorem 3.1,

e NC(Ky) _ e NC(Ky e
E[Arl; S—+— < — 4+ —— - =_
Arlerl s G+ 7y <t 7 20

21

which finishes the proof of the first claim of Proposition 3.2. Now before moving on to the second claim, we

introduce the following sublemma:

Sublemma 3.3. Under the parameter setup of Theorem 3.1, we have that for all t € [T],

3Cser, 1\*? PrgrCs A1grCa 1 ApigCs 1
84 2B 5 (log = a4 2 d < g )
(84) 1 (g) ST R 77 S S N 7
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Proof of Sublemma 3.3. First, substituting a; with its value in (64), inequality (84) becomes

_~ 3/2
6¢3¢x; 6 (log 1) 2 2614 < 1 N 2 > 205G ( 2 >
(I=Ppmar t+N (1=, \C+N)?2  t+N+1) " (192, \t+N
- 64‘36]\{-1/5 (1Og%)3/2 1 < 2¢lqr<4 < 2 . 2 . 1 )
=g t+N ~ (1=7)2pf, \t+N t+N+1 (t+N)?
_ 6Gemd log ) 1 264G < 2 1 >
=g t+N = (1=, \E+N)E+N+1)  (t+N)?
—~ 3/2
. SGero(logs)”” 1 260G < t+N-1 )

Q=g t+N (1 =72, \(E+N2(t+N+1)
1\ . t+N—1

(85) — <1og —> < ~¢1q G < * > .
§ 3¢sCry (L —y)pugr \(E+N)Et+N+1)

Note that for the right-hand side of (85), we have for all ¢ € [T] that

PrqrCa (t +N -1 1 > (>‘) PrqrCa < 1 )
33, (L —Npigr \ t+N t+N+1) 7 6¢sck, (L —7)pugr \t+ N +1

> ¢lqr<4 ( 1 )
~6Ger, (1 —Y)mge \T + N +1
(if) . 1
(86) Y s (—) ,
12¢3ck, (1 = y)pge \T

where (i) follows from the fact that ttingl > 2 which is due to N > 2 (see (64) and (65)), and (ii) from

(i
C(Ko) = 55 under the settings of Theorem 3.1, which results in

>
T+N+1" 2T
As a result of (85) and (86), in order to conclude the proof Sublemma 3.3, it would suffice to show that

3/2
1) <1og 1) < /\?1qu4 (i)
o 12<3CK1 (1 - V)Mlqr T

4
T=£NC(K0)>2N>N+1=>

_ ¢1qr<—4 i 1
12¢3¢k, (1 — ) pugr 40 NC(Ko)
¢1qr<—4 £ 1

Higr (1_V)wlqr

12Gsex, (1 — ) i 40 - {Nlc(Ko), 2C (ko) €3 (log §)*° }

PrgrC 1 Wigr(1 —7)
(87) lqrGa Hlgriq ’73/2}'

= — — min ,
12<30K1(1 - V)Mlqr 40 {NIC(KO) 2C(K0)C3 (log %)
For (87) to hold, we need two inequalities to hold as a result of the min{., .} operator. First, we require

(88) 5 (log —>3/2 < ___Yaa €.
6 480¢sek; (1 = 7)puarN1C(Ko)

Now since a® (log a—13)3/2 < a for all a € (0,1) and the choice of § in (66), i.e.,

3
§ < ( __ ¢1qr<4 ) 63,
480(3¢k, (1 - V)querc(KO)
we conclude that (88) holds for the parameter setup of Theorem 3.1.
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Secondly, it needs to hold that

1 3/2 (blqr <4qur
0 <10g5> < 2~ 132"
960¢3¢x, C(Ko) (log 5)

(89) — § log1 3 < Ma.
0 960¢;3 ¢k, C(Ko)

¢lqrc4wlqr
__Plarbaiar 5 198,
960¢5ck, C(Ko)
3
for any 0 < (M) €3, we have that

960C2cx, C(Ko)
3
1 ¢1qr<4wlqr
6 | log = < ——> 5,
( o 5) 960z, C(Ko)

and if bt
lqr64Wiqr
— = ¢ > 0.028,
960¢3ex, C(Ko)
it would suffice to have that .
é (log %) < 0.028,

which would hold for any § < 2 x 1075. As a result, due to the choice of § in (66), i.e.,

PrgrCaw ¥
§<min{2x107°, ( L0 ) &3
mm{ o <960C§CK1(Z(K0) S
we have that (89) will also hold under the parameter setup of Theorem 3.1. Finally, since both (88) and (89)
hold for ¢ as chosen in (66), inequality (87) is satisfied, finishing the proof. ©

We now prove the second claim. Even though our proof strategy mimics the one in [17], the structure of the
stopping times in (61) and (75) makes the arguments more involved. Note that this difference in the definition
of the stopping time (and subsequently the stopped process) can be attributed to the fact that in contrast to
[17]’s one scenario (leaving the stable region) which may lead their algorithm to fail, there are two possible
scenarios that may cause the failure of our algorithm. We start by introducing the stopped process

4¢1qr§4 1
(1 =7)Ppi t+ N

We next show that this process is a supermartingale. First, we have that

E[Y:41|F]

(90) Yii= A atlyst + for each t € [T].

4¢1qr§4 1
(I =7)2pp, t+N+1
4¢1qr§4 1
(1 =7)2pf, t+N+1

:E[Aﬁ at1lrsig1 |Ft] +

=E[Ar at1lmsir1 (<t + Lryse) | Fi] +

4¢1qr§4 1
(I —=7)2pupp t+ N +17

(91) =E[A; atv1lmserile <o Fe] + E[A7 nr1lmsirile e Fe] +

Then for the first term on the right-hand side of (91), it holds that
E[Ar at41lmsi41 1 <t Fe] <E[Ar ati1lmsele <t Fi]
=Lt E[Ar nt11m <t F]
=Lt B[Ar atlr <t Fi]
(92) =Ar atlrystle <t
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As for the second term, we have

E[A at41lmst1le | Fe]

=E[A¢111r >t 1514, F]
E At+11At|‘Ft] Tl>t17'2>t

—~ 3/2 2
3 1 r
1 - Mlqrat ) Ay + Cafifyl o (10g g) ot + Plar 574)2> 1 seln sy

[A

E[ T1At+1 17'1>t1‘r2>t1.At |]:t]
[
[

l

INE

1 2 (1—~

3¢sci, N hga? &
A L5 [ log = e e AP B 1, 5¢1,
( t+N A (Oga) M Ty @2 )
< Al

(iii)

3(sCRy N bl &
7'1>t17'2>t 1— ,yl 6 <1Og5) a + q2 t W
(iv) 3(3CK, 1\*2 Aoy &
(93) = Arnilnsilese + TR0 log s | on ot = =,
where (i) follows from (77), (ii) from Lemma 3.5, (iii) from 1, 5¢1,,~; < 1 along with the fact that t+N st

for all t € [T], and (iv) from A¢ly =t = A atlr >t
Combining (91), (92), and (93), we obtain that for all ¢ € [T],

E[}/t+1|]:t] <A‘rl /\t17'2>t17'1<t + An /\t171>t17'2>t

| 3GeR, ( 1)3/2 S S R V2 1
1—~ 5 2 (1-7)? (1—9)2pudt+N+1
(i) 4¢lqrc4 1

<A~rl /\t17'2>t(17'1<t + 17’1>t) +

(I=)2ui, t+ N
4¢lqrc4 1
(L=)%ui, t+ N

:A‘rl /\t17'2>t +
:}/tv

where (i) follows from Sublemma 3.3. This proves the claim that Y; is a supermartingale. Moreover, define
the following events:

(94) 51 = {TQ T1 and T € [T]}

(95) E:={m <mandm € [T]}

(96) &3 = {maXATMth-pt > lOC(KO)},
te[T]

and hence, we have P{r < T} = P(&;) + P(£2). Now since 7 < 71 in & suggests that ||%(KT2,1)||F >

% (log%)s/2 despite A,, 1 < 10C(Ky) (which implies K,,_; € G'9), after applying union bound on the
result of Lemma 3.3, we have

(97) P(&) < oT.

Furthermore, note that 71 < 72 in & implies that A, xr 1r>r, = A, and since 71 € [T, it holds that

maXAn /\t17'2>t = Arl AT1 17’2>‘r1 = Arl (>1) 1OC(KO)7
te[T]
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where (i) follows the definition of 71. As a result of this, we have that & implies £, and consequently,
P(&;) < P(E3). Finally, since Y; = A, rtl.,~ for all t € [T], we have that
P(&;) <P(&)
=P {max AT1/\t172>t = 10C(K0)}
te[T]
<P {maXYt > lOC(KO)}
te[T]
v E[Yo]
10C(Ky)
4AP1gré
_A71A01T2>0 + %%
10C(Ky)
(2) A + C(Kp)/2
= 10C(Ko)
<C(Ko) + C(Kp)/2
= 10C(K))
3
98 ==
(98) =

where (i) follows from applying Doob/Ville’s inequality for supermartingales, and (ii) from the condition on
the choice of N in Theorem 3.1. Utilizing the acquired probability bounds (97) and (98), we observe that
P{T < T} ZP((‘:l) + P(Ez)
3

<6T + >,
20

which verifies the second claim of Proposition 3.2, concluding the proof. 0
The proof of our main result is a straightforward corollary:

Proof of Theorem 3.1. We now show how Proposition 3.2 can be employed to validate the claims of Theo-
rem 3.1. Note that

P{AT = E‘} <]P){AT17->T = E} + P{L,—gT = 1}

()1
<ZE[Arlear] + P{r <T)

(i) 1 3 1
<=+ — 46T = — + 0T,
20+20+ 51L

where (i) follows from Markov’s inequality and (ii) follows from Proposition 3.2. O

4. SUMMARY AND DISCUSSION

We have provided an algorithm with e-optimality guarantees with a provable convergence rate of (5(1 /e) for
the discounted discrete-time LQR problem in the model-free setting. This was made possible by employing a
gradient estimation technique inspired by REINFORCE, combined with a time-varying step-size. Our results
contrast from the ones obtained by two-point methods — which make the stronger assumption of assuming
access to cost for two different policies with the same realization of the initial conditions — as well as results
that assume stability of the policies.

An interesting future direction would be to investigate an actor-critic approach that could maintain the rate
without requiring further assumptions. Moreover, one could consider an extension of the presented results for
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the undiscounted case; in particular, the current analysis of gradient estimation with one zero-order evaluation
per iteration heavily relies on sampling from a distribution whose definition relies on the discount factor be
strictly less that one.
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