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Abstract
Complexity is a signature quality of interest in artificial life systems.
Alongside other dimensions of assessment, it is common to quantify
genome sites that contribute to fitness as a complexity measure.
However, limitations to the sensitivity of fitness assays in models
with implicit replication criteria involving rich biotic interactions
introduce the possibility of difficult-to-detect “cryptic” adaptive
sites, which contribute small fitness effects below the threshold of
individual detectability or involve epistatic redundancies. Here, we
propose three knockout-based assay procedures designed to quan-
tify cryptic adaptive sites within digital genomes. We report initial
tests of these methods on a simple genome model with explicitly
configured site fitness effects. In these limited tests, estimation
results reflect ground truth cryptic sequence complexities well.
Presented work provides initial steps toward development of new
methods and software tools that improve the resolution, rigor, and
tractability of complexity analyses across alife systems, particularly
those requiring expensive in situ assessments of organism fitness.

Introduction
Understanding under what conditions and through what mecha-
nisms complexity evolves is a significant open question in artificial
life and evolutionary biology (Taylor et al., 2016; Pigliucci, 2009).
Indeed, numerous dimensions of complexity in biological systems
have been considered, including those of developmental processes,
phenotypic traits, and ecological interactions (Szathmáry et al.,
2001; McShea, 2000). Among dimensions of biological complex-
ity, the information content of genetic sequences is often useful
due to its relative tractability, generalizability across systems,
and foundational role to other aspects of biological complexity
(Adami, 2002). Although information theoretic formulations
have been established to describe biological sequence complexity
(Weiss et al., 2000), counts of adaptive sites (i.e., genome sites that
benefit fitness) are a convenient, commonly-used proxy measure
for genome sequence complexity (Dolson et al., 2019).

However, challenges can arise in identifying adaptive sites
within a genome. Beyond very small genome sizes, complete
identification of adaptive sites is hindered by combinatoric effects
that make all-combinations analyses necessary to fully detangle
epistatic effects effectively intractable (Nitash and Adami, 2021;
Adami et al., 2000). This is particularly the case for systems with
implicit fitness conditions with extensive biotic selection effects
(Moreno and Ofria, 2022; Channon and Damper, 2000). In such
circumstances, it can become necessary to use head-to-head compe-
tition trials between wildtype strains and knockout variants in situ

to detect fitness effects (Moreno et al., 2021). Such competition-
based fitness assays typically have sensitivity limitations, which
limit detection of sites with small fitness effects. Here, we term
genome sites with adaptive effects that are not directly detectable
through single-site knockouts as “cryptic” sequence complexity.

To enable more complete sequence complexity analyses of
digital organisms inclusive of “cryptic” adaptive sites, we propose
three assays to conduct statical estimates of
1. Additive effect cryptic sites: sites with small contributions

to fitness that, individually, fall below the threshold of
detectability of fitness assays,

2. Epistatic effect cryptic sites: sites with fitness effects that
are only observable in the context of other knockouts (i.e.,
redundancy),

3. Any effect cryptic sites: sites with any contribution to fitness,
inclusive of the above.
The following sections describe proposed assays and report

initial experiments with a simple model system designed
to validate their estimations of cryptic sequence complexity.
Software and data, including full, documented implementations
of proposed underlying statistical estimators, are available
via GitHub at https://github.com/mmore500/
cryptic-sequence-concept.

Additive Effect Sites
This assay is designed to detect sites with small-effect fitness
contributions. Although individual knockout effects of these
sites do not reach the threshold for detectability, knocking out
several may. This assay assumes a preliminary set of single-site
knockouts that exclude sites with individually detectable fitness
effects from further consideration.

The assay proceeds by sampling sets of remaining sites are
sampled and knocking them out together. In the presence of
small-effect sites, a classic dose-response curve will occur as
knockout set size is increased. That is, detectable fitness effects
will be observed more frequently for larger knockout sets. The
shape of this dose curve will depend on both the abundance of
small-effect sites and their mean effect size. Fitting a negative
binomial distribution to the curve allows these factors to be
estimated. This distribution models, for coin flips with success
probability p, the number of successive trials required to achieve
n successes. If we consider sampled sites being small-effect
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Figure 1: Use of knockout effect sizes and inclusion rates
within “skeletonized” minimal viable genomes to distinguished
small-effect and epistatic genome sites.
versus true-neutral as a coin flip event, then the proportion of
small-effect sites in the genome will correspond to p and the
number of small-effect mutations required to reach detectability, n,
will be inverse to the mean per-site effect size. Under this framing,
the dose-response curve corresponds to the cumulative distribution
function of an underlying negative binomial distribution.

For an initial experiment exploring this approach, we generated
a simple genome with 1,000 sites, 50 of which were designated
to be small-effect sites. Effect sizes for these sites were uniformly
between 0 and 0.2, relative to an effect detectability threshold of
1.0. To decide dose levels for the main assay, we first sampled 250
doses spread evenly from 1 to 1,000 sites and tested for detectable
fitness effects from one sample at each dose level. We used the
interval between the lowest dose with a detected fitness effect and
the highest dose without a detected fitness effect as the dosing
range for the main assay, choosing five dosing levels spaced evenly
across this range. In this case, selected dose levels were 87, 136,
186, 236, and 286 sites. We then performed 1,000 knockouts of site
sets sampled at each dosage then fit a negative binomial distribution
to the observed outcome frequencies. Resulting estimates of
the additive site count and mean effect size were both accurate,
matching the true values of 50.0 and 0.1, respectively.

Epistatic Effect Sites
This assay is designed to detect sites that only express detectable
fitness knockout effects in the presence of specific other knockouts
due to redundant masking. For this assay we generated minimal
fitness-equivalent genome “skeletons” by knocking out sites until
no more could be removed without detectable fitness loss. Because
only one among a set of redundant sites will appear in any skeleton,
the frequency with which redundant sites are excluded from skele-
tons should be high. However, some very small effect additive sites
will also be able to be eliminated from skeletons. To disambiguate
these scenarios, we perofrm an additional step: “jackknife” one-by-
one knockouts of each site within sampled skeletons. Jackknifed
sites with detectable, but very small magnitude fitness effects can
then be identified as likely additive, rather than epistatic.

For an initial experiment exploring this approach, we generated
a sample genome with 4,000 sites, 200 of which were designated
to be small-effect sites. Effect sizes for these sites were uniformly
between 0 and 0.7, relative to the detectability threshold of 1.0.
We additionally introduced 20 sets of 5 redundant sites. Fitness
penalties uniformly distributed between 0.7 and 1.6 units were

incurred when all sites within a set were knocked out.
To perform the assay, we first generated 20 sample skeletons.

After performing Jackknife knockouts of each skeleton, we plotted
skeleton exclusion frequency versus mean jackknife severity for
each site that appeared in any skeleton. As shown in Figure 1,
epistatic sites fall into the upper right quadrant. This procedure
was able to identify 80 of the true 94 epistatic sites in the sample
genome.

Any Effect Sites
Any genome site with some fitness benefit should, in principle,
potentially appear within a genome skeleton. Put another way,
skeletons sample randomly (though not uniformly) from genome
sites that provide some fitness benefit. The composition of
genome skeletons can thus be analogized to the content of
traps used by wildlife biologists to estimate the size of animal
populations. Robust statistical procedures have been developed
to account for biasing factors, including variation in capture
probabilities among individuals (“trap shyness”) (Amstrup et al.,
2010). In this work, we use the Burnham-Overton procedure to
estimate the total number of any-effect sites from the distribution
of capture counts among sites appearing within skeleton genomes
(Burnham and Overton, 1979).

For an initial experiment exploring this approach, we generated
a sample genome with 10,000 sites, 395 of which were designated
to be small-effect sites, 155 were designated epistatic, and 5 were
both small-effect and epistatic. Effect sizes for the small-effect
sites were uniformly distributed between 0 and 0.7, relative to
a detectability threshold of 1.0. Epistatic sites were organized
into 40 4-site sets, with a fitness penalty between 0.7 and 1.6 units
incurred when all sites within a set were knocked out. We used
progressive knockouts to sample 5 skeletons, with 504 distinct
sites appearing in at least one skeleton. The Burnham-Overton
estimation procedure estimated 558 any-effect sites, close to the
true count of 555 any-effect sites. The 95% confidence interval
for this estimation was between 533 and 583 sites.

Conclusion
Much work remains in developing proposed assays for cryptic
sequence complexity. It will be particularly critical to develop
strategies to manage stochastic aspects of implicit fitness assays,
a topic not treated here. Another priority is formulation of assays
to take advantage of parallel processing power, especially with
respect to sequential operations like pruning out genome sites
to produce a minimal viable skeleton. The feedback-dependent
workflows necessary to conduct these assays will likely necessitate
development of software tools that orchestrate knockout trials
and collate their results. Future work should also assess
statistical questions of how best to select maximally informative
knockout targets and doses, as well as how bootstrapping or other
procedures should be incorporated to provide confidence intervals
for estimates of cryptic complexity. Finally, building off initial,
cursory demonstrations here, methods will need to be subjected
to thorough and rigorous testing with a variety of full-fledged
artificial life systems. We look forward to these further steps on
the path to improving the methodological capabilities of artificial
life research for rigorous study of complexity.
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