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KOSZULITY, SUPERSOLVABILITY AND STIRLING REPRESENTATIONS

AYAH ALMOUSA, VICTOR REINER, AND SHEILA SUNDARAM

Abstract. Supersolvable hyperplane arrangements and matroids are known to give rise to certain
Koszul algebras, namely their Orlik-Solomon algebras and graded Varchenko-Gel’fand algebras. We
explore how this interacts with group actions, particularly for the braid arrangement and the action
of the symmetric group, where the Hilbert functions of the algebras and their Koszul duals are given
by Stirling numbers of the first and second kinds, respectively. The corresponding symmetric group
representations exhibit branching rules that interpret Stirling number recurrences, which are shown
to apply to all supersolvable arrangements. They also enjoy representation stability properties that
follow from Koszul duality.
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1. Introduction

This paper was motivated by a connection between Stirling numbers and Koszul algebras. The
(signless) Stirling numbers of the first kind c(n, k) and Stirling numbers of the second kind S(n, k)
are centuries-old answers to certain counting problems: c(n, k) is the number of permutations
{1, 2, . . . , n} with k cycles, while S(n, k) is the number of set partitions of {1, 2, . . . , n} with k
blocks. On the other hand, Koszul algebras A and their Koszul dual algebras A! originated in work
of Priddy [Pri70] and Fröberg [Frö75] in the 1970s, playing an important role in topology, and in
homological and commutative algebra.

The connection stems from a particular Koszul dual pair of graded k-algebras A =
⊕∞

d=0 Ad and

A! =
⊕∞

d=0 A
!
d, described later, carrying actions of the symmetric group Sn. Their Hilbert series

Hilb(A, t) :=
∞∑

d=0

dimkAdt
d = (1 + t)(1 + 2t) · · · (1 + (n− 1)t) (1)

=
n−1∑

k=0

c(n, n − k)tk, (2)

Hilb(A!, t) :=
∞∑

d=0

dimkA
!
d t

d =
1

(1− t)(1− 2t) · · · (1− (n− 1)t)
(3)

=
∞∑

k=0

S((n− 1) + k, n− 1) tk (4)

re-interpret the Stirling numbers c(n, k), S(n, k).

In fact, there are two different well-studied algebras A that can play the role of the algebra A
above: the Orlik-Solomon algebra OS(Brn), or the graded Varchenko-Gel’fand algebra VG(Brn),
associated to the matroid and oriented matroid Brn for the braid arrangement on n strands, also
known as the type A reflection hyperplane arrangement, or the graphic arrangement associated to
the complete graph on n vertices. A great deal is known about theSn-representations on the graded
components Ad for either one of these algebras A = OS(M),VG(M), due to their importance in
the topology of configuration spaces and in combinatorics. Their Koszul duals A! have seen less
study from a combinatorial representation theory viewpoint, and were our original main interest.

A natural framework here turns out to be the combinatorial notion of supersolvability. Well-known
results show that the algebras A = OS(M),VG(M) for supersolvable matroids M and oriented
matroids M have quadratic Gröbner basis presentations, which then implies their Koszulity.

Sections 2, 3, 4 give background for this story. Section 2 is mainly a review of basic theory of
Koszul algebras carrying group actions, although it contains one new observation on branching
rules (Proposition 2.16). Section 3 recalls notions from noncommutative Gröbner bases, along with
special features of commutative or anti-commutative rings, connecting quadratic Gröbner bases
with Koszulity. Section 4 reviews matroids, oriented matroids and the notion of supersolvability.

Section 5 starts with a review of the well-studied anti-commutative Orlik-Solmon algebras OS(M)
and their not quite as well-studied commutative counterparts, the graded Varchenko-Gel’fand rings
VG(M). After recalling why both A = OS(M),VG(M) are Koszul algebras whenever M,M are
supersolvable, the first main result, Theorem 5.18, gives an explicit (noncommutative) quadratic
Gröbner basis presentation for their Koszul duals A!. In the case of A = OS(M), the presentation
for A! is consistent with Kohno’s presentation [Koh83,Koh85] of the holonomy Lie algebra for the
cohomology of the complement of a complex hyperplane arrangement; in the case of A = VG(M),
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the presentation for A! appears to be new. An application of the presentation, Corollary 5.22, gives
a Koszul dual analogue of the fact that multiplication by the sum of the variables

∑
i xi endows

A = OS(M) with an (equivariant) exact chain complex structure: in the supersolvable case, right-
multiplication by the sum of the dual variables

∑
i yi within A! = OS(M)! gives an (equivariant)

injective self-map of degree one.

Section 6 pauses to illustrate the foregoing theory on simple examples of supersolvable matroids,
such as Boolean matroids and rank two matroids, including discussion of equivariant structure.

Section 7 proves the next main result, Theorem 7.1 giving branching rules for A = OS(M),VG(M)
and their Koszul duals A!, in the form of short exact sequences that apply whenever M,M are
supersolvable. For braid matroids Brn, these short exact sequences re-interpret the two classical
Stirling number recurrences:

c(n, k) = (n− 1) · c(n− 1, k) + c(n − 1, k − 1),

S(n, k) = k · S(n− 1, k) + S(n − 1, k − 1).
(5)

Sections 8, 9, and 10 review more general theory of Koszul algebras A, particularly whenA is either
anti-commutative (like OS(M)) or commutative (like VG(M)). Sections 8 recalls why the Koszul
dual A! is the universal enveloping algebra for its Lie (super-)algebra of primitive elements, also
known as its homotopy Lie algebra, and why the latter coincides in this setting with its own linear
strand, the holonomy Lie algebra. The Poincaré-Birkhoff-Witt Theorem for universal enveloping
algebras then leads to equivariant versions of results such as the lower central series formula in the
anti-commutative case, and the theory of acyclic closures and deviations in the commutative case.
Section 9 briefly reviews the topological interpretations of Koszul duality, and the interpretation of
OS(M),VG(M) in terms of the cohomology of complements of subspace arrangements. Section 10
reviews Church and Farb’s notion of representation stability for Sn-representations [CF13]. It then
proves two results on its interaction with Koszul duality (Corollaries 10.6, 10.10) showing that after
fixing d, representation stability for the dth graded components {Ad(n)}n≥1 in a family of Koszul
algebras implies the analogous representation stability for their Koszul duals {A!

d(n)}n≥1, along
with a similar statement for their holonomy Lie algebras.

Finally, Section 11 returns to the motivating example of the braid arrangement matroids Brn,
examining the consequences of all the previous results for OS(Brn),VG(Brn), including the afore-
mentioned branching rules re-interpreting the Stirling number recurrences, Corollary 11.5. One
surprise here is Theorem 11.15, on the prevalence of permutation representations of Sn among the
homogeneous components A!

i of the Koszul dual A! when A = OS(Brn).

Section 12 collects some further remarks and questions. Appendix A includes tables of data for
the characters of the Stirling representations of the first and second kind for OS(Brn) and VG(Brn)
and the primitives of their corresponding holonomy Lie algebras. In addition, the code at [Alm24]
can also be used to generate more data.

Summary of main results. For the ease of the reader, we summarize below the main results and
their applications to the type A braid arrangement Brn.

• Theorem 5.18 provides an explicit noncommutative Gröbner basis for Koszul duals of Orlik-
Solomon and Varchenko-Gel’fand rings of supersolvable matroids.

– The discussion following Remark 11.2 explains the bijection between standard mono-
mials for OS(Brn) and VG(Brn) and restricted growth functions.
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• Corollary 5.22 shows that for a supersolvable matroid M or oriented matroid M, right-
multiplication by the sum of the dual variables

∑
i yi in A! = OS(M)! gives a degree one

injective self-map, and the sum of the squares of the dual variables
∑

i y
2
i in A! = VG(M)!

gives a degree two injective self-map. These maps are equivariant with respect to any group
G of automorphisms of M,M.

– We conjecture the existence ofSn-equivariant degree one injective self-maps for VG(Brn)
in Conjecture 12.3.

• Proposition 2.16 shows that the graded pieces of an equivariant Koszul algebra A satisfy
branching rules of a certain form if and only if the corresponding graded pieces for A! do.
Theorem 7.1 gives short exact sequences for OS(M), VG(M) and their Koszul duals that
lift such branching rules whenever one has supersolvable matroids.

– Corollary 11.5 gives these branching rules for the Stirling representations, which lift
the classical Stirling number recurrences (5).

• Theorem 8.6 gives a presentation for the holonomy Lie algebra of VG(M) for an arbitrary
oriented matroid M. In the supersolvable case, this presentation is consistent with the
Gröbner basis for VG(M)! from Theorem 5.18.

• Corollary 10.6 shows that if a family of Koszul algebras A(n) with actions by Sn are
representation stable, then so are their Koszul duals.

– Corollary 11.9 applies this to show representation stability for OS(Brn)
! and VG(Brn)

!.
Conjecture 11.11 conjectures that the bounds for the onset of stability given in Corol-
lary 11.9 are tight.

• Corollary 10.10 shows families of representation stable commutative or anti-commutative
Koszul algebras A(n) pass this representation stability to their holonomy Lie algebras L(n).

– Corollary 11.12 states that this holds for the holonomy Lie algebras of OS(Brn) and
VG(Brn). In Conjecture 11.14, we conjecture that the onset of stability is at 2i for
high enough i.

• Theorem 11.15 summarizes several cases where [OS(Brn)
!
i] are permutation representations.

2. Koszul algebras

We review here the definitions and properties of Koszul algebras. Useful surveys and references are
Berglund [Ber14], Faber et al [FJKL+21, §2], Fröberg [Frö99], McCullough and Peeva [MP15, § 8],
Polishchuk and Positselski [PP05], and Priddy [Pri70].

2.1. Standard graded algebras and Koszul algebras. Fix a field k throughout this discussion.

Definition 2.1. (Standard graded k-algebras) For V a k-vector space with k-basis x1, . . . , xn, let

T i(V ) := V ⊗i := V ⊗ · · · ⊗ V︸ ︷︷ ︸
i tensor factors

,

and define the tensor algebra Tk(V ) =
⊕∞

i=0 T
i(V ), with concatenation product. We identify it

with

Tk(V ) ∼= k〈x1, . . . , xn〉,

the free associative k-algebra on n letters. It is a graded k-algebra, in which T i(V ) is the ith

homogeneous component, and is generated as an algebra in degree 1 by V , the span of x1, . . . , xn.
4



A standard graded (associative) k-algebra is a graded quotient ring A of Tk(V ), that is,

A = Tk(V )/I (6)

for some two-sided ideal I ⊂ Tk(V ) which is homogeneous: I =
⊕∞

i=0 Ii where Ii := I ∩ T i(V ).
We will generally assume that the images of x1, . . . , xn within A (which we still denote x1, . . . , xn,
abusing notation) are minimal generators for A as a k-algebra, or equivalently, that I = I2⊕I3⊕· · · .

Definition 2.2. (Koszul algebras) Given a standard graded k-algebra A, let A+ :=
⊕∞

i=1Ai, and
regard the field k = A/A+ as the trivial (graded, left-)A-module, generated in degree 0.

Call A a Koszul algebra if the surjection A ։ k = A/A+ can be extended as the first step in a
graded resolution of k by free left A-modules, which is linear in the sense that it has this form:

0←− k ←− F0
d1←− F1

d2←− F2
d3←− F3 ← · · ·

‖ ‖ ‖ ‖
A A(−1)β1 A(−2)β2 A(−3)β3

(7)

Here Fi = A(−i)βi is a graded free left A-module of rank βi, all of whose A-basis elements have
been shifted to degree i, that is A(−i)j := Aj−i. Linearity of the above resolution is equivalent
to saying that the matrices for the differentials di : Ai −→ Ai−1 in the resolution have only linear
(degree one) entries, that is, all matrix entries lie in A1.

Koszulity of A has strong consequences for its algebra presentation, and for the form of the
resolution (7), related to the notion of quadratic algebras and their quadratic duals.

Definition 2.3. (Quadratic algebras and quadratic duals) Say that the standard graded k-algebra
A presented as in (6) is a quadratic algebra if I is generated as a two-sided ideal by

I2 = I ∩ T 2(V ) = I ∩ (V ⊗ V ).

For A any quadratic algebra, presented as in (6), one defines its quadratic dual algebra A! as
follows. Let V ∗ have k-dual basis y1, . . . , yn to the ordered k-basis x1, . . . , xn for V , so that the
bilinear pairing V ∗ × V → k has (yi, xj) = δij . Then T 2(V ∗) and T 2(V ) have dual k-bases

{yi ⊗ yj}1≤i,j≤n and {xi ⊗ xj}1≤i,j≤n

with respect to the bilinear pairing T 2(V ∗)× T 2(V )→ k defined by

(y ⊗ y′, x⊗ x′) := (y, x) · (y′, x′). (8)

Define A! as this quadratic algebra quotient of the free associative algebra Tk(V
∗) = k〈y1, . . . , yn〉:

A! := Tk(V
∗)/J

where J is the two-sided ideal generated by

J2 = I⊥2 = {p ∈ T 2(V ∗) : (p, q) = 0 for all q ∈ I2}.

Note that this really is a duality, in the sense that, (A!)! ∼= A.

Example 2.4. A commutative polynomial ring k[x1, . . . , xn] is a quadratic k-algebra:

A = Sym(V ) = k[x1, . . . , xn] ∼= k〈x1, . . . , xn〉/I

where I = (xixj − xjxi)1≤i<j≤n. Its quadratic dual A! is the anti-commutative exterior algebra

A! = ∧(V ∗) = ∧(y1, . . . , yn) = k〈y1, . . . , yn〉/J

where J = (yiyj + yjyi)1≤i<j≤n + (y2i )1≤i≤n.
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2.2. Priddy’s resolution and its consequences. It is not hard to show that Koszul algebras A
are always quadratic1. What is more remarkable is a result of Priddy [Pri70], using A! to construct
a simple, explicit linear A-resolution of k whenever A is Koszul. Before describing it, let us point
out certain maps on A and on the graded k-dual (A!)∗. The latter is defined to be the following
graded k-vector subspace of the usual dual Homk(A

!,k):

(A!)∗ :=

∞⊕

i=0

(A!
i)
∗.

• For x in A1, the map on A which right-multiplies by x, that is a 7→ x.a := ax, gives a left
A-module map A −→ A, raising degree by one.

• For y in A!
1, the map precomposing ϕ in (A!)∗ with right-multiplication by y, that is ϕ 7→ y.ϕ

where (y.ϕ)(b) := ϕ(by), gives a k-linear map (A!)∗ → (A!)∗, lowering degree by one.

• Combining these, any x ⊗ y in A1 ⊗ A!
1 = V ⊗ V ∗ gives rise to a (left A-module) map

A⊗ (A!)∗ −→ A⊗ (A!)∗ that sends a⊗ ϕ 7−→ (x⊗ y).(a⊗ ϕ) := x.a⊗ y.ϕ.

Theorem 2.5. (The Priddy resolution) When A is Koszul, the element c :=
∑n

j=1 xi⊗yj in A1⊗A
!
1

acting on A⊗k (A!)∗ as a left A-module map gives a linear resolution of k as in (7),

0←− k←−A⊗k (A!
0)

∗ d1←− A⊗k (A!
1)

∗ d2←− A⊗k (A!
2)

∗ d3←− · · ·

Its differential di : A⊗k (A
!
i)
∗ di−→ A⊗k (A

!
i−1)

∗ is given explicitly as follows:

a⊗ ϕ 7−→ c · (a⊗ ϕ) =

n∑

j=1

axj ⊗ yj.ϕ.

Example 2.6. Continuing Example 2.4, one can check that the Priddy resolution for k over
A = k[x1, . . . , xn] = Sym(V ) becomes the usual Koszul resolution

0← k← Sym(V )⊗k∧
0(V )← Sym(V )⊗k∧

1(V )← Sym(V )⊗k∧
2(V )← · · · ← Sym(V )⊗k∧

n(V )← 0,

using that fact that (A!
i)
∗ = (∧i(V ∗))∗ ∼= ∧i(V ).

We note some important consequences of Priddy’s resolution. Taking graded k-duals swaps the
roles of A and A! in the resolution. Consequently, A is Koszul if and only if A! is Koszul. In
this case, one calls A! the Koszul dual algebra of A. Priddy’s resolution also has an important
consequence for the Hilbert series of A,A!:

Hilb(A, t) :=

∞∑

i=0

dimkAit
i,

Hilb(A!, t) :=
∞∑

i=0

dimkA
!
it
i =

∞∑

i=0

dimk(A
!
i)
∗ti = Hilb((A!)∗, t).

Corollary 2.7. Whenever A,A! are Koszul, one has Hilb(A, t) ·Hilb(A!,−t) = 1.

1Quadraticity is equivalent to having a partial linear resolution 0← k← A← F1 ← F2 up to homological degree
2.
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Proof. For each degree d ≥ 1, taking the coefficient of td on both sides in the corollary is the identity

d∑

i=0

(−1)i dimkAd−i · dimk(A
!
i)
∗ = 0

asserting vanishing of Euler characteristic for the (exact) dth graded component in Priddy’s resolu-
tion

0→ Ad ⊗k (A!
0)

∗ → Ad−1 ⊗k (A!
1)

∗ → · · · → A1 ⊗k (A!
d−1)

∗ → A0 ⊗k (A!
d)

∗ → 0. (9)

�

Example 2.8. For the pair of Koszul dual algebras

A = Sym(V ) = k[x1, . . . , xn],

A! = ∧(V ∗) = ∧(y1, . . . , yn),

one has these Hilbert series

Hilb(A, t) =
1

(1− t)n
with dimkAi =

((n
i

))
:=

(
n+ i− 1

i

)
,

Hilb(A!, t) = (1 + t)n with dimkA
!
i =

(
n

i

)
.

Example 2.9. (Noncommutative monomial Koszul algebras) A two-sided ideal I ⊂ T (V ) =
k〈x1, . . . , xn〉 is called a monomial ideal when it is generated by monomials. It is called a qua-
dratic monomial ideal if its generating monomials are quadratic. Thus a quadratic monomial ideal
I is of the form ID = (xixj : (i, j) ∈ D) for some choice of a binary relation D ⊂ [n] × [n] on
[n] := {1, 2, . . . , n}; alternatively, one can view D as a choice of a directed graph on vertex [n]
having no repeated directed arcs i → j, but allowing (single) copies of loops i → i and (single)
pairs of antiparallel arcs i→ j and j → i.

It turns out that quadratic monomial k-algebras, which are the quotients AD = T (V )/I for such
quadratic monomial ideals, are always Koszul – an explicit linear resolution of k over AD was
constructed by Bruns, Herzog and Vetter [BHV94, §3]. Note that the quadratic dual algebra to
AD takes the form A!

D = T (V ∗)/JDc where

JDc = (yiyj : (i, j) ∈ Dc) = J = (yiyj : (i, j) 6∈ D).

so Dc := ([n]× [n]) \D is the complementary binary relation/digraph. Hence A!
D
∼= ADc and

Hilb(AD, t) · Hilb(ADc ,−t) = 1. (10)

Here Hilb(AD, t) = 1 +
∑∞

i=1 aDc(i)ti where aDc(i) counts i-step vertex-to-vertex walks along arcs
in the complement digraph Dc. Identity (10) appeared earlier in work of Brenti [Bre89, §7.5].

Our goal is to study Koszul algebras A together with symmetries coming from a finite group G of
graded ring automorphisms. We will regard each graded component Ai and A!

i as representations
of G, or equivalently, as kG-modules. In order to work over arbitrary fields k where kG might not
be semisimple, we introduce the Grothendieck ring Rk(G).

Definition 2.10. (Grothendieck ring) As a Z-module, the Grothendieck group of kG-modules
Rk(G) is a quotient of the free Z-module whose basis is the set of isomorphism classes [V ] of
kG-modules V , and where one mods out by the Z-span of these relations:

{ [V ]− ([U ] + [W ]) : for all kG-module short exact sequences 0→ U → V →W → 0 } (11)
7



In particular, in Rk(G) one has [U ⊕W ] = [U ] + [W ]. Multiplication in Rk(G) is induced by the
rule [V ] · [W ] := [V ⊗k W ], which one can check is consistent with the relations in (11).

We collect here a few standard facts about Rk(G), omitting the proofs.

Proposition 2.11. For any finite group G, one has the following.

(i) The relations in Rk(G) imply
∑ℓ

i=0(−1)
i[Vi] = 0 for longer exact sequences of kG-modules

0← V0 ← V1 ← · · · ← Vℓ ← 0.

(ii) More generally, a finite kG-module complex 0 ← C0
∂
← · · ·

∂
← Cℓ ← 0 with homology {H∗}

gives an Euler-Poincaré-Hopf-Lefschetz relation
∑ℓ

i=0(−1)
i[Ci] =

∑ℓ
i=0(−1)

i[Hi] in Rk(G).

(iii) Short exact sequences 0 → U → V → W → 0 of kG-modules lead to dual/contragredient
exact sequences 0 → W ∗ → V ∗ → U∗ → 0, and also (U ⊗ V )∗ ∼= U∗ ⊗ V ∗. Hence the
involution [U ] 7→ [U∗] induces a well-defined involutive ring automorphism (−)∗ : Rk(G)→
Rk(G).

(iv) For subgroups H of G, the map [U ] 7→ [U ↓GH ], where U ↓GH is the restriction of the kG-
module U to a kH-module, induces a well-defined ring map (−) ↓: Rk(G)→ Rk(H).

(v) Since (U∗) ↓GH
∼=
(
U ↓GH

)∗
as kH-modules, the maps in (iii),(iv) commute.

Remark 2.12. We explain here why a group G acting on a Koszul algebra A also acts on the
Koszul dual A!. When a standard graded k-algebra A = T (V )/I carries the action of a group G of
graded k-algebra automorphisms, the fact that G preserves A1 = V , and A1 generates A, implies
that one can regard G as a subgroup of GL(V ), possible replacing G by G/K if K is the kernel of
its action on V . Then G also acts contragrediently on V ∗, via ϕ 7→ ϕ ◦ g−1. This gives the natural
k-bilinear pairing V ∗ ⊗ V → k defined by ϕ⊗ v 7→ ϕ(v) a certain G-invariance:

g(ϕ ⊗ v) = (ϕ ◦ g−1)⊗ g(v) 7→ ϕ(g−1(g(v)) = ϕ(v).

The dual pairing (8) between T 2(V ∗) and T 2(V ) then inherits this same G-invariance.

Consequently, when A = T (V )/I is a quadratic algebra with the action of a group G preserving
the subspace I2 ⊂ T 2(V ) that generates the ideal I, then G also preserves the subspace J2 = I⊥2
that generates the ideal J defining the quadratic dual A! = T (V ∗)/J . Thus G also acts on A!.

The following proposition should not be surprising.

Proposition 2.13. When A,A! are Koszul, the Priddy resolution is G-equivariant for any group
of graded k-algebra automorphisms acting on A (and hence on A!).

Proof. This follows because the differential acts by c =
∑n

j=1 xj ⊗ yj in A1⊗A!
1 = V ⊗V ∗, and c is

G-fixed: under the G-equivariant isomorphism V ⊗ V ∗ ∼= Endk(V ) that sends v ⊗ f to ϕ : V → V
given by ϕ(w) = f(w) · v, one can check that c 7→ 1V , which is a G-fixed element of Endk(V ). �

This gives a version of Corollary 2.7, regarding the equivariant Hilbert series in Rk(G)[[t]]

Hilbeq(A, t) :=
∞∑

i=0

[Ai]t
i. (12)

8



Corollary 2.14. (cf. [JVN21, Prop. 8.1]) Let A,A! be Koszul dual algebras, both with the action
of a group G of graded k-algebra automorphisms. Then one has this identity in Rk(G)[[t]]:

Hilbeq(A, t) ·Hilbeq((A
!)∗,−t) = 1 (13)

Equivalently, [A0] = [(A!
0)

∗] = [1G] and one has these identities in Rk(G) for d ≥ 1:

d∑

i=0

(−1)i[Ad−i] · [(A
!
i)
∗] = 0 (14)

which can be rewritten as this recurrence for [(A!
d)

∗]:

[(A!
d)

∗] =

d∑

i=1

(−1)i−1[Ai] · [(A
!
d−i)

∗] (15)

and this unraveled formula:

[(A!
d)

∗] =
∑

α=(α1,...,αℓ):
α1+···+αℓ=d

(−1)d−ℓ[Aα1 ][Aα2 ] · · · [Aαℓ
]. (16)

This last sums runs over all (strict) ordered compositions α = (α1, . . . , αℓ) of d, of any length ℓ ≥ 1,
that is, αi are positive integers summing to d.

Proof. It suffices to prove (14), which follows from the G-equivariance and exactness of (9) . �

Example 2.15. Continuing Examples 2.4, 2.6, 2.8, the Koszul algebras A = Sym(V ), A! = ∧(V ∗)
carry the action of G = GL(V ). There is a ring homomorphism from Rk(G) to the ring

Λk(z) := Λk(z1, . . . , zn) = k[z1, . . . , zn]
Sn

of symmetric polynomials in n variables with k coefficients, mapping the class [U ] of a kG-module
U to trace(g|U ) where g = diag(z1, . . . , zn) in GL(V ) is the diagonal matrix in GL(V ) having
g(xi) = zi · xi in V for i = 1, 2, . . . , n, so that g(yi) = z−1

i · yi in V ∗.

Applying this homomorphism to (13) gives a standard identity H(t)E(−t) = 1 in Λk(z)[[t]], where

H(t) :=

∞∑

k=0

hk(z1, . . . , zn)t
k =

n∏

j=1

1

1− zjt
,

E(t) :=
n∑

k=0

ek(z1, . . . , zn)t
k =

n∏

j=1

(1 + zjt).

This can be viewed as the specialization of a well-known identity in the ring of symmetric functions
in infinitely many variables Λ := ΛZ(z1, z2, . . .) with integer coefficients, relating the two sets of
algebraically independent generators {h1, h2, . . .} and {e1, e2, . . .}; see [Mac95, Chap. 1, eqn. (2.6)],

[Sta99, Thm. 7.6.1]. Rewritten as in (15), one has e0 = h0 = 1 and ed =
∑d

i=1(−1)
i−1hi · ed−i

for all d ≥ 1. Due to their algebraic independence, any symmetric function identities in Λ among
{hi}, {ei} lead to the same identities relating {[A1], [A2], . . .}, {[(A

!
1)

∗], [(A!
2)

∗], . . .} in Rk(G) for
any Koszul algebra A over any field k. For example, a special case of the Jacobi-Trudi identity

9



[Mac95, Chap. 1, eqn. (3.4)], [Sta99, Thm. 7.16.1] expresses the {ek} in terms of the {hk}:

ed = det




h1 h2 h3 · · ·
1 h1 h2 · · ·
0 1 h1 · · ·
0 0 1
...

...
. . .

. . .

0 0 0 · · · 1 h1



=

∑

α=(α1,...,αℓ)

(−1)d−ℓhα1hα2 · · · hαℓ
.

where α runs over all compositions of d. One now recovers the unraveled formula (16) for [(A!
d)

∗].

2.3. A Koszul branching relation. We wish to lift several combinatorial recurrences to branching
rules for Koszul algebras A and their Koszul duals A!. Recall from Proposition 2.11(iv) that for
any subgroup H of a group G, the map [U ] 7→ [U ↓GH ] induces a ring map (−) ↓: Rk(G)→ Rk(H).

Proposition 2.16. Let A,B be two Koszul k-algebras, with actions of groups G,H, where H is a
subgroup of G, and let X be a kH-module. Then in Rk(H), one has

[Ai ↓] = [Bi] + [X] · [Bi−1]

if and only if [(A!
i)
∗ ↓] = [(B!

i)
∗] + [X] ·

(
[(A!

i−1)
∗ ↓]
)

if and only if [A!
i ↓] = [B!

i] + [X∗] ·
(
[A!

i−1 ↓]
)

Proof. The last equivalence uses the properties of the ring automorphism (−)∗ : Rk(G) → Rk(G)
from Proposition 2.11(iii),(iv),(v). Hence it suffices to prove the first equivalence.

Introduce a few abbreviated notations

ai := [Ai] and a!∗i := [(A!
i)
∗] in Rk(G),

bi := [Bi] and b!∗i = [(B!
i)
∗] in Rk(H),

āi := [Ai ↓] and ā!∗i := [(A!
i)
∗ ↓] in Rk(H),

x := [X] in Rk(H)

along with analogous generating functions in Rk(G)[[t]] and Rk(H)[[t]], such as a(t) :=
∑

i ait
i, and

similarly b(t), a!∗(t), b!∗(t), ā(t). In this notation, the first equivalence of the proposition asserts

āi = bi + xbi−1 ⇔ ā!∗i = b!∗i + xā!∗i−1.

Note that one has these three relations, coming from Corollary 2.14 for the Koszul algebras A,B,
and applying the ring map (−) ↓ to the first relation:

a!∗(t)a(−t) = 1

b!∗(t)b(−t) = 1

ā!∗(t)ā(−t) = 1

10



This lets one compute as follows::

āi = bi + xbi−1

⇔ ā(t) = (1 + xt) · b(t)

⇔
1

ā(−t)
=

1

1− xt
·

1

b(−t)

⇔ ā!∗(t) =
1

1− xt
· b!∗(t)

⇔ (1− xt) · ā!∗(t) = b!∗(t)

⇔ ā!∗i − xā!∗i−1 = b!i

⇔ ā!∗i = b!∗i + xā!∗i−1. �

Example 2.17. Continuing Example 2.8, the symmetric group G = Sn acts on the Koszul dual
algebras A(n) := k[x1, . . . , xn] = Sym(V ) and A(n)! = ∧(y1, . . . , yn) = ∧(V

∗) by permuting vari-
ables. One can apply Proposition 2.16 with B = A(n − 1) = k[x1, . . . , xn−1], B

! = ∧(y1, . . . , yn−1),
which are both kH-modules for H = Sn−1, and with X = 1H the trivial kH-module. One then
sees that the proposition lifts the equivalence of these two versions of the Pascal recurrence

(
n

i

)
=

(
n− 1

i

)
+

(
n− 1

i− 1

)
,

((n
i

))
=

((
n− 1

i

))
+

((
n

i− 1

))
,

to an equivalence of statements on restricting A(n)i, A(n)
!
i from Sn to Sn−1:

[A(n)!i ↓] = [A(n − 1)!i] + [A(n− 1)!i−1],

[A(n)i ↓] = [A(n − 1)i] + [A(n)i−1 ↓].

Both also follow from segregating the degree imonomials in k[x1, . . . , xn] or ∧(y1, . . . , yn), counted
by the left sides, into monomials not divisible by the last variable xn, yn, versus those divisible by
it.

3. Review of noncommutative, commutative, exterior Gröbner bases

We review here some of the theory of Gröbner bases for two-sided ideals I in noncommutative,
commutative and exterior algebras over a field k, emphasizing aspects that are special to the
situation where I is homogeneous, and/or quadratic. Useful references for the

• commutative theory: Cox, Little and O’Shea [CLO15], Adams and Loustaunau [AL94],

• exterior algebra theory: Aramova, Herzog and Hibi [AHH97], Stokes [Sto90],

• noncommutative theory: Mora [Mor94], Polishchuk and Positselski [PP05, Ch. 4], Shepler
and Witherspoon [SW15, §3].

3.1. Monomial orders, initial forms, and initial ideals. Fix a positive integer n, and ab-
breviate the free associative, commutative, and exterior algebras R in n variables z1, . . . , zn as

11



follows:

k〈z〉 := k〈z1, . . . , zn〉,

k[z] := k[z1, . . . , zn],

∧(z) := ∧(z1, . . . , zn).

The set of monomials in each these rings R will be denoted

Mons(k〈z〉) := {zi1zi2 · · · ziℓ : ℓ ≥ 0 and (i1, . . . , iℓ) ∈ [n]ℓ}

Mons(k[z]) := {za = za11 za22 · · · z
an
n : a = (a1, . . . , an) ∈ N

n}

Mons(∧(z)) := {zS = zi1 ∧ zi2 ∧ · · · ∧ ziℓ : S = {i1 < i2 < · · · < iℓ} ⊆ [n]}.

Definition 3.1. (Monomial orders, initial forms, initial ideals) A linear ordering ≺ on Mons(R)
for any of the above three rings R is called a monomial ordering if

• it is a well-ordering: there are no infinite descending chains m1 ≻ m2 ≻ m3 ≻ · · · , and

• whenever m ≺ m′, then m1mm2 ≺ m1m
′m2 for any other monomials m1,m2.

Having fixed a monomial order ≺ on one of these rings R = k〈z〉,k[z],∧(z), write any ring element
as a finite k-linear sum of monomials m with nonzero coefficients cm in k

f =
∑

m∈Mons(R)

cmm = cm0 ·m0 +
∑

m∈Mons(R):
m≺m0

cmm

and then define m0 to be its unique ≺-initial term or ≺-leading monomial, denoted in≺(f) := m0.
Given a (two-sided) ideal I ⊂ R, define its ≺-initial ideal to be this two-sided monomial ideal of R:

in≺(I) := (in≺(f) : f ∈ I).

Definition 3.2. Given a monomial order ≺ on one of R = k〈z〉,k[z],∧(z), and a two-sided ideal
I ⊂ R, one says that a subset G ⊂ I is a Gröbner basis (GB) for I with respect to ≺ if

in≺(I) = ({in≺(g) : g ∈ G}) =: (in≺(G)).

Equivalently, every f in I has in≺(f) = m0 (left-right) divisible by at least one in≺(g) = m for
some g in G, meaning that m0 = m1mm2 for some m1,m2 in Mons(R). One calls a Gröbner basis G
reduced if for each pair g 6= g′ in G, none of the monomials m appearing in g with nonzero coefficient
are divisible by in≺(g

′).

Gröbner bases for I exist, but may need to be infinite when working in R = k〈z〉. For example,

G0 = {in≺(f) : f ∈ I} (17)

always gives a GB for I, but is infinite as long as I 6= {0}. The fact that a GB for an ideal always
generates the ideal will follow from a certain division algorithm.

Definition 3.3. (G-standard monomials and the division algorithm) Call a monomial m in Mons(R)
a G-standard monomial with respect to ≺ if it is (left-right) divisible by none of {in≺(g) : g ∈ G}.

The division algorithm on R with respect to G and ≺ starts with any f in R and produces a
remainder r having f ≡ r mod I (and written f →G r) which is a k-linear combination of G-
standard monomials, as follows. Assuming f =

∑
m cmm contains any monomials which are not
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G-standard, pick the ≺-largest such monomial m, and write it as m = m1m
′m2 where m′ = in≺(g)

for some2 g in G. Then replace f by

f ′ := f − cm ·m1 · g ·m2

which has f ≡ f ′ mod I. Repeat the process with f ′. One can show that, because ≺ is a well-
ordering, this algorithm will eventually terminate with a remainder r that contains only G-standard
monomials. However, the remainder r may not be unique, due to choices of which element g in G

has m′ = in≺(g) dividing the non-G-standard term m of f at each stage.

The following equivalent conditions defining Gröbner bases are standard verifications.

Proposition 3.4. Fixing ≺ and the two-sided ideal I ⊂ R, the following are equivalent for G ⊂ I:

(i) G is a GB for I with respect to ≺.

(ii) The division algorithm f →G r always gives the same remainder r for f .

(iii) One has f ∈ I if and only if f →G 0, regardless of choices in the division algorithm. In
particular, G generates I.

(iv) The (images of the) G-standard monomials with respect to ≺ give a k-basis for R/I.

The GB condition has a useful rephrasing for homogeneous ideals I, meaning I =
⊕∞

d=0(I ∩Rd).

Proposition 3.5. For a homogeneous two-sided ideal I ⊂ R, a subset G ⊂ I forms a GB of I with
respect to ≺ if and only if Hilb(S/(in≺(G)), t) = Hilb(S/I, t).

Proof. By definition G ⊂ I is a GB if and only if the inclusion (in≺(G)) ⊆ in≺(I) is an equality.
This occurs if and only if the graded k-algebra surjection R/(in≺(G)) ։ R/in≺(I) is a k-vector
space isomorphism in each degree. By dimension-counting, this occurs if and only if

Hilb(S/(in≺(G)), t) = Hilb(S/in≺(I), t)

However one also has Hilb(S/in≺(I), t) = Hilb(S/I, t), since the Gröbner basis G0 := {in≺(f) : f ∈
I} from (17) has its G0-standard monomials giving a (homogeneous) k-basis for both S/in≺(I) by
definition, and for S/I by Proposition 3.4(iv). �

There are some advantages to working with Gröbner bases in the commutative polynomial algebra
k[z] and exterior algebra ∧(z), where GBs for ideals are always finite, and can be computed via
versions of Buchberger’s algorithm. One can always view quotients k[z]/I and ∧(z)/I as quotients
of k〈z〉 via the surjections

k〈z〉
π
−→ k[z] with ker(π) = (zizj − zjzi : 1 ≤ i < j ≤ n)

k〈z〉
π
−→ ∧(z) with ker(π) = (zizj + zjzi : 1 ≤ i < j ≤ n) + (z2i : 1 ≤ i ≤ n)

In other words, k[z]/I or ∧(z)/I is isomorphic to k〈z〉/π−1(I). Note that since the

• commutators [zi, zj ]+ := zizj − zjzi,

• anti-commutators [zi, zj ]− := zizj + zjzi, and

• squares z2i

2Without loss of generality, assume that all g in G are ≺-monic, meaning that in≺(g) has coefficient +1 in g.
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that generate ker(π) are homogeneous and quadratic, this means that if I is a homogeneous ideal
of k[z] or ∧(z), then π−1(I) will be a homogeneous two-sided ideal of k〈z〉. Similarly, if I is a
quadratic ideal, then the same holds for π−1(I), and k〈z〉/π−1(I) will be a quadratic algebra.

This leads to one of the most common techniques for proving Koszulity.

Theorem 3.6. Consider ideals I ⊂ R = k[z] or I ⊂ R = ∧(z).

(i) (Fröberg [Frö75]) If I is a quadratic monomial ideal, then R/I is Koszul.

(ii) (Folklore3; see [Frö99, §4], [MP15, Thm. 8.14], [Pee03, §3]) If I has a quadratic Gröbner
basis G with respect to some monomial order ≺ on R, then R/I is Koszul.

4. Matroids, oriented matroids, and supersolvability

The Koszul algebras of interest to us areOrlik-Solomon algebras of matroids and graded Varchenko-
Gel’fand algebras of oriented matroids, in the case where the matroids are supersolvable. We there-
fore review here the basics of matroids, oriented matroids, and supersolvability.

4.1. Matroid and oriented matroid review. A useful reference for matroids is Oxley [Oxl92],
and for oriented matroids is Björner, Las Vergnas, Sturmfels, White and Ziegler [BLVS+99].

A matroid M (respectively, oriented matroid M) on ground set E = {1, 2, . . . , n} is an abstraction
of the linear dependence information about a list of vectors v1, v2, . . . , vn in a vector space over a
field k (respectively, k = R), forgetting the coordinates of the vectors themselves, but recording
which subsets are linearly dependent (respectively, the ± signs in their linear dependences). One
way to record this information is with the matroid or oriented matroid’s circuits, abstracting the
minimal dependences.

Definition 4.1. A matroid M on ground set E = {1, 2, . . . , n} is defined by its collection C ⊂ 2E

of circuits, satisfying these axioms:

C1. ∅ 6∈ C

C2. If C,C ′ in C, and C ⊆ C ′ then C = C ′

C3. If C,C ′ in C, and e ∈ C ∩ C ′ ( C,C ′, then there exists C ′′ ∈ C with C ′′ ⊆ C ∪ C ′ \ {e}.

An oriented matroid M on ground set E = {1, 2, . . . , n} is defined by its collection C± =
{(C+, C−)} of signed circuits which are pairs (C+, C−) of disjoint subsets C+ ⊔ C− ⊆ E, satis-
fying these axioms:

C1±. (∅,∅) 6∈ C±

C2±. If (C+, C−) in C±, then (C−, C+) in C±

C3±. If (C+, C−), (C
′
+, C

′
−) in C±, and C+∪C− ⊆ C ′

+∪C
′
− then (C ′

+, C
′
−) = (C+, C−) or (C−, C+).

C4±. If (C+, C−), (C
′
+, C

′
−) in C± and e ∈ C+ ∩ C ′

−, then there exists (C ′′
+, C

′′
−) ∈ C± with

C ′′ ⊆ C ∪C ′ \ {e} having C ′′
+ ⊆

(
C+ ∪C ′

+

)
\ {e}, and C ′′

− ⊆
(
C− ∪C ′

−

)
\ {e}.

One can check that every oriented matroid M with signed circuits C± gives rise to a matroid M
having circuits C := {C+ ∪ C− : (C+, C−) ∈ C±}; one calls the matroid M orientable whenever it
comes from such an oriented matroid M, and one calls C the (matroid) circuits of M.

3In [ERT94] it is credited it to Fröberg’s result (i) “and a deformation argument noticed by Kempf and others”.
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One calls M a representable matroid (over the field k) if there exists a list of vectors v1, v2, . . . , vn
in a k-vector space such that the subsets C in C index the minimal dependent subsets {vj}j∈C , that
is,
∑

j∈C cjvj = 0 for some cj in k, but every proper subset of {vj}j∈C is independent. Similarly,

M is a representable oriented matroid if additionally k = R and the pairs (C+, C−) in C± give the
subsets C+ = {j : cj > 0}, C− = {j : cj < 0}. for all such minimal dependent subsets of v1, . . . , vn.

A matroid M on ground set E can also be specified by its collection of flats F = {F} ⊆ 2E , where
F ⊆ E is a flat if every circuit C in C with |C ∩ F | = |C| − 1 has C ⊆ F . We will consider F as a
poset ordered via inclusion. This poset turns out to always be a geometric lattice meaning that

• any pair of flats F,F ′ have a meet (greatest lower bound) F ∧F ′ = F ∩F ′ and a join (least
upper bound) F ∨ F ′,

• it is an atomic lattice in the sense that every flat F has

F =
∨

atoms G≤F

G,

where atoms are flats that cover the unique bottom element, and

• it is upper semimodular, meaning that there is a rank function r : F→ {0, 1, 2, . . .} satisfying

r(F ∨ F ′) ≤ r(F ) + r(F ′)− r(F ∧ F ′). (18)

The rank of the matroid M is defined to be r(M) := r(E).

It will also be convenient later (in Definition 5.15 below) to note that every oriented matroid M on
E of rank r can be specified via its chirotope. This is a function χM : Er → {0,±1} satisfying certain
axioms; see [BLVS+99, §1.9, 3.5]), and the values χM(i1, i2, . . . , ir) are defined only up to an overall
rescaling by ±1. In the case where M is realized by vectors v1, v2, . . . , vn, then χM(i1, i2, . . . , ir) is
the {0,±1}-valued sign of the determinant of the r× r matrix having vi1 , vi2 , . . . , vir as its columns.

In studying Orlik-Solomon and Varchenko-Gel’fand rings, it will turn out (see Remark 5.3 below)
that we lose no generality by restricting to matroids and oriented matroids which are simple,
meaning that they have no loops (= singleton circuits C = {i}) and no parallel elements (= circuits
C = {i, j} of size two). Consequently, their matroid structure M is completely determined by the
poset of flats F up to isomorphism, whose unique bottom element will be the empty flat F = ∅,
and whose atoms at rank 1 are the singleton flats F = {1}, {2}, . . . , {n}, identified with the ground
set E.

4.2. Supersolvability. We will be focussing on matroids that satisfy the strong condition of su-
persolvability, reviewed here.

Definition 4.2. Say that a flat F in a matroid M is modular if one always has equality in (18):

r(F ∨ F ′) = r(F ) + r(F ′)− r(F ∧ F ′) for all F ′ ∈ F.

A matroid M is called supersolvable if the poset F contains a complete flag F of modular flats

F := (∅ = F0 ( F1 ( · · · ( Fr(M)−1 ( Fr(M) = E).

We consider as examples the (strict) subset of supersolvable matroids among the uniform matroids,
which we recall here.
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Definition 4.3. (Uniform matroids) The uniform matroid M = Ur,n of rank r on ground set
E = {1, 2, . . . , n} has circuits C equal to all (r + 1)-element subsets of E. Its poset of flats F is
obtained from 2E , the Boolean algebra of rank n, by removing all subsets of cardinalities r, r +
1, · · · , n− 2, n− 1.

Remark 4.4. The uniform matroid Ur,n is represented by any list of n vectors v1, v2, . . . , vn in
kr that are sufficiently generic, in the sense that every r-element subset {vi1 , . . . , vir} is linearly
independent. This imposes restrictions on the cardinality of the field k, depending upon n and
r, but means that Ur,n is always representable over an infinite field, such as k = R, and hence is
always orientable. Nevertheless, some of these orientations M of M = Ur,n can behave differently,
for example in their group of automorphisms Aut(M). In the examples of this section, we will
consider only the unoriented matroid M = Ur,n.

It is not hard to see that the uniform matroid M = Ur,n is

• simple if and only if r ≥ 1,

• simple and supersolvable if and only if r ∈ {1, 2, n}.

Example 4.5. The Boolean matroid M = Un,n on ground set E = {1, 2, . . . , n} has no circuits,
that is, C = ∅, and poset of flats F = 2E . Every flat F is modular, so every complete flag F of
flats is modular and M is supersolvable.

Example 4.6. Every rank two simple matroid is a uniform matroid M = U2,n on E = {1, 2, . . . , n},
with this flat poset F:

E

{1} {2} {3} ... {n}

∅

Again, every flat F is modular, and every complete flag ∅ ⊂ {i} ⊂ E shows that M is supersolvable.

Our original motivation came from braid matroids.

Example 4.7. (Supersolvable graphic matroids and braid matroids) Let G be a graph on vertex
set {1, 2, . . . , n} with edge set E ⊆ {{i, j} : 1 ≤ i < j ≤ n} which is simple, that is, G no self-loops
and no parallel edges. Then G gives rise to a simple graphic matroid M (and oriented matroid M)
represented by the list of vectors {vij = ei − ej}{i,j}∈E ⊂ Rn, where e1, . . . , en are standard basis
vectors. The matroid circuits C are indexed by subsets C ⊆ E of edges that form a cycle within
G. Stanley showed [Sta72, Prop. 2.8] that this graphic matroid is supersolvable if and only G is a
chordal graph, meaning that for every minimal cycle of edges u1 − u2 − · · · − uℓ−1 − uℓ − u1 in G
having ℓ ≥ 4, there will be another edge {ui, uj} of G with i 6≡ j ± 1 mod ℓ forming a chord.

In particular, the complete graph Kn on n vertices with all
(n
2

)
edges is a chordal graph, and its

graphic matroid is called the braid matroid Brn on n strands. Its poset of flats F is isomorphic
to the lattice Πn of all set partitions π = (B1, . . . , Bℓ) of {1, 2, . . . , n} = ⊔

ℓ
i=1Bi, with ordering by

refinement: π ≤ π′ if for every block Bi of π there exists some block B′
i′ of π′ having Bi ⊆ B′

i′ .
The flat F corresponding to π contains all edges {i, j} whose endvertices i, j lie in the same block
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Bk of π. The modular flats correspond to partitions π with at most one non-singleton block. For
example, one modular complete flag F of flats corresponds to the set partitions π1 < π2 < · · · < πn
where

πk := {{1, 2, . . . , k}, {k + 1}, {k + 2}, . . . , {n− 1}, {n}}.

5. Orlik-Solomon and Varchenko-Gel’fand rings

We review here the Orlik-Solomon algebra of a matroid M and graded Varchenko-Gel’fand alge-
bra4 of an oriented matroid M. Useful references for Orlik-Solomon algebras are Dimca [Dim17, Ch.
3], Dimca and Yuzvinsky [DY10], Orlik and Terao [OT92, Ch. 3], Yuzvinsky [Yuz01]. Use-
ful references for graded Varchenko-Gel’fand algebras are Brauner [Bra22, Secs. 3.3, 5.2], Cor-
dovil [Cor02], Dorpalen-Barry [DB23], Dorpalen-Barry, Proudfoot and Wang [DBPW22], Moseley
[Mos17], Varchenko and Gel’fand [VG87].

For the remainder of this section, let k be any commutative ring with 1.

Definition 5.1. (Orlik-Solomon algebra) For a simple matroid M on E = {1, 2, . . . , n}, define its
Orlik-Solomon algebra over k as an anti-commutative quotient

OS(M) := ∧(x1, . . . , xn)/IOS(M)

where ∧(x1, . . . , xn) is the exterior algebra over k on n generators. The Orlik-Solomon ideal

IOS(M) = (∂(xC) : C ∈ C) (19)

has one generator ∂(xC) for each circuit C = {c1, c2, . . . , ck} in C, with ∂(xC) defined by

∂xC :=

k∑

j=1

(−1)j−1xc1 ∧ · · · ∧ xcj−1 ∧ x̂cj ∧ xcj+1 · · · ∧ xck . (20)

Definition 5.2. (Graded Varchenko-Gel’fand ring) For a simple oriented matroid M on E =
{1, 2, . . . , n}, define its graded Varchenko-Gel’fand ring over k as the commutative quotient

VG(M) := k[x1, . . . , xn]/IVG(M)

where k[x1, . . . , xn] is the polynomial algebra over k. The graded Varchenko-Gel’fand ideal

IVG(M) = (x21, . . . , x
2
n) + (∂±(xC) : C ∈ C) (21)

contains the squares {x2i }
n
i=1 along with one generator ∂±(xC) for each circuit C in C, with ∂±(xC)

defined by choosing one of the two signed circuits5 (C+, C−) in C with C = C+ ∪ C−, and setting

∂±(xC) :=
∑

cj∈C+∪C−

sgnC,cj · xc1 · · · xcj−1 x̂cjxcj+1 · · · xck . (22)

Here sgnC,cj = ±1, namely +1 when cj ∈ C+ and −1 when cj ∈ C−.

Remark 5.3. Our assumption that M,M are simple really presents no restriction. In either case,

• a loop i in E would give a circuit C = {i} ∈ C, causing the collapse OS(M) = 0 = VG(M)
since IOS(M) or IVG(M) contains the generator ∂(xC) = 1 or ∂±(xC) = 1, and

• parallel elements i, j in E would give rise to a circuit C = {i, j} ∈ C, making xi = ±xj
in the rings OS(M) or V G(M) because IOS(M) or IVG(M) contains a generator ∂(xC) or

∂±(xC) of of the form xi ± xj.

4Also called the Cordovil algebra in [MMPR21].
5The choice is immaterial – making the other choice replaces ∂±(xC) by its negative.
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Thus our assumption in Section 2 that our standard graded k-algebras are minimally generated by
the variables x1, . . . , xn is consistent with assuming that M,M are simple matroids.

5.1. Flat decomposition. An important feature of both OS(M) and VG(M) is that their N-
grading is refined by a k-vector space decompsition indexed by the matroid flats F in F.

Definition 5.4. Given matroid M or oriented matroid M on E = {1, . . . , n} with flats F, abbre-
viating the variable sets x = (x1, . . . , xn), consider the k-vector space decompositions

T (V ) = k〈x〉 =
⊕

F∈F

T (V )F︸ ︷︷ ︸
=k〈x〉F

,

Sym(V ) = k[x] =
⊕

F∈F

Sym(V )F︸ ︷︷ ︸
=k[x]F

,

∧(V ) = ∧(x) =
⊕

X∈F

∧(V )F︸ ︷︷ ︸
=∧(x)F

,

where k〈x〉F ,k[x]F ,∧(x)F are the k-spans of monomials xj1xj2 · · · xjk with {j1} ∨ · · · ∨ {jk} = F .

Both OS(M),VG(M) inherit these k-vector space decompositions by flats; for OS(M), see [OT92,
Thm 3.26, Cor. 3.27], [DY10, §2.3], [Yuz01, §2.3], and for VG(M) see [Bra22, Theorem 5.5].

Proposition 5.5. For a matroid M or oriented matroid M, the ideals IOS(M), IVG(M) are homoge-
neous with respect to the decomposition in Definition 5.4, that is,

IOS(M) =
⊕

F∈F

k(x)F ∩ IOS(M),

IVG(M) =
⊕

F∈cF

k[x]F ∩ IVG(M).

Hence they induce k-vector space decompositions of the quotients OS(M),VG(M):

OS(M) =
⊕

F∈F

OS(M)F , (23)

VG(M) =
⊕

F∈F

VG(M)F . (24)

We note here an implication for quadratic duals that will become important later, in Section 8.1.
When considering OS(M),VG(M) as quotients A = k〈x〉/I of the tensor algebra for a two-sided
ideal I, the quadratic part I2 ⊂ T 2(V ) = k〈x〉2 inherits the flat decomposition I2 =

⊕
F∈F[T

2(V )F∩

I] from T 2(V ) =
⊕

F∈F T
2(V )F . On the other hand, if one defines the analogous flat decomposition

for the dual tensor algebra and its dual variables y = (y1, . . . , yn)

T (V ∗) = k〈y〉 =
⊕

F∈F

T (V )F︸ ︷︷ ︸
=k〈y〉F

,
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then the pairing T 2(V ∗)×T 2(V )→ k from (8) makes T 2(V ∗)F and T 2(V )F ′ orthogonal for F 6= F ′.
This implies that the computation of J2 := I⊥2 can be done flat-by-flat:

J2 =
⊕

F∈F

[T 2(V ∗)F ∩ J2] where [T 2(V ∗)F ∩ J2] := [T 2(V )F ∩ I2]
⊥. (25)

In particular, whenever A = OS(M),VG(M) are Koszul, or even just quadratic algebras A =
k〈x〉/I with I = (I2), their quadratic duals A! = k〈x〉/J where J = (J2) = (I⊥2 ) inherit a flat
decomposition:

A! =
⊕

F∈F

A!
F . (26)

5.2. Symmetry. Symmetries of a matroid M or oriented matroid M lead to k-algebra automor-
phisms of OS(M) or VG(M), as we explain next.

Definition 5.6. Let M be a matroid on E = {1, 2, . . . , n} with circuits C. A permutation σ in the
symmetric group Sn is an automorphism of M , written σ ∈ Aut(M), if σ(C) = C, that is, for every
C in C, one has σ(C) ∈ C.

One can then check that for any matroid M and σ in Aut(M), letting σ act on ∧(x1, . . . , xn)
permuting subscripts of the variables, that is, σ(xi) := xσ(i), then the generator ∂(xC) for the
Orlik-Solomon ideal IOS(M) has

σ(∂(xC)) = ±∂(xσ(C)).

Consequently, σ preserves IOS(M) and induces a graded k-algebra automorphism of OS(M).

Definition 5.7. Let M be an oriented matroid on E = {1, 2, . . . , n}. Its automorphism group
Aut(M) will be a subgroup of the hyperoctahedral group S±

n ; this is the set of all signed permutations
σ of {±1,±2, . . . ,±n}, meaning those permutations which commute with the involution +i↔ −i,
or in other words, σ(±i) = −σ(∓i). As notation, for i, j ∈ {1, 2, . . . , n}, define

|σ(i)| := j if σ(+i) ∈ {±j},

ǫ(σ(i)) =

{
+ if σ(+i) = +j,

− if σ(+i) = −j.

Then a signed permutation σ is an automorphism of M if for every signed circuit (C+, C−) in C±,
the following pair (C ′

+, C
′
−) is also a signed circuit in C±, where

C ′
+ := {|σ(i)| : i ∈ C+ and ǫ(σ(i)) = +} ⊔ {|σ(i)| : i ∈ C− and ǫ(σ(i)) = −},

C ′
− := {|σ(i)| : i ∈ C− and ǫ(σ(i)) = +} ⊔ {|σ(i)| : i ∈ C+ and ǫ(σ(i)) = −}.

(27)

For σ in Aut(M), let σ act on k[x1, . . . , xn] via

σ(xi) := ǫ(σ(i)) · x|σ(i)|.

One can then check that for signed circuits (C+, C−), (C
′
+, C

′
−) related as in (27), if C = C+ ∪ C−

and C ′ = C ′
+ ∪ C ′

−, then the generator ∂±(xC) for the ideal IVG(M) has

σ(∂±(xC)) = ±∂
±(xC′).

Consequently, σ gives rise to a graded k-algebra automorphism of VG(M).

In this way, when M,M have some group G of automorphisms, we consider A = OS(M),VG(M)
as graded kG-modules, and study their equivariant Hilbert series as in (12). Similarly, when these
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algebras A are Koszul, we will study the equivariant Hilbert series for their Koszul dual A!. Note
that in the dual setting, the dual variables y1, . . . , yn that give a basis for V ∗ obey the same rules

σ(yi) = yσ(i) for OS(M)!,

σ(yi) = ǫ(σ(i)) · y|σ(i)| for VG(M)!.

This is because V ∗ carries the contragredient representation to V , where the matrix for the action
of σ in the basis of y1, . . . , yn is the inverse transpose (A−1)t of the matrix A for its action on
x1, . . . , xn. However, signed (or unsigned) permutation matrices A are orthogonal: (A−1)t = A.

5.3. Gröbner bases and broken circuits. It turns out that the above generators for the ideals
presenting OS(M) and VG(M) are actually Gröbner bases, with easily-identified standard mono-
mials.

Definition 5.8. Given a matroid M on E = {1, 2, . . . , n} and any circuit C = {c1 < c2 < · · · < ck}
in C, the associated broken circuit is

C \ {min(C)} = C \ {c1} = {c2 < · · · < ck}.

A subset I ⊂ E is an NBC (no-broken-circuit) set if it contains none of the sets {C \{min(C)}}C∈C.

Theorem 5.9. Fix a matroid M and oriented matroid M on E = {1, 2, . . . , n}, with circuits C.
Choose any monomial orders ≺ on ∧(x1, . . . , xn) and k[x1, . . . , xn] having x1 ≺ x2 ≺ · · · ≺ xn.

(i) [Yuz01, Thm. 2.8] The generators G = {∂(xC)}C∈C in (19) form a Gröbner basis for IOS(M)

with respect to ≺.

(ii) [DB23, Thm 1] The generators G = {x2i }
n
i=1 ∪ {∂

±(xC)}C∈C in (21) form a Gröbner basis
for IVG(M) with respect to ≺.

Furthermore, in both cases, if C = {c1 < c2 < · · · < ck} in C, then the ≺-initial term in≺(∂(xC))
or in≺(∂

±(xC)) is the monomial xc2 · · · xck , supported on the broken circuit associated to C. Con-
sequently, in either case, the G-standard monomials are the NBC monomials

{xI = xi1 · · · xiℓ : NBC sets I = {i1, . . . , iℓ} ⊆ E}.

In particular, OS(M) and VG(M) have the same Hilbert series, given by

Hilb(OS(M), t) = Hilb(VG(M), t) =
∑

NBC sets I⊆E

t|I|.

Remark 5.10. One can readily check that the NBC standard monomial bases for OS(M),VG(M)
respect the flat decompositions (23), (24) in this sense: for each flat F ∈ F, the components
OS(M)F ,VG(M)F both have as k-bases the monomials {xI : I an NBC set with ∨i∈I {i} = F}.

For supersolvable M , one has quadratic Gröbner bases, making OS(M),VG(M) Koszul, as we
explain next. Björner, Edelman and Ziegler [BEZ90] gave a useful alternate characterization of the
modular complete flags of flats witnessing supersolvability. To state it, recall that a flat F with
r(F ) = r(M)− 1 is called a coatom in F. Also recall that for a matroid M on E and subset A ⊆ E,
the restriction M |A is the matroid on ground set A defined with circuits {C ∈ C : C ⊆ A}.

Proposition 5.11. [BEZ90, Thm. 4.3] Let M be a simple matroid on ground set E.

(i) For flats F which are coatoms, being a modular element is equivalent to the following con-
dition: for any j 6= k in E \ F , there exists i in F with {i} ≤ {j} ∨ {k}.
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(ii) The flats in a complete flag F = (∅ = F0 ( F1 ( · · · ( Fr(M)−1 ( Fr(M) = E) are all
modular if and only if Fi−1 is a modular coatom within M |Fi for each i = 1, 2, . . . , r(M).

Björner and Ziegler [BZ91] later elaborated on this, proving the following.

Proposition 5.12. [BZ91, Theorem 2.8] Let M be any simple matroid of rank r on ground set E.
The following are equivalent:

(i) M is supersolvable, say with a modular complete flag of flats F = (Fi)i=0,1,...,r.

(ii) There exists an ordered set partition E = (E1, E2, . . . , Er) of E = E1 ⊔ · · · ⊔Er such that if
j, k in Eq with j 6= k, then there exists p < q and i in Ep with C = {i, j, k} in C.

(iii) One can reindex/order E = {1 < 2 < · · · < n} so that the minimal broken circuits (with
respect to inclusion) are all of size 2.

Furthermore, when these conditions hold,

(a) a modular flag F as in (i) gives an ordered set partition E as in (ii) via Ei := Fi \ Fi−1,
and

(b) an ordered set partition E as in (ii) gives an ordering ≺ on E as in (iii) by extending the
partial order that makes elements of Ep come ≺-earlier than elements of Eq when p < q,

(c) the minimal broken circuits with respect inclusion are all pairs of the form {j, k} in some
set Eq for q = 1, 2, . . . , r; hence the NBC sets I ⊂ E are the subsets containing at most one
element from each Ep for p = 1, 2, . . . , r.

Definition 5.13. For a supersolvable matroid M , with F ,E as in Proposition 5.12, denote by
CBEZ(E) ⊆ C the circuits C = {i, j, k} with i ∈ Ep and j 6= k ∈ Eq for p < q from Proposi-
tion 5.12(ii).

Corollary 5.14. Let M,M be supersolvable simple matroids or oriented matroids on E, with E as
in Proposition 5.12. Fix a field k, and monomial orderings ≺ on ∧(x1, . . . , xn),k[x1, . . . , xn] with
x1 ≺ x2 ≺ · · · ≺ xn.

• [Pee03], [Yuz01, §6.3] IOS(M) has quadratic Gröbner basis G = {∂(xC)}C∈CBEZ
, where

∂(xC) = xi ∧ xj − xi ∧ xk + xj ∧ xk. (28)

• [DB23] IVG(M) has quadratic Gröbner basis G = {x2i }
n
i=1 ∪ {∂

±(xC)}C∈CBEZ
where

∂±(xC) = sgnC,k · xixj + sgnC,j · xixk + sgnC,i · xjxk. (29)

In both cases,

• the ≺-initial terms of the elements of G are shown underlined above,

• the G-standard monomial basis {xI} are indexed by the NBC sets I ⊆ E, which are exactly
those sets containing at most one element from each Ep for p = 1, 2, . . . , r,

• OS(M),VG(M) are Koszul algebras,

• with the same Hilbert series

Hilb(OS(M), t) = Hilb(VG(M), t) = (1 + e1t)(1 + e2t) · · · (1 + ert) (30)

where ep = |Ep| for p = 1, 2, . . . , r.
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The integers (e1, e2, . . . , ep) are often called the exponents of the supersolvable matroid M , due
to their connection with the theory of free hyperplane arrangements and the exponents of reflection
arrangements; see Orlik and Terao [OT92, §4.2].

5.4. Quadratic Gröbner basis for the Koszul dual. We next prove a counterpart to Corol-
lary 5.14 for the Koszul duals A! of A = OS(M),VG(M) in the supersolvable case. Since A =
OS(M) or VG(M) are Koszul algebras, one can view them as noncommutative quotients A =
k〈x1, . . . , xn〉/I, and form their Koszul duals A! = k〈y1, . . . , yn〉/J , as in Section 2. Certain rela-
tions in A! will play a key role.

Definition 5.15. Let M be a simple matroid on E = {1, 2, . . . , n}. For each rank two flat F ⊂ E
and each j in F , define an element of k〈y〉 := k〈y1, . . . , yn〉 by

r(j, F ) :=
∑

k∈F\{j}

[yj , yk]+ =
∑

k∈F\{j}

(yjyk − ykyj). (31)

Let M be a simple oriented matroid on E = {1, 2, . . . , n}. For each rank two flat F ⊂ E, pick one
of the two chirotopes χM|F : F 2 → {0,±1} on the restriction M|F , up to the overall scaling by ±1.
Then for each j in F define an element of k〈y〉 by

r±(j, F ) :=
∑

k∈F\{j}

χM|F (j, k) · [yj, yk]− =
∑

k∈F\{j}

χM|F (j, k) · (yjyk + ykyj), (32)

.

The relations (31) appear in work of Kohno [Koh83] presenting the holonomy Lie algebra for the
complement of any complex hyperplane arrangement; see Section 8.1 for further discussion. As
far as we know, relations (32) are new. Certain subsets of these relations in (31) or (32) play a
distinguished role in the supersolvable case.

Definition 5.16. Let M,M be supersolvable simple matroids or oriented matroids, and E =
(E1, . . . , Er) a choice of an ordered partition of its ground set E as in Proposition 5.12. Call (j, i)
in E2 a retrograde (ordered) pair with respect to E if i ∈ Ep and j ∈ Eq with p < q.

For each retrograde pair (j, i), let F := {j} ∨ {i} be the rank two flat that they span, and denote
by r(j, i), r±(j, i) the following two relations, equivalent to r(j, F ) from (31) and r±(j, F ) from (32):

r(j, i) := yjyi − yiyj +
∑

k∈F\{i,j}

[yj, yk]+. (33)

r±(j, i) = yjyi − yiyj + χM|F (j, i)
∑

k∈F\{i,j}

χM|F (j, k) · [yj , yk]−. (34)

The following key point will be used in the proofs of Theorems 5.18 and 5.21.

Lemma 5.17. In the context of Definition 5.16 of a retrograde pair (j, i) with i ∈ Ep and j ∈ Eq

for p < q, the rank two flat F := {j} ∨ {i} has F \ {i, j} ⊂ Eq.

Consequently, (33) and (34) can be viewed as rewriting rules that replace the underlined term yjyi
by the term yiyj together with a sum of monomials yjyk, ykyj whose subscripts j, k both lie in Eq.

Proof. Any k ∈ F \{i, j} leads to a circuit C = {i, j, k} since M is a simple matroid and F has rank
two. As j > i, one knows j 6= minC, so the associated broken circuit B ⊂ C is either B = {j, i} or
B = {j, k}. But assertion (c) in Proposition 5.12 implies B contains a pair lying in some set Eq′ .
This implies q′ = q, and ℓ 6= i since i ∈ Ep 6= Eq. Thus B = {j, k}, and k lies in Eq. �
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Theorem 5.18. Let M,M be matroids and oriented matroids which are supersolvable, with ground
set E = {1, 2, . . . , n} and E as in Proposition 5.12. Consider the Koszul algebras A = OS(M) or
VG(M), and their Koszul dual A! = k〈y1, . . . , yn〉/J . Then there exist monomial orderings ≺ on
k〈y1, . . . , yn〉 with these properties.

(i) A! = OS(M)! = k〈y〉/J has {r(j, F ) : j ∈ F a rank two flat } as a Gröbner basis for J ,
and a reduced Gröbner basis

G := {r(j, i) : retrograde pairs (j, i)}

with the ≺-initial term of r(j, i) underlined in (33).

(ii) A! = VG(M)! = k〈y〉/J has {r±(j, F ) : j ∈ F a rank two flat } as a Gröbner basis for J ,
and a reduced Gröbner basis

G := {r±(j, i) : retrograde pairs (j, i)}

with the ≺-initial term of r±(j, i) underlined in (34).

In particular,

(iii) their ideals J share the same initial ideal

in≺(J) = (in≺(G)) = ({yjyi : retrograde pairs (i, j)}),

(iv) and hence the same G-standard monomial k-basis for A!, of the form {m1 ·m2 · · ·mr−1 ·mr}
where each mp is any noncommutative monomial in the variable set {yj}j∈Ep,

(v) and they have the same Hilbert series

Hilb(OS(M)!, t) = Hilb(VG(M)!, t) =
1

(1− e1t)(1− e2t) · · · (1− ert)
(35)

where ep = |Ep| are the exponents from Corollary 5.14.

Proof. First let us specify a monomial order ≺ on k〈y1, . . . , yn〉 for which the underlined terms
in (33), (34) are their ≺-initial terms. Recall that our indexing has i < j for each retrograde
pair (j, i). We claim that it suffices to let ≺ be a graded version of a lexicographic order having
y1 ≻ y2 ≻ · · · ≻ yn that reads monomials from the right. More precisely, this means that for two
unequal monomials

m = yi1 · · · yid ,

m′ = yj1 · · · yje ,

one has m ≺ m′ if either deg(m) = d < e = deg(m′), or if d = e and there exists some k ∈
{1, 2, . . . , d} with id = jd, id−1 = jd−1, . . . , ik+1 = jk+1 but ik > jk. It follows from Lemma 5.17

that for any retrograde pair (j, i) with F = {j, i}, every k in F \ {i, j} lies in Eq, so that k > i and
yjyk ≺ yjyi. Since also j > i, this makes yjyi the ≺-initial term in either (33) or (34).

We next check that the relations r(j, F ), r±(j, F ) lie in J2 = I⊥2 ⊂ V ∗ ⊗ V ∗, with the pairing
defined by (yiyj , xkxℓ) = δ(i,j),(k,ℓ). We do the check here for r±(j, F ); the check for r(j, F ) is

similar, but slightly easier. One must check that r±(j, F ) is orthogonal to three types of generators
of I in VG(M) = k〈x〉/I:

x2k for k = 1, 2, . . . , n, (36)

xkxℓ − xℓxk for 1 ≤ k ≤ ℓ ≤ n, (37)

∂±(C) := sgnC,mxkxℓ + sgnC,ℓxkxm + sgnC,kxℓxm for circuits C = {k, ℓ,m} of size three. (38)
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Note that r±(j, F ) pairs to zero with any commutator in (37), because r±(j, F ) is a sum of anti-
commutators [ya, yb]− = yayb+ybya. Note also that whenever quadratic monomials f(y), g(x) have
disjoint E2-support sets

supp f(y) := {(i, j) ∈ E2 : yiyj appears in f with nonzero coefficient},

supp g(x) := {(k, ℓ) ∈ E2 : xkxℓ appears in f with nonzero coefficient},

then one will have (f(y), g(x)) = 0. This already implies r±(j, F ) pairs to zero with the x2k in (36).
It also shows that in order for r±(j, F ) to have nonzero pairing with some ∂±(xC) in (38), one must
have that C = {k, ℓ,m} satisfies F = {k} ∨ {ℓ} ∨ {m}, and furthermore one must have j ∈ C. In
other words, without loss of generality, C = {j, ℓ,m} ⊂ F . It remains to check that r±(j, F ) still
pairs to zero with ∂±(xC) in this situation. Calculating the pairing, one finds

(∂±(xC), r
±(j, F ))

=


sgnC,mxjxℓ + sgnC,ℓxjxm + sgnC,jxℓxm ,

∑

h∈F\{j}

χM|F (j, h) · [yj , yh]−




= sgnC,m · χM|F (j, ℓ) + sgnC,ℓ · χM|F (j,m). (39)

Vanishing of the sum in (39) can be checked based on cases for the signed circuit C = C+ ⊔ C−

supported by C = {j, ℓ,m}. One can relabel so that |C+| ≥ |C−|, and hence (|C+|, |C−|) = (3, 0) or
(2, 1). As the indices ℓ,m play a symmetric role in (39), one may assume without loss of generality
that the oriented matroid M|{j,ℓ,m} matches that of one of these vector configurations in R2:

ℓm

j

mℓ j mj ℓ jℓ m

In each case, one can check that the sum in (39) vanishes.

Once one has checked that the elements of G lie in J2, Proposition 3.5 together with the following
Hilbert series calculations will show that they form a quadratic (noncommutative) GB for J . First
note that the G-standard monomials m in y1, . . . , yn are those that avoid all factors yjyi in which
(j, i) are a retrograde pair, and these are exactly the monomials described in (iv). Thus one has

Hilb(k〈y〉/(in≺(G)), t) =
∑

G-standard
monomials m

tdeg(m)

(a)
=
(
1 + e1t+ e21t

2 + e31t
3 + · · ·

)
· · ·
(
1 + ert+ e2rt

2 + e3rt
3 + · · ·

)
with ep = |Ep|

=
1

(1− e1t) · · · (1− ert)

(b)
=

1

Hilb(A,−t)

(c)
= Hilb(A!, t) = Hilb(k〈y〉/J, t).
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where equalities (a), (b), (c) above are justified as follows. Equality (a) follows from the description
in (iv) of G-standard monomials as m = m1 ·m2 · · ·mr where mp is any noncommutative monomial
in the variable set {yj}y∈Ep . Equality (b) comes from (30), and equality (c) from Corollary 2.7.

Finally, to see that G is a reduced Gröbner basis, note that Lemma 5.17 implies that for each
retrograde pair (j, i), the initial term yjyi for the relations r(j, i), r±(j, i) cannot appear as a term
in any of the other r(k, ℓ), r±(k, ℓ) with (k, ℓ) 6= (j, i). �

5.5. Acyclicity and injectivity. As an application of the Gröbner basis presentations for the
algebras A! = OS(M)!,VG(M)! in Theorem 5.18, we explore a counterpart to an interesting fact
about A = OS(M),VG(M): their Hilbert series contains a factor of 1 + t,

Hilb(OS(M), t) = Hilb(VG(M), t) = (1 + t) ·H(t) (40)

and the remaining polynomial factor H(t) ∈ Z[t] always has nonnegative coefficients.

This fact has several explanations: combinatorial, topological, and algebraic. One algebraic
explanation views the Orlik-Solomon algebra A = OS(M) as an algebraic cochain complex

0→ A0
d
→ A1

d
→ · · ·

d
→ Ar−1

d
→ Ar → 0 (41)

whose differential d is given by multiplication by an element x =
∑n

i=1 cixi in A1. The fact that A
is a quotient of an exterior algebra implies that x2 = 0 in A, so that indeed d ◦ d = 0.

Theorem 5.19. [Yuz01, Thm. 7.2] The cochain complex (41) on A = OS(M) is exact whenever
x =

∑n
i=1 cixi has coefficients ci satisfying the following genericity condition:

∑
i∈F ci 6= 0 in k for

all flats F whose restriction M |F is not a nontrivial direct sum.

Thus whenever x is generic, multiplication by x on A = OS(M) is “as injective as possible”, given
the constraint that x2 = 0. This algebraically interprets the factor H(t) in (40), since tH(t) is the
Hilbert series for the subspace of cocycles (= coboundaries) in the above cochain complex.

For M,M supersolvable, the Koszul duals A! = OS(M)!,VG(M)! inherit a similar factorization

Hilb(A!, t) =
1

Hilb(A,−t)
=

1

1− t
·

1

H(−t)
= (1 + t+ t2 + t3 + · · · ) ·H(−t)−1. (42)

There is nothing that says, a priori, the rightmost factor H(−t)−1 above should have nonnegative
coefficients. However, this is a consequence of our next result.

Definition 5.20. LetM,M be supersolvable matroids or oriented matroids of rank r on the ground
set E = {1, 2, . . . , n}, with partition E as in Proposition 5.12. For a fixed d ≥ 1, say that the power
sum pd(y) =

∑n
i=1 ciy

d
i ∈ A!

d ⊂ A! = OS(M)! or VG(M)! is E-generic if for each q = 1, 2, . . . , r,
there exists i ∈ Eq with the coefficient ci 6= 0.

Theorem 5.21. Let M,M be supersolvable matroids or oriented matroids of rank r on E, with
partition E as in Proposition 5.12. Then for either A! = OS(M)! or VG(M)!, right-multiplication
a 7−→ ay by any E-generic element pd(y) in A!

d gives an injective map A! −→ A!. That is, every
E-generic y is a right-non-zero-divisor on A.

Proof. Proceed by induction on the rank r. In the base case r = 1, the ring A! = k〈y〉 ∼= k[y] is a
univariate polynomial ring, and yd is a nonzero element of A!

d, so yd is a nonzero divisor.
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Preparing for the inductive step, segregate E = F ⊔ Er where F := Fr−1 = E1 ⊔ E2 ⊔ · · · ⊔ Er−1

is the modular coatom in the modular flag F , and define the early and late variables:

{y1, . . . , yn} = {yi}i∈F︸ ︷︷ ︸
early

⊔ {yj}j∈Er︸ ︷︷ ︸
late

.

Note that, by Theorem 5.11, the restriction M |F is a rank r − 1 supersolvable matroid to which
induction applies. Also, note that the presentations in Theorem 5.18 and the standard monomial
bases show that the early variables generate a subalgebra of A! isomorphic to the Koszul dual
OS(M |F )

! or VG(M|F )
!.

The standard monomial basis shows that every a in A! has a unique decomposition

a =
∑

m

a(m) ·m (43)

wherem runs over all monomials in the late variables, and each a(m) lies in the subalgebra generated
by the early variables. Grouping this more coarsely via deg(m), one obtains a unique decomposition

a =

∞∑

ℓ=0

a(ℓ) where a(ℓ) :=
∑

m:
deg(m)=ℓ

a(m) ·m. (44)

In particular, pd(y) =
∑n

i=1 ciy
d
i = y(0) + y(d).

Let A!
(ℓ) denote the set of elements of the form a(ℓ) above, so there is a k-vector space decompo-

sition

A! =

∞⊕

ℓ=0

A!
(ℓ)

and also define

A!
(≥ℓ) :=

∞⊕

p=ℓ

A!
(p) = A!

(ℓ) ⊕A!
(≥ℓ+1). (45)

We will use these two facts, justified below:

A!
(0) · A

!
(0) ⊆ A!

(0),

A!
(≥p) ·A

!
(≥q) ⊆ A!

(≥p+q).

These follow ultimately from Lemma 5.17, as we now explain. One can use the Gröbner basis
relations r(j, i), r±(j, i) for retrograde pairs (j, i) appearing in Theorem 5.18 as rewriting rules,
performing the division f →G r and rewriting f as a sum r of G-standard monomials. Lemma 5.17
implies that at each division step, one is always replacing

• quadratic initial terms with no late variables by a sum of terms with no late variables,

• quadratic initial terms with one late variable by a sum of terms with one or two late
variables.

Continuing the inductive step, assume a ∈ A!
q has a · pd(y) = 0, and we want to conclude that

a = 0. Writing a =
∑q

ℓ=0 a
(ℓ) as in (44), we will show each a(ℓ) = 0 via an inner induction on ℓ.
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In the inner induction base case ℓ = 0, write

0 = a · pd(y) = a(0) · y(0) + a(0) · y(d) +

q∑

ℓ=1

a(ℓ) · pd(y)

︸ ︷︷ ︸
∈A!

(≥d)

.

so that 0 ≡ a(0) · y(0) mod A!
(≥d). By the direct sum decomposition (45), this means a(0) · y(0) = 0.

By induction on the rank applied to M |F , since y(0) is still generic for M |F , this implies a(0) = 0.

In the inner inductive step, assume a · pd(y) = 0 and that a(0) = a(1) = · · · = a(ℓ−1) = 0, that is,
a lies in A!

(≥ℓ). We wish to show that a(ℓ) = 0. Write

0 = a · y = (a(ℓ) + a(ℓ+1) + · · · ) · (y(0) + y(1))

= a(ℓ) · y(0) + a(ℓ) · y(d) + (a(ℓ+1) + a(ℓ+2) + . . . ) · pd(y)︸ ︷︷ ︸
∈A!

(≥ℓ+1)

so that 0 ≡ a(ℓ) · y(0) mod A!
(≥ℓ+d).

Write a(ℓ) =
∑

m a(m)m as in (44), so that m runs through all degree ℓ monomials in the late
variables. Note that for any early variable yi and any monomial m of degree ℓ in the late variables,
the division algorithm f →G r and the form of the relations r(j, i), r±(j, i) in G (again using
Lemma 5.17) will rewrite

m · ydi ≡ ydi ·m mod A!
(≥ℓ+d).

Since y(0) is a sum of early variables, similarly m · y(0) ≡ y(0) ·m mod A!
(≥ℓ+d), which implies

a(ℓ) · y(0) =
∑

m

a(m) ·m · y(0) ≡
∑

m

a(m) · y(0) ·m mod A!
(≥ℓ+d)

Hence one concludes that 0 ≡
∑

m a(m) ·y(0) ·m mod A!
(≥ℓ+d). Since

∑
m a(m) ·y(0) ·m lies in A!

(ℓ),

by the direct sum decomposition (45), it must vanish. But by the uniqueness in (43), this implies

each a(m) · y(0) = 0. Then by induction on r, each a(m) = 0. Hence a(ℓ) = 0, as desired. �

One has the following corollary to Theorems 5.19 and 5.21.

Corollary 5.22. Let M,M be a matroid or oriented matroid, and G a group of automorphisms,
that is, a subgroup of Aut(M) or Aut(M). Consider G as a group of k-algebra automorphisms of
A := OS(M) or VG(M).

(i) Any x ∈ A1 which is G-fixed and generic in the sense of Theorem 5.19 (e.g., x =
∑n

i=1 xi
when k has characteristic zero) gives rise to a factorization in Rk(G)[[t]]

Hilbeq(OS(M), t) = (1 + t) ·H(t)

where tH(t) is the equivariant Hilbert series for the cocycles (=coboundaries) of the kG-
module complex in (41).

(ii) Assuming that M is supersolvable with decomposition E as in Proposition 5.12, any y ∈ A!
1

which is G-fixed and E-generic (e.g., y =
∑n

i=1 yi) gives a factorization in Rk(G)[[t]]

Hilbeq(OS(M)!, t) =
1

1− t
·H !(t)

where H !(t) is the equivariant Hilbert series for the quotient kG-module A!/A!y.
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(iii) Assuming that M is supersolvable with decomposition E as in Proposition 5.12, any p2(y) ∈
A!

2 which is G-fixed and E-generic (e.g., p2(y) =
∑n

i=1 y
2
i ) gives a factorization in Rk(G)[[t]]

Hilbeq(VG(M)!, t) =
1

1− t2
·H !(t)

where H !(t) is the equivariant Hilbert series for the quotient kG-module A!/A! · p2(y).

Examples of the factorizations in the various parts of Corollary 5.22 appear later:

• Part (i) is illustrated by (48), (51) (57).

• Part (ii) is illustrated by (49), (52), (58).

• Part (iii) is illustrated by (53), (79).

6. Examples: Boolean matroids and matroids of low rank

Before developing further theory for supersolvable matroids and oriented matroids, we digress to
discuss the action of symmetries in a few of our earlier examples, illustrating the results so far.

6.1. Boolean matroids. We return to Example 4.5 and the Boolean matroidM = Un,n. Although
M = Un,n is orientable, we will focus here on OS(M), where a bit more is known about the action
of symmetries, rather than on VG(M). The discussion of VG(M) is deferred to Example 8.10 later.

The Boolean matroid M of of rank n has no circuits, so A = OS(M) = ∧V = ∧(x1, . . . , xn),
and A! = OS(M)! = SymV = k[y1, . . . , yn], swapping the roles of A,A! from Examples 2.4, 2.6,
2.8. Here Aut(M) = Sn, and both V, V ∗ carry the defining representation of Sn permuting the
subscripts of the variables xi or yi.

Thus V is the defining representation of Sn by permutation matrices. Assuming that k has
characteristic zero, V, V ∗ both decompose into irreducible kSn-modules as

V ∼= V ∗ ∼= S
(n) ⊕ S

(n−1,1)

where Sλ denotes the simple kSn-module indexed by a partition λ of n; here S(n) is the trivial
Sn-representation, while S(n−1,1) is the irreducible reflection representation of Sn. Consequently,
in this situation,

A = ∧(S(n) ⊕ S
(n−1,1)) = ∧S(n) ⊗ ∧S(n−1,1) (46)

A! = Sym(S(n) ⊕ S
(n−1,1)) = SymS

(n) ⊗ Sym S
(n−1,1), (47)

and the factorizations in Corollary 5.22 become

Hilbeq(A, t) = (1 + t)Hilbeq(∧S
(n−1,1), t) (48)

Hilbeq(A
!, t) =

1

1− t
Hilbeq(Sym S(n−1,1), t). (49)

Both (48) and (49) can be refined to explicit kSn-irreducible expansions. For (48), since it is known

that ∧iS(n−1,1) ∼= S(n−i,1i), one has

Hilbeq(∧S
(n−1,1), t) =

n−1∑

i=0

[S(n−i,1i)] ti.

For (49), one can extend the tensor decomposition (47). The Sn-invariant subalgebra of k[y]
is k[y]Sn = k[e1, e2, . . . , en] where ek = ek(y) is the kth elementary symmetric function in the
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variables y, and the theory of Cohen-Macaulay rings gives a graded kSn-module tensor product
decomposition

k[y] ∼= k[e1, e2, . . . , en] ⊗ k[y]/(e1, e2, . . . , en)

where k[y]/(e1, e2, . . . , en) is the type A coinvariant algebra. Hence one has

Hilbeq(A
!, t) = Hilb(k[e1, e2, . . . , en], t) · Hilbeq(k[y]/(e1, e2, . . . , en), t)

=
1

(1− t)(1− t2) · · · (1− tn)
·
∑

Q

[Sλ(Q)] tmaj(Q) (50)

where the sum on the right, due to Lusztig and Stanley [Sta79, Prop. 4.11]), has Q running over all
standard Young tableaux with n cells, with λ(Q) the partition shape of Q, and maj(Q) the sum of
all entries i in Q for which i+1 appears weakly southwest of i (using English notation for tableaux).

We note for future reference in Section 11.6 that Sn permutes the monomial basis {ya =
ya11 · · · y

an
n : a ∈ Nn} of A! = k[y], making each graded component A!

i of A! a permutation rep-
resentation.

6.2. Rank one matroids. A simple rank one matroid M has ground set E = {e} of size one and
no circuits. It is always orientable, and has

A = OS(M) ∼= VG(M) = k[x]/(x2)

A! = k[y].

The only difference between M,M arises when one takes into account symmetries. The matroid
M has no nontrivial automorphisms, while the oriented matroid M carries the action of the two-
element group G = Aut(M) = S±

1
∼= Z/2Z. Assuming that the characteristic of k is not 2, then the

generator of G negates both x, y when it acts on A = VG(M) = k[x]/(x2) or A! = VG(M)! = k[y].
Denoting the class of this nontrivial 1-dimensional representation by ǫ in the Grothendieck ring

Rk(G) ∼= Z[ǫ]/(ǫ2 − 1)

then in the power series ring Rk(G)[[t]] one has

Hilbeq(OS(M), t) = 1 + t, (51)

Hilbeq(VG(M), t) = 1 + ǫt,

Hilbeq(OS(M)!, t) = 1 + t+ t2 + t3 + · · · =
1

1− t
(52)

Hilbeq(VG(M)!, t) = 1 + ǫt+ ǫ2t2 + ǫ3t3 + · · · =
1

1− ǫt

= 1 + ǫt+ t2 + ǫt3 + · · · =
1 + ǫt

1− t2
. (53)

6.3. Rank two matroids. As discussed in Example 4.6, a simple rank two matroid M on ground
set E = {1, 2, . . . , n} is always orientable, and supersolvable. Any rank 1 flat, such as F = {1}
is a modular coatom, and one has the corresponding set partition decomposition E = (E1, E2) =
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({1}, {2, 3, . . . , n}) with (e1, e2) = (1, n − 1) Therefore,

Hilb(OS(M), t) = Hilb(VG(M), t) = (1 + t)(1 + (n− 1)t) = 1 + nt+ (n− 1)t2,

Hilb(OS(M)!!, t) = Hilb(VG(M)!, t)

=
1

(1− t)(1− (n− 1)t)

= 1 + (1 + (n− 1))t+ (1 + (n− 1) + (n− 1)2)t2 + · · ·

=

∞∑

i=0

f(n, i)ti where f(n, i) :=

i∑

j=0

(n − 1)i =
(n− 1)i+1 − 1

n− 2
.

(54)

In considering symmetries, it is somewhat easier to compute with OS(M), rather than VG(M).
The matroid M has as its symmetries the full symmetric group G = Aut(M) = Sn, arbitrarily
permuting E = {1, 2, . . . , n}. It is also helpful to introduce a notation ϕλ for the class [k[Sn/Sλ]]
within Rk(Sn) of the Sn-permutation representation on the cosets of the Young subgroup Sλ :=

Sλ1 × · · · × Sλℓ
where λ = (λ1, λ2, . . . , λℓ) is a partition of n = |λ| :=

∑ℓ
i=1 λi. Hence, if k were

a field of characteristic zero (which we do not assume here), then this class ϕλ corresponds to the
product of complete homogeneous symmetric functions

hλ := hλ1 · · · hλℓ

under the Frobenius characteristic isomorphism Rk(Sn) ∼= Λn, where Λn are the degree n homoge-
neous symmetric functions Λ(z1, z2, . . .)n in infinitely many variables.

One finds that OS(M)1 carries the defining permutation representation of Sn permuting coordi-
nates in kn, whose class in Rk(Sn) is ϕ(n−1,1). Introducing the kSn-submodule

S
(n−1,1) := {x ∈ kn : x1 + · · ·+ xn = 0}, (55)

the quotient ϕ(n−1,1)/S
(n−1,1) carries the trivial kSn-module S(n), giving this identity in Rk(Sn):

[OS(M)1] = ϕ(n−1,1) = [S(n)] + [S(n−1,1)] = 1 + [S(n−1,1)]. (56)

The Hilbert series in (54) have the following equivariant lifts to Rk(Sn)[[t]]:

Hilbeq(OS(M), t) = (1 + t)(1 + [S(n−1,1)]t) = 1 + ϕ(n−1,1)t+ [S(n−1,1)]t2, (57)

Hilbeq(OS(M)!, t) =
1

(1− t)(1− [S(n−1,1)]t)
(58)

= 1 + (1 + [S(n−1,1)])t+ (1 + [S(n−1,1)] + [S(n−1,1)]2)t2 + · · ·

=

∞∑

i=0

ti

(
i∑

k=0

[S(n−1,1)]k

)
(59)

We find the next proposition somewhat unexpected.

Proposition 6.1. In Rk(Sn), the element [OS(M)!i] =
∑i

k=0[S
(n−1,1)]k is the class of a permuta-

tion representation, expressible in the following form:
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[OS(M)!i] =





ϕ(n) +

i∑

d=2

ad,i ϕ(n−d,1d), i even,

ϕ(n−1,1) +

i∑

d=2

bd,i ϕ(n−d,1d), i odd,

where {ad,i}, {bd,i} are positive integers, independent of n, given by sums of Stirling numbers:

ad,i =

i
2∑

k=⌊ d
2
⌋

S(2k − 1, d − 1) for i even,

bd,i =

i−1
2∑

k=⌊ d−1
2

⌋

S(2k, d− 1) for i odd.

Proof. The following identity is established in [Sun21, Prop. 7.6, Thm 7.7] for j ≥ 2.

[S(n−1,1)]j + [S(n−1,1)]j−1 =

j∑

d=2

S(j − 1, d− 1) ϕ(n−d,1d). (60)

Since the proofs in [Sun21] are phrased in terms of symmetric functions, over a ground field of
characteristic zero, we explain why this identity still holds in the Grothendieck ring Rk(Sn) for
arbitrary fields k. Sundaram constructs an explicit kSn-module realizing the jth tensor power of
the Sn-permutation module V1,n, whose class is ϕ(n−1,1), and decomposes it in terms of the coset

permutation submodules Vd,n = (kSd) ↑
Sn

Sn−d×Sd
1
whose class is ϕ(n−d,1d), obtaining [Sun21, Eqn.

18, Lemma. 6.1])

V ⊗j
1,n =

min (n,j)∑

d=1

S(j, d)Vd,n. (61)

In addition we will use the following three facts (1),(2),(3).

(1) [S(n−1,1) ↓Sn
Sn−1×S1

] = [V1,n−1]. We show this as follows.

First, if S(n−1) is the span of a fixed standard basis vector, and V1,n−1 is the span of the

n − 1 non-fixed standard basis vectors, we clearly have V1,n ↓= S(n−1) ⊕ V1,n−1, which in
turn gives

[V1,n ↓] = [S(n−1)] + [V1,n−1]. (62)

Now recall the definition in (55) of S(n−1,1) and the Grothendieck group identity (56). The
discussion around (55) and (56) in effect establishes the existence of a short exact sequence
of kSn-modules

0→ S(n−1,1) → V1,n → S(n) → 0,

which restricts to the same sequence as (Sn−1 ×S1)-modules. Hence we have

[V1,n ↓] = [S(n) ↓] + [S(n−1,1) ↓] (63)

Since S(n) ↓= S(n−1), comparing (62) and (63) we obtain [S(n−1,1) ↓] = [V1,n−1].

(2) [Web16, Corollary 4.3.8, Part (2)] Transitivity of induction;
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(3) [Web16, Corollary 4.3.8, Part (4)] For a finite group G and subgroup H, and kG-module
U , kH-module V , over any field k,

U ⊗ (V ↑GH) ∼= (U ↓H ⊗V ) ↑GH .

In the present situation we have G = Sn, H = Sn−1 ×S1, V = 1Sn−1×S1 , so that the class of

V ↑GH is ϕ(n−1,1), and U = S(n−1,1)⊗j−1
. Following the proof of [Sun21, Prop. 7.6]), we have

[S(n−1,1)]j + [S(n−1,1)]j−1 = [S(n−1,1)]j−1
(
[S(n)] + [S(n−1,1)]

)

= [U ⊗ V1,n] by (56) and definition of U,

= [U ⊗ (1H) ↑GH ] by definition of H,G, V1,n,

= [
(
U ↓GH

)
↑GH ] by item (3) above,

=
[(

(S(n−1,1))⊗(j−1) ↓Sn
S1×Sn−1

)
↑Sn
S1×Sn−1

]

= [V ⊗j−1
1,n−1 ↑

Sn
S1×Sn−1

] by item (1) above,

=

min (n−1,j−1)∑

d′=1

S(j − 1, d′) [Vd′,n−1

xSn

Sn−1
] using (61)

=

min (n−1,j−1)∑

d′=1

S(j − 1, d′) [Vd′+1,n] by item (2) above,

=

min (n,j)∑

d=2

S(j − 1, d − 1) [Vd,n].

Hence for i ≥ 2, we have

[OS(M)!i] =

i∑

k=0

[S(n−1,1)]k =

{
[S(n)] +

∑i/2
k=1

(
[S(n−1,1)]2k + [S(n−1,1)]2k−1

)
, i even,

[S(n)] + [S(n−1,1)] +
∑(i−1)/2

k=1

(
[S(n−1,1)]2k+1 + [S(n−1,1)]2k

)
, i odd,

=

{
ϕ(n) +

∑i/2
k=1 (

∑2k
d=2 S(2k − 1, d − 1)ϕ(n−d,1d)), i even,

ϕ(n−1,1) +
∑(i−1)/2

k=1 (
∑2k+1

d=2 S(2k, d − 1)ϕ(n−d,1d)), i odd.

Interchanging the order of summation then gives the assertion of the proposition for i ≥ 2. For
i = 0, 1 it is easy to check that [OS(M)!0] = ϕ(n) and [OS(M)!1] = ϕ(n−1,1). �

Remark 6.2. Rather than all of Sn, one might restrict the action on OS(M) to the dihedral group6

W = I2(n) = 〈r, s : rn = s2 = 1, srs = r−1〉

of order 2n. Since Sn acts on each OS(M)!i via permutation representations, the same must hold
for W by restriction. One can check via character computations (omitted here) that OS(M)!i is
always a nonnegative combination of these four permutation representations:

• the trivial representation,

• the defining representation ρdef on E = {1, 2, . . . , n} with r = (12 · · · n), s(i) = n+ 1− i,

• the regular representation ρreg := kW , and

6These are symmetries of the rank two oriented matroid M, although we are ignoring the action on VG(M) here.
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• when n is even, the half-regular representation ρ 1
2
reg := k[W/ZW ] where ZW := {1, r

n
2 }.

One has these expansions in Rk(W ), where f(n, i) := dimkOS!i =
(n−1)i+1−1

n−2 as in (54):

[OS(M)!i] =





1
2n [f(n, i)− 1] · ρreg + 1 if n is odd, and i is even,
1
2n [f(n, i)− n] · ρreg + ρdef if n is odd, and i is odd,

1
n

[
f(n, i)− n · i2 − 1

]
· ρ 1

2
reg +

i
2 · ρdef + 1 if n is even, and i is even,

1
n

[
f(n, i)− n · i+1

2

]
· ρ 1

2
reg +

i+1
2 · ρdef if n is even, and i is odd.

Remark 6.3. It was observed earlier that uniform matroids Ur,n are supersolvable if and only if
r ∈ {1, 2, n}. This means that M = U3,n for n ≥ 4 are not supersolvable, and in fact, A = OS(M)
are not Koszul algebras, and not even quadratic. If one nevertheless tries to define virtual Sn-
characters {[A!

i]}i≥0 in terms of the genunine characters {[Ai]}i≥0 via the recurrence (15), then
already [A!

3] are not genuine characters once n ≥ 4.

7. Branching rules for supersolvable matroids

Let M,M be supersolvable matroids or oriented matroids of rank r on ground set E, with a
modular complete flag F and decomposition E as in Proposition 5.12. If F = Fr−1 denotes
the modular coatom within the flag F , then the restrictions M |F ,M|F are again supersolvable.
Furthermore, the formulas (30), (35) for the Hilbert series of the rings A = OS(M),VG(M) and
their Koszul duals A! show that they are closely related to the Hilbert series of the same rings B,B!

for M |F ,M|F :

Hilb(A, t) = (1 + e1t) · · · (1 + er−1t)(1 + ert) = Hilb(B, t) · (1 + ert)

Hilb(A!, t) =
1

(1− e1t) · · · (1− er−1t)(1− ert)
= Hilb(B!, t) ·

1

1− ert

which one can rewrite suggestively as follows, for comparison with Proposition 2.16:

Hilb(A, t) = Hilb(B, t) + t · er ·Hilb(B, t) (64)

Hilb(A!, t) = Hilb(B!, t) + t · er · Hilb(A
!, t). (65)

This suggests considering a group G of automorphisms of M or M, and how its action on A,A!

restricts to the setwise G-stabilizer subgroup of the modular coatom F

H := {g ∈ G : g(F ) = F}.

Note that H also permutes the ground set elements Er := E \ F ; in the case where G acts on
the oriented matroid M, so that G acts via signed permutations in S±

n on E as in Definition 5.7,
then H acts via signed permutations on Er. This gives rise to either a permutation or signed
permutation kH-module X := k[Er], which in particular is self-contragredient. Our goal in the
next two subsections is to prove Theorem 7.1 below, which not only lifts (64), (65) to these two
branching relations in Rk(H)

[Ai ↓] = [Bi] + [X] · [Bi−1] (66)

[A!
i ↓] = [B!

i] + [X] ·
(
[A!

i−1 ↓]
)
. (67)

(equivalent by Proposition 2.16 as X∗ ∼= X ), but also lifts them to short exact sequences.
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Theorem 7.1. With the above notations, and letting k be any field, one has the following short
exact sequences of graded kH-modules:

(i) 0 −→ B −→ A ↓GH−→ X⊗B(−1) −→ 0,

(ii) 0 −→ X⊗
(
A! ↓GH

)
(−1) −→ A! ↓GH−→ B! −→ 0.

7.1. Proof of Theorem 7.1(i). The injective maps B → A from Theorem 7.1(i) are instances of
injections of Orlik-Solomon and Varchenko-Gel’fand algebras coming from their flat deocmpositions

OS(M) =
⊕

F∈F

OS(M)F ,

VG(M) =
⊕

F∈F

OS(M)F

discussed in Section 5.1. The NBC monomial k-bases from Remark 5.10 show that for any flat F in
F, one has k-algebra inclusions (see [OT92, Prop. 3.30], [Yuz01, Prop. 2.5], and [Bra22, Prop. 5.6])

OS(M |F ) ∼=
⊕

F ′≤F

OS(M)F ′ →֒ OS(M),

VG(M|F ) ∼=
⊕

F ′≤F

VG(M)F ′ →֒ VG(M).

Since A = OS(M) or VG(M) and B = OS(M |F ) or VG(M|F ), this explains the injection B → A
from the sequence Theorem 7.1(i). In fact, the entire sequence actually holds in slightly more
generality, and for Orlik-Solomon algebras was essentially observed by Orlik and Terao [OT92,
Lemma 3.80]. One does not need to assume that M,M are supersolvable, only that F is a modular
coatom within its lattice of flats F. Keeping the same notations so that A = OS(M),VG(M), and
B = OS(M |F ),VG(M|F ), with H the setwise G-stabilizer of F with a group of the autmorphisms
G, one has the following.

Proposition 7.2. Any modular coatom F gives rise to a k-vector space direct sum decomposition

A = B ⊕


 ⊕

j∈E\F

Bxj


 ,

which can also be viewed as a graded kH-module isomorphism

A ↓GH
∼= B ⊕ X⊗B(−1),

where X is the permutation or signed permutation representation of H on E \ F as before.

Proof. First note a consequence of Theorem 5.11: if one orders/indexes E = {1, 2, . . . , n} so that
i < j whenever i ∈ F and j ∈ E \ F , then every pair {j, k} ⊆ E \ F with j 6= k is a broken-circuit,
coming from the 3-element circuit {i, j, k} with {i} := F ∩ ({j} ∨ {k}). This implies NBC subsets
for M contain at most one element j of E \ F , so NBC monomials for M are either of the form

(a) xi1 · · · xip for NBC sets {i1, . . . , ip} ⊆ F , or

(b) xi1 · · · xipxj for NBC sets {i1, . . . , ip} ⊆ F , and j ∈ E \ F .
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Identifying B with
⊕

F ′⊆F OS(M)F ′ or
⊕

F ′⊆F VG(M)F ′ expresses A as a k-vector space sum

A = B +


 ∑

j∈E\F

Bxj


 .

However, these sums are direct, via dimension-counting: if e := |E \ F |, then one has

dimkA = dimkB(1 + e)

as the t = 1 specialization of the identity Hilb(A, t) = Hilb(B, t)(1 + et) (cf. (64) above) which
follows either from Stanley [Sta71, Thm. 2] or from Orlik and Terao [OT92, Lem. 3.80].

Note that this dimension count also implies that the NBC monomials in (a),(b) above form
k-bases for B and

⊕
j∈E\F Bxj, respectively. This lets one write a k-vector space isomorphism

X⊗B
f
−→

⊕

j∈E\F

Bxj

as follows: naming the k-basis elements {tj : j ∈ E \F} for the permutation or signed permutation
representation X of H, let the isomorphism f map tj⊗xi1 · · · xip 7−→ xi1 · · · xipxj. Since this means
that f(tj ⊗ b) = bxj for b ∈ B, the H-equivariance follows from this calculation: by definition,
g ∈ H has g(tj) = ±tk for j, k ∈ E \ F if and only if g(xj) = ±xk, with the same ± signs for
both. �

7.2. Proof of Theorem 7.1(ii). The surjective map A! → B! within the exact sequence of Theo-
rem 7.1(ii) is simple to define. As before, let M,M be supersolvable matroids or oriented matroids
on ground set E = {1, 2, . . . , n} and let E be as in Proposition 5.12, with F = Fr−1 = E1⊔· · ·⊔Er−1

and Er = E \ F . Let A! = OS(M)! or VG(M)!, and B! = OS(M |F )
! or VG(M|F )

!.

Proposition 7.3. The surjective k-algebra map

k〈y1, . . . , yn〉 −→ k〈yi〉i 6∈Er

yi 7−→ yi if i 6∈ Er

yj 7−→ 0 if j ∈ Er,

induces a surjective k-algebra map A!
։ B!.

Proof. Check that in the quadratic Gröbner basis presentation of Theoerem 5.18 for A!, if a qua-
dratic term is divisible by a variable yj with j ∈ Er, then every term is divisible by such a
variable. �

It only remains to identify the kernel of the surjection in Proposition 7.3. Recall that H is
the setwise G-stabilizer subgroup for the modular coatom F , and X is the permutation or signed
permutation representation of H as it acts on Er, with the k-basis of X denoted {tj}j∈Er .

Proposition 7.4. The k-linear map

X⊗A! −→ A!

tj ⊗ yi1 · · · yip 7−→ yi1 · · · yipyj

is injective, with image equal to the kernel of the surjection A!
։ B! in Proposition 7.3.
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Proof. Since the surjection A!
։ B! is induced by sending the variables {yj}j∈Er to zero, its kernel

is the two-sided ideal I = (yj : j ∈ Er) ⊂ A! that they generate. As in the proof of Theorem 5.21,

the presentation for A! described in Theorem 5.18 and its standard monomial k-basis identify this
ideal I as A!

(≥1), the span of standard monomials m1 · · ·m2 · · ·mr−1 ·mr with mp in the variable set

{yj}j∈Ep that have deg(mr) ≥ 1. Classifying such standard monomials according to their rightmost

variable yj shows that I = A!
(≥1) is the image of the map in the current proposition. The standard

monomial basis for A! also shows that this map is injective. �

Noting that the maps in Propositions 7.3 and 7.4 are both H-equivariant proves Theorem 7.1(ii).

8. Homotopy and holonomy Lie algebras

In Section 2, we defined a standard graded k-algebra to be Koszul if it had a (left-)free resolution
of k = A/A+ which is linear. It turns out (see [PP05, Section 2.1]) that this definition is equivalent
to any of the following conditions:

(a) ExtiA(k,k)j = 0 for i 6= j,

(b) A is quadratic and A! ∼= Ext•A(k,k),

(c) A is quadratic and (A!
i)
∗ ∼= TorAi (k,k),

(d) A is generated by A1 and the algebra Ext•A(k,k) is generated by Ext1A(k,k).

The next proposition explains why quadratic algebras A that are either commutative or anti-
commutative have quadratic duals A! which inherit a Hopf algebra structure from the tensor algebra,
making A! the universal enveloping algebra of a graded Lie (super)-algebra. It can be considered
an elaboration on [PP05, §I.2 Examples 4,5].

Proposition 8.1. When a quadratic algebra A is anti-commutative (resp. commutative), its qua-
dratic dual A! is not just a k-algebra, but actually a co-commutative Hopf algebra. Hence by the
Cartier-Milnor-Moore Theorem, A! is the universal enveloping algebra U(L) of the graded Lie alge-
bra (resp. Lie superalgebra) L ⊂ A! which is its k-subspace of primitive elements.

Proof. Since A! := k〈y〉/J for a two-sided (algebra) ideal J , it suffices to check that J is also a
co-ideal for the co-product ∆ on the Hopf algebra H := k〈y〉 = T (V ), that is, ∆(J) ⊆ H⊗J+J⊗H.
We give the argument for the case where A is commutative; the anti-commutative case is similar.

Since J = HJ2H is generated as a two-sided ideal by J2, and since ∆ : H → H ⊗ H is an
algebra morphism, it suffices to check that ∆(J2) ⊆ H ⊗ J + J ⊗H. Note that since the quadratic
algebra A = k〈x〉/I is commutative, it must be that I = (I2) has I2 containing the k-span of
all commutators [xi, xj ]+. Consequently, J2 = I⊥2 lies in the perp space of the span of all such
commutators, which is the k-span of all anti-commutators [yi, yj ]−, allowing i = j here.

Claim: every anti-commutator [yi, yj ]− is primitive, meaning ∆[yi, yj]− = 1⊗[yi, yj]−+[yi, yj]−⊗
1.

Assuming the claim, every j ∈ J2 is also primitive, so ∆j = 1 ⊗ j + j ⊗ 1 ∈ H ⊗ J + J ⊗H, as
desired. Checking the claim is a standard calculation: when a = yi, and b = yj are both primitive,
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and of odd degree, then their anti-commutator is also primitive:

∆[a, b]− = ∆(ab+ ba) = (1⊗ a+ a⊗ 1)(1 ⊗ b+ b⊗ 1) + (1⊗ b+ b⊗ 1)(1 ⊗ a+ a⊗ 1)

= 1⊗ ab− b⊗ a+ a⊗ b+ ab⊗ 1 + 1⊗ ba− a⊗ b+ b⊗ a+ ba⊗ 1

= 1⊗ ab+ ab⊗ 1 + 1⊗ ba+ ba⊗ 1

= 1⊗ (ab+ ba) + (ab+ ba)⊗ 1 = 1⊗ [a, b]− + [a, b]− ⊗ 1. �

Remark 8.2. If a quadratic algebra A is neither commutative nor anti-commutative, then A! might
not inherit a Hopf algebra structure from the tensor algebra. Consider the quadratic algebra

A! = k[x, y]/(x2 + y2) = k〈x, y〉/(x2 + y2, xy − yx).

This is the quadratic dual of A = k〈x, y〉/(xy+ yx, y2−x2), which is neither commutative nor anti-
commutative. Notice that if the characteristic of k is not equal to 2, the ideal J = (x2+y2, xy−yx)
is not a co-ideal for the coproduct ∆ on the tensor algebra H = k〈x, y〉:

∆(x2 + y2) = (x2 + y2)⊗ 1 + 2(x⊗ x+ y ⊗ y) + 1⊗ (x2 + y2),

which one can check does not lie in H ⊗ J + J ⊗H.

When A =
⊕∞

d=0 Ad is an associative standard graded k-algebra, so generated by A1, and is either
commutative or anti-commutative, the Yoneda algebra Ext•A(k,k) has a natural coproduct giving
it the structure of a graded Hopf algebra. Therefore, Ext•A(k,k) is also the universal enveloping
algebra of a graded Lie (super-)algebra. See Avramov [Avr10, §10.1] for a discussion when A is
commutative, and Denham and Suciu [DS06, §1] for the case where A is anti-commutative.

Definition 8.3. In the above setting, the homotopy Lie algebra πA is the graded Lie algebra or
Lie superalgebra of primitive elements in the Yoneda algebra Ext•A(k,k) of A, that is,

U(πA) ∼= Ext•A(k,k).

8.1. The holonomy Lie algebra. Let A =
⊕∞

d=0 Ad be an associative graded k-algebra, with
k-basis x1, . . . , xn for V = A1; for the moment we do not assume that A is generated by A1. Then
the decomposable elements of A2 are defined to be those in the image of the multiplication map

φ : A1 ⊗A1 → A2.

Letting V = A∗
1 have dual basis y1, . . . , yn, if one considers the dual of this multiplication map

φ∗ : A∗
2 → (A1 ⊗A1)

∗ ∼= A∗
1 ⊗A∗

1,

then one has these identifications:

im(φ∗) ∼=

(
A1 ⊗A1

ker φ

)∗
∼= {f ∈ A∗

1 ⊗A∗
1 : f(kerφ) = 0},

∼=

(
T 2(V )

I2

)∗

∼= I⊥2 =: J2.

(68)

Here we consider J2 = I⊥2 as a subspace of T 2(V ∗) = V ∗⊗V ∗, with pairing T 2(V ∗)×T 2(V )→ k just
as in (8). Now just as the proof of Proposition 8.1, if one further assumes that A is commutative
(resp. anti-commutative), then I2 contains the k-span of all commutators [xi, xj ]+ (resp. anti-

commutators [xi, xj ]−). Consequently, J2 = I⊥2 lies in the perp space of the span of all such
commutators or anti-commutators, which is the k-span of all anti-commutators [yi, yj]−, allowing
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i = j (resp. all commutators [yi, yj ]+). In other words, im(φ∗) = J2 is identified with a subspace
of [A∗

1, A
∗
1]− or [A∗

1, A
∗
1]+ inside

Lie(V ∗) = Lie(A∗
1) = Lie(y1, . . . , yn) ⊂ T ∗(A∗

1)

where Lie(y1, . . . , yn) denotes the free Lie algebra (resp. free Lie superalgebra) on y1, . . . , yn when
A is anti-commutative (resp. commutative).

Definition 8.4. In the above context of an associative graded k-algebra A which is either commu-
tative or anti-commutative, define the holonomy Lie algebra hA via the quotient

hA = Lie(A∗
1)/〈im(φ∗)〉 = Lie(y1, . . . , yn)/〈J2〉. (69)

Here Lie(A∗
1) is the free Lie algebra (resp. free Lie superalgebra) on the k-basis y1, . . . , yn for V ∗ if

A is anti-commutative (resp. commutative), and 〈J2〉 = 〈I
⊥
2 〉 is the Lie ideal generated by J2 = I⊥2 .

The following result of Löfwall connects the holonomy and homotopy Lie algebras.

Lemma 8.5. [Löf86, Theorem 1.1] The universal enveloping algebra U(hA) of the holonomy Lie
algebra hA equals the linear strand of the Yoneda algebra Ext•A(k,k). That is,

U(hA) ∼=
⊕

i≥0

ExtiA(k,k)i

⊂
⊕

i,j≥0

ExtiA(k,k)j = Ext•A(k,k).

In particular, if A is a Koszul algebra, so A! = Ext•A(k,k) is equal to its own linear strand, one has

A! = U(L) where L = hA = πA.

We next give a simple presentation for the holonomy Lie algebra hA when A = OS(M) or
A = VG(M). In the case of OS(M), this is a well-known result of Kohno [Koh83], but as far as the
authors are aware, for VG(M) the presentation is new.

Theorem 8.6. The holonomy Lie algebra of OS(M) (resp. VG(M)) for any simple (oriented)
matroid M (resp. M) is generated by the relations (31) (resp. (32).

Proof. We give a proof for VG(M) analogous to Löfwall’s proof [Lö20] of Kohno’s result for OS(M).
By Equation (68), we can identify im(φ∗) with J2 := I⊥2 ⊂ k〈y〉, where A = k〈x1, . . . , xn〉/I. There
are three families of quadratic relations in the ideal I presenting VG(M) to consider:

x2k for k = 1, 2, . . . , n, (70)

xkxℓ − xℓxk for 1 ≤ k ≤ ℓ ≤ n, (71)

∂±(C) := sgnC,mxkxℓ + sgnC,ℓxkxm + sgnC,kxℓxm for circuits C = {k, ℓ,m} of size three. (72)

Recall from (25) in Proposition 5.5 that the pairing T 2(V ∗)⊗T 2(V )→ k makes k〈x〉F and k〈y〉F ′

pair to zero unless F = F ′, so that one can compute J2 = I⊥2 flat-by-flat, obtaining

[J2 ∩ k〈y〉]F = [I2 ∩ k〈x〉]⊥F

for all rank 2 flats F in F. From this one sees that it suffices to prove the result assuming M =
M|F ∼= U2,n a uniform rank 2 matroid on E = {1, 2, . . . , n} with one rank 2 flat F = E.

The quadratic part I2 contains these n +
(
n
2

)
+
(
n−1
2

)
= n2 − n + 1 elements among (70), (71),

(72):
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• n of the form x2i ,

•
(
n
2

)
of the form xixj − xjxi for i < j, and

•
(n−1

2

)
of the form ∂±(C) for circuits C = {1, i, j} with 1 < i < j ≤ n.

One can also easily check that they are k-linearly independent inside T 2(V ). Consequently one has

dimk J2 = dimk I
⊥
2 = dimk T

2(V ∗)− dimk I2 ≤ n2 − (n2 − n+ 1) = n− 1.

On the other hand, the proof of Theorem 5.18 showed each of these elements from (32) lies in I⊥2 :

r±(j, E) :=
∑

1≤k≤n:
k 6=j

χM|F (j, k) · [yj , yk]− =
∑

1≤k≤n:
k 6=j

χM|F (j, k) · (yjyk + ykyj),

But the subset {r±(j, E)}1≤j≤n−1 gives n − 1 such elements which are linearly independent in

T 2(V ∗), and therefore they span J2 = I⊥2 . �

8.2. PBW decomposition. When the Koszul algebra A is commutative or anti-commutative,
we can use variants of the Poincaré-Birkhoff-Witt (PBW) Theorem to relate the (G-equivariant)
Hilbert series for A! = U(L) and that of the graded Lie algebra L =

⊕∞
d=0 Ld.

Remark 8.7. We state the results in this section assuming that the characteristic of k is zero;
however, these results can be extended to arbitrary characteristic by replacing the symmetric
algebra Sym(V ) or symmetric powers Symk(V ) with the divided power algebra D(V ) or a divided
power Dk(V ) in every place it appears.

8.2.1. The anti-commutative case. When A is anti -commutative, and k has characteristic zero,
the PBW Theorem gives a graded k-vector space isomorphism between A! = U(L) ∼= Sym(L).
Therefore, we have the Hilbert series relation

Hilb(A!, t) = Hilb(U(L), t) = Hilb(Sym(L), t) =
∞∏

d=1

1

(1− td)ϕd
, (73)

where ϕd = dimk Ld; see [PP05, §2.2 Example 2].

Remark 8.8. The lower central series (LCS) of a finitely-generated group G is a chain of normal
subgroups G = G1 ≥ G2 ≥ . . . defined recursively by Gk = [Gk−1, G]. Kohno [Koh85] used
the topological interpretation of the Orlik-Solomon algebra that we will discuss in Section 9 to
investigate the LCS of the homotopy group of the complement of a complex hyperplane arrangement.
By studying the holonomy Lie algebra of the Orlik-Solomon algebra of the braid arrangement,
Kohno proved that the ranks ϕd of the successive quotients in the lower central series of the
homotopy group of the complement of the braid arrangement satisfy Equation (73). Falk and
Randell [FR85] later showed that this formula also holds for supersolvable arrangements, and
Shelton and Yuzvinsky [SY97] proved that an LCS formula of the form in Equation (73) holds if
and only if the Orlik-Solomon algebra of the arrangement is Koszul. Peeva [Pee03] gave another
proof that the LCS formula of this form holds for supersolvable arrangements using the fact that
they have a quadratic Gröbner basis.
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Any group G of graded k-algebra symmetries of A, and therefore of A!, will also act as graded
Lie algebra symmetries of L. The PBW Theorem then gives these equalities in Rk(G)[[t]]:

Hilbeq(A
!, t) = Hilbeq(U(L), t) = Hilbeq(Sym(L), t)

= Hilbeq

(
Sym

(
∞⊕

d=0

Ld

)
, t

)

=
∑

λ=(1m12m2 ··· )

t|λ|
∏

j≥1

[Symmj Lj] .

(74)

In Section 10, we will use this description to investigate representation stability for L in the setting
where A is anti-commutative.

8.2.2. The commutative case. Similarly, when A is commutative, Polishchuk and Positselski discuss
in [PP05, §1.2, Example 4] how A! = U(L) for the (graded) Lie superalgebra L =

⊕∞
d=Ld over k,

in which the parity is induced by the grading, that is,

Leven =
⊕

d≡0 mod 2

Ld, (75)

Lodd =
⊕

d≡1 mod 2

Ld. (76)

The graded version of the PBW Theorem (see Milnor and Moore [MM65, Thm. 5.15], Ross
[Ros65, Thm. 2.1], Scheunert [Sch79, §2.3 Thm. 1]), asserts that when k is a field of characteristic
zero, one has a graded k-vector space isomorphism

A! = U(L) ∼= Sym±(L) := Sym(Leven)⊗∧(Lodd)

and hence a Hilbert series relation

Hilb(A!, t) = Hilb(U(L), t) = Hilb(Sym±(L), t) =

∏
d odd(1 + td)ϕd

∏
d even,d≥2(1− td)ϕd

where ϕd = dimk Ld.

Remark 8.9. For any formal power series P (t) = 1 +
∑

j≥1 bjt
j with bj ∈ Z, there exist uniquely

defined ϕd such that

P (t) =

∏
d odd(1 + td)ϕd

∏
d even,d≥2(1− td)ϕd

.

If P (t) =
∑∞

d=0 dimkTor
R
j (k,k) is the Poincaré series of a Noetherian commutative ring R in either

• the local setting, where (R,m) is a local ring with residue field k = R/m, or

• the graded setting, where R =
⊕∞

d=0 is an N-graded commutative k-algebra with R0 = k,

the exponent ϕd is called the dth deviation of the ring R. This is because the nonvanishing of the
ϕd measure whether R “deviates” from being a regular ring or a complete intersection in precise
senses:

• R is regular if and only if ϕ2 = ϕ3 = · · · = 0; see [Avr10, 7.3.2]

• R is a complete intersection if and only if ϕ3 = ϕ3 = · · · = 0; see [Avr10, 7.3.3].
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Moreover, in the local setting one can always resolve k over R via an acyclic closure; this was
first proven in [GL69]. See [Avr10, §6.3, §7, §10.2] for an in-depth discussion in the local setting;
analogous results hold for commutative Noetherian graded k-algebras. Informally, an acyclic closure
is built by recursively adjoining formal variables to represent boundaries of any cycles that appear
while computing an R-free resolution of k. The number of formal variables that one must adjoin in
homological degree d is exactly ϕd, which predicts the dimension of the dth graded component of the
indecomposables within TorR(k,k). Since the graded dual of TorR(k,k) is exactly ExtR(k,k), the
space of indecomposables of TorR(k,k) is the graded dual to the space of primitives in ExtR(k,k),
so that ϕd = dimkLd.

Again, in the presence of a group G of graded k-algebra symmetries acting on A,A!, one also has
these equalities in Rk(G)[[t]]:

Hilbeq(A
!, t) = Hilbeq(U(L), t)

= Hilbeq(Sym±(L), t)

= Hilbeq (∧ (Lodd)⊗ Sym(Leven) , t)

=
∑

λ=(1m12m2 ··· )

t|λ|
∏

j odd

[∧mjLj] ·
∏

j even,j≥2

[Symmj Lj ] .

(77)

We will use this description in Section 10 to investigate representation stability for L in the setting
where A is commutative.

Example 8.10. Let us return to the Boolean matroid Un,n discussed in Example 4.5 and Section 6.1,
but now considered as an oriented matroid represented by the standard basis vectors v1, . . . , vn in Rn.
Since the {vi} are linearly independent, there are no circuits, and the graded Varchenko-Gel’fand
ring A = VG(Un,n) and its Koszul dual A! have these descriptions:

A = k[x1, . . . , xn]/(x
2
1, . . . , x

2
n)

= k〈x1, . . . , xn〉/(x
2
k, xixj − xjxi)1≤k≤n,1≤<j≤n

A! = k〈y1, . . . , yn〉/(yiyj + yjyi)1≤<j≤n

The oriented matroid automorphisms Aut(M) are the full hyperoctahedral group S±
n , in which a

signed permutation w with w(vi) = ±vj acts on the variables via w(xi) = ±xj, w(yi) = ±yj.

We next analyze the graded kS±
n -modules A,A! when k has characteristic zero. To do this,

first recall (e.g., from Geissinger and Kinch [GK78], Macdonald [Mac95, Chap. 1. App. B]) that

irreducible kS±
n -modules S(λ

+,λ−) are indexed by ordered pairs of partitions (λ+, λ−) where |λ+| =

n+, |λ| = n− with n+ + n− = n. One can construct S(λ
+,λ−) using the irreducible kSn-modules

{Sµ} as building blocks as follows. Introduce the operation of inflation U 7−→ U ⇑ of a kSn-module
U to a kS±

n -module by precomposing with the group surjection π : S±
n −→ Sn that ignores the

± signs in a signed permutation. Also introduce the one-dimensional character χ± : S±
n → {±1}

sending a signed permutation w to the product of its ±1 signs, that is, χ±(w) := det(w)/det(π(w)).

Then starting with irreducible kSn-modules Sλ, one builds S(λ
+,λ−) as follows:

S(λ
+,λ−) :=

(
Sλ

+
⇑ ⊗

(
χ± ⊗ (Sλ

−
⇑)
))xS±

n

S±
n+

×S±
n−

.

For example, this identifies the graded component Ai of A = k[x1, . . . , xn]/(x
2
1, . . . , x

2
n) as the

irreducible kS±
n -module S((n−i),(i)). This is because it is a direct sum of the

(n
i

)
lines which are
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the S±
n -images of the line L := k · x1x2 · · · xi. This line L is stabilized setwise by the subgroup

S±
n−i ×S±

i , with the S±
n−i factor acting trivially, and the S±

i factor acting via χ±. Hence one has

Hilbeq(A, t) =
n∑

i=0

ti · [S((n−i),(i))].

We next analyze A! as a kS±
n -module. Since (x21, . . . , x

2
n) is a regular sequence in k[x], the quotient

A is a complete intersection, and L1 = V ∗ = spank{y1, . . . , yn} and L2 = spank{y
2
1, . . . , y

2
n}. This

gives a kS±
n -module isomorphism

A! ∼= ∧kL1 ⊗k SymL2

= ∧k(y1, . . . , yn)⊗k k[y21, . . . , y
2
n]. (78)

One can analyze each tensor factor in (78) separately. An analysis similar to the one for Ai gives
an kS±

n -module isomorphism

∧ik(y1, . . . , yn)
∼= S((n−i),(1i)).

In the other tensor factor of (78), the action of S±
n on k[y21 , . . . , y

2
n] is inflated through the surjection

π : S±
n −→ Sn, letting one compute its S±

n -equivariant Hilbert series from the one for Sn on
k[y1, . . . , yn] given in (50), and doubling the grading. The upshot is this equivariant Hilbert series:

Hilbeq(A
!, t) = Hilbeq(k[y

2
1 , . . . , y

2
n], t) ·Hilbeq(∧{y1, . . . , yn}, t)

=
1

(1− t2)(1− t4) · · · (1− t2n)


∑

Q

t2maj(Q) · [S(λ(Q)),∅)]



(

n∑

i=0

ti · [S((n−i),(1i))]

)

=

∑n
i=0

∑
Q t2maj(Q)+i · [S(λ(Q)),∅)] · [S((n−i),(1i))]

(1− t2)(1− t4) · · · (1− t2n)
(79)

where in the sums above, Q ranges over all standard Young tableaux with n cells.

9. Topological interpretations of OS(M),VG(M) and Koszul duality

Orlik-Solomon algebras OS(M) have their origins in the following result.

Theorem 9.1. [OS80] For an arrangement A = {H1, . . . ,Hn} of linear hyperplanes in Cr with
normal vectors v1, . . . , vn representing a matroid M , the cohomology ring of their complement X :=
Cr \

⋃
H∈A H has presentation (using any coefficient ring k) as

H∗(X,k) ∼= OS(M).

An analogue for VG(M) was given by de Longueville and Schultz [dLS01] and later Moseley [Mos17].

Theorem 9.2. [dLS01, Cor. 5.6], Moseley [Mos17] For an arrangement A = {H1, . . . ,Hn} of
linear hyperplanes in Rr with normal vectors v1, . . . , vn representing an oriented matroid M, the
cohomology ring of their “R3-thickened” complement XR3 :=

(
Rr ⊗R R3

)
\
⋃

H∈A

(
H ⊗R R3

)
has

presentation (using any coefficient ring k) as

H∗(XR3 ,k) ∼= VG(M),

with the cohomology concentrated in even degrees, so that the isomorphism halves the grading.
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Remark 9.3. The result of de Longueville and Schultz [dLS01, Cor. 5.6] proves more generally
that, for any d ≥ 2, under the same assumptions on A ⊂ Rr, the “Rd-thickened” complement
XRd :=

(
Rr ⊗R Rd

)
\
⋃

H∈A

(
H ⊗R Rd

)
has presentation (using any coefficient ring k) as

H∗(XRd ,k) ∼=

{
OS(M) for d = 2, 4, 6, . . . , even,

VG(M) for d = 3, 5, 7, . . . , odd,

with cohomology concentrated in degrees divisible by d1, so the isomorphism divides the grading
by d− 1. Here M,M are the matroid, oriented matroid associated to the normal vectors v1, . . . , vn.

Remark 9.4. The type An and Bn reflection arrangements are both supersolvable and realizable
over R (and therefore C) and therefore we can apply this topological interpretation of the Orlik-
Solomon and Varchenko-Gel’fand rings of these families of arrangements. In fact, for the type
A reflection arrangements, we can also view the Orlik-Solomon and Varchenko-Gel’fand rings as
cohomology rings of configuration spaces of points in Rd; this perspective will be discussed further
in Section 11.1.

In general, not every arrangement realizable over C is realizable over R, and there exist matroids
(including supersolvable ones) that are represented only in positive characteristics, and some not
representable over any field. See for example, some of the matroids discussed in Sections 12.1 and
12.2. One may visualize some of the implications as follows:

matroid M ⇐ oriented matroid M

⇑ ⇑
A realized over C ⇐ A realized over R

If the cohomology ring H∗(X,k) of a simply connected topological space X is a Koszul k-algebra
(as in the case of the Orlik-Solomon and Varchenko-Gel’fand rings for supersolvable arrangements),
then the Koszul dual H∗(X,k)! can be interpreted as the homology ring H∗(ΩX,k) of the based
loop space ΩX.

Proposition 9.5 (See [Ber14,BB17]). Let X be a simply connected topological space such that its
cohomology ring A := H∗(X,k) is a Koszul k-algebra over a field k. Then

A! = H∗(X,k)! = H∗(ΩX,k)

where ΩX is the basepointed loop space of X.

Proof. The authors thank Craig Westerland for communicating the following proof to them. Ob-
serve that these spaces participate in the path-loop fibration

ΩX → PX → X,

where PX := {f : I → X : f(0) = ∗ and f continuous} is the space of based maps from an interval
into X; note that PX is contractible. In general, for a Serre fibration F → E → B having B simply
connected, the Eilenberg-Moore spectral sequence for cohomology is

E∗,∗
2 = TorH∗(B)(k,H

∗(E))⇒ H∗(F )

where H∗(E) is a H∗(B)-module by the map in the fibration, and k is our base field (or ring, if
everything is suitably flat over k). In the case of the path-loop fibration, since PX is contractible,

TorH∗(X)(k,k)⇒ H∗(ΩX).

If k is a field, or if everything is free over k, we can dualize everything to get

ExtH∗(X)(k,k)⇒ H∗(ΩX).
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If H∗(X) is Koszul, then ExtH∗(X)(k,k) ∼= H∗(X)!. Further, as ExtH∗(X)(k,k) is concentrated in
diagonal bidegrees, its differentials are zero, so the spectral sequence collapses at E2, giving

H∗(ΩX,k) = H∗(X,k)!. �

Remark 9.6. Under the hypotheses of Proposition 9.5, the terminology from Definition 8.3 of
homotopy Lie algebra for the k-subspace of primitives L ⊂ A! = Ext•A(k,k) is consistent with the
same terminology in rational homotopy theory, where a simply connected space X has homotopy Lie
algebra defined as the k-subspace of primitives L ∼= π∗(ΩX)⊗k inside the Hopf algebra H∗(ΩX,k);
see, e.g., Félix, Halperin and Thomas [FHT01, §21(d), Thm. 21.5].

10. Representation stability and Koszul algebras

We wish to show how sequences of Koszul algebras {A(n)}n≥1 with Sn-actions that satisfy repre-
sentation stability in the sense of Church and Farb [CF13] lead to representation stability for their
Koszul duals {A(n)!}n≥1, and for the primitive parts {L(n)}n≥1 of the duals. Useful references
on representation stability are Church and Farb [CF13], Church, Ellenberg and Farb [CEF15] and
Matherne, Miyata, Proudfoot and Ramos [MMPR21].

In this section, k is a field of characteristic zero. Recall this definition from [CF13].

Definition 10.1. For a partition µ of k, recall Sµ denotes the irreducible kSk-module indexed by
ν. Given a partition λ = (λ1, λ2, . . . , λℓ) and n ≥ |λ|+ λ1, define a partition of n by

λ[n] := (n− |λ|, λ1, λ2, . . . , λℓ).

Say that a sequence {Vn}n≥1 of kSn-modules7 is representation stable if there is a list of (not

necessarily distinct) partitions {λ(i)}ti=1 and an integer N such that for n ≥ N , one has

Vn =

t⊕

i=1

S
λ(i)[n].

Say that {Vn}n≥1 is representation stable past N when the above equality holds for n ≥ N .

The following easy observations are recorded in [MMPR21, §3].

Proposition 10.2. When {Vn}, {Wn} are representation stable sequences, then so is {Vn ⊕Wn}.
On the other hand, if the virtual modules [Un] = [Vn]− [Wn] come from genuine kSn-modules {Un},
then {Un} is also a representation stable sequence.

It is less obvious what happens for tensor products. The following precise version of a result of
Murnaghan was proven by Briand, Orellana, Rosas [BOR11, Thm. 1.2].

Theorem 10.3. The sequence {Sα[n] ⊗ Sβ[n]} is representation stable past |α|+ |β|+ α1 + β1.

This consequence was noted by Matherne, Miyata, Proudfoot and Ramos [MMPR21, Thm. 3.3].

Lemma 10.4. If the {Vn}, {Wn} are representation stable past A,B, respectively, then {Vn⊗Wn}
is representation stable past A+B.

The following observation is occasionally useful for pinpointing the onset of representation stabil-
ity.

7Such a sequence of kSn-modules is equivalent to what is called an FB-module in [MMPR21].
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Lemma 10.5. [HR17, Lemma 2.2] Suppose {Vn}n≥N are kSn-modules defined via

Vn
∼=
⊕

µ

(
Sµ ↑Sn

S|µ|×Sn−|µ|

)⊕cµ

for µ with |µ| ≥ N , and integers cµ ≥ 1. Then {Vn} is representation stable, stabilizing exactly at

n = max
µ
{|µ|+ µ1}.

We next use some of the foregoing observations to show how representation stability of families
of Koszul algebras {A(n)} passes to their Koszul duals {A(n)!}.

Corollary 10.6. Let {A(n)}n≥1 be a sequence of Koszul algebras, with Koszul duals {A(n)!}.

(i) If for each fixed i ≥ 0, the sequence {A(n)i} is representation stable, then so is each {A(n)!i}.

(ii) If furthermore there exists a constant c (independent of i) such that each sequence {A(n)i}
is representation stable past ci, then each {A(n)!i} is also representation stable past ci.

Proof. We prove (ii); the proof for (i) is the same, ignoring the bounds involving ci. But (ii) is
immediate using (16) and Lemma 10.4, since each factor Aαp = Aαp(n) in the right-hand side of
(16), now in characteristic zero, has the sequence {Aαp(n)} representation stable past cαp. �

Example 10.7. Rank two matroids M = U2,n were discussed in Example 4.6 and Section 6.3.
Their group of matroid automorphisms Aut(U2,n) = Sn, and (57) showed that as kSn-modules,
one has

[OS(U2,n)0] ∼= [S(n)],

[OS(U2,n)1] ∼= [S(n)] + [S(n−1,1)],

[OS(U2,n)2] ∼= [S(n−1,1)],

which are representation stable past n = 2. Consequently, applying Corollary 10.6(ii) with c = 2
implies that the Koszul duals {OS(U2,n)

!
i}, which are the Sn-permutation representations discussed

in Proposition 6.1, should be representation stable past n = 2i. In fact, one has the following.

Proposition 10.8. For i ≥ 0, representation stability of {OS(U2,n)
!
i} starts exactly at n = 2i.

Proof. Recall that Proposition 6.1 expresses [OS(U2,n)
!
i] as a nonnegative combination of classes

ϕ(n−d,1d) for various d in the range 2 ≤ d ≤ i, where ϕλ is the class of the coset representation

k[Sn/Sλ]. Furthermore, the coefficient on ϕ(n−i,1i) is 1. Since one can write

ϕ(n−d,1d) =
[
(kSd) ↑

Sn
Sd×Sn−d

]
where kSd

∼=
⊕

µ:|µ|=d

(Sµ)⊕ dim Sµ ,

Lemma 10.5 shows {ϕ(n−d,1d)}n stabilizes exactly at n = 2d, and {[OS(U2,n)
!
i]} exactly at n =

2i. �

Recall from Section 8 that when A is Koszul and commutative or anti-commutative, then A! =
U(L) is the universal enveloping algebra for a graded Lie algebra or superalgebra L. We next show
how representation stability of families of Koszul algebras {A(n)} passes to the Lie (super-)algebras
{L(n)}. The following lemma will be useful for this purpose.
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Lemma 10.9. For any representation stable sequence {Vn} and any partition µ giving rise to a
Schur functor Sµ(−), the sequence {Sµ(Vn)} is also representation stable. In particular, for each
fixed m = 0, 1, 2, . . ., the sequences {∧m(Vn)}, {Sym

m(Vn)} are representation stable.

Proof. Express the representation stable sequence {Vn} for n≫ 0 as Vn =
⊕t

i=1 S
λ(i)[n], and proceed

by induction on t to show {Sµ(Vn)} is representation stable for all µ.

The case t = 1 was proven by Church, Ellenberg, Farb [CEF15, Prop. 3.4.5] who showed that for

any partitions λ, µ, the sequence {Sµ(Sλ[n])} is representation stable. In the inductive step, write

Vn = Un ⊕ Sλ
(i)[n] for n ≫ 0, where Un :=

⊕t−1
i=1 S

λ(i)[n], so that induction applies to the represen-
tation stable sequence {Un}. Using the general isomorphism (see, e.g., [ABW82, Thm. II.4.11])

S(X ⊕ Y ) ∼=
⊕

ν⊆µ

S
ν(X) ⊗ S

µ/ν(Y )

one concludes that, for n≫ 0,

S
µ(Vn) = S

µ(Un ⊕ Sλ[n]) ∼=
⊕

ν⊆µ

S
ν(Un)⊗ S

µ/ν(Sλ[n]) ∼=
⊕

ν,µ,ρ

(
S
ν(Un)⊗ S

ρ(Sλ[n])
)⊕c

µ/ν
ρ

for some nonnegative integer (Littlewood-Richardson) coefficients c
µ/ν
ρ . By induction on t, the

sequences {Sν(Un)} are representation stable, and by the t = 1 case, the same holds for {Sρ(Sλ[n])}.
Hence by Theorem 10.3, each summand {Sν(Un)⊗ Sρ(Sλ[n])} on the right side is a representation
stable sequence, and the same holds for the entire direct sum. �

We now apply this to the sequences of Lie (super-)algebras {L(n)}.

Corollary 10.10. Let {A(n)} be a family of Koszul algebras, all commutative (resp. anti-commutative),
with {L(n)} defined by A(n)! = U(L(n)). If for each fixed i = 0, 1, 2, . . ., the sequence {A(n)i} is
representation stable, then for each fixed i = 1, 2, . . ., the sequence {L(n)i} is also representation
stable.

Proof. In either case where {A(n)} are commutative or anti-commutative, use induction on i. In
the base case i = 1, one has this string of equalities, justified below:

[L(n)1]
(a)
= [A(n)!1]

(b)
= [(A(n)1)

∗]
(c)
= [A(n)1].

Equality (a) comes from comparing coefficients of t1 on either side of (77) or (74), equality (b)
comes from (15), and equality (c) comes from the fact that kSn-modules are all self-contragredient.
Since the right sides {A(n)1} are representation stable, so are the left sides {L(n)1} .

In the induction step where i ≥ 2, rewrite the equalities that come from comparing the coefficient
of ti on either side of (77) or (74), isolating the summand [L(n)i] on the right corresponding to λ =
(i). For fixed n, this expresses L(n)i recursively in terms of A(n)!i and L(n)1,L(n)2, . . . ,L(n)i−1:

[L(n)i] = [A(n)!i]−





∑

λ⊢i:
λ=(1m12m2 ···imi )

λ6=(i)

∏

1≤j<i

[Symmj (L(n)j)] for A(n) anti-commutative.

∑

λ⊢i:
λ=(1m12m2 ···imi )

λ6=(i)

∏

1≤j<i
j odd

[∧mj (L(n)j)]
∏

2≤j<i
j even

[Symmj (L(n)j)] for A(n) commutative.
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Now use Corollary 10.6 asserting that each sequence {A(n)!i} is representation stable. Induction
on i shows each sequence {L(n)j} for j ≤ i − 1 appearing on the right is representation stable.
Lemma 10.9, then implies the same for all sequences {∧mj (L(n)j}, {Sym

mj (L(n)j} appearing on
the right. Then Theorem 10.3 gives the same for their tensor products. Thus every summand on
the right is a representation stable sequence in n, and hence so is {L(n)i}. �

Remark 10.11. The above proof shows the following statement for a sequence of graded Lie
(super-)algebras and kSn-modules L(n), with universal enveloping algebras U(L(n)): one has for
all i ≥ 1 that {L(n)i} is representation stable if and only if one has for all i ≥ 0 that {U(L(n))i}
is representation stable.

Remark 10.12. Unlike Corollary 10.6, we have not seriously tried to bound the onset of stability
for the sequences {L(n)i}, in terms of a given bound for the onset of stability in {A(n)i}. However,
Sage computations up to i = 10 suggest the following for uniform matroids U2,n of rank 2.

Conjecture 10.13. Defining L(n)i by OS(U2,n)
! = U(L(n)), the sequence {L(n)i} is representation

stable past n = 2i− 1 for fixed i ≥ 3.

Remark 10.14. Although [A(n)!i] is a permutation representation when A(n) = OS(U2,n) by
Proposition 6.1, the primitives [L(n)i] are generally not classes of permutation representations.
This fails immediately for n = 3 and i = 2, where [L(3)2] is the sign representation. Also for braid
matroids, if A(n) = OS(Brn), and A(n)! = OS(Brn)

! = U(L(n)), one can check

L(n)2 = (sgnS3
⊗ 1Sn−3)

xSn

S3×Sn−3

which is again not a permutation module.

11. The motivating example: braid matroids and Stirling representations

As mentioned prior to Example 4.7, our motivation came from the braid matroids M = Brn,
which are also known as the graphic matroids for complete graphs Kn. They are also known as the
matroids represented by the vectors {vij}1≤i<j≤n with vij := ei − ej in Rn which are the (positive)
roots in the type An−1 root system, whose normal hyperplanes Hij = {x ∈ Rn : xi = xj} are
the reflecting hyperplanes for the transposition (i, j) in the symmetric group Sn when it acts on
V = Rn by permuting coordinates. Thus M = Brn is orientable, and abusing notation slightly, we
will also denote by M = Brn the oriented matroid on the ground set E = {{i, j} : 1 ≤ i < j ≤ n}
represented by these vectors {vij}.

11.1. Comparison with cohomology of configuration spaces. It turns out that the algebras
OS(Brn),VG(Brn) had been studied historically earlier as the cohomology rings of certain configu-
ration spaces of n ordered (labeled) points in a space X

Confn(X) := {(x1, . . . , xn) ∈ Xn : xi 6= xj for 1 ≤ i < j ≤ n}.

The arrangement of hyperplanes Hij in V = Rn described above allow one to identify

Confn(R
d) = V ⊗R R

d \
⋃

1≤i<j≤n

Hij ⊗R R
d,

that is, as the complement of subspace arrangements coming from the reflection hyperplane ar-
rangements “thickened” by tensoring with Rd as in Theorems 9.1, 9.2 and Remark 9.3. In fact, the
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special cases of those results for the braid arrangements, along with quadratic presentations for the
associated algebras, were known to Arnol’d [Arn69] for OS(Brn) and Cohen [CLM76] for VG(Brn):

OS(Brn) ∼= ∧k(xij)/(xijxik − xijxjk + xikxjk)

VG(Brn) ∼= k[xij ]/ (xijxik − xijxjk + xikxjk, x2ij )

Here permutations σ in Sn act on the variables by permuting subscripts, that is, σ(xij) = xσ(i),σ(j),
but with the convention that xji = xij in OS(Brn), and xji = −xij in VG(Brn).

Note that that these presentations are consistent with the general presentation coming from
supersolvable matroids in Corollary 5.14, using the modular complete flag F of flats chosen in
Example 4.7: one checks that the corresponding decomposition E = (E1, E2, . . . , En−1) of E =
{{i, j}}1≤i<j≤n has

E1 = {{1, 2}},

E2 = {{1, 3}, {2, 3}},

E3 = {{1, 4}, {2, 4}, {3, 4}},

...

En−1 = {{1, n}, {2, n}, . . . , {n − 2, n}, {n − 1, n}}.

(80)

and the subset of circuits CBEZ(E) = {{{i, j}, {i, k}, {j, k}}1≤i<j<k≤n . Here the NBC monomial
basis for either OS(Brn),VG(Brn) are the products of xij that choose at most one {i, j} from each
set Ep with p = 1, 2, . . . , n − 1 above; Barcelo [Bar88, Thm. 2.1] calls this picking at most one
finger xij from each hand Ep. Since the exponents ep = |Ep| here are (e1, . . . , er) = (1, 2, . . . , n−1),
one has these Hilbert series

Hilb(OS(Brn), t) = Hilb(VG(Brn), t)

= (1 + t)(1 + 2t) · · · (1 + (n− 1)t) =
n−1∑

i=0

ti c(n, n− i)

Hilb(OS(Brn)
!, t) = Hilb(VG(Brn)

!, t)

=
1

(1− t)(1− 2t) · · · (1− (n− 1)t)
=

∞∑

i=0

ti S((n− 1) + i, n − 1).

where the coefficients c(n, k), S(n, k) appearing here are the (signless) Stirling numbers of the first
kind c(n, k), counting permutations in Sn with k cycles, and the Stirling numbers of the 2nd kind
S(n, k), counting partitions of the set {1, 2, . . . , n} into k blocks. Comparing coefficients on powers
of t, one has for either A(n) = OS(Brn) or VG(Brn) that

dimkA(n)i = c(n, n− i),

c(n, k) = dimk A(n)n−k,

dimkA(n)
!
i = S((n− 1) + i, n − 1),

S(n, k) = dimk A(k + 1)!n−k.

Definition 11.1. (Stirling representations) For either A(n) = OS(Brn) or A(n) = VG(Brn), call
A(n)i the Stirling representations of the first kind, and call A(n)!i the Stirling representations of
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the second kind. When emphasizing their dimensions as representations, we will abbreviate them

cOS(n, k) := OS(Brn)n−k,

cVG(n, k) := VG(Brn)n−k, both kSn-modules,

SOS(n, k) := OS(Brk+1)
!
n−k,

SVG(n, k) := VG(Brk+1)
!
n−k, both kSk+1-modules, .

Remark 11.2. The coincidence between dimkA(k + 1)!n−k and S(n, k), counting set partitions of
{1, 2, . . . , n} into k blocks, is closely related to a well-known combinatorial encoding of set partitions
via restricted growth functions, as we explain here; see also Stanton and White [SW86, Sec. 1.5].

Given any k-block set partition π = {B1, . . . , Bk} of {1, 2, . . . , n}, re-index the blocks so that
minB1 < minB2 < · · · < minBk. Then the restricted growth function (rgf) encoding π is the
sequence (i1, i2, . . . , in) defined by ij = ℓ if j ∈ Bℓ for j = 1, 2, . . . , n. By definition, i1 := 1 and
ij ≤ 1 + max{i0, i1, . . . , ij−1}; it is not hard to check that these two properties characterize the
rgf’s. For example, with n = 15 and k = 3, this set partition

π = {{1, 2, 3, 5, 8, 10, 15}︸ ︷︷ ︸
B1

, {4, 6, 7, 12}︸ ︷︷ ︸
B2

, {9, 11, 13, 14}︸ ︷︷ ︸
B3

}

corresponds to this rgf (i1, i2, . . . , i15):

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15
1 1 1 2 1 2 2 1 3 1 3 2 3 3 1

We claim that these rgf’s correspond bijectively to the standard monomial k-basis for A(k+1)!n−k
given in Corollary 5.18. To explain this bijection, underline the first (leftmost) occurrence of each
value p = 1, 2, . . . , k among the ij , and append an extra (underlined) in+1 := k+1 on the right, as
a convention. One then associates to (i1, . . . , in) the product m2 ·m3 · · ·mk ·mk+1 where mp is the

noncommutative monomial in variables {yip}
p−1
i=1 obtained by replacing each non-underlined value

ij above with the variable xij ,p if p is the next underlined value to the right of ij :

1 1 1 2 1 2 2 1 3 1 3 2 3 3 1 4
y12 y12 · y13 y23 y23 y13 · y14 y34 y24 y34 y34 y14

Since the number of non-underlined values ij is n− k, this is a standard monomial in A(k+1)!n−k.

Remark 11.3. The presentations of OS(Brn)
!,VG(Brn)

! in Theorem 5.18 are equivalent to what
Cohen and Gitler [CG02] called graded infinitesimal braid relations in their presentation of the loop
space homology algebra H∗(ΩX,k) where X = Confn(R

d); see also Berglund [Ber14, Example 5.5].
For the case of OS(Brn)

!, considered as a universal enveloping algebra OS(Brn)
! = U(L), see also

the discussion by Fresse [Fre17, Ch. 10], referring to L as the Drinfeld-Kohno Lie algebra and U(L)
as the algebra of chord diagrams.

11.2. Stirling representations of the first kind: generating functions. The kSn-module
structure for either A(n) = OS(Brn) or VG(Brn) are well-studied. Explicit irreducible decompo-
sitions are not known, but can be computed reasonably efficiently through symmetric function
formulas involving plethysm and generating functions, given in work of Sundaram and Welker
[SW97, Thm. 4.4(iii)] and reviewed here; see also the summary in Hersh and Reiner [HR17, Sec.
2].
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Let k be a field of characteristic zero. The Frobenius characteristic isomorphism Rk(Sn) ∼=
Λn, where Λn are the degree n homogeneous symmetric functions Λ(z1, z2, . . .)n, mentioned in
Section 6.3 above, can be compiled for all n to give a ring isomorphism

∞⊕

n=0

Rk(Sn)
ch
−→

∞⊕

n=0

Λn = Λ.

Here the product on the left is the external or induction product

([U ], [V ]) 7−→
[
(U ⊗k V ) ↑

Sa+b

Sa×Sb

]
,

while the product on the right simply multiplies symmetric functions. If one defines the power sum
symmetric function pr := zr1 + zr2 + · · · , and the k-basis {pλ := pλ1pλ2 · · · } indexed by partitions λ

of n for Λn, then for each kSn-module U , the Frobenius isomorphism maps [U ]
ch
7−→ 1

n!

∑
σ∈Sn

pλ(σ)
where λ(σ) is the cycle type partition of σ.

Let Lien denote the nth Lie representation: the Sn-representation on the multilinear component
of the free Lie algebra on n variables. It has a formula due to Klyachko [Kly74] as Lien = ζ ↑Sn

Cn
,

where ζ is the one-dimensional representation of the cyclic group Cn inside Sn generated by an

n-cycle c that sends c 7→ e
2πi
n . Defining symmetric functions

ℓn := ch(Lien),

πn := ch(sgnn ⊗ Lien),

and letting (f, g) 7→ f [g] denote plethystic composition of symmetric functions [Mac95, §I.8], one has
the following plethystic expressions and product generating functions (see Sundaram [Sun94, Thm.
1.8, and p.249], Sundaram and Welker [SW97, Thm. 4.4(iii)] and Hersh and Reiner [HR17, §2,
Thm. 2.17]):

1 +

∞∑

n=1

un
n∑

k=1

ch([VG(Brn)n−k])t
k =

∑

λ=1m12m2 ···

u|λ|tℓ(λ)
∏

j≥1

hmj [ℓj] (81)

=
∞∏

m=1

(1− umpm)−am(t), (82)

1 +

∞∑

n=1

un
n∑

k=1

ch([OS(Brn)n−k])t
k =

∑

λ=1m12m2 ···

u|λ|tℓ(λ)
∏

jodd

hmj [πj]
∏

j even
j≥2

emj [πj], (83)

=

∞∏

m=1

(1 + (−u)mpm)am(−t), (84)

where here am(t) := 1
m

∑
d|m µ(d)t

m
d , with µ(d) the number-theoretic Möbius function. Equivalently,

define for a partition λ = 1m12m2 · · · of n (written λ ⊢ n) with mi parts equal to i, the Sn-
representations OSλ,VGλ whose Frobenius characteristics are the products appearing above. Then

chVGλ :=
∏

i

hmi [ℓi], so that ch(VG(Brn)n−k) =
∑

λ⊢n
ℓ(λ)=k

VGλ,

chOSλ :=
∏

i odd

hmi [πi]
∏

i even

emi [πi], so that ch(OS(Brn)n−k) =
∑

λ⊢n
ℓ(λ)=k

OSλ.
(85)
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Thus VG(n) is the Lie representation with chVG(n) = ℓn mentioned above. Similarly, {VGλ}
are called higher Lie characters; see Schocker [Sch03]. Also, the last equality in (85) implies
that OS(Brn)n−k coincides with the Sn-representation on the (n − k)th Whitney homology of the
partition lattice, 1 ≤ k ≤ n; see Lehrer and Solomon [LS86, Thm. 4.5], Sundaram [Sun94, Thm.
1.8].

11.3. Data on Stirling representations of the second kind. In contrast to the above kSn-
descriptions of A(n)i when A(n) = OS(Brn),VG(Brn), for the Koszul duals A(n)!i, we currently
lack formulas of this nature, although we can tabulate A(n)!i recursively from the A(n)i using (15).

Question 11.4. Are there formulas like (81), (82), (83), (84) for the duals VG(Brn)
!,OS(Brn)

!?

11.4. Branching rules for both kinds of Stirling representations. Stirling numbers of both
kinds satisfy well-known recurrences, mentioned in the Introduction:

c(n, k) = (n− 1) · c(n − 1, k) + c(n − 1, k − 1) (86)

S(n, k) = k · S(n− 1, k) + S(n− 1, k − 1) (87)

Theorem 7.1 will allow us to lift these to branching rules for the Stirling representations of both
kinds. We consider here the action of G = Sn on the matroid and oriented matroid Brn. In this
case, the setwise Sn-stabilizer for the modular coatom F = En−2 in (80) is the subgroupH = Sn−1.
Furthermore, the permutation action X of Sn−1 on the set

En−1 = E \ F = {{1, n}, {2, n}, . . . , {n− 1, n}}

and its signed permtuation action on the real vectors representing En−1 in the oriented matroid
Brn

{v1n, v2n, . . . , vn−1,n} = {e1 − en, e2 − en, · · · , en−1 − en},

are both equivalent to the defining Sn−1-permutation representation χ
(n−1)
def via (n − 1) × (n − 1)

permutation matrices. Translating Theorem 7.1 then immediately implies the following.

Corollary 11.5. For any field k, the recurrences (86), (87) lift equivariantly as follows.

(i) Letting c(n, k) denote either OS(Brn)n−k or VG(Brn)n−k as kSn-module, the recurrence
(86) lifts to two recurrences in Rk(Sn−1)

[c(n, k) ↓Sn
Sn−1

] = [χ
(n−1)
def ] · [c(n− 1, k)] + [c(n − 1, k − 1)], (88)

reflecting two kSn−1-module exact sequences

0 −→ c(n− 1, k − 1) −→ c(n, k) ↓Sn
Sn−1
−→ χ

(n−1)
def ⊗ c(n − 1, k) −→ 0. (89)

(ii) Letting S(n, k) denote either OS(Brk+1)
!
n−k or VG(Brk+1)

!
n−k as kSk+1-module, the recur-

rence (87) lifts to two relations in Rk(Sk)

[S(n, k) ↓
Sk+1

Sk
] = [χ

(k)
def ] · [S(n − 1, k) ↓

Sk+1

Sk
] + [S(n − 1, k − 1)], (90)

reflecting two kSk-module exact sequences

0 −→ χ
(k)
def ⊗ S(n− 1, k) ↓

Sk+1

Sk
−→ S(n, k) ↓

Sk+1

Sk
−→ S(n − 1, k − 1) −→ 0. (91)

Remark 11.6. Proposition 2.16 implies the two versions of (88) are equivalent to those of (90).
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Remark 11.7. All of the assertions Corollary 11.5 are new, as far as we know, when working over
fields k of positive characteristic, and (89),(90),(91) are new even when k has characteristic zero.
However, when k has characteristic zero, it turns out that (88) also follows from work of Sundaram
in [Sun94, Sun20]. For example, the relation (88) for c(n, k) = OS(Brn)n−k can be deduced by
combining [Sun94, Thm 2.2, Part (2) and Prop. 1.9]; we omit the details here.

And it turns out that both cases of (88), when either c(n, k) = OS(Brn)n−k or VG(Brn)n−k, follow
from the symmetric function branching result [Sun20, Thm. 4.10]. In the notation there, choosing

F =
∑

n≥1 ℓn, one takes Gj
n = hj [F ]|deg n to deduce (88) for c(n, k) = VG(Brn)n−k, and one takes

Gj
n = ej [F ]|deg n to deduce (88) for c(n, k) = OS(Brn)n−k. We again omit the details here.

11.5. Braid matroids and representation stability. Here we wish to apply the representation
stability results of Section 10 to the braid matroids Brn. A special case of the main result of Church
and Farb [CF13] shows in our language, that for each fixed i = 0, 1, 2 . . ., both sequences {A(n)i}
where A(n) = OS(Brn),VG(Brn) are representation stable. Hersh and Reiner [HR17, Thm. 1.1]
pinned down the onset of this representation stability.

Theorem 11.8. For each fixed i ≥ 1, both sequences {A(n)i} where A(n) = OS(Brn) and VG(Brn)
are representation stable, past 3i for VG(Brn) and past 3i+ 1 for OS(Brn).

One then deduces the following representation stability for their Koszul duals.

Corollary 11.9. For each fixed i ≥ 1, both sequences {A(n)!i} where A(n) = OS(Brn) and VG(Brn)
are representation stable, past 3i for {VG(Brn)

!
i} and past 4i for {OS(Brn)

!
i}.

Proof. Theorem 11.8 gives the necessary hypotheses to apply Corollary 10.6, using the constant
c = 3 for {VG(Brn)i} and using the constant c = 4 (since 3i+ 1 ≤ 4i) for {OS(Brn)i}. �

Remark 11.10. The bounds in Corollary 11.9 happen to be tight for OS(Brn)
!
i,VG(Brn)

!
i when

i = 0, 1, 2. To see this, one can apply Lemma 10.5 to Propositions 11.16, 11.17 and Remark 11.18
below (specifically, see equations (98), (100)) to deduce that for i = 0, 1, 2, the sequences {OS(Brn)

!
i}

start to stabilize exactly when n ≥ 4i, and the sequences {VG(Brn)
!
i} start to stabilize exactly when

n ≥ 3i. This suggests the following conjecture, confirmed by Sage/Cocalc for OS(Brn)
!
i up to i = 5,

and for VG(Brn)
!
i up to i = 7.

Conjecture 11.11. The bounds for onset of stability in Corollary 11.9 are tight: for i ≥ 0, the
sequences {OS(Brn)

!
i} and {VG(Brn)

!
i} start to stabilize exactly when n = 4i and n = 3i, respec-

tively.

Since A(n) = OS(Brn),VG(Brn) are anti-commutative and commutative, respectively, Corol-
lary 10.10 immediately implies the following.

Corollary 11.12. Letting A(n) = OS(Brn),VG(Brn), and defining L(n)i by A(n)! = U(L(n)), for
each fixed i = 1, 2, . . ., the sequence {L(n)i} is representation stable.

Remark 11.13. The case of Corollary 11.12 for A(n) = OS(Brn) also follows from work of Church,
Ellenberg and Farb [CEF15, Thm. 7.3.4]. They consider instead of L(n) the Malcev Lie algebra pn
associated to the fundamental group π1(X) for the configuration space X = Confn(R

2) = Confn(C)
considered in Section 11.1; alternatively, X is the complement of the complex braid arrangement
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A as in Theorem 9.1. These two Lie algebras pn and L(n) coincide due to the 1-formality of
complements of complex algebraic hypersurfaces; see, e.g., Suciu and Wang [SW19, §6,7].

Computations in Sage/Cocalc through i = 8 suggest the following conjecture.

Conjecture 11.14. Defining {L(n)i} by A(n)! = U(L(n)), its onset of representation stability is:

• n = 2i for a fixed i ≥ 1 when A(n) = OS(Brn),

• n = 2i for a fixed i ≥ 3 when A(n) = VG(Brn).

11.6. Near-boundary cases for Stirling representations of the second kind. Stirling num-
bers S(n, k) of the second kind have more explicit formulas when either k or n − k is small. We
similarly present here more explicit formulas, in the language of symmetric functions for the Stirling
representations

OS(Brn)i = SOS((n− 1) + i, n − 1),

VG(Brn)i = SVG((n− 1) + i, n − 1),

as kSn-modules, when either i or n is small.

Part of our motivation comes from the following observations about when OS(M)i,VG(M)i and
their Koszul duals OS(M)!i,VG(M)!i turn out to be permutation representations of their automor-
phism groups G = Aut(M) or Aut(M). The discussion of Boolean matroids Section 6.1 and low
rank matroids in Section 6.2 and Proposition 6.1 showed that

• OS(M)i,VG(M)i are rarely permutation representations,

• VG(M)!i is not always a permutation representation,

• but OS(M)!i was always a G-permutation representation in these previous examples.

For the braid matroids Brn, it is not always true that OS(Brn)i is a permutation representation,
but the next result shows that it happens in many cases where i or n is small.

Theorem 11.15. For k of characteristic zero, the kSn-modules OS(Brn)
!
i = SOS((n−1)+ i, n−1)

(i) are permutation modules for i = 0, 1,

(ii) are half-permutation modules for i = 2, meaning that 2 · [OS(Brn)
!
2] is the class of a per-

mutation module in Rk(Sn),

(iii) are permutation modules8 for n = 1, 2, 3, 4, 5.

However, both

SOS(10, 5) = OS(Br6)
!
5 with n = 6,

SOS(11, 8) = OS(Br9)
!
3 with i = 3

fail to be permutation modules, even after scaling them by positive integers9.

8And [OS(Brn)i] are even h-positive permutation modules when n = 1, 2, 3, overlapping with the discussion in
Section 6.3 on rank two matroids, as U2,3 = Br3.

9Trevor Karn’s Burnside Solver further shows that SOS(5 + i, 5) is a permutation module for i ≤ 4 and i = 6, 7; it
fails to be one at i = 8, 9, 10.
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i

n

0 1 2 3 4 5 6 7 8

2

3

4

5

6

7

8

9

Permutation module

Not a “fraction” of a permutation module

Half-permutation module

Table 1. When are [OS(Brn)i] = SOS((n−1)+i, n−1) permutation modules or “fractions”
thereof?

Table 1 summarizes the results of Theorem 11.15. The proof of Theorem 11.15 and calculation of
near-boundary cases for OS(Brn)

!
i,VG(Brn)

!
i employs a brute-force strategy, which we outline here,

giving only brief sketches of the proofs.

Note that since all kSn-modules U are self-contragredient, one has [U∗] = [U ] in Rk(Sn), and so
the defining recurrence (15) for Koszul modules simplifies to this:

[A!
d] =

d∑

i=1

(−1)i−1[Ai] · [(A
!
d−i)] (92)

This means that if one defines

gi = chOS(n)i for 0 ≤ i ≤ n− 1,

fi := chOS(n)!i = SOS(n− 1 + i, n− 1) for i = 0, 1, 2, . . . ,

then, with ∗ below denoting the internal (Kronecker) product of symmetric functions, (85) lets one
sometimes compute explicit formulas for the gi in terms of the homogeneous symmetric functions
{hλ}, and (92) gives a recurrence for fi in terms of f0, f1, . . . , fi−1:

fi =

d∑

i=1

(−1)i−1gi ∗ fd−i (93)

In each of the cases below, we identify a small subset T of partitions of n such that the linear span
of {hλ : λ ∈ T} contains the fi. Further manipulation then gives the results described above, and
the precise formulas below.

11.7. Proof of Theorem 11.15 part (i). Corresponding to the Stirling number formulas

S(n− 1, n − 1) = 1,

S(n, n− 1) =

(
n

2

)
,

one has the following result, implying Theorem 11.15 part (i).
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Proposition 11.16. For the cases i = 0, 1, one has

ch SOS(n− 1, n − 1) = ch SVG(n− 1, n − 1) = hn for n ≥ 1, (94)

ch SOS(n, n − 1) = h2hn−2 for n ≥ 2, (95)

ch SVG(n, n − 1) = e2hn−2 for n ≥ 2. (96)

Proof. Equation (94) follows since OS(Brn)0 = VG(Brn)0 = k, carrying the trivial Sn representa-
tion in either case. For (95), (96), note that (92) and (85) imply

[OS(Brn)
!
1] = [OS(Brn)1] = [OS(Brn)(21n−2)] = h1[π2] · hn−2[π1] = h2hn−2, ,

[VG(Brn)
!
1] = [VG(Brn)1] = [VG(Brn)(21n−2)] = h1[ℓ2] · hn−2[ℓ1] = e2hn−2. �

11.8. Proof of Theorem 11.15 part (ii). Here we prove the curious fact that for n ≥ 7,
OS(Brn)

!
2 = SOS(n+ 1, n − 1) is in fact half of a permutation module.

For n = 7, 8, 9, 10, Sage computation with the Burnside ring shows that SOS(n+1, n−1) is NOT a
permutation module. By running his Burnside solver on the first formula in Proposition 11.17 below
with rational coefficients, Trevor Karn noticed positive half-integers in the data and conjectured
that two copies of SOS(n+ 1, n − 1) together constitute a permutation module.

Proposition 11.17. One has the following decompositions as permutation modules for n ≤ 6:

ch SOS(3, 1) = h2,

ch SOS(4, 2) = h3 + h31,

ch SOS(5, 3) = h2[h
2
1] + h21h2 + h4,

ch SOS(6, 4) = h1 · h2[h2] + h2(h3 + e3) + h22h1,

ch SOS(7, 5) = h2[h2h1] + h23 + h4h
2
1,

and then for n ≥ 4 one has

chOS(Brn)
!
2 = ch SOS(n+ 1, n − 1)

= hn−2h2 + hn−3h
3
1 + hn−3h3 + hn−4h

2
2 + hn−4h4−hn−3h2h1 − hn−4h3h1 (97)

= hn−2 s(2) + hn−3 (s(13) + s(2,1) + s(3)) + hn−4 (s(2,2) + s(4)) (98)

= hn−2h2 +
1

2
hn−3h

3
1 +

1

2
hn−3(h3 + e3) + hn−4 · h2[h2]. (99)

So two copies of OS(Brn)
!
2 = SOS(n + 1, n − 1) together form a permutation module, with orbit

stabilisers
{Sn−2 × S2, Sn−3, Sn−3 × C3, Sn−4 × I2(4)}

where Cn is the cyclic group of order n (generated by the n-cycle (1, 2, . . . , n) in Sn) and I2(n) is
the dihedral group of order 2n inside Sn containing that same n-cycle.

Sketch of proof. The expansion for n = 2 is clear. For n ≥ 3, writing fi, gi as in (93), one finds that

f1 = g1,

f2 = f1 ∗ g1 − g2.

Using (85) and writing δ(S) ∈ {0, 1} depending on whether statement S is false or true, one has

f1 = g1 = chA(n)1 = chOS(2,1n−2) = hn−2π2 = hn−2h2,

g2 = hn−3(h2h1 − h3) · δn≥3 + hn−4(h3h1 − h4) · δn≥4.

55



Using the standard fact that U ⊗ (V
xG

H
) ∼= (U

y
H
⊗ V )

xG

H
, for the Young subgroup H = S2 ×

Sn−2, and the skewing operators s⊥(2) and s⊥(12) as defined in Macdonald [Mac95, Ex. I.5.3], the

expression (97) follows by routine manipulation. Then to establish (99), we use these facts:

h31 + 2h3 − 2h2h1 = h3 + e3 = ch 1
xS3

C3
,

h2[h2] = h4 + s(2,2) = h4 + h22 − h3h1 = ch 1
xS4

I2(4)
. �

Remark 11.18. A similar analysis gives the following for VG(Br!n)2:

ch SVG(n+ 1, n − 1) = hn−2h2 + hn−3(h3 − h2h1 + h31) + hn−4(h4 + h2h
2
1 − h3h1 − h22), n ≥ 4

= hn−2 s(2) + hn−3 (s(13) + s(2,1) + s(3)) + hn−4 s(2,1,1). (100)

Also ch SVG(n + 1, n − 1) = hn1 + hn for n = 3, 4, and hence SVG(n + 1, n − 1) is a permutation
module for n ≤ 4. However for n = 5, 6, 7, the Burnside solver shows that it is not a permutation
module (even after scaling), even though all character values are nonnegative. At n = 8 there are
negative character values, so even scaling will not result in a permutation module.

11.9. Proof of Theorem 11.15 part (iii). For fixed small k, the general Stirling number formula

S(n, k) =
1

k!

k∑

i=0

(−1)i
(
k

i

)
(k − i)n (101)

gives fairly simple explicit formulas for S(n, k) as a function of n, e.g., for k = 1, 2, 3, 4, 5:

S(n, 1) = 1 (102)

S(n, 2) =
1

2
(2n − 2 · 1n) = 2n−1 − 1 = 1 + 2 + 22 + · · ·+ 2n−2, (103)

S(n, 3) =
1

6
(3n − 3 · 2n + 3) (104)

S(n, 4) =
1

24
(4n − 4 · 3n + 6 · 2n − 4) (105)

S(n, 5) =
1

120
(5n − 5 · 4n + 10 · 3n − 10 · 2n + 5) (106)

We give here analogous descriptions of the kSn-modules OS(Brn)
!
i,VG(Brn)

!
i, having dimension

S(n− 1 + i, n− 1), starting10 with n = 2, 3.

Proposition 11.19. The Frobenius characteristics of the kSn-modules

OS(Brn)
!
i = SOS(n− 1 + i, n− 1),

VG(Brn)
!
i = SVG(n − 1 + i, n − 1)

for n = 2, 3 have these formulas:

n = 2 : ch SOS(i+ 1, 1) = h2,

ch SVG(i+ 1, 1) =

{
h2, i even,

e2, i odd.

n = 3 : ch SOS(i+ 2, 2) = ch SV G(i+ 2, 2) = 2i−1
3 h31 + h3, if i even,

10There is little to say for n = 1, as S1 is the trivial group, and OS(Br1) = VG(Br1) = k = OS(Br1)
! = VG(Br1)

!,

and ch SOS(0, 0) = ch SVG(0, 0) = h1.
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ch SOS(i+ 2, 2) = 2(2i−1−1)
3 h31 + h1h2, if i odd,

ch SV G(i+ 2, 2) = 2(2i−1−1)
3 h31 + h1e2, if i odd.

In particular,

• OS(Br2)
!
i,OS(Br3)

!
i, are permutation modules, while

• VG(Br2)
!
i,VG(Br3)

!
i are permutation modules for all even i, and

•When n = 2, 3 one has

OS(Brn)
!
i
∼=

{
VG(Brn)

!
i if i is even,

sgnn ⊗VG(Brn)
!
i if i is odd.

Sketch of proof. These all follow by induction on i via the recurrences (92) and (85). �

Remark 11.20. Note the expressions for n = 2 are consistent with the formula S(i + 1, 1) = 1
coming from (102). We claim that the expressions for n = 3 are also consistent with the formulas

S(i+ 2, 2) = 2i+1 − 1 (107)

= 1 + 2 + 22 + · · · + 2i (108)

coming from (103), which we illustrate here for OS(Br3)i = S(i+ 2, 2). One can rewrite it as

ch OS(Br3)i = ch SOS(i+ 2, 2) =

(
2i+1 + (−1)i

6
−

1

2

)

︸ ︷︷ ︸
call this ci

·h31 +

{
h3 if i is even,

h2h1 if i is odd

=
2i+1

6
· h31 +

{
h3 −

1
3h

3
1 if i is even,

h2h1 −
2
3h

3
1 if i is odd.

Since h31, h2h1, h3 correspond to kS3-modules of dimensions 6, 3, 1, one can check that this last
formula lifts (107). Interestingly, the number ci of copies of the regular representation here (that
is, the coefficient of h31) gives a sequence 0, 0, 1, 2, 5, 10, 21, 42, 85, . . . for which every other term
0, 1, 5, 21, 85, 341, . . . appears on the Online Encyclopedia of Integer Sequences as OEIS A002450.

Expressions lifting (108) arise when one uses the recurrences (92) and (85), without trying to
rewrite things in terms of hλ. Recalling that Sλ is the irreducible kSn-module indexed by λ, with
ch Sλ = sλ, a Schur function. One can check that these recurrences give

ch SOS(i+ 2, 2) = h3 + s(2,1) + s∗2(2,1) + · · · + s∗i(2,1). (109)

ch SVG(i+ 2, 2) = ωi(h3) + s(2,1) + s∗2(2,1) + · · ·+ s∗i(2,1), (110)

where ω : Λ→ Λ is the involution on symmetric functions swapping hn ↔ en for n ≥ 1, correspond-
ing to tensoring kSn-modules by the sign character sgnn. Bearing in mind that h3, e3 correspond
to 1-dimensional modules, while s(2,1) corresponds to the 2-dimensional reflection representation

S(2,1) of S3, one sees that (109), (110) lift (108). Note also that (109) is consistent with the n = 3
case of (59), since one has a matroid isomorphism Br3 ∼= U2,3.
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11.10. The cases OS(Br4)
! and VG(Br4)

!.

Here we show that the S4-modules SOS(n + 3, 3) are permutation modules. One observes a
periodicity in the initial expressions for fn = ch SOS(n+ 3, 3) below.

f0 = h4

f1 = h22

f2 = h41−h2h
2
1 + 2h22 + h4 = h2[h

2
1] + h21h2 + h4

f3 = 4h41−3h2h
2
1 + 5h22 = 2h41 + 2h2[h

2
1] + h21h2 + h22

f4 = 14h41−8h2h
2
1 + 10h22 + h4 = 10h41 + 4h2[h

2
1] + 2h22 + h4

f5 = 44h41−18h2h
2
1 + 21h22 = 35h41 + 9h2[h

2
1] + 3h22

f6 = 135h41−39h2h
2
1 + 42h22 + h4 = 115h41 + 20h2[h

2
1] + 2h22 + h2h

2
1 + h4

f7 = 408h41−81h2h
2
1 + 85h22 = 367h41 + 41h2[h

2
1] + 3h22 + h2h

2
1

(111)

Proposition 11.21. The Frobenius characteristic ch SOS(n + 3, 3) is an integer combination of
{h41, h

2
1h2, h

2
2, h4}.

Let ch SOS(n+ 3,3) = anh
4
1 + bnh

2
1h2 + c′nh

2
2 + dnh4, n ≥ 0. Let G2 be the subgroup of or-

der 2 generated by (12)(34).Then SOS(n + 3, 3) is a permutation module with orbit stabilisers
consisting of the wreath product S2[G2], as well as a subset of the Young subgroups Sλ, λ ∈
{(14), (2, 12), (22), (4)}. We have, for an, c

′
n, dn ≥ 0 and bn < 0,

ch SOS(n+ 3, 3)

= (an +
bn
2
)h41 −

bn
2
h2[h

2
1] + (c′n + bn)h

2
2 + dnh4, n ≡ 0, 1 mod 4, (112)

= (an +
bn − 1

2
)h41 −

bn − 1

2
h2[h

2
1] + h21h2 + (c′n + bn − 1)h22 + dnh4, n ≡ 2, 3 mod 4. (113)

The coefficients an, bn, c
′
n, dn are determined below.

(1) The coefficients of h4 are the sequence dn = 1+(−1)n

2 , n ≥ 0.

(2) The coefficients of h22 are {0, 0, 1, 2, 5, 10, 21, . . .}, i.e. the numbers cn from Remark 11.20.

More precisely, c′n = cn+3 =
2n+2−3+(−1)n+3

6 , n ≥ 0.

(3) bn − bn−1 = −cn+2 = −2n+1−3+(−1)n

6 , n ≥ 1, with b0 = 0 = b1. In particular, bn < 0 for
n ≥ 2. We have

bn = −
2

3
(2n − 1) +

n

2
+

1

12
(1− (−1)n) = −

2n+1

3
+

n

2
+

3

4
−

1

12
(−1)n, n ≥ 0.

Thus SOS(n+ 3, 3) is NOT h-positive for n ≥ 2.

(4) The coefficients an are all nonnegative, and strictly positive if n ≥ 2. We have a0 = a1 = 0
and for n ≥ 2,

an =
3n+1

16
−

n

4
−

4− (−1)n

16

In particular, an + bn
2 , and an + bn−1

2 are positive integers for n ≥ 3.

Also, an is the multiplicity of the sign representation.
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Remark 11.22. Computing dimensions shows that the h-expansion of ch S(n + 3, 3) lifts the
formula (104) for the Stirling number S(n+ 3, 3).

The coefficient an of h41 gives the sequence 0, 0, 1, 4, 14, 44, 135, 408, 1228, . . ., appearing as OEIS
A097137. (One checks that an − an−2 = (3n−1 − 1)/2.) Also the negative of the coefficient bn of
h21h2 gives 0, 0, 1, 3, 8, 18, 39, 81, 166, 336, 677, . . ., which is OEIS A011377 or OEIS A178420.

A similar analysis for VG(Br4)
!
i shows that its Frobenius characteristic ch SVG(3 + i, 3) is also an

integer combination of {h41, h
2
1h2, h

2
2, h4}, in fact of {h41, h2e2, h4}.

Here is the data for fi = chVG!(4)i with 0 ≤ i ≤ 11:

f0 = h4 f1 = h2e2

f2 = h41 + h4 f3 = 4h41 − h2e2

f4 = 12h41 + 2h2e2 + h4 f5 = 40h41 + h2e2

f6 = 127h41 − 4h2e2 + h4 f7 = 388h41 + 3h2e2

f8 = 1186h41 + 6h2e2 + h4 f9 = 3608h41 − 11h2e2

f10 = 10901h41 + h4 f11 = 32868h41 + 23h2e2

Observe that the set {h41, h2e2, h4} is linearly independent. One then has the following more precise
statement:

Proposition 11.23. Write fn for ch SV G(n + 3, 3). Then f2n−1, f2n − h4 ∈ Z[h41, h2e2] and hence
for n ≥ 0, both the representation SV G(2n+2, 3) and the quotient representation SV G(2n+3, 3)/1S4

are fixed under tensoring with the sign representation sgn of S4.

Let fn = anh
4
1 + bnh2e2 + dnh4. Then, with initial values a0 = a1 = 0, a2 = 1, a3 = 4, b0 = 0, b1 =

1, b2 = 0, b3 = −1, one has that dn = 1+(−1)n

2 , an ≥ 0 for all n ≥ 0, and for n ≥ 3:

an = 6an−1 − 11an−2 + 6an−3 + 2(bn−1 − bn−2 + bn−3)− dn−2,

bn = −bn−2 + 2bn−3.

The sequence {bn}n≥0 appears in OEIS A077912, with generating function x
1+x2−2x3 .

Moreover SV G(n + 3, 3) is a permutation module if and only if bn = 0 or bn ≤ −2. Write
−bn = 2αn + 3βn for nonnegative integers αn, βn. Then an − (αn + βn) is nonnegative and

fn = (an − (αn + βn))h
4
1 + αn ch (1

xS4

G2
) + βn ch (1

xS4

V4
) + dnh4

is the Frobenius characteristic of a permutation module, where the orbit stabilisers are S1, S4 and
the subgroups G2 = 〈(12)(34)〉 and V4 = {(1), (12)(34), (13)(24), (14)(23)} of S4.

11.11. The case OS(Br5)
!.

In this section we show that the S5-modules SOS(n + 4, 4) are also permutation modules. We
also show that the h-expansions exhibit a curious periodicity modulo 4.
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The initial expressions for fn = ch SOS(n+ 4, 4) are as follows.

f0 = h5, f1 = h3h2,

f2 = h4h1 + h2h
3
1 + 2h3h2−h3h

2
1 = h1h2[h2] + h2(h3 + e3) + h22h1,

f3 = 2h51 + 3h22h1 + 2h3h2,

f4 = 12h51 + 8h22h1 + 2h3h2 + h5

f5 = 60h51 + 18h22h1 + 3h3h2

f6 = 274h51 + 38h22h1 + h2h
3
1−h3h

2
1 + 4h3h2 + h4h1

= (274h51 + 38h2h
2
1 + 2h3h2) + f2

f7 = 1194h51 + 81h22h1 + 4h3h2.

(114)

Proposition 11.24. The S5-module SOS(n + 4, 4) is a permutation module for all n ≥ 0, with
orbit stabilisers given by

• the Young subgroups Sλ for λ ∈ {(15), (22, 1), (3, 2)} if n ≡ 1,3 mod 4.

• the Young subgroup S(22,1), as well as the subgroups S1 × I2(4), A3 ×S2 if n ≡ 2 mod 4.

Here A3 ×S2 is the subgroup of the Young subgroup S3 ×S2, for the alternating subgroup
A3 of S3.

• the Young subgroups Sλ for λ ∈ {(15), (22, 1), (3, 2), (5)} if n ≡ 0 mod 4.

Let J = {h51, h
2
2h1, h3h2}. Let fn = ch SOS(n+ 4, 4) = chA!(5)n. Then

(1) fn is a nonnegative integer combination of the set J if n ≡ 1, 3 mod 4.

(2) fn − f2 is a nonnegative integer combination of J if n ≡ 2 mod 4.

(3) fn − f0 is a nonnegative integer combination of J if n ≡ 0 mod 4.

The following explicit decomposition holds for fn+4 − fn:

fn+4 − fn = anh
5
1 + bnh1h

2
2 + 2h2h3, n ≥ 0, (115)

where b0 = 8, bn = 10(2n)− 2, n ≥ 1, and

an =
1

3
(1 + 17 · 4n+1 − 3 · 2n+1 − 3n+3). (116)

Let 0 ≤ i ≤ 3 and k ≥ 0. Then

f4k+4+i − fi = αk,ih
5
1 + βk,ih

2
2h1 + 2(k + 1)h2h3

where

αk,i =
k + 1

3
+ 4i+1 256

k+1 − 1

45
− 3i+2 81

k+1 − 1

80
− 2i+1 16

k+1 − 1

15
,

βk,i = 2i+1 16
k+1 − 1

3
− 2(k + 1).

(117)

The multiplicity of the sign representation in fn is





αk,i, n = 4(k + 1) + i and k ≥ 0,

2, n = 3,

0, n < 3.
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Remark 11.25. (The restriction of SOS(n+ 1, n− 1) and SVG(n+ 1, n − 1) to Sn−1)

Observe that in each of the cases OS(Brn), 1 ≤ n ≤ 5, the restriction of the Sn-module to Sn−1

is always an h-positive permutation module. The restriction is not h-positive for S(n + 1, n − 1)
when n ≥ 5, although the following formula shows that it is a permutation module.

ch S(n+1, n−1) ↓Sn
Sn−1

= (hn−2h1+hn−3h2+2hn−3h
2
1+hn−4h

3
1+hn−4h3)δn≥4+hn−5 ch 1 ↑S4

I2(4)
δn≥5.

Here I2(4) is the dihedral group of order 8.

Remark 11.26. (The restriction of SOS(n+3, 3) and SVG(n+ 3, 3)) With the coefficients defined
in Proposition 11.21, the restriction of SOS(n+ 3, 3) to S3 has Frobenius characteristic

(4an + bn)h
3
1 + 2(bn + c′n)h1h2 + dnh3,

and is thus h-positive. In particular SOS(n+3, 3)
y
S3

is a permutation module whose point stabilisers

are Young subgroups.

Proposition 11.23 shows that a similar statement holds for SVG(n + 3, 3)
y
S3

; here the orbit

stabilisers are S1 and S3.

Remark 11.27. (The restriction of SOS(n + 4, 4)) The restriction of fn = ch SOS(n + 4, 4) to S4

is h-positive, supported on the set {h41, h
2
1h2, h

2
2} if n ≡ 1, 3 mod 4, the set {h41, h

2
1h2, h

2
2, h4} if n ≡

0 mod 4, and finally the set {h41, h
2
1h2, h

2
2, h3h1, h4} if n ≡ 2 mod 4. In particular SOS(n + 4, 4)

y
S4

is a permutation module whose point stabilisers are Young subgroups.

Remark 11.28. (The multiplicity of the trivial representation) Here we collect formulas for the
multiplicity of the trivial representation:

For SOS(n + 1, n − 1), the multiplicity of the trivial representation is 3 for n ≥ 4, and the
multiplicity of the sign representation is 0 for n 6= 3, 4, and 1 otherwise.

For SOS(n+ 2, 2), the multiplicity is

2n+1

6
+

3 + (−1)n

6
.

For SOS(n+ 3, 3), the multiplicity of the trivial representation is

3n+1

16
+

n

4
+

8 + 5(−1)n

16
,

giving {1, 1, 3, 6, 17, 47, 139, 412, . . .}.

For SOS(n+ 4, 4), (with definitions as in Proposition 11.24), the multiplicity of the trivial repre-
sentation is

k + 1

3
+ 4i+1 256

k+1 − 1

45
− 3i+2 81

k+1 − 1

80
+ 2i+3 16

k+1 − 1

5
+ 〈fi, h5〉.

12. Further remarks and questions

We remark here on some further directions which could merit exploration.
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12.1. Projective geometries over finite fields. The Boolean matroids Un,n discussed in Ex-
ample 4.5 and Section 6.1 have a well-studied “q-analogue”: the projective geometries PG(n, q),
associated with the finite vector spaces Fn

q . These PG(n, q) are non-orientable simple matroids

whose ground set E = P(Fn
q ) = P

n−1
Fq

is the set of points in a finite projective space, so |E| =

[n]q := 1 + q + q2 + · · ·+ qn−1, with poset of flats F given by the lattice of all subspaces in Fn
q ; see

Oxley [Oxl92, §6.1] and Orlik and Terao [OT92, Example 4.33]. The lattices F are modular, mean-
ing that every flat is a modular element, so that every complete flag F is a modular complete flag.
Hence the matroids PG(n, q) are supersolvable, with exponents (e1, . . . , en) = (1, q, q2, . . . , qn−1).
Consequently, the family of k-algebras A(n) := OS(PG(n, q)) are Koszul, satisfying

Hilb(A(n), t) = (1 + t)(1 + qt)(1 + q2t) · · · (1 + qn−1t) with dimkA(n)
!
i = q(

i
2)
[n
i

]
q

Hilb(A(n)!, t) =
1

(1− t)(1− qt)(1− q2t) · · · (1− qn−1t)
with dimkA(n)

!
i =

[
n+ i− 1

i

]

q

,

where
[n
k

]
q
:=

[n]!q
[k]!q[n−k]!q

with [n]!q := [n]q[n−1]q · · · [2]q[1]q; see Macdonald [Mac95, Example I.2.2].

Problem 12.1. Study A(n) = OS(PG(n, q)) and A(n)! = OS(PG(n, q))! as GLn(Fq)-representations.

For example, the q-Pascal recurrences for A(n)i =
[n
i

]
q
and A(n)!i =

[
n+i−1

i

]
q
will have lifts to

branching rules via Proposition 2.16 and Theorem 7.1. There is also an appropriate analogue here
of representation stability for GLn(Fq)-representations developed by Putman and Sam [PS17].

12.2. Type B, wreath products, and Dowling geometries. As mentioned in Section 11, the
braid matroids Brn are represented by the root systems of type An−1, accounting for the action of
the reflection group Sn on them as symmetries.

There are other real and complex reflection groups giving rise to matroids with large symme-
try, but relatively few of these matroids are supersolvable; see Hoge and Röhrle [HR14] for their
classification. They include the dihedral reflection groups giving rise to the rank two matroids
already discussed in Example 4.6 and Section 6.3. They also include the reflection groups of type
Bn or Cn, isomorphic to the hyperoctahedral group or signed permutation group S±

n that appeared
in Section 5.2. Their root systems can be realized over R, giving rise to an oriented matroid from
the positive roots

Φ+
Bn

:= {+ei ± ej}1≤i<j≤n ⊔ {ei}1≤i≤n. (118)

More generally, one has the complex reflection groups Sn[Z/mZ] = (Z/mZ) ≀Sn for m ≥ 2, also
known as the groups G(m, 1, n) within Shephard and Todd’s classification [ST54] of irreducible

complex reflection groups. Letting ζm := e
2πi
m , their associated matroids can be represented by this

list of vectors in Cn:
{ei − ζkej} 1≤i<j≤n

0≤k≤m−1
⊔ {ei}1≤i≤n. (119)

These matroids are not realizable over R (and not orientable) unless m = 2 where they recover the
type Bn/Cn reflection groups.

Motivated by these examples, Dowling [Dow73] introduced a more general class of matroids, now
known as the Dowling geometries Qn(G); see Oxley [Oxl92, §6.10] for definitions and discussion.
Here G is any finite group, and the matroid automorphisms of Qn(G) contain the wreath product
Sn[G] = G ≀Sn. Interestingly, Dowling proved that the matroid Qn(G) is representable over a field
F if and only if the finite group G is a subgroup of F×; in particular, this forces G to be cyclic, as
in the complex reflection groups Sn[Z/mZ] mentioned above.
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Dowling also showed that Qn(G) is supersolvable for any finite group G. Consequently, their
Orlik-Solomon algebras OS(Qn(G)) are always Koszul, and when |G| = 2, the same holds for the
Varchenko-Gel’fand ring VG(M(Bn)), e.g., if M(Bn) is realized by the vectors in (118) above.

Problem 12.2. Study these families of Koszul algebras A(n) = OS(Qn(G)) and VG(M(Bn)), along
with their Koszul duals A(n)!, as Sn[G]-representations.

If m := |G|, then the exponents for the supersolvable matroids Qn(G) turn out to be

(e1, e2, . . . , en) = (1,m+ 1, 2m + 1, . . . , (n− 1)m+ 1).

Combining this with Dowling’s formulas [Dow73, §4], for the rank sizes11 in the poset of flats of
Qn(G), one encounters a similar coincidence to the equality dimk OS(Brn)i = S((n− 1) + i, n− 1)
discussed in Remark 11.2: the dimension of OS(Qn(G))!i is the size of the (n− 1)st rank in the flat
poset of Q(n−1)+i(G). This again reflects a bijection between the standard monomial k-basis for

OS(Qn(G))!i from Theorem 5.18 and an encoding of flats in Qn(G) generalizing restricted growth
functions, similar to work of Komatsu, Bagno, and Garber [BGK22, §2.3]. We omit the details
here.

12.3. Equivariant degree one injections. Recall the following consequences of Theorem 5.21:
By Part (ii) of Corollary 5.22, for the matroid automorphism group G = Aut(M), there are G-
equivariant degree one injections

[OS(M)!i] →֒ [OS(M)!i+1], for all i ≥ 0 (120)

while Part (iii) of Corollary 5.22 asserts that for the full oriented matroid automorphism group
G = Aut(M), there are G-equivariant degree two injections

[VG(M)!i] →֒ [VG(M)!i+2], for all i ≥ 0.

The latter injections arise from right-multiplication by a degree two G-invariant E-generic power
sum p2(y), such as p2(y) =

∑
i y

2
i . Unfortunately, for some oriented matroids M, there are no

degree one E-generic element power sums p1(y) in A!
1 that are also G-invariant. For example,

p1(y) =
∑

i yi is not always G-invariant. In fact, the calculation for rank one oriented matroids

M = U1,1 in (53) show that in that case, there are noG-equivariant injections VG(M)!i →֒ VG(M)!i+1
for any i.

Nonetheless, for the braid matroids M = Brn, Sage calculations for n ≤ 10 and 1 ≤ i ≤ 9 support
the following conjecture.

Conjecture 12.3. For the braid oriented matroid M = Brn, there exist equivariant injections

[SVG((n− 1) + i, n − 1)] = [VG(Brn)
!
i]

→֒ [SVG((n − 1) + i+ 1, n − 1)] = [VG(Brn)
!
i+1], for all i ≥ 1.

Propositions 11.19 and 11.23 establish Conjecture 12.3 for n ≤ 4 in characteristic zero.

We close with some observations on a consequence of the G-equivariant injections in (120): they
imply that the following alternating sum in Rk(G) is always the class of a genuine kG-module:

[OS!(M)i]− [OS!(M)i−1] + . . .+ (−1)i−1[OS!(M)0] (121)

Problem 12.4. Investigate the genuine kG-modules (121). Do they have interesting descriptions?

11Also called the Whitney numbers of the second kind for the poset.
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For example, for the braid matroid M = Brn, the dimension of the genuine module (121) is

S(n−1+i, n−1)− S(n−2+i, n−1) + · · ·+ (−1)iS(n−1, n−1). (122)

This has an interpretation via a result of Mansour and Munagi [MM14, Corollary 11]: it is the
number of set partitions of {1, 2, . . . , n + i} into n blocks, where no block contains a pair j, j + 1
modulo n+ i for 1 ≤ j ≤ n+ i. We know of no accompanying kSn-module built from these objects.

We remark that for any matroid M , the alternating sum analogous to (121) for OS(M), namely

[OS(M)i]− [OS(M)i−1] + . . .+ (−1)i−1[OS(M)0] (123)

is always a genuine kG-module for G = Aut(M), isomorphic to the top homology of a rank-selected
subposet of the lattice of flats. We quickly sketch how this follows from combining these two results:

• [OS80] exhibits a kG-module isomorphism OS(M) ∼= Whit(LM ), where Whit(LM ) is the
Whitney homology of the lattice of flats LM of M , and

• [Sun94] If G = Aut(P ) for a Cohen-Macaulay poset P , then the alternating sum in Rk(G)

[Whiti(P )]− [Whiti−1(P )] + . . . + (−1)i−1[Whit0(P )]

is kG-isomorphic to the top homology of the rank-selected subposet of P consisting of
the bottom i nonzero ranks. The Hopf trace argument in [Sun94, Lemma 1.1], written for
characteristic zero, can be replaced by applying, for an arbitrary field k, Proposition 2.11(ii)
to Baclawski’s complex. Similarly the arguments of Baclawski and Björner as cited in
[Sun94, Theorem 1.2] can be adapted for any field k, by appealing to the isomorphism in
[B+92, p. 262, Theorem 7.9.6]. Finally, the equivariant isomorphism with OS(M) follows
from [B+92, Theorem 7.10.2], extending the argument of [OS80, Theorem 4.3] to the whole
Orlik-Solomon algebra.

Acknowledgements

The authors thank Shiyue Li, Ivan Marin, Keller VandeBogert, Peter Webb, and Craig Wester-
land for helpful conversations and references. They are grateful to Trevor Karn for his wonderful
Sage/Cocalc code that checks whether a symmetric group representation is isomorphic to a per-
mutation representation, which helped us create Table 1. In particular, we are grateful to him for
experimentally discovering the half-integers in the decomposition of Proposition 11.17. First and
second authors received partial support from NSF grants DMS-2053288 and DMS-1745638.

Appendix A. Tables of characters for Stirling representations

This section consists of several tables of characters for A(n)i and its primitives L(A(n))i when
A(n) = OS(Brn) or VG(Brn). For each table, the observed onset of representation stability in each
column is shaded in blue. All data was generated using SAGE code which is publicly available at
[Alm24].
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n
i
0 1 2 3

3 s2,1 + s3 s1,1,1 + 2s2,1 + 2s3 2s1,1,1 + 5s2,1 + 3s3

4 s2,2 + s3,1 + s4
s1,1,1,1 + 2s2,1,1

+3s2,2 + 3s3,1 + 3s4

4s1,1,1,1 + 9s2,1,1
+10s2,2 + 11s3,1 + 6s4

5 s3,2 + s4,1 + s5
s2,1,1,1 + 2s2,2,1 + 2s3,1,1
+4s3,2 + 4s4,1 + 3s5

2s1,1,1,1,1 + 8s2,1,1,1 + 13s2,2,1
+15s3,1,1 + 18s3,2 + 16s4,1 + 7s5

6 s4,2 + s5,1 + s6

s2,2,2 + s3,1,1,1
+2s3,2,1 + s3,3 + 2s4,1,1
+5s4,2 + 4s5,1 + 3s6

3s2,1,1,1,1 + 5s2,2,1,1 + 7s2,2,2
+10s3,1,1,1 + 21s3,2,1 + 8s3,3

+17s4,1,1 + 24s4,2 + 17s5,1 + 8s6

7 s5,2 + s6,1 + s7

s3,2,2 + s4,1,1,1
+2s4,2,1 + 2s4,3 + 2s5,1,1
+5s5,2 + 4s6,1 + 3s7

s2,2,1,1,1 + 2s2,2,2,1
+3s3,1,1,1,1 + 7s3,2,1,1 + 9s3,2,2

+8s3,3,1 + 10s4,1,1,1 + 24s4,2,1 + 14s4,3
+17s5,1,1 + 25s5,2 + 18s6,1 + 8s7

8 s6,2 + s7,1 + s8

s4,2,2 + s4,4 + s5,1,1,1
+2s5,2,1 + 2s5,3 + 2s6,1,1
+5s6,2 + 4s7,1 + 3s8

s2,2,2,2 + s3,2,1,1,1 + 2s3,2,2,1 + 2s3,3,1,1
+2s3,3,2 + 3s4,1,1,1,1 + 7s4,2,1,1 + 10s4,2,2
+11s4,3,1 + 6s4,4 + 10s5,1,1,1 + 24s5,2,1

+15s5,3 + 17s6,1,1 + 26s6,2 + 18s7,1 + 8s8

9 s7,2 + s8,1 + s9

s5,2,2 + s5,4 + s6,1,1,1
+2s6,2,1 + 2s6,3 + 2s7,1,1
+5s7,2 + 4s8,1 + 3s9

s3,2,2,2 + s4,2,1,1,1 + 2s4,2,2,1
+2s4,3,1,1 + 3s4,3,2 + 3s4,4,1

+3s5,1,1,1,1 + 7s5,2,1,1 + 10s5,2,2
+11s5,3,1 + 7s5,4 + 10s6,1,1,1 + 24s6,2,1

+16s6,3 + 17s7,1,1 + 26s7,2 + 18s8,1 + 8s9

10 s8,2 + s9,1 + s10

s6,2,2 + s6,4 + s7,1,1,1
+2s7,2,1 + 2s7,3 + 2s8,1,1
+5s8,2 + 4s9,1 + 3s10

s4,2,2,2 + s4,4,2 + s5,2,1,1,1 + 2s5,2,2,1
+2s5,3,1,1 + 3s5,3,2 + 3s5,4,1 + s5,5

+3s6,1,1,1,1 + 7s6,2,1,1 + 10s6,2,2 + 11s6,3,1
+8s6,4 + 10s7,1,1,1 + 24s7,2,1 + 16s7,3
+17s8,1,1 + 26s8,2 + 18s9,1 + 8s10

11 s9,2 + s10,1 + s11

s7,2,2 + s7,4 + s8,1,1,1
+2s8,2,1 + 2s8,3 + 2s9,1,1
+5s9,2 + 4s10,1 + 3s11

s5,2,2,2 + s5,4,2 + s6,2,1,1,1 + 2s6,2,2,1
+2s6,3,1,1 + 3s6,3,2 + 3s6,4,1 + 2s6,5

+3s7,1,1,1,1 + 7s7,2,1,1 + 10s7,2,2 + 11s7,3,1
+8s7,4 + 10s8,1,1,1 + 24s8,2,1 + 16s8,3
+17s9,1,1 + 26s9,2 + 18s10,1 + 8s11

12 s10,2 + s11,1 + s12

s8,2,2 + s8,4 + s9,1,1,1
+2s9,2,1 + 2s9,3 + 2s10,1,1
+5s10,2 + 4s11,1 + 3s12

s6,2,2,2 + s6,4,2 + s6,6 + s7,2,1,1,1
+2s7,2,2,1 + 2s7,3,1,1 + 3s7,3,2
+3s7,4,1 + 2s7,5 + 3s8,1,1,1,1
+7s8,2,1,1 + 10s8,2,2 + 11s8,3,1

+8s8,4 + 10s9,1,1,1 + 24s9,2,1 + 16s9,3
+17s10,1,1 + 26s10,2 + 18s11,1 + 8s12

Table 2. Characters for [OS(Brn)
!
i] = [SOS((n − 1) + i, n − 1)]. Note that

ch[OS(Br1)
!
i] = s2 for i ≥ 0 and ch[OS(Brn)

!
0] = sn for n ≥ 2.
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n
i

0 1 2 3

2 s2 s1,1 s2 s1,1
3 s3 s1,1,1 + s2,1 s1,1,1 + 2s2,1 + 2s3 3s1,1,1 + 5s2,1 + 2s3

4 s4 s2,1,1 + s3,1
s1,1,1,1 + 3s2,1,1

+2s2,2 + 3s3,1 + 2s4

4s1,1,1,1 + 11s2,1,1 + 8s2,2
+11s3,1 + 4s4

5 s5 s3,1,1 + s4,1
2s2,1,1,1 + 2s2,2,1 + 3s3,1,1

+3s3,2 + 3s4,1 + 2s5

3s1,1,1,1,1 + 10s2,1,1,1 + 14s2,2,1
+17s3,1,1 + 15s3,2 + 14s4,1 + 4s5

6 s6 s4,1,1 + s5,1

s2,2,1,1 + 2s3,1,1,1
+2s3,2,1 + s3,3 + 3s4,1,1
+3s4,2 + 3s5,1 + 2s6

s1,1,1,1,1,1 + 5s2,1,1,1,1 + 8s2,2,1,1
+7s2,2,2 + 13s3,1,1,1 + 21s3,2,1 + 7s3,3
+18s4,1,1 + 18s4,2 + 14s5,1 + 4s6

7 s7 s5,1,1 + s6,1

s3,2,1,1 + 2s4,1,1,1
+2s4,2,1 + s4,3 + 3s5,1,1
+3s5,2 + 3s6,1 + 2s7

s2,1,1,1,1,1 + 2s2,2,1,1,1 + 3s2,2,2,1
+6s3,1,1,1,1 + 11s3,2,1,1 + 8s3,2,2

+7s3,3,1 + 13s4,1,1,1 + 22s4,2,1 + 10s4,3
+18s5,1,1 + 18s5,2 + 14s6,1 + 4s7

8 s8 s6,1,1 + s7,1

s4,2,1,1 + 2s5,1,1,1
+2s5,2,1 + s5,3
+3s6,1,1 + 3s6,2
+3s7,1 + 2s8

s2,2,2,2 + s3,1,1,1,1,1 + 3s3,2,1,1,1
+3s3,2,2,1 + 3s3,3,1,1 + s3,3,2

+6s4,1,1,1,1 + 11s4,2,1,1 + 8s4,2,2
+8s4,3,1 + 3s4,4 + 13s5,1,1,1
+22s5,2,1 + 10s5,3 + 18s6,1,1

+18s6,2 + 14s7,1 + 4s8

9 s9 s7,1,1 + s8,1

s5,2,1,1 + 2s6,1,1,1
+2s6,2,1 + s6,3
+3s7,1,1 + 3s7,2
+3s8,1 + 2s9

s3,2,2,2 + s3,3,1,1,1 + s4,1,1,1,1,1
+3s4,2,1,1,1 + 3s4,2,2,1 + 3s4,3,1,1

+s4,3,2 + s4,4,1 + 6s5,1,1,1,1
+11s5,2,1,1 + 8s5,2,2 + 8s5,3,1

+3s5,4 + 13s6,1,1,1 + 22s6,2,1 + 10s6,3
+18s7,1,1 + 18s7,2 + 14s8,1 + 4s9

10 s10 s8,1,1 + s9,1

s6,2,1,1 + 2s7,1,1,1
+2s7,2,1 + s7,3
+3s8,1,1 + 3s8,2
+3s9,1 + 2s10

s4,2,2,2 + s4,3,1,1,1 + s5,1,1,1,1,1
+3s5,2,1,1,1 + 3s5,2,2,1 + 3s5,3,1,1

+s5,3,2 + s5,4,1 + 6s6,1,1,1,1
+11s6,2,1,1 + 8s6,2,2 + 8s6,3,1

+3s6,4 + 13s7,1,1,1 + 22s7,2,1 + 10s7,3
+18s8,1,1 + 18s8,2 + 14s9,1 + 4s10

Table 3. Characters for [VG(Brn)
!
i] = [SVG((n− 1) + i, n − 1)].
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n
i

1 2 3 4 5

2 s2 0 0 0 0
3 s2,1 + s3 s1,1,1 s2,1 s1,1,1 + s2,1 s1,1,1 + 2s2,1 + s3
4 s2,2 + s3,1 + s4 s1,1,1,1 + s2,1,1 s2,1,1 + 2s2,2 + s3,1 2s1,1,1,1 + 3s2,1,1 + 2s2,2 + 2s3,1 3s1,1,1,1 + 6s2,1,1 + 6s2,2 + 6s3,1 + 3s4

5 s3,2 + s4,1 + s5 s2,1,1,1 + s3,1,1
2s2,2,1 + s3,1,1
+2s3,2 + s4,1

s1,1,1,1,1 + 3s2,1,1,1 + 3s2,2,1
+5s3,1,1 + 3s3,2 + 2s4,1

2s1,1,1,1,1 + 8s2,1,1,1 + 11s2,2,1
+11s3,1,1 + 12s3,2 + 10s4,1 + 3s5

6 s4,2 + s5,1 + s6 s3,1,1,1 + s4,1,1
s2,2,2 + 2s3,2,1

+s4,1,1 + 2s4,2 + s5,1

s2,1,1,1,1 + s2,2,1,1 + s2,2,2
+4s3,1,1,1 + 5s3,2,1 + s3,3
+5s4,1,1 + 3s4,2 + 2s5,1

4s2,1,1,1,1 + 7s2,2,1,1 + 7s2,2,2
+11s3,1,1,1 + 18s3,2,1 + 6s3,3

+13s4,1,1 + 17s4,2 + 10s5,1 + 3s6

7 s5,2 + s6,1 + s7 s4,1,1,1 + s5,1,1
s3,2,2 + 2s4,2,1

+s5,1,1 + 2s5,2 + s6,1

s3,1,1,1,1 + 2s3,2,1,1 + s3,2,2
+2s3,3,1 + 4s4,1,1,1 + 5s4,2,1
+s4,3 + 5s5,1,1 + 3s5,2 + 2s6,1

2s2,2,1,1,1 + 3s2,2,2,1 + 5s3,1,1,1,1
+10s3,2,1,1 + 9s3,2,2 + 7s3,3,1
+11s4,1,1,1 + 21s4,2,1 + 11s4,3

+13s5,1,1 + 17s5,2 + 10s6,1 + 3s7

8 s6,2 + s7,1 + s8 s5,1,1,1 + s6,1,1
s4,2,2 + 2s5,2,1

+s6,1,1 + 2s6,2 + s7,1

s3,3,1,1 + s4,1,1,1,1
+2s4,2,1,1 + s4,2,2 + 2s4,3,1
+4s5,1,1,1 + 5s5,2,1 + s5,3
+5s6,1,1 + 3s6,2 + 2s7,1

s2,2,2,2 + 3s3,2,1,1,1 + 3s3,2,2,1
+3s3,3,1,1 + 2s3,3,2 + 5s4,1,1,1,1
+10s4,2,1,1 + 10s4,2,2 + 10s4,3,1

+5s4,4 + 11s5,1,1,1 + 21s5,2,1 + 11s5,3
+13s6,1,1 + 17s6,2 + 10s7,1 + 3s8

9 s7,2 + s8,1 + s9 s6,1,1,1 + s7,1,1
s5,2,2 + 2s6,2,1

+s7,1,1 + 2s7,2 + s8,1

s4,3,1,1 + s5,1,1,1,1
+2s5,2,1,1 + s5,2,2 + 2s5,3,1
+4s6,1,1,1 + 5s6,2,1 + s6,3
+5s7,1,1 + 3s7,2 + 2s8,1

s3,2,2,2 + s3,3,1,1,1 + 3s4,2,1,1,1
+3s4,2,2,1 + 3s4,3,1,1 + 3s4,3,2

+3s4,4,1 + 5s5,1,1,1,1 + 10s5,2,1,1
+10s5,2,2 + 10s5,3,1 + 5s5,4

+11s6,1,1,1 + 21s6,2,1 + 11s6,3
+13s7,1,1 + 17s7,2 + 10s8,1 + 3s9

10 s8,2 + s9,1 + s10 s7,1,1,1 + s8,1,1
s6,2,2 + 2s7,2,1

+s8,1,1 + 2s8,2 + s9,1

s5,3,1,1 + s6,1,1,1,1
+2s6,2,1,1 + s6,2,2 + 2s6,3,1
+4s7,1,1,1 + 5s7,2,1 + s7,3
+5s8,1,1 + 3s8,2 + 2s9,1

s4,2,2,2 + s4,3,1,1,1 + s4,4,2
+3s5,2,1,1,1 + 3s5,2,2,1 + 3s5,3,1,1
+3s5,3,2 + 3s5,4,1 + 5s6,1,1,1,1
+10s6,2,1,1 + 10s6,2,2 + 10s6,3,1

+5s6,4 + 11s7,1,1,1 + 21s7,2,1 + 11s7,3
+13s8,1,1 + 17s8,2 + 10s9,1 + 3s10

Table 4. Characters for [L(n)i] when A = OS(Brn).
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n
i

1 2 3 4 5

2 s1,1 s2 0 0 0
3 s1,1,1 + s2,1 s2,1 + 2s3 s2,1 s1,1,1 + s2,1 s1,1,1 + 2s2,1 + s3
4 s2,1,1 + s3,1 s2,2 + 2s3,1 + 2s4 s2,1,1 + 2s2,2 + s3,1 s1,1,1,1 + 4s2,1,1 + s2,2 + 2s3,1 2s1,1,1,1 + 7s2,1,1 + 4s2,2 + 7s3,1 + 2s4

5 s3,1,1 + s4,1 2s3,2 + 2s4,1 + 2s5
2s2,2,1 + s3,1,1
+2s3,2 + s4,1

3s2,1,1,1 + 3s2,2,1
+6s3,1,1 + 2s3,2 + 2s4,1

s1,1,1,1,1 + 8s2,1,1,1 + 10s2,2,1
+13s3,1,1 + 11s3,2 + 10s4,1 + 2s5

6 s4,1,1 + s5,1
s3,3 + 2s4,2
+2s5,1 + 2s6

s2,2,2 + 2s3,2,1
+s4,1,1 + 2s4,2 + s5,1

2s2,2,1,1 + 4s3,1,1,1
+5s3,2,1 + s3,3

+6s4,1,1 + 2s4,2 + 2s5,1

3s2,1,1,1,1 + 9s2,2,1,1 + 4s2,2,2
+10s3,1,1,1 + 18s3,2,1 + 8s3,3

+16s4,1,1 + 14s4,2 + 10s5,1 + 2s6

7 s5,1,1 + s6,1
s4,3 + 2s5,2
+2s6,1 + 2s7

s3,2,2 + 2s4,2,1
+s5,1,1 + 2s5,2 + s6,1

3s3,2,1,1 + 2s3,3,1
+4s4,1,1,1 + 5s4,2,1 + s4,3
+6s5,1,1 + 2s5,2 + 2s6,1

3s2,2,1,1,1 + 3s2,2,2,1 + 3s3,1,1,1,1
+11s3,2,1,1 + 6s3,2,2 + 9s3,3,1
+11s4,1,1,1 + 21s4,2,1 + 11s4,3

+16s5,1,1 + 14s5,2 + 10s6,1 + 2s7

8 s6,1,1 + s7,1
s5,3 + 2s6,2
+2s7,1 + 2s8

s4,2,2 + 2s5,2,1
+s6,1,1 + 2s6,2 + s7,1

s3,3,1,1 + 3s4,2,1,1
+2s4,3,1 + 4s5,1,1,1
+5s5,2,1 + s5,3

+6s6,1,1 + 2s6,2 + 2s7,1

s2,2,2,1,1 + 3s3,2,1,1,1 + 3s3,2,2,1
+2s3,3,1,1 + 3s3,3,2 + 3s4,1,1,1,1
+12s4,2,1,1 + 6s4,2,2 + 12s4,3,1

+3s4,4 + 11s5,1,1,1 + 21s5,2,1 + 11s5,3
+16s6,1,1 + 14s6,2 + 10s7,1 + 2s8

9 s7,1,1 + s8,1
s6,3 + 2s7,2
+2s8,1 + 2s9

s5,2,2 + 2s6,2,1
+s7,1,1 + 2s7,2 + s8,1

s4,3,1,1 + 3s5,2,1,1
+2s5,3,1 + 4s6,1,1,1
+5s6,2,1 + s6,3

+6s7,1,1 + 2s7,2 + 2s8,1

s3,2,2,1,1 + s3,3,3 + 3s4,2,1,1,1
+3s4,2,2,1 + 3s4,3,1,1 + 3s4,3,2

+3s4,4,1 + 3s5,1,1,1,1 + 12s5,2,1,1
+6s5,2,2 + 12s5,3,1 + 3s5,4

+11s6,1,1,1 + 21s6,2,1 + 11s6,3
+16s7,1,1 + 14s7,2 + 10s8,1 + 2s9

10 s8,1,1 + s9,1
s7,3 + 2s8,2

+2s9,1 + 2s10

s6,2,2 + 2s7,2,1
+s8,1,1 + 2s8,2 + s9,1

s5,3,1,1 + 3s6,2,1,1
+2s6,3,1 + 4s7,1,1,1
+5s7,2,1 + s7,3

+6s8,1,1 + 2s8,2 + 2s9,1

s4,2,2,1,1 + s4,3,3 + s4,4,1,1
+3s5,2,1,1,1 + 3s5,2,2,1 + 3s5,3,1,1
+3s5,3,2 + 3s5,4,1 + 3s6,1,1,1,1
+12s6,2,1,1 + 6s6,2,2 + 12s6,3,1

+3s6,4 + 11s7,1,1,1 + 21s7,2,1 + 11s7,3
+16s8,1,1 + 14s8,2 + 10s9,1 + 2s10

Table 5. Characters for [L(n)i] when A = VG(Brn).
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