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DIFFERENTIAL OPERATORS ON BERGMAN SPACE ON
BOUNDED SYMMETRIC DOMAINS

JENS GERLACH CHRISTENSEN AND CHRISTOPHER BENJAMIN DENG

ABSTRACT. We classify self-adjoint first-order differential operators on weighted
Bergman spaces on the N-dimensional unit ball BY and D2 of 2 x 2 complex
matrices satisfying I — ZZ* > 0. Our main tools are the discrete series repre-
sentations of SU(N, 1) and SU(2,2). We believe that our observations extend
to general bounded symmetric domains.

1. INTRODUCTION

In a recent paper [2], the authors showed that all first order self-adjoint dif-
ferential operators on weighted Bergman space on the unit disc come from the
holomorphic discrete series representation. The purpose of the present paper is to
test if this result generalizes to to higher dimensional and higher rank bounded
symmetric domains. In particular, we show that this is the case for the Bergman
space on the (rank 1) unit ball B™ in C™ and the rank 2 space D consisting of
2 x 2 complex matrices with operator norm less than 1. We believe this gives us
enough reason to claim that our observations extend to general bounded symmet-
ric domains. The proof of this claim eludes us at this stage. It further begs the
question if we can give a Lie/representation theoretic classification of higher order
self-adjoint differential operators on Bergman spaces.

2. BACKGROUND AND STATEMENT OF MAIN RESULT

2.1. Lie groups and representations. Let G be a Lie group with Lie algebra
g and let ™ be a representation of the group on a Hilbert space H. The space of
smooth vectors H® is the (dense in H) collection of vectors v for which z — m(x)v
is a smooth mapping from G to H. For every X € g we get an operator 7(X) with
domain H2° defined by
m(X)v = % tzow(exp(tX))v.

This operator is densely defined and skew-symmetric, and therefore it is closable.
The closure will be denoted 7(X) and it is skew-adjoint (see [6]).

2.2. Bounded symmetric domains of type AIII. In this paper we will restrict
ourselves to bounded symmetric domains D consisting of complex N x M matrices
Z for which I — Z*Z > 0. The group G = SU(N, M) consists of block matrices

T = CCL Z with determinant 1, a is N x N, bis N x M, cis M x N and d is
M x M and which satisfy a*a — c¢*c = Iyxn, a*b = c*c and b*b — d*d = —Iprx -

The group G acts transitively on the domain D by the action

- Z=(aZ+b)(cZ+d) "
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The subgroup K that fixes the origin o consists of matrices 8 2] , in S(U(N) x

U(M)) and the domain D can be identified with the homogenous space G/K. The
complex Jacobian J(x, Z) of the mapping Z — z - Z is given by

J(x, Z) = det(cZ + d)~N+M)
By the chain rule J(zy, Z) = J(z,y - Z)J(y, Z).

2.3. Bounded symmetric domains and Bergman spaces. Define the func-
tion h(Z) = det(I — Z*Z) which is strictly positive on D and satisfies h(z - Z) =
|J(z, Z)|>N+M)p(Z). The weighted Bergman space AZ(D) is the space of holo-
morphic functions on D for which

/ |f(Z)|Ph(Z)¢ dZ < oo
D

and it contains constant functions (is non-zero) when £ > —1. It forms a Banach
space when equipped with the norm

nﬂuf—-</;uxznm42ﬁdz)vp

When p = 2 the space Ag(D) is a Hilbert space with inner product

mm:AJwMEmeZ

and the norm in this case will be denoted simply || f||¢. For £ > —1 the holomorphic
discrete series represention ¢ of G on Ag (D) is given by

e () f(Z) = det(cZ + d)~ENTM) f(z1 . 7)

when 71 = ZL d]' This (projective) representation is unitary and irreducible.
Notice that it is only a representation of G if £ is an integer, but that it defines a
projective representation of the universal cover of G in other cases. In this paper, we
will only concern ourselves with differential operators arising from the Lie algebra

g, so this distinction between the groups is irrelevant.

2.4. First order differential operators. For multi-indices o and functions f, €
AZ(D) we define a first order differential operator L : AZ(D) — AZ(D) to be of the
form
L=fo+ Y fa0"
ler|=1

This operator has domain D(L) consisting of polynomials in N variable (N is the
dimension of the ambient CV) and it is thus densely defined. We will now show
that if L is symmetric, then the functions f, are polynomials of degree |«| + 1 or
less. This relies on the fact that homogeneous polynomials of differing degree are
orthogonal in AZ(D) (see [4] and the fact that D is circular [5]).

Proposition 1. Let L = fo+ 2\04:1 fa 0% be a first order differential operator on
Ag(D) with polynomials as domain. If L is symmetric, then f, is a polynomial of
degree less than or equal to |a] + 1.



DIFFERENTIAL OPERATORS ON BERGMAN SPACE ON BOUNDED SYMMETRIC DOMAINS

Proof. Let p = 1, and let ¢ be a monomial of degree two or higher. Then Lp =
fo so (Lp,q) = (fo,q). On the other hand Lg is a polynomial of degree one or
higher, so (p, Lg) = 0. Since the monomials form a basis for AE(D) (not necessarily
orthogonal), and (fy,q) = 0 for any monomial of degree greater than or equal to
two, fo has degree less than or equal to one.

Repeating the argument with p = 2% of degree one and ¢ of degree three or
higher, we can conclude that f, has degree two or less. We get that Lp = foz“+ fa,
and since fpz® has degree two or less, then (Lp,q) = (fa,q). Moreover, Lq has
degree two or higher, so (p, Lq) = 0, and this concludes the argument. ([

2.5. Main results. We finally have sufficient background to state our main results.
Moving forward, the domain D will be either the unit ball BY = {z € CV : |z| < 1}
or the domain D? of 2 x 2 complex matrices Z for which I — Z*Z > 0. Let Ag(D)
be the corresponding Bergman space. G will be the group SU(N, 1) in the case of
BY and SU(2,2) in the case of D%, Lastly, m¢ will be the corresponding discrete
series (projective) representation of the group G whose Lie algebra will be denoted
g. We seek to prove the following:

Theorem 1. For the two domains BY and D?, the closure of any first order self-
adjoint differential operator on AZ(D) is equal to ¢ + ime(X) for some real ¢ and
some X € g.

In the case of the unit ball, we also show that

Theorem 2. The operator L= Zjvzl Zjaizj + ¢ with ¢ not being 0 or a negative

integer extends to a linear homeomorphism between AZ(BY) and A2, ,(B"Y).

3. VERIFICATION OF RESULTS

We will use the fact that monomials of differing homogeneous degrees are orthog-
onal to derive the form of the first order differential operator L = fy+ Z\a|:1 fa0?.
In fact, we will only need monomials of order 2 or less to show that L agrees with
¢+ in(X) for some ¢ € R and X € g. We know all such operators are symmetric
on H° which contains polynomials, and therefore the symmetry of L restricted
to polynomials follows automatically. This saves a lot of time over the approach
utilized in [7] for the case of the unit disk.

3.1. General observations. Later we will need the following characterization of
the smooth vectors for m¢ due to [I]. Notice that any holomorphic function f can
be decomposed as f = Y 7 fr where fj is a homogeneous polynomial of degree
k.

Theorem 3. The smooth vectors for ¢ are the holomorphic functions f = Ziozo fr
for which for any n there is a constant C,, > 0 such that the norm | fxlle <
Cpo(l4+ k)" forall k=0,1,2,....

This classification can be used to verify the following result, which we have not
found a reference for, and we therefore include a proof.

Proposition 2. The polynomials are a core (essential domain) for m¢(X).

Proof. We need to verify that if A is m¢(X) restricted to the polynomials, then A
is the same as T¢(X). This is the same as showing that if f € HS°, then there is a

71’57
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sequence of polynomials p,, converging to f for which Ap, = 7(X)p, converges of
me(X)f.

First note that due to the classification of smooth vectors, if f =", fi, then the
series is absolutely convergent in H (3 p o || fxll < C >3 o(1+k)?) and therefore
it converges in H. This means that p, = >, _, fi converges to f. Now, f — p, is
also a smooth vector, and 7¢ (X)(f — p,) will be a smooth vector.

Notice that

R OON(E) = g e 12 = G _dere)2 + a0 e 2

where e *X = [a(t) b(t)} The derivative of det(cZ 4+ d)~ETN+M) at ¢t = 0 is a

c(t) d(t)
polynomial in the entries of Z, and therefore the product rule show that m¢(X) will
be of the form
me(X)=po+ D pad®
=1
where py and p, are polynomials in the entries of Z and 9% is a partial derivative
(of order 1) in the coordinates of Z.

Therefore m¢(X)(f — pn) cannot contain any power less than n, i.e. m¢(X)(f —
Pn) = Y p>, gk wWhere gy is a polynomial of homogeneous degree k. The series
> 4> gk converges absolutely (same argument as before), so m¢(X)(f — pn) con-
verges to 0 which finishes the proof. O

3.2. The case of the Unit Ball. We will denote tuples z € CY asz = (21, -+ , 2n).
Let H(BY) be the space of all holomorphic functions on the unit ball

BY = {zeCV | |22:= |z +-- -+ |2n* < 1}

As mentioned in [3,[9], we can identify BY with the unit ball in R?Y, and thus equip
the measure dv = 2Nr2N~ldrdry, where dry is the rotation-invariant surface
measure on the sphere S?V =1 C R2V normalized by 7x(S?NY~1) = 1. Define the
weighted measure

I'(N+£&+1)
d =

ve() = e

For £ > —1, this is a probability measure and therefore the weighted Bergman space
defined by

AL(BY) = {f e 1) | Il = ( | |f<z>|Pdug<z>)l/p < oo}

(1— |22 du(z).

is non-trivial for & > —1.
In this paper we will mostly focus on the Hilbert space AE(BN ) with inner
product

(o= [ FEaGE (o)

The monomials 2" form an orthogonal basis, where |n| = Zivzl ng and n! =
Hszl ng! for n = (ny1,---,nn) € N)'. We also denote the norm on this space
by | - |l¢, and make note that
w2 DN 4E+1)n!
="l = T(N+&+14|nf)
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Proposition 3. Let f, € Af (BY) be denoted f,(z) = Z/BEN{}’ a? 2% where o € NV,

The operator L = fy + Zivzl fek(%k with domain D(L) = P(BY) is symmetric if
and only if

(3.1) fo=ad+ (N +&4+1) Zaejz],
N

(3.2) =a,, + Z 125+ ad zjz)
j=1

where the coeflicients satisfy

(3.3) ag,alt €R, al* = (N+&+1)al all = agk.

€k

Proof. Assume that L is symmetric. It is enough to work with the monomials, since
they form an orthogonal basis for P(BY). For any n € N},

L2" = Z agzﬁ—l— Z Z agzﬁ[)a z"

BENY la|=1BeNY
= Z agzﬁJr"—i— Z Z ag(a-n)zﬁﬂfo‘.
BeNY la|=1 BeN

Then, we have for all m € N} that
(Lz",2™)e = Z ag ( ftn 2™ + Z Z 5+"7°‘,zm>5
BENY la|=1 BN
and that
(2", L) = (Lo, 27,
= Z a€<23+m,z">g+ Z Z aﬁ(a-m)(zﬂ+m—a,z">5.

BENY la|=1geN}

By assumption, the two expressions must be equal, so using orthogonality,

T Yt Man) | 2 E= e Y ant T e m) | 122

la|=1 la|=1

where terms with indices that have negative components are set to 0. Notice that

— S 1
hen= Y= 3 (7 S |

BeENY BeNY la|=1
5 I11IZ
=ad + Z ﬁ” A2 P =al+ (N+€E+1) Zaz
|8l=1 ¢ |8l=1
Similarly, we can see that for v = (0,---,0,1,0,---,0),
fy= (L~ fo)z"

-5 Y allaemete

lo|=1 BENY
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S - 272
D [GRED SO | = Sl B
peny jal=1 12"l
—|| 2|
MR

+ (ad + aJ — al)2" + Za z

|8]=1
B#y

—_ 1272 27||?
) s ()
B3 v||g 18]=2

B#2y

12712 . _
=ag | I Hf + (a3 + ad — ad)2” + Z agzﬁ
HE 2

B#y

JEH — 127117
0 _ v 227 E: § B Bty
2 Yz 112272 - "II alF: o)
[8]=1
B#y

_
CN+E+1

N+E+2 5
s X T Y (A - )
N 1
|B]=1 |Bl=1 e
B#Y

+ (a8 +af — af)2"

Since L is assumed to be symmetric,

as desired.

Assume L satisfies (311 B.21 B3)), so

L=[a)+(N+&+1) ) afef
181=1

+ 3 ad+ > (a2 +a%2" ) | o
ler|=1 1Bl=1
where the coeflicients satisfy the relations

ad,a® € R, af = (N +¢&+1)al, al =ag
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where |a/,|8] =1 and a # 3. For any n € NY',

Lz" = [adz" + (N+£+1) Zao Atn

18l=1
e N R S s ] LR
lee|=1 |81=1

By orthogonality of the 2z and conjugate symmetry of inner products,

(L2 = (@) + 3 a%la-n) | 12712 = (" L"),

lo]=1
(L2" 2N = (N +€+ 1+ [nagl}7 "2 = (2", L7+,
(Lz", 2" )¢ = a(y-n)llz"7Z = (2", Lz"7)e,
<LG7271+n—V2>£ — a% (72 n)”Z’h-i-n 'yzH5 <Zn7L>Zg1+n+y2

where |v], 71|, [v2| = 1 and 1 # 2. Also, (Lz", z™) = (2™, Lz™) = 0 for all other
m. Since n € N} is arbitrary, this concludes that L is symmetric. (|

Proof of Theorem/[ for the unit ball. Now, we approach finding the operators using
the holomorphic discrete series representation of SU(N,1). For any element z €

SU(N, 1) denoted
_la b
xXr = CT d

wherea € My, b,c € CY and d € C, consider the representation 7¢ () : Ag BY) —
AZ(BYN) given by

1 a*z—¢
")) = et (_ — +E) ,

where (-, -) here is the usual inner product on CV. Tt is known that (¢, AZ (BY))isa
unitary representation of SU(N, 1) when £ > —1 is an integer. Moreover, it defines
a unitary representation of the universal covering group of SU(N, 1) for all £ > —1.
In this paper we do not need to make a distinction between these groups, since their
Lie algebras are the same and the exponential mapping is a local diffeomorphism.
Let a general X € My1 be denoted with entries

T1,1 T1,N+1
X =
TN+1,1 " ITN+41,N+1
Then, X € su(N, 1) if and only if

—T1,1 te —TN+1,1
T1,1 T1,N —T1,N+1

—T1i,N —TN+1,N

IN+1,1 *** INH1I,N —ITN+1,N+1 [ — e —
TI,N+1 *** IN+1,N+1
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and tr(X) =0, i.e.,

T1,1 £1,2 x1,3 T1,N—-1 T1,N T1,N+1

—T1,2 €22 x2,3 T2, N—-1 T2 N T2, N+1

—x1,3 —X2,3 Z3,3 T3 N-1 T3 N T3,N+1

X = :

—Ti,N-1 —IT2N-1 —I3N-1 " IN-1,N-1 <IN-1,N TN—-1,N+1

—T1,N —I2,N —I3,N —ITN-1,N IN,N TIN,N+1

N

T1,N+1 T2 N+1 T3,N+1 v TN—-1,N+1 IN,N+1 — Z j=1%35,j

where z;; € iR for j € {1,---, N}. Equivalently, X € su(N, 1) if and only if
xj; € iR ifje{l,---,N},
zjr=—-Tk,; €C ifj>kandje{2 -, N},
zjr=T,,€C ifj=N+landke{l,---N}
Let E; ) denote the (N + 1) x (N + 1) matrix with 1 in the (j,k) entry and 0’s
elsewhere. A basis for su(N, 1) is the collection of matrices
{iBj; —iEnti N1 |1 <j < N},
{E‘)k —Ey |j<k,2<k<N},
(iBju+iE,|j <k 2<k<N},
{EjNt1+ Eny1511 << N},
{iEj N1 —iEN11,; |1 <j < N}

These basis elements give us the operators

) ) ) .0 .0
Wf(ZEjyj — ZEN+17N+1) = —’L(N + 5 + 1) - 222’]‘5 — Z’LZE—
3
x 5
0 0
Eiv—En) = —2 2 9
Te(Ejk — Erj) = —zk 7 +2ig
xp*

.0
(1B + 1Bk ;) = —izik=— 7% zzja—Zk,

Jok
x?)

0 0
Te(EjN1+ Eny1y) = (N+E+ 1)z + 27— 95 " 05 + ;Zﬂj@_z/

%] t#j
. . . ) 3
me(iEj N+1 — iENy1,) = i(N+ &+ 1)z + zz —|— za—z + ZZZng 572
J
x] f#]

Notice that ) € su(N, 1) if and only if there are a?,a}”, a}", a}, al € R, such that

N k-1
P = Z a{%ﬂ + ai%ﬂ + a%.'fj + Z Z %%’k + aé’k%gk].
k=2 j5=1
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Thus, any self-adjoint operator coming from the representation of su(N, 1) is given
by im¢(2)), which has form

N N k-1
i| > lalme(¥]) + aqme (X)) + alme (XD + D > af e (X5") + af Pre (x57)]
j=1 k=2 j=1

and can be expanded to

N

(N+e+1)Y [a{ + (id) — ag)zj]
j=1

N o N o N 9
+ Z (—iaj —al) + | 2a] + Z aj | zj + (ia} — af,-))z? + Z(iaﬁ — ab)zez; 8—%

i=1 P =1

l#£j L#£5

N k-l 4 , P , 4 P
+ —ia* + a2 e — + (iad* + al* z—]

kzﬂj:1 |:( 2 3 ) kazj ( 2 3 ) ]8Zk

()
where (x) can be written as
N [w-1 N )
Z [Z(i% + a3 )ze + Z (—ias" + agj’l)ze] P
w=1 =1 l=w+1 w

Thus, we have the equivalent expression for im¢(Q)):

: N+&+1 o —
ime () = NiilZaw(NHH)Za%zﬂ
jal=1 181=1
1o} 0
0 8,8 0 B+ B
+Z aa—i-Z( +age ) (a (8z1’ ’(?ZN))

lee]=1 18]=1

where al € R. Notice that any operator in Theorem [B] can be attained via trans-
lating a im¢ () by some scaled identity, i.e.,

. N4¢+1 N
L= ZWE(SD) — W Z a, — 018
lal=1

where a) € R, which shows that (7T5,A§(IB%N )) generates all the first-order self-
adjoint differential operators on AZ(B").

Remark 1. Kehe Zhu in [§] asked if there exists self-adjoint A, B on AZ(D) (D the
unit disk) such that [A, B] = AI for A € C\{0}, where I is the identity operator. We
showed in [2] that this is not possible if we required A, B be first-order self-adjoint
differential operators. The answer is also negative when extended to A2 (BY), as

that would require a2 to be 0 for every |a| = 1, which means N;,'f_‘fl Zw 1058 =0
as well.
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Proof of Theorem [2 for the unit ball. To avoid introducing too many variables,
we will re-use functions f,g for different parts of this proof. It should be clear
to the reader when the functions are being re-defined. Let f € AE(IB%N ) and let

— ; +18))? o
f(z) = ZBEN(])V a®zP. Notice that (N+£+2+(I%\)(1‘V+5+1+|[3\) converges to a positive
number as |5] — oo, so there is C' > 0 such that

1 (c+18])°

< <C.
CT (N+&+2+ BN +E+1+18])
Then, it follows that
IZfleva =D (c+18)°1a” 127125
BeENY

_ 2 (N+E+2)(N+E+1) 812118112
2 I ey e I1FIE

BeENY
S(N+HE+(IN+E+1)C Y 10”2712
BeNY
=(N+&+2)(N+ £+ 1)C|IfIIZ < oo,

so Lf € A§+2(IB§N), hence L is well-defined. Let f,g € Ag(BN), where f(z) =
ZﬁeN{,V a?z8 and g(z) := ZﬁeNDN bP28. Clearly,

Lf(z) = Lyg(z) < Z (c+18))a’2P = Z (c+ |8V 2P = o ="
BENY BeENY
for all B € N§, so L is injective. Now, let f € AZ,,(BY) and denote f(z) :=

ZﬁeN{,V aPz8. Let us define g(z) := ZﬁeN{,V #fﬁlzﬂ’ which is well-defined because
c is not 0 nor a negative integer, hence ¢ + || # 0 for all 8 € N}'. Since

|Ubﬂ|2 2
gz =Y ——I°|
¢ sern (c+B)2"" ¢
- C Z (N +&+2)(N + £+ 1)]a?? 182
_(N+§+2)(N+£+1)6€NN(N+§+2+|B|)(N+§+1+|B|) ¢
_ ¢ B812),82
T INtE+D)(N+E+T) D 1@ Pl
BENY
C

= 2
B (N+§+2)(N+§+1)Hf”g+2<oo,

so g € AZ(BY). Since Lg(z) = f(z), we have that L is surjective. Finally, let
fe AE(BN) and let f(z) = ZBEN(])V aPzP. Then,

N+E+2)(N+E+1
WrErDINEELD S o))

BENY

S
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(e + 181 e
SINHEEDW D) 2L e oy rer e

:”Lf”§+2

S(N+HE+(N+E+1)C Y [a??)27)12
BENY

—1£112

thus L is continuous. The argument for L1 is linear, and continuity follows from
the same argument using the C' bounds. Thus L is a linear homeomorphims.

3.3. The case of the Generalized Unit Disk. In this section we consider the
domain of complex 2 x 2 matrices Z for which I — Z*Z is positive definite which
is the same as assuming I — ZZ* > 0. First, we will describe how the integral
over D? can be written as a iterated integral over two unit balls B? in C2. Let
7Z = zl iz} = [V | W]solI—ZZ* is equivalent to I — VV* — WW* > 0. Since
3 24
VV* >0 we get that I — WW™* is positive definite. Therefore, I — WW* =T for
some positive definite operator T'. Then T is diagonalizable and there is a unitary
matrix U and a diagonal matrix D such that U*TU = D. We will find U and D in
terms of z1, z3. Notice
_[T=l|z1? —21%s
I-VV* = _
|: —Z1%3 1 — |23|2

which has eigenvalues A = 1 — |21]? — |23/> and 1. The orthonormal eigenvectors

z —Z
arev; = ——2 [ andwvg = —L | _“3|. Thus
Vlz12+23]? | 23 ViziP+lzs]? | 21

* 1 —z3 21| |1 0 Z3 Z1
[—VVie — |7
|21|? + [23]? [ Z1 23} {0 1—|z]? - |Z3|2] [21 —23

So we can let U = —L [__23 Zl] and

Vi0elP+zsl? | 21 23
10

o-[s
Notice that T = U*v/DU and if we replace W by vTWji, then I — VV* —
WW* =TI -VV* ~VTWiWVT = T — VIW\WNT = VT(I — WiWVT.
Since VT is self-adjoint and strictly positive, I — ZZ* is positive definite if and
only if I — W W7 is. Notice that I — Wi W7 > 0 is equivalent to 1 — W{W; > 0,
so this is the same as requiring W, do be in the unit ball B of C2. Lastly note that
det(I —Z*7) = det(I — ZZ*) = det(VT(I —= Wi W)WVT) = det(T)(1 — W;W;) and
det(T) = 1 — V*V. Equip the domain with the Euclidean measure dZ inherited
from C* (or R®). Then, for & > —1,
(3.4)

f(2D)h(2)¢dZ = | f(Z)(det(I — Z2Z*))¢ dZ
D2 D2

= / F(V | VTWA]) det(T) det(T)E(1 — Wy Wh)s dV AW,
B2 JB2
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_ /182(1 SV [ RV VIWA)( - W)W av
Since the ball B? is invariant under multiplication by a unitary matrix, we get
/Dz f(Z)|det(T)|* dZ = /132(1—V*V)5+1 9 F(V | UVDWL])(1=W; W) AW, dV.

Denoting Z™ = z{''25%25%z,*, we have
2T P8 T
o= [ A e ()
B

|Zl|2 + |23|2)n2+n4+m2+m4
/ (\/X2124 — 222—3)712 (\/X2124 — 2’_223)m2
B2

(VAz3z4 + Z122)™ (VAT3ZT + 2152) ™ (1 — | 22]? — |24)?)¢ AW dV

EEEE ()

a=0p=0v=0¢=0

2 +atmy —eym +B+na e +mo —B+vW
B2

( /|Zl|2 + |23|2)n2+n4+m2+m4

(1— |21|2 _ |23|2)5+1+%(a+/3+7+sa) dv

/IB2 2;12-1-714—(04+’Y)Z;n2+m4—(ﬂ+¢)zr+vzf+ap(1 _ |2’2|2 _ |Z4|2)5 dw.

We know that the monomials on the unit ball are orthogonal, which means that for
the above integral to be non-zero, the following relations must all hold:
nt+a+mg—p=mi+p+n4—7,
ng +ng — (@ +75) =mz+my — (B+¢),
ng+me—fB+y=mg+n—a+ey,
a+v=p3+¢.

Combining the relations, we get that the inner-product is only non-zero when

Ny + ng = M2 + My,
n1 + ng = m1 + ma,

Nng + ms3 = n3g + ma.
Also, by combining the three relations above, we get that
n1 + ng +n3 + ng = my + ma + ms + mu,

which also shows the already known statement that monomials of different homoge-
nous degrees are orthogonal.

Proposition 4. Let f, € AZ(D?) be denoted fq(2) = ZﬁeNg af 2P where o € N§.
If the operator L = fo + S p_, fek% with domain D(L) = P(D?) is symmetric,
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then
_ 0 4 0 e
fo=ag+ (E+4)> 7, al, 2,
— 40 er el e2 €2 es3 €3 0 ,eates 0 ,e1teg
Jer = ag, +aftz® + a2z + a2 4 al, 2 —|—Zk¢4aekz ,
oy L =l b T g e D
* _¢
_ .0 es es es ,eq €3 ey 0 ~ei1tes 0 ,esteg
Jes = ag, + a2 + a2 4 ac 2 +al,z + Zk;éz ad z ,
_ .0 eq €4 €2 es €3 e 0 ,eates 0 ,eateg
Jes = ag, +aftz® 4+ aci2® 4 act 2% +al 2 + D k1 0,7
with ad,a% € R, ag' = (§+4)ad, a +af* =a2 +a.

€4

Proof. Assume L is symmetric, so given n,m € NY¥, we have (Lz™, 2™)¢ = (2™, Lz™)¢.
This equality is the same as

Z Za,gca,%zﬂ-&-v—a’,z/))g = Z Zagca,p<z"’,zﬂ+p_“>f,
la|<15>0 la]<15>0
where
1 a=20
Cay =gy vy—a>0
0 else.

Plugging in different values of n and m it is possible to determine the properties of
the coefficients of L. Below is a table summarizing the relations and which m and
n were used to derive them.

Number Relation Deriving the Relation
(1) a) R n=m=0
(2) afi = (£ +4)al n=e;,m=0
(3) agi € R n=m=e;
(4) ac;™ =0 n=2e;,m=e; +e5_; and (5)
(5) acl = ag n=-e;,m=e;
(6) ayl = aZi:; n=e +e_;,m=e; +e;
(7) aé = al n=2e,m=e;
(8) als = n=2e;,m=e;
9) gtes—i — n=e; +es_;,m=e; and (2) and (10)
(10) az;f+e5’j =al | n=e; +es_;, M =e¢
(11) it :a_(e)j n=e; +ej,m=e; and (2)
(12) oot — n=e;+ej,m=es_;
(13) agi + ac”! = aZj + aZi:j n=-e+es_j,m=e;+es_;

where 1 < ¢ < 4 and j # 4,5 — i. Combined with Proposition [l we have our
desired L.
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In the process we have used the following norms

vl
02 _
(€+1)
412 = e
| 22¢ 2 _ T (€ +1)!
R
citeyz_ THEFD
|25 ngmd#lﬁ—l
||Zei+6571'”2 _ 7T4(§ + 1)'(5 + 4)
¢ 6(6+5)!

and fact that the inner product for o < § with |a| = |5] = 2 satisfies

e B
(2%, 2P) = { S+ a=e+eq,B=es+es,
0 else
as desired.
O
Proof of Theorem[d for the generalized disk. For x € SU(2,2) and A, B,C,D € Mo,
denoted
1._|A B
=0 Pl

consider the discrete series representation me(z) : AZ(D?*) — AZ(D?) given by
me(x)f(Z) = det(CZ + D)~ f((AZ + B)(CZ + D)7 Y).

Similar to the case of SU(N, 1), the representation (e, A% (D?)) is a unitary repre-
sentation and it defines a unitary representation of the universal covering group of
SU(2,2). Again, we do not need to make a distinction between these groups, since
their Lie algebras are the same and the exponential mapping is a local diffeomor-
phism.

We now approach finding the differential operators that come from the Lie Al-
gebra representation of SU(2,2). Note that W € su(2,2) if and only if

wi,1 Wi2 —W1,3 —Wi4 —wi,1 TwW2,1 —W3,1 —W4,1
W21 W22 —W23 —W24|  |—Wi2 —W22 —W32 —W4p2
w3,1 W32 —W33 —W34 N w1,3 w23 w3, 3 W4,3
W41 W42 —W43 —Wh4 W1,4 W2,4 W34 W44

and tr(W) =0, i.e.,

wy1  Wi2 W13 w1 4
W= —Wi2 W22 W23 w2 4
W13 W23 W33 w3 4

3
Wis Woa —Wiza — ) ;Wi
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where w; ; € iR. Then, a basis for su(2, 2) is the collection of matrices

i 00 0 00 0 0 000 0
000 0 0 i 0 0 00 0 0
L=l 00 ol'%2lo0oo0 o/'™=|0o0 i ol
0 0 0 —i 00 0 —i 0 0 0 —i
[0 1.0 0 00 0 0 0 i 00
-1 0 0 0 00 0 0 i 00 0
W=1g 00 o0'®=lo0o o 11'%=|o 0 0 of
0 0 0 0 00 —1 0 00 00
[0 0 0 0] 0010 00 0 1
00 0 0 00 0 0 00 0 0
=10 00 i|"®={1 00 0|00 0 of
0 0 i 0] 00 0 0 1 000
(0 0 0 O] 00 00 0 0 i 0
0010 00 0 1 0 0 0 0
=19 1 0 o™ =1]g 0 0 o' *2=|_; 0 0 o
0 0 0 0] 010 0 0 0 0 0
[0 0 0 i 0 0 0 0 0 0 0 0
0 0 0 0 0 0 4 0 0 0 0 i
Ais=10 0 0 o= |o =i 0 o/"® = 1|0 0 0o o
—i 0 0 0 0 0 0 0 0 —i 0 0

and the corresponding skew-adjoint operators from the Lie Algebra are

.. 0 0 )
Wf(m;l):(§+4)Z+2218_i+22228_52+2248_i7
0 0 P
Wg(mgl):(§+4)i+i223_;2+i238_zf3+2iz43_i’
Wg(mgl):_lzlﬁ'i_ZZZ_f—Z23—f—|—1248_f7

(921 (922 62’3

0
-n_ 9 9] a7 _9dr
Ff(mf) ) = 2o 21 21 2y + 24 923 23 D21’
_ of . of . of . Of
n_ ., 9] o5 a5 a5
(g ™) = iz3 9o + 024 925 + iz s + i29 9or
of . of . of . Of

me(AY) = mizgt —ing —ing —ing
ez = —(E+ D+ (1 - 212)3_2{ _ 21223_52 B legg_i B 3233g_ia
me(Ay ) = —(§+4)zg_21223_i+(1 _Zg)g_i _2124(;9_2 _2224(;9_47
me(Ar) = —(§+4)zg_zlzgg_i _2124%”1‘ 3)8{; _2324%,
ws(m;11)=—<§+4)z4_2223%_2224%_232432 - 3)%=
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me(Ary) = (€ + )iz +i(1 + Zl)g +iz122 5 975 +iz123 7 s + iz223 gi

me(Upy) = (€4 4)izs +imz gf +i(1+2 )gj +iz124 gj +iz924 gi

me(A)) = (€ +4)iz +izlz3§_jl +§_f2 L) g_;; t ey g—i |

me(Arg') = (€ +4)iza + iz2z3§_i + i22z4§_J; N zz?,ag—‘i rillaz )gi_
Since 9) € su(2,2) if and only if there are a1,--- ,a15 € R such that

15
V= apme(Ar),

then any self-adjoint operator coming form the representation of su(2,2) has form

ime() =i Y arme(Ar).

If L is an operator satisfying (%) from Proposition Ml then we can choose a;’s to
satisfy the following system of equations:

0

Ge, = —a12 + iag, Ge, = —a13 + iayg,

ag, = —ais + iao, ad, = —ays +iai,

ag: = az — ar, ag2 = —2a; — az — ag,

agd = az — az, agi = —a1 — 2az — as,

ag? = ar +ias, ag? = —ag + iay,

i.e., we choose the a;’s in the following way:
al:_aﬁi_aﬁg—aﬁ; az:a_ﬁi_@_@, as:Qaﬁi—agg—i—agg,
2 4 2 4 4 4

a4 = Im(asz), as = Im(aZf), ag = —Re(aZf),
ar = Re(ag?), as = Im(a? ), ag = Im(a?,),
alp = Im(ags), ajp = Im(a24), a1g = —Re(agl),
a3 = —Re(a22), als = —Re(a23), als = —Re(a24).

Then L can be written as
L = i?TE(QJ) + (3&1 =+ 3a2) =+ a8

when the right hand side is restricted to the polynomials.
Since the polynomials are a core for m¢(2) it follows that if L satisfies (x) of
Proposition @ then L is symmetric.

Remark 2. Notice that this argument uses representation theory to overcome the
difficulty of showing that L satisfying (%) of Proposition Ml is symmetric. This is
especially useful as we avoid calculating inner products of monomials above degree
2 (recall that the inner products of monomials with same homogenous degree may
not be orthogonal on D?). In some sense this means that we just need L to be
symmetric with respect to polynomials of low degree (which is not a dense set).
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APPENDIX A. RELATIONS

For n = m = 0, we have

4
L2°, 2% = al 2220 = ad)| )2 = Y S — ,
< >§ ﬁ§4 O< >E 0” ”E 02(€+2)(§+3)
0
0 7.0 " BTLB 0\ 0
20, L2 = ag (28,29 = dl||z —a—
< >5 ﬁ§4 0< > 0” ”5 02(€+2)(§+3)
0

so af = al € R. For n = ¢; and m = 0, we have

(L, 2% = 3 ag(P7, 20+ 30 D adla- )70, 2%

BENG loe|=1 BENG
0 m
ag,12°1 = a2, 5y
2(6+2)(§+3)
e 7.0\ _ PTP 2o — a2 — g €+ 1)!
(2, Lz >5—Za0<23,z Je = ||§ oma
BENG
so afi = (€ +4)al . For n = e; and m = e;, we have
<Lzei,zei>£ = Z 0T 2 e+ Y Y al(a ) (2T 2

BENG lo]=1 BENG

1 4 1)!

:a8||ze" 52_'_&2; i 2 _ 07T (€+ ) aeiﬂ- (€+ )

¢~ W+ 4)! “2(E+4)
O D I ICAED D DD DA CR EAE D

BENG |o]=1 BENG
511 e + 1) — 7€+ 1)
=ad|z%|? + & ||z = g~ '€ +ag’ ,

so it follows that afl = afi €R. For n =e¢; and m = e;, we have

(L%, 2%) = Z < Brei e be + Z Z ﬁ+era,zej>5

BENG la|=1peNg
4
e; e;ll2 ™ (g + 1)'
=al ||z = a) ———,
(=5 L) = Y ag(ePro 20e+ Y Y alla- e 2w
BENG \a|—1 BENG
e = o 2<s+4>! ’

. . . €; e
which gives the relation a.] = aﬁ;. For n = 2e; and m = e;, we have

(L2 206 = 3 (P2 + 3T 3 al(a (2e0) (2 20

BENA la|=1 BN
4 1!
= 2a8 €1||§ = ag.iw (€+1) ,
P(E+4)
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<Z2ei,LZei>f — Z a€<25+8i7z28i>£ + Z Z ag(a . ei)<zﬁ+ei7a¢,z2ei>g

BeN lal=1 peNd
4 4
2e; 26 2e; (|2 e T (€+1)' 2e; (€+1)'
— a z4€i + a @ z4€i =—qfft— 7 + aeiliu

2e; _ 0 _ g% — g% — %, — e
so we have that ;% = (£ +5)al, — a5’ = ag'. For n = 2¢; and m = ¢;, we have

(L2 2%) = Y ag (27729 29) + 37 N " all(a- (2e3))(2P 127 2%) = 0,

BENG la|=1 BeN]
<Z2ei,LZ€j> _ Z <Zﬁ+e] 2261 Z Z aa - e] ZBJrlea Z2e1>
BENG la|=1 BENG
— aQeI 2e; (12 — a2¢i 7T4 (g + 1)'
v “(E+5)
which gives us ai = agej = 0. For n = m = 2¢;, we have
<L22e¢722ei>5 — Z ag<2'8+26i,226i>5 + Z Z ag(a . (2ei))<zﬂ+2€i_o‘,z2ei>5
BENG la|=1 BENG
)
0).2€: (|2 il L2e; 112 e TH(E+1)!
= agl|2“||F + 2ac |27 | = +2ag) s
OH 3 e; 3 ( ) (5 + 5)!
(22 L2244, = Z ag—<zﬁ+2ei,z2ei>§ + Z Z aa(a (2€;)) (2PF2ei—a 2,
BENG la|=1BeNG
o4
2e; 2e; (6 + 1)
= a0l|2%% ||¢ + 2a&(|2%%||? = (a0 + 2a&)—> 2
adlz> |l 272 = (ad ag) " €15)

yielding no new relations. For n = 2e¢; and m = e; + e5_;, we have
(L2020t o) = 3 ag(z7F30, 2500 4 37 % ad(a (e) (7120 ot oo,
BENE la|=1 BeNg

4
_ 65 i|| »€ites—i 2 e5 i (5 + 1)'(5 + 4)

<Z2ei7 Lzei+€57i>£ _ Z £<26+(6i+65*i), 226i>5
BEN

+ Z Z aa 61 +e5-— l))<25+(8i+€57i)7047228i>5

|a|=1 BeNg

——m* (£ +1)!

2e;
||§ 65 i (§+5)' )

= aﬁg,in

—1

which gives us a6 and combined with the relation ael = ael, gives

T3
= Qes_; 731 £+4
=agi_, = 0. For n = 2e; and m = ¢; + e;, we have

(L2, 2% ) = 3 ap (2PH20, 2009
BENg

T Z Z ag(a ) (26i))<25+2ei*0‘,28i+8j>5

la|=1 BeNG

—1i

us that ac’
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. €+ 1)!
“ (€457
(22 Lot = Z $<23+(ei+ej)7Z2ei>5
BENg
T30 Y anle (e +eg)) (T 2
lo|=1 BENG

4
€; 2e; 112 Eiﬂ— (§+ 1)'
= sl = e (€+5)

=2a%|z%" | =a

yielding no new relations. For n = 2e; and m = e; + e5—;, we have

<L226¢,Z€j+€57‘7‘>£ _ Z ag <23+2ei7 Z€j+657j>£

BEN
+ D0 D0 agla (2e)) (s st
la|=1 BENG
4
— 2a85—i<zei+€5—i Z€j+€5—j> — €5—i m (5 + 1)'
’ o3+
<Z2ei7Lzej-i-eg,,j>5 _ Z £<Zﬁ+(€j+€5—j)7228i>5
BEN
+ 30 D al(a (e +es ) (PrEFem)ma B2 = 0,
la|=1BeNg

which yields no new relations. For n = e; + e5_; and m = e;,

<Lzei+€57i726i>£ — Z a€<z,8+('y+eg,,i), Zei>5

BENg
T30 ST o (et es )Pt e e
la|=1 geNg
=a° Zei”g —q° M
€5—i €5—i 2(§+4)| ’
<Z€'L+€5—i,LZ€'L>§ — Z %<26+8i7zei+657i>5
BENG
+ 3 alla e (ePrea pee)
|a]=1 5€N%
— a857i Z€¢+6571||§
eites—i|| e;+es—;|2 €jtes—i7 e tes_; ~eites ;
+aitet 2 4 agi o (perTeny petesi)g
_ e DIE+4)
0 6(¢+5)!
+ a22+8571‘ 7T4(€ + 1)'(5 + 4) _ azz'i‘es—j 7T4(§ + 1)'

6(C+5)! 6(E+5)
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thus giving us af 77 = =al_ + ({+4)ac e = =a),_,. Forn=e;+e5-; and
m = ej,
<L26i+€57ijzej>£ _ Z ag<Z,@-|-('y-|-eg,,q;)’Zej>g
BENG
T30 Y alle (et e Her0 ) =,
|o|=1 BENG
<Zei+€5—i7LZ€j>£ — Z £<Zﬁ+8‘jjzei+€57i>£
BENg
£33 alla- o) TP e
la|=1p3eNg
= ag‘r’*j <zej+€5—j , Zei+657i>§
+ agj_"‘ef» i ||Z€¢+€5 i ||2 + a61+65 J <Zej+€5—j726i+€571'>£
e 7€+ 1)!
O 6(¢+5)
L DIEHD) e+ 1)
“ 6(€ +5)! “ 6(6 +5)!
giving us agl T = & et ag e a1 =, a0 afites £r1- Combining with
previous relations, we get that aeﬁe‘r’ * = 0, which gives the relation aeﬂL 5 =
ad._ .. For n =m = e; + e5_;, we have
eites—i eites—i\ B, B+(eites—i) eites—i
(Lz ¥ )e ag (2 )2 e
BEN
+ Z Z e +e5 Z))<Zﬁ+(ei+e5—i)70¢,Zei+85—i>E
|o]=1 BENG
:a8”28i+8571‘ §_|_a€i ites—i E+a:: z 61“1’85—1' g
(@ a4 app TEFDIEHD)
) TE R
<Zei+857i7L287;+85—i>E — Z agm
BENG
+ Z Z aa ez +e5_ 1))<26+(€i+65—i)_0¢,Zei+es—i>£
|oa|=1 BENG
:a_8||28i+857i E+a_gz Leites—i §+a:g z yeites—i ¢
5 e e e+ DIE+A)
= (@ +a% +ai I ' ,
( 0 €4 6571) 6(5"’5)'

which yields no new relations. For n = e; +e5—; and m = ¢; + ¢,
<Lzei+es,ijzei+ej>£ _ Z ag <ZB+(€'L+€5*1'), Zeri-ej>5

BENG

+ 3 D al(a (et es ) (et Te o),

ler|=1 BENG



DIFFERENTIAL OPERATORS ON BERGMAN SPACE ON BOUNDED SYMMETRIC DOMAINS

e —a TEE D)
B
<Ze7;+e57i,LZeHra‘j>5 _ Z ag<26+(ei+ej),zei+e5,i>£
BENG

+ 303 dl(a- (e + ej)) (PHEte—a zereni)

loa]=1 BENG

65 1”2

€5—4

= Qe¢; eri-es 1”2 _|_a€5 J< 8j+€5—j726i+65,i>

3
(e VI (S N (]
“ 6(¢+5)! “6(E+5)]

. . . 8 €
which gives us the relation ael = Ges_ ; For n =e; + e5—; and m = e¢; + e5_;, we

have
<LZ€1'+6577;,Z,t”:‘jJr657j>5 — Z ag <Zﬁ+(ei+€5—i), Zej+€5—j>£

BENG
20 alla (et g (PHE e e
|o|=1 BENG
— a8<zei+€57i Z€j+€571>£ +a/21: <Z€i+€5—i726j+€5—j>5
+a€5 7.< eites—q Za‘quegg,j>5
e5_; )
4
0 e ex T &+ 1)
=—(agta +a’!)——7,
( 0 e; 6571) 6(54—5)'
<Zer|-€571',L,zej-i-esfj>5 = Z ag <Zﬁ+(€]‘+85—j), zei+€5—i>£
BENG
+ 30 Y alla (e + o5 )P TE e paTel)
|o|=1 BENG

— a8<zej+€5—j , Z€i+€5—i>§ + ag <Zej+€5—j , Z€i+€5—i>§

_|_a€5 J< ej+€5—j7zei+857i>§

€+ 1)!
6(&+5)!°

. . . €er—i €4 €54
which gives us that agt + Qoo ! = ae; + ae;;. For n = e; +¢; and m = ¢;, we have

(Lfeten, #)e = D ag (71T, 2%)¢

— (a0 + ag +aZ7?)

BEN
T30 D alla (et eg)) (eI o)
lor|=1 BENG
= ||2)2 = a® (€ +1)!
ol lle= e e
<287L+8j7L28i>£ — Z ag<zﬁ+ei,zei+ej>g + Z Z ag(a . ei)<zﬁ+ei7a,zei+ej>§
BENG lo]=1 BeNG

- - 4 |
e;+e; +€] e;i+e;|2 eitej\ T (5 + 1)

=a% )o||z7 || + ae, AR ay + ae; YR
aoll= 2 el = (0 + a2 ™) e
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thus (€ + 5)@2 = ao + ael , and using previous relations, gives us ac “Le]

For n =e; +¢; and m = e5_,,

<L26i+€j , 285—i>£ _ Z ag<Z,5Jr(e7;+ej)7 2654>5
BENg

+ 20 Y allar (et et s <,
lo|=1BeNG
<Zei+8j7Lze5—i>§ — Z %<25+85*i,26i+61>5
BENS
+ Z Z E(a cep_q)(FBtes—ima peite),
lee|=1 BENG

e;+e; ||2 _ a?"ﬁ‘?;‘ 7T4(§ + 1)'
T e )

0
=ag,.

=l |2

+e e +e
which gives us a¢; ™" = ag; " = 0. For n = e; +¢; and m = ¢; + e5_;, we have

<LZ€'L+€]',Z€1'+65—'L>£ — Z ag <ZB+(€'L+€]'), Zei-i-esﬂ»5

BENG

+ Z Z e'L +e; ))<Zﬁ+(ei+eﬂ')70‘,28i+65,i>5
la|=1 BeNG

als—i ||z tes— ||§ T+ ao—i (z8ites-g peites—i)

J T

— i T+ )E+4) _ goms (€ + 1)!’
“ 6(¢ +5)! “6(E+5)!
<Zei+ej7Lzei+€57i>£ — Z ag<23+(€i+65—i),zei+ej>£
BENG
+ 37 S dl(a (e + es_y))(FFHete—a_zete),

ler|=1 BENG

3

(€ +1)!
]

e;+e
—aes 1”21 ]Hg—
which gives us no new relations.
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