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Abstract

This paper addresses the geometric optimization problem of the first Robin
eigenvalue in exterior domains, specifically the lowest point of the spectrum of
the Laplace operator under Robin boundary conditions in the complement of a
bounded domain. In contrast to the Laplace operator on bounded domains, the
spectrum of this operator is not purely discrete. The discrete nature of the first
eigenvalue depends on the parameter of the Robin boundary condition. In two
dimensions, D. Krejcirik and V. Lotoreichik show that the ball maximizes the
first Robin eigenvalue among all smooth, bounded, simply connected sets with
given perimeter or given area, provided the eigenvalue is discrete.
We extend these findings to higher dimensions. The discrete spectrum of the
Laplace operator under Robin boundary conditions can be characterized through
the Steklov eigenvalue problem in exterior domains, a topic studied by G. Auch-
muty and Q. Han. Assuming that the lowest point of the spectrum is a discrete
eigenvalue, we show that the ball is a local maximizer among nearly spherical
domains with prescribed measure. However, in general, the ball does not emerge
as the global maximizer for the first Robin eigenvalue under either prescribed
measure or prescribed perimeter.

Keywords: Exterior Domain, Shape Optimization, Robin Eigenvalue, Steklov
Eigenvalue, Isoperimetric Inequality

1 Introduction

Finding the optimal shape of an object to make it as efficient as possible is a naturally
occurring question. In mathematical terms, this means to identify the set that mini-
mizes a given functional among all sets that satisfy given constraints. Specifically, our

1

ar
X

iv
:2

40
4.

10
88

6v
1 

 [
m

at
h.

A
P]

  1
6 

A
pr

 2
02

4



focus lies in the optimization of eigenvalues of elliptic operators. In this paper, we are
concerned with optimizing the lowest point of the spectrum of the Robin Laplacian,

λα1 (Ω) := inf
0̸=u∈W 1,2(Ω)

∫
Ω
|∇u|2 dx+ α

∫
∂Ω

|u|2 dS∫
Ω
|u|2 dx

. (1)

For bounded domains, the situation is well known. For n ≥ 2, α > 0, D. Daners shows
in [11] that the ball BR minimizes λα1 among all bounded Lipschitz domains Ω ⊆ Rn

with |Ω| = |BR|. For α < 0, M. Bareket conjectures in [6] that the ball maximizes
the first eigenvalue among all smooth, bounded domains with prescribed measure.
This is proven not to be true in general. A counterexample is given in [12, Theorem
1] by P. Freitas and D. Krejcirik. However, this counterexample does not prove the
statement false if α is close to zero. Furthermore, it is shown in [12, Theorem 2] that, for
sufficiently small |α|, the ball is a maximizer among all bounded, planar C2-domains.

In electromagnetic and gravitational field theories, questions often arise about the
solution of boundary value problems involving the Laplacian, which includes the occur-
rence of such problems on unbounded domains. Thus, we are interested in studying
whether similar inequalities apply to the Robin eigenvalue on the complement of a
bounded domain. We define Ωext := Rn \Ω. The outer unit normal, pointing out of Ω,
is denoted by ν, and ∂νu = ⟨∇u, ν⟩ is the derivative in normal direction. Throughout
the paper, we assume that Ωext is connected. We consider the eigenvalue problem{

∆u+ λu = 0 in Ωext,

−∂νu+ αu = 0 on ∂Ω,
(2)

where α ∈ R. We understand (2) as a spectral problem for the self-adjoint operator
associated with the bilinear form

a :W 1,2(Ωext)×W 1,2(Ωext) → R, a(u, v) :=
∫
Ωext

⟨∇u,∇v⟩dx+ α

∫
∂Ω

uv dS. (3)

This operator is called the Robin Laplacian in exterior domains and is denoted by
−∆Ωext

α . In contrast to bounded domains, the embedding W 1,2(Ωext) ↪→ L2(Ωext)

is not compact. Thus, we can neither conclude that −∆Ωext

α has compact resolvent
nor a purely discrete spectrum. Indeed, in [18, Proposition 1], D. Krejcirik and V.

Lotoreichik show that there is a nonempty essential spectrum of −∆Ωext

α , given by

σess

(
−∆Ωext

α

)
= [0,∞)

for all α ∈ R, n ≥ 2 and for all bounded, smooth domains Ω such that Ωext is con-
nected. However, it still makes sense to characterize the lowest point of the spectrum
by

λα1 (Ω
ext) := inf

0̸=u∈W 1,2(Ωext)

∫
Ωext |∇u|2 dx+ α

∫
∂Ω

|u|2 dS∫
Ωext |u|2 dx

. (4)
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If the discrete spectrum is not empty, λα1 (Ω
ext) is negative and coincides with the lowest

eigenvalue. If there is no discrete eigenvalue, then λα1 (Ω
ext) = 0, where in this case we

do not know if the infimum is attained. Provided λα1 (Ω
ext) is a discrete eigenvalue, D.

Krejcirik and V. Lotoreichik show in [19, Corollary 5] that the ball maximizes λα1 (Ω
ext)

in dimension n = 2 among all smooth, bounded, simply connected open sets with
given measure and among all smooth, bounded, simply connected open sets with given
perimeter. In dimension n ≥ 3 the ball does not maximizes λα1 (Ω

ext) anymore. Thus,
for dimension n ≥ 3, they define M(Ω) := 1

|∂Ω|
∫
∂Ω
Mn−1 dS, where M denotes the

mean curvature of ∂Ω, and show in [19, Theorem 6] that the ball maximizes the first
Robin eigenvalue among all convex, smooth, bounded open sets withM(Ω) = M(BR).

We show that the ball, although no longer the global maximizer, is a local
maximizer of λα1 (Ω

ext) among all domains with prescribed measure in any dimension.
First we characterize the existence of a discrete eigenvalue of the Robin Laplacian

in exterior domains. To this end, we consider for n ≥ 3, the Steklov eigenvalue problem{
∆u = 0 in Ωext,

−∂νu = µu on ∂Ω.
(5)

In [4], G. Auchmuty and Q. Han illustrate that solutions of (5) are in general not in
L2(Ωext). Thus, they construct the Hilbert space E1(Ωext), the space of finite energy
functions. Considering (5) in E1(Ωext), we obtain a well posed problem.

In Section 2.1, we characterize the discrete spectrum of the Robin Laplacian in
exterior domains, depending on α. We show that λα1 (Ω

ext) is a discrete eigenvalue if
and only if α < −µ1(Ω

ext), where µ1(Ω
ext) denotes the first eigenvalue of (5). Provided

that λα1 (Ω
ext) is a discrete eigenvalue, we are interested in optimizing λα1 (Ω

ext) among
all domains of given measure or given perimeter.

Before we discuss this geometric optimization problem, we demonstrate in Section
2.2 the continuity of λα1 (Ω

ext) and µ1(Ω
ext) with respect to the Hausdorff metric,

which implies the existence of an optimal domain in a suitable collection of subsets of
Rn. Furthermore, we establish in Section 2.3, a monotonicity result for λα1 (Ω

ext) and
µ1(Ω

ext) concerning a specific type of domain inclusion. This implies that achieving
optimality within a given perimeter results in optimality within a given measure.

Comparing λα1 (B
ext) with λα1 (E

ext), where B is a ball and E is an ellipsoid with
equal measure, we demonstrate in Section 2.4 that the ball cannot be the global
maximizer of λα1 (Ω

ext) among all smooth domains with given measure. Leveraging the
monotonicity discussed in Section 2.3, this extends to the ball not being the global
maximizer among smooth domains with a prescribed perimeter.

Lacking a global approach, we study how local perturbations affect the eigenvalue.
By proceeding similar to [5], as described in Section 3.1, we derive formulas for the
first and second variations of λα1 (Ω

ext) in Section 3.2. Using the second variation, we
show in Section 3.3 that the ball maximizes λα1 (Ω

ext) locally among all nearly spherical
domains with prescribed measure. To accomplish this, we establish in section 3.3.1
a new inequality, to the best of our knowledge, for the ratio of Bessel functions. In
Section 3.4, we derive a quantitative inequality.

Some results of this paper have been published previously in [8].
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2 Basic Properties of the Robin Eigenvalue in
Exterior Domains

If Ω is a bounded domain, it holds λα1 (Ω) < 0 if and only if α < 0. This can easily
be seen by inserting a constant test function into (1). Thus, one might guess that for
α < 0 it holds λα1 (Ω

ext) < 0. It turns out that this condition is not sufficient in general.
In [19, Proposition 2], it is shown that there exists a nonpositive constant α∗(Ωext)
such that λα1 (Ω

ext) is a discrete, negative eigenvalue of (2) if and only if α < α∗(Ωext).
More precisely, it holds {

α∗(Ωext) = 0 for n ∈ {1, 2},
α∗(Ωext) < 0 for n ≥ 3.

If α < α∗(Ωext), i.e. λα1 (Ω
ext) is a discrete eigenvalue, it can be shown by standard

methods that λα1 (Ω
ext) is simple and the corresponding eigenfunction can be chosen

strictly positive. Since these properties are important for further calculations, we start
by characterizing α∗(Ωext) for n ≥ 3 in more detail. The results of Section 2.1 have
been published beforehand in [8, Section 2].

2.1 Characterization of α∗(Ωext)

As in [2, Proposition 2.1], it can be shown that λα1 (Ω
ext) is continuous in α. Combined

with λα1 (Ω
ext) < 0 ⇔ α < α∗(Ωext), this means that

λ
α∗(Ωext)
1 (Ωext) = inf

0̸=u∈W 1,2(Ωext)

∫
Ωext |∇u|2 dx+ α∗(Ωext)

∫
∂Ω

|u|2 dS∫
Ωext |u|2 dx

= 0.

Because 0 ∈ σess

(
−∆Ωext

α

)
, we don’t know if the infimum is attained. Nevertheless,

for all u ∈W 1,2(Ωext), it holds

0 ≤
∫
Ωext

|∇u|2 dx+ α∗(Ωext)

∫
∂Ω

|u|2 dS,

which suggests that −α∗(Ωext) could potentially be a Steklov eigenvalue.
A. Auchmuty and Q. Han consider in [4] the exterior harmonic Steklov eigenvalue

problem (5) for dimensions n ≥ 3. For Ω = BR, the radial solutions of (5) are of
the form u(x) = c1 + c2|x|2−n. Here, u ∈ L2(Bext

R ) does not hold true in general. To
solve this problem, they define the space of finite energy functions E1(Ωext) to be the
subspace of L1

loc(Ω
ext) of functions that satisfy

1. ∇u ∈ L2(Ωext;Rn),
2. u decays at infinity which means Sc := {x ∈ Ωext : |u(x)| ≥ c} has finite measure

for all c > 0.
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In addition, E1(Ωext) is a Hilbert space with respect to the inner product

⟨f, g⟩E1(Ωext) :=

∫
Ωext

⟨∇f,∇g⟩dx+
1

|∂Ω|

∫
∂Ω

fg dS.

Furthermore, they prove that the boundary trace operator γ : E1(Ωext) → L2(∂Ω)
is compact. Using the methods of [14, Chapter 8], it can be shown that the first
Steklov eigenvalue µ1 is simple and its corresponding eigenfunction u1 ∈ E1(Ωext) is
of constant sign. Moreover, since γ : E1(Ωext) → L2(∂Ω) is compact, the spectrum is
purely discrete and we have a sequence of eigenvalues

µ1(Ω
ext) ≤ µ2(Ω

ext) ≤ . . . ,

accumulating at ∞. On the basis of these properties, we can characterize α∗(Ωext).

Theorem 1. Let µ1(Ω
ext) be the first eigenvalue of (5). Then, α∗(Ωext) = −µ1(Ω

ext).

Proof. To prove the theorem, we show the two inequalities α∗(Ωext) ≤ −µ1(Ω
ext) and

α∗(Ωext) ≥ −µ1(Ω
ext).

Beginning with the first inequality, we can characterize µ1(Ω
ext) as

µ1(Ω
ext) = inf

u∈E1(Ωext),

||u||2
L2(∂Ω)

=1

||∇u||2L2(Ωext) (6)

and since W 1,2(Ωext) ⊆ E1(Ωext), we immediately obtain

−µ1(Ω
ext) ≥ − inf

u∈W 1,2(Ωext),

||u||2
L2(∂Ω)

=1

||∇u||2L2(Ωext).

This implies α∗(Ωext) ≤ −µ1(Ω
ext).

To prove the reversed inequality, we approximate the first eigenfunction of
the Steklov eigenvalue using functions with compact support. Let u1 be the first
eigenfunction of (5), with u1 ∈ E1(Ωext) and ||u1||L2(∂Ω) = 1. Then,

0 =

∫
Ωext

|∇u1|2 dx− µ1(Ω
ext).

To approximate u1 by smooth functions with compact support, we utilize a result
from G. Lu and B. Ou, proven in [21, Proof of Theorem 5.2, Proposition 2.2]. For a
function u ∈W 1,2

loc (Ω
ext) with |∇u| ∈ L2(Ωext), they define

(u)∞ := lim
R→∞

1

|Ωext ∩BR|

∫
Ωext∩BR

udx

5



and show that w := u− (u)∞ can be approximated by smooth functions, i.e. for every
ε > 0 there exists ψR ∈ C∞

0 (Rn) with ψR(x) = 1 for |x| < R, such that∫
Ωext

|∇w −∇(wψR)|2 dx < ε.

Since E1(Ωext) ⊂ L
2n

n−2 (Ωext) (see [4, Corollary 3.4]), we obtain∫
Ωext∩BR

|u1|dx
|Ωext ∩BR|

≤ 1

|Ωext ∩BR|

(∫
Ωext∩BR

|u1|
2n

n−2 dx

)n−2
2n
(∫

Ωext∩BR

1 dx

)n+2
2n

= |Ωext ∩BR|
n+2
2n −1

(∫
Ωext∩BR

|u1|
2n

n−2 dx

)n−2
2n

.

Since n+2
2n −1 < 0, it holds limR→∞ |Ωext∩BR|

n+2
2n −1 = 0. Also, since u1 ∈ L

2n
n−2 (Ωext),

we have

lim
R→∞

(∫
Ωext∩BR

|u1|
2n

n−2 dx

)n−2
2n

= ||u1||
L

2n
n−2 (Ωext)

.

Thus, u1 − (u1)∞ = u1 can be approximated by u1ψR. By choosing R large enough,
such that ϕ(x) = 1 for all x ∈ ∂Ω, we have∫

∂Ω

(u1 ψR)
2 dS =

∫
∂Ω

u21 dS = 1.

For α < −µ1(Ω
ext), we can choose R large enough such that ϕ := u1 ψR ∈W 1,2(Ωext)

satisfies∫
Ωext

|∇ϕ|2 dx− µ1(Ω
ext) =

∫
Ωext

|∇ϕ|2 − |∇u1|2 dx <
−µ1(Ω

ext)− α

2
=: ε̂(α).

Therefore, we obtain∫
Ωext

|∇ϕ|2 dx+ α

∫
∂Ω

|ϕ|2 dS < ε̂(α) + µ1(Ω
ext) + α =

µ1(Ω
ext) + α

2
< 0.

Thus, α < −µ1(Ω
ext) implies λα1 (Ω

ext) < 0. Hence, α∗(Ωext) = −µ1(Ω
ext).

Analogous calculations for higher eigenvalues lead to the following corollary.

Corollary 1. Let µk(Ω
ext) denote the k-th eigenvalue of (5). The Robin Laplacian

has k discrete eigenvalues if and only if α < −µk(Ω
ext).

As an example, we consider Ω = BR. Here, it is possible to find an explicit formula
for α∗(Ωext) (see [19, Proposition 3]): For α < α∗(Bext

R ) the first eigenvalue λα1 (B
ext
R )

6



is negative and simple, so the corresponding eigenfunction has to be radial. Thus, (2)
becomes {

u′′(r) + n−1
r u′(r) + λu(r) = 0 for r ∈ (R,∞),

−u′(r) + αu(r) = 0 for r = R,
(7)

where u′ denotes the derivative of u with respect to r. For n ≥ 2, the solution of (7)
is given by

u(r) = c r−
n−2
2 Kn−2

2
(r
√
−λ), c ∈ R, (8)

where Km denotes the modified Bessel function of second kind (see Appendix A). The
boundary condition yields a relation between α and λ. Using (A4), we obtain

α =
u′(R)

u(R)
= −

√
−λ

Kn
2
(R

√
−λ)

Kn−2
2

(R
√
−λ)

.

This equation indeed provides a unique relation between α and λ. To prove this, we
define for m = k

2 , k ∈ N, the mapping

fm : (0,∞) → R, z 7→ −zKm+1(z)

Km(z)

and show that fm is strictly monotonically decreasing. Since Rα = fn−2
2

(
R
√
−λ
)
,

this yields the desired uniqueness between α and λ. Using (A4) and (A2), we obtain

d

dz
fm(z) =

z2 + 2m zKm+1(z)
Km(z) −

(
zKm+1(z)
Km(z)

)2
z

.

From (A10), we obtain zKm+1(z)
Km(z) ≥ m +

√
m2 + z2 > 2m. Furthermore, the mapping

x 7→ 2mx− x2 is strictly monotonically decreasing on (m,∞) and we conclude

d

dz
fm(z) <

z2 + 2m
(
m+

√
m2 + z2

)
−
(
m+

√
m2 + z2

)2
z

= 0. (9)

Thus, the mapping

λ 7→ −
√
−λ

Kn
2
(R

√
−λ)

Kn−2
2

(R
√
−λ)

is strictly monotonically increasing for λ ∈ (−∞, 0). For R = 1 and different n,
this relation is shown below in Figure 1a. Since it seems more natural to express λ
depending on α, we also plot the inverse relation in Figure 1b.
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(a) α depending on λ1 (b) λ1 depending on α

Fig. 1: Relation between α and λ1 for the n-dimensional unit ball.

To determine α∗, we have to determine limλ→0 α(λ). We use the asymptotic
behavior of the Bessel functions, (A6) and (A8) and obtain for n ≥ 3,

lim
λ→0

α(λ) = lim
λ→0

fn−2
2

(R
√
−λ)

R
= lim

λ→0
−
√
−λ

Γ(n
2 )2

n−2
2

(R
√
−λ))

n
2

Γ(n−2
2 )2

n−4
2

(R
√
−λ))

n−2
2

= −n− 2

R

and in view of the monotonicity, we obtain λ < 0 ⇔ α < −n−2
R , which implies

α∗(Bext
R ) = −n− 2

R
. (10)

On the other hand, for Ω = BR, the first eigenvalue of (5) is given by µ1(B
ext
R ) = n−2

R
which confirms Theorem 1.

2.2 Continuity

In order to show existence of optimal or critical domains, it is often helpful to have
continuity of the eigenvalue. In this section, we show that the mappings Ω 7→ λα1 (Ω

ext)
and Ω 7→ µ1(Ω

ext) are continuous with respect to the Hausdorff metric. In particular,
in view of Theorem 1, the continuity of µ1(Ω

ext) allows us to deduce that α < α∗(Ωext
0 )

implies α < α∗(Ωext) for all domains Ω in a neighborhood of Ω0.

Definition 1. Let D ⊆ Rn be a given bounded subset of Rn. Then, we define

X :=
{
Ω ⊆ D, Ω is a convex domain with ∂Ω ∈ C2

}
.
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We denote the Hausdorff metric of two domains A,B ∈ X by

δ(A,B) := inf {ε > 0 : A ⊆ Bε and B ⊆ Aε} ,

where Bε := ∪b∈B{z ∈ Rn : ||z − b|| ≤ ε}.
The definition of the Hausdorff metric requires less regularity of the boundary, but

for now we are only interested in the smooth setting. To prove continuity with respect
to the Hausdorff metric, we need the following extension result.

Lemma 1. Let Ω0 ∈ X and let (Ωm)m∈N ⊂ X such that limm→∞ δ(Ωm,Ω0) = 0. If
(um)m∈N ⊂ W 1,2(Ωext

m ) fulfills ||um||W 1,2(Ωext
m ) ≤ K1 (independent of m), there exist

extensions ûm ∈W 1,2(Rn) with um(x) = ûm(x) for x ∈ Ωext
m and ||ûm||W 1,2(Rn) ≤ K2

(independent of m).

Proof. We choose R, r > 0 such that Br ⊂ Ωm and Ω ⊂ BR for all m ∈ N0. We
consider the bounded domains Ω̂m := Ωext

m ∩ BR. Since Ωm is convex, Ω̂m fulfills the
cone property, given in [9, Definition 2]. Hence, [9, Theorem II.1] yields that there is
a uniform extension ũm of um

∣∣
Ω̂m

to Rn, i.e. there exists a sequence ũm ∈ W 1,2(Rn)

with ||ũm||W 1,2(Rn) ≤ K3 and ũm(x) = um(x) for x ∈ Ω̂m. Thus, we define

ûm(x) :=

{
ũm(x) for x ∈ BR,

um(x) for x ∈ Ωext
m ,

and obtain ||ûm||2W 1,2(Rn) ≤ ||ûm||2W 1,2(BR) + ||ûm||2W 1,2(Ωext
m ) ≤ K2

3 +K2
1 =: K2

2 .

Using the previous lemma, we can proceed similar to D. Bucur and F. Gazzola in
[7, Theorem 5.1] to prove the continuity of the Steklov eigenvalue.

Lemma 2. Let n ≥ 3. The mapping

f1 : X → R, Ω 7→ µ1(Ω
ext)

is continuous with respect to the Hausdorff metric.

Proof. The proof is structured as the proof of [7, Theorem 5.1]: We consider a sequence
(Ωm)m∈N ⊂ X that converges in the Hausdorff metric. We start by proving the upper
semicontinuity. This gives an upper bound for the sequence of eigenfunctions corre-
sponding to µ1(Ω

ext
m ), which allows us to deduce the existence of a weakly convergent

subsequence. This can be used to infer the convergence of µ1(Ω
ext
m ).

We start by proving the upper semicontinuity. Let (Ωm)m∈N ⊂ X be a sequence

with limm→∞ δ(Ωm,Ω0) = 0 and we choose r,R > 0 such that Br ⊆ Ωm, Ωm ⊆ BR

for all m ∈ N0. In addition, we consider a sequence (tm)m∈N ⊂ R with limm→∞ tm = 1
and Ω0 ⊆ tmΩm. Then, (tmΩm)ext ⊆ Ωext

0 and any u ∈ E1(Ωext
0 ) fulfills

lim
m→∞

∫
(tmΩm)ext

|∇u|2 dx =

∫
Ωext

0

|∇u|2 dx and lim
m→∞

∫
∂(tmΩm)

u2 dx =

∫
∂Ω0

u2 dx.

9



Hence, for any u ∈ E1(Ωext
0 ), it holds

lim sup
m→∞

µ1((tmΩm)ext) ≤ lim
m→∞

||∇u||2L2((tmΩm)ext)

||u||2L2(∂(tmΩm))

=
||∇u||2L2(Ωext

0 )

||u||2L2(∂Ω0)

.

Since µ1(tmΩext
m ) =

µ1(Ω
ext
m )

tm
, we obtain

µ1(Ω
ext
0 ) ≥ lim sup

m→∞
µ1(tmΩext

m ) = lim sup
m→∞

µ1(Ω
ext
m ).

In the second step, we prove the lower semicontinuity. With um ∈ E1(Ωext
m ), we

denote a sequence of functions satisfying ||um||L2(∂Ωm) = 1 and

µ1(Ω
ext
m ) =

||∇um||2L2(Ωext
m )

||um||2L2(∂Ωm)

= ||∇um||2L2(Ωext
m ).

By the upper semicontinuity, there exists a K > 0 such that µ1(Ω
ext
m ) ≤ K. Therefore,

it holds ||um||2E1(Ωext
m ) ≤ K + 1

|∂Ωm| ≤ K + 1
|∂Br| . By [4, Corollary 3.4], there exists a

constant CΩm such that

1

CΩm

||um||
L

2n
n−2 (Ωext

m )
≤ ||um||E1(Ωext

m ) ≤

√
K +

1

|∂Br|
.

In view of the construction of CΩm
, it can be chosen independent ofm since Ωm ⊆ BR.

Thus, there exists a constant K1 with

||um||
L

2n
n−2 (Ωext

m ∩BR)
≤ ||um||

L
2n

n−2 (Ωext
m )

≤ K1.

Since 2n
n−2 ≥ 2, the Hölder inequality leads to

||um||L2(Ωext
m ∩BR) ≤ |Ωext

m ∩BR|
1
2−

n−2
2n ||um||

L
2n

n−2 (Ωext
m ∩BR)

< |BR \Br|
1
nK1.

Thus, there exists a constantK2 > 0, independent ofm with ||um||W 1,2(Ωext
m ∩BR) ≤ K2.

Analogous to Lemma 1, there are extensions of um, denoted by ûm ∈W 1,2(BR), such
that ||ûm||W 1,2(BR) ≤ K3. Furthermore, we define the function ũm ∈ E1(Bext

r ) by

ũm(x) :=

{
ûm(x) if x ∈ BR \Br,

um(x) if x ∈ Ωext
m .

Then, since the trace operator on BR ∩Bext
r is bounded, we have

||ũm||E1(Bext
r ) ≤ C||ûm||W 1,2(Bext

r ∩BR) + ||um||E1(Ωext
m ) ≤ CK3 +

√
K +

1

|∂Br|
.
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Hence, there is a subsequence - again denoted by ũm - which is weakly convergent.
We denote the limit by ũ ∈ E1(Bext

r ). Let χm denote the characteristic function on
Ωext

m and χ denotes the characteristic function on Ωext
0 . For any ϕ ∈ C∞

0 , it holds∫
Ωext

m

|∇ũm|ϕ dx−
∫
Ωext

0

|∇ũ|ϕdx

=

∫
Bext

r

|∇ũm|χmϕ− |∇ũ|χϕ dx

≤

∣∣∣∣∣
∫
Bext

r

(|∇ũm| − |∇ũ|)χmϕdx

∣∣∣∣∣+
∣∣∣∣∣
∫
Bext

r

|∇ũ|ϕ (χm − χ) dx

∣∣∣∣∣ .
The last integral obviously vanishes for m→ ∞. Furthermore, |∇ũm|−|∇ũ| converges
weakly to zero and χmϕ converges strongly to χϕ. Thus, the first integral also vanishes
for m → ∞. Hence, |∇ũm|χm converges weakly to |∇ũ|χ in L2(Bext

r ). In view of the
lower semicontinuity of the L2-norm with respect to weak convergence, we obtain

lim inf
m→∞

||∇um||2L2(Ωext
m ) = lim inf

m→∞
||χm∇ũm||2L2(Bext

r ) ≥ ||χ∇ũ||2L2(Bext
r ) = ||∇ũ||2L2(Ωext

0 ).

For the boundary integral, we can use [7, (5.5)], i.e.

lim
m→∞

∫
∂Ωm

u2mdS =

∫
∂Ω0

ũ2dS.

Therefore, we obtain

lim inf
m→∞

µ1(Ω
ext
m ) ≥

||∇ũ||2L2(Ωext
0 )

||ũ||2L2(∂Ω0)

≥ µ1(Ω
ext
0 ).

In a similar way, we obtain the continuity of the Robin eigenvalue.

Theorem 2. Let α < α∗(Ωext
0 ) = −µ1(Ω

ext
0 ) for a fixed Ω0 ∈ X. The mapping

f2 : X → R, Ω 7→ λα1 (Ω
ext)

is continuous with respect to the Hausdorff metric at Ω0.

Proof. Let (Ωm)m∈N ⊂ X be a sequence as in the proof of Lemma 2. Since f1 is
continuous with respect to the Hausdorff metric, the condition α < α∗(Ωext

0 ) implies
α < α∗(Ωext

m ) for all sufficiently large m. Without restriction, we can assume that
α < α∗(Ωext

m ) holds for all m ∈ N0.
We start by proving the upper semicontinuity. To this end, we consider a sequence

(tm)m∈N ⊂ (1,∞) with limm→∞ tm = 1 and Ω0 ⊆ tmΩm. If u0 denotes the

11



eigenfunction corresponding to λα1 (Ω
ext
0 ), we obtain, analogously to Lemma 2,

λα1 (Ω
ext
0 ) = lim

m→∞

∫
tmΩext

m
|∇u0|2 dx+ α

∫
∂(tmΩm)

u20dS∫
tmΩext

m
u20 dx

≥ lim sup
m→∞

λα1 (tmΩext
m ).

With λ
α
tm
1 (tmΩext) = 1

t2m
λα1 (Ω

ext), and the continuity of α 7→ λα1 (Ω
ext), we obtain

λα1 (Ω
ext
0 ) ≥ lim sup

m→∞
λα1 (tmΩext

m ) = lim sup
m→∞

1

t2m
λtmα
1 (Ωext

m ) = lim sup
m→∞

λα1 (Ω
ext
m ).

It remains to show the lower semicontinuity. Let um ∈W 1,2(Ωext
m ) be the eigenfunction

corresponding to λα1 (Ω
ext
m ) with ||um||L2(∂Ωm) = 1. Due to the upper semicontinuity,

there exists a K1 > 0 such that

−K1 ≥
||∇um||2L2(Ωext

m ) + α

||um||2L2(Ωext
m )

≥ µ1(Ω
ext
m ) + α

||um||2L2(Ωext
m )

,

where we used (6) for the second step. Since we assumed α < α∗(Ωext
m ), it holds

µ1(Ω
ext
m ) + α < 0. Thus, it holds

lim
m→∞

||um||2L2(Ωext
m ) < lim

m→∞

|µ1(Ω
ext
m ) + α|
2K1

=
|µ1(Ω

ext
0 ) + α|
2K1

.

Furthermore, ||∇um||2L2(Ωext
m ) < −α because λα1 (Ω

ext
m ) < 0. Hence, there is a con-

stant K2 > 0 with ||um||W 1,2(Ωext
m ) ≤ K2. In view of Lemma 1, there are extensions

ũm ∈W 1,2(Bext
r ) of um with ||um||W 1,2(Bext

r ) ≤ K. Thus, there is a weakly convergent
subsequence with limit ũ ∈W 1,2(Bext

r ). Analogous to Lemma 2, it holds

lim inf
m→∞

||∇um||2L2(Ωext
m ) = lim inf

m→∞
|||χm∇ũm||2L2(Bext

r ) ≥ ||χ∇ũ||2L2(Bext
r ) = ||∇ũ||2L2(Ωext

0 )

and∫
Ωext

m

ũmϕ dx−
∫
Ωext

0

ũϕdx =

∫
Bext

r

ũmχmϕ− ũχϕdx

≤

∣∣∣∣∣
∫
Bext

r

(ũm − ũ)χmϕdx

∣∣∣∣∣+
∣∣∣∣∣
∫
Bext

r

ũϕ (χm − χ) dx

∣∣∣∣∣ .
Analogous to Lemma 2, we obtain

lim inf
m→∞

||um||2L2(Ωext
m ) = lim inf

m→∞
||χmũm||2L2(Bext

r ) ≥ ||χũ||2L2(Bext
r ) = ||ũ||2L2(Ωext

0 ).

12



In total, considering ||∇um||2L2(Ωext
m ) + α||um||2L2(∂Ωm) < 0, we obtain

lim inf
m→∞

λα1 (Ω
ext
m ) ≥ lim inf

m→∞

||∇ũ||2L2(Ωext
0 ) + α||um||2L2(∂Ωm)

||ũ||2
L2(Ωext

0 )

=
||∇ũ||2L2(Ωext

0 ) + α||ũ||2L2(∂Ω0)

||ũ||2
L2(Ωext

0 )

≥ λα1 (Ω
ext
0 ).

Thus, the lower and the upper semicontinuity of f2 are shown.

The continuity of f1 and f2 allows us to conclude the existence of an optimal
domain. However, in Definition 1, we imposed the condition Ω ⊆ D, where D is a
bounded domain. To deduce the existence of a global maximizer, one must ensure that
a minimizing sequence cannot become arbitrarily thin. Currently, we are unable to
guarantee this and the example in Section 2.4 indicates that this could be problematic.

Corollary 2. Among all domains Ω ∈ X with the same measure as the unit ball,
there exists a domain Ω0, that maximizes µ1(Ω

ext).
For α < α∗(Ωext

0 ) = −µ1(Ω
ext
0 ), there is a domain Ω1, maximizing λα1 (Ω

ext) among
all domains X with the same measure as the unit ball.

Proof. We set X̂ := {Ω ∈ X : |Ω| = |B1|}. Let (Ωm)m∈N ⊂ X̂ be a sequence such that

lim
m→∞

µ1(Ω
ext
m ) = sup

Ω∈X̂

µ1(Ω
ext).

Since Ωm ⊆ D, the Blaschke selection theorem gives the existence of a converging
subsequence (in the Hausdorff metric). Thus, the supremum is attained.

Now, let α < α∗(Ωext
0 ) and let (Ωm)m∈N ⊂ X̂ be a sequence such that

lim
m→∞

λα1 (Ω
ext
m ) = sup

Ω∈X̂

λα1 (Ω
ext).

Since α < α∗(Ωext
0 ), we have continuity. Again, the Blaschke selection theorem gives

the existence of a converging subsequence. Thus, the supremum is attained.

2.3 Monotonicity

In this section, we present a monotonicity result with respect to a certain kind of
domain inclusion. We proceed analogues to [15], where T. Giorgi and R.G. Smits give
a similar result for the first Robin eigenvalue on bounded domains.

Theorem 3. Let Ω ⊆ Rn be a Lipschitz domain and Br ⊆ Ω. Then,

µ1(Ω
ext) < µ1(B

ext
r ) for n ≥ 3.

For n = 2 and α < 0 or n ≥ 3 and α < −µ1(B
ext
r ), it holds

λα1 (Ω
ext) ≤ λα1 (B

ext
r ).

13



Proof. Let ϕ denote the eigenfunction corresponding to λα1 (B
ext
r ). The function ϕ is

radial and we write ϕ(x) = f(|x|). We define the function

α̂ : ∂Ω → R, y 7→ ⟨∇ϕ(y), ν(y)⟩
ϕ(y)

,

where ν(y) denotes the outer normal on ∂Ω. Since f ′(|y|) < 0 and ⟨ y
|y| , ν⟩ < 1, it holds

⟨∇ϕ(y), ν⟩ = ⟨ y
|y|
f ′(|y|), ν⟩ = f ′(|y|)⟨ y

|y|
, ν⟩ > f ′(|y|).

Thus, α̂(y) > f ′(|y|)
f(|y|) . In view of (9), − f ′(x)

f(x) is monotonically decreasing, which implies

α̂(y) >
f ′(|y|)
f(|y|)

>
f ′(r)

f(r)
= α.

Furthermore, ϕ solves the equation{
∆ϕ+ λα1 (B

ext
r )ϕ = 0 in Ωext ⊆ Bext

r ,

−∂νϕ+ α̂ϕ = 0 on ∂Ω.

Thus, integration by parts yields

λα1 (B
ext
r ) =

∫
Ωext |∇ϕ|2 dx+

∫
∂Ω
α̂ϕ2 dS∫

Ωext ϕ2 dx
>

∫
Ωext |∇ϕ|2 dx+

∫
∂Ω
αϕ2 dS∫

Ωext ϕ2 dx

≥ inf
u∈W 1,2(Ωext)

∫
Ωext |∇u|2 dx+ α

∫
∂Ω
u2 dS∫

Ωext u2 dx
= λα1 (Ω

ext).

The inequality for the Steklov eigenvalue is a consequence of λα1 (Ω
ext) ≤ λα1 (B

ext
r ) and

λα1 (Ω
ext) < 0 ⇔ α < −µ1(Ω

ext).

However, monotonicity with respect to domain inclusions does not hold true in
general, even if we consider convex domains, as demonstrated in the following example.

Remark 1. For a > 0, let Sa := (a, a)2 ∈ R2. For α→ −∞, it holds

λα1 (S
ext
1 ) < λα1 (B

ext
1 ) and λα1

(
Sext

1√
2

)
< λα1 (B

ext
1 ).

Proof. In [17, Theorem 1.1], K. Kovař́ık, and K. Pankrashkin show an asymptotic
behavior for the Robin eigenvalue, which yields

λα1 (Ω
ext) = −α2 + (n− 1)Hmax(Ω

ext)α+ o(α) as α→ −∞ (11)

for domains Ω ⊆ Rn with ∂Ω ∈ C1,1. Here, Hmax denotes the maximal mean curvature.
Note that H(Ωext) = −H(Ω), i.e. Hmax(Ω

ext) is the maximal (minimal in absolute
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value) curvature of ∂Ωext. Thus, it holds

Hmax(B
ext
1 ) = −1 and Hmax(S

ext
a ) = 0 for all a > 0.

Based on the results from Section 2.2, we can approximate Sa by smooth domains.
Therefore, we obtain

Hmax(B
ext
1 ) = −α2 − α+ o(α) and Hmax(S

ext
a ) = −α2 + o(α).

Since S 1√
2
⊆ B1 ⊆ S1, this shows that in general there can be no monotonicity with

respect to domain inclusion.

2.4 Global Optimization

In dimension n = 2, the ball is the global maximizer of λα1 (Ω
ext) among all smooth,

bounded, simply connected sets Ω with given perimeter or given area. In higher dimen-
sions, this is not true anymore. D. Krejcirik and V. Lotoreichik construct in [18, Section
5] a convex domain Ω with ∂Ω ∈ C1,1 and |BR| = |Ω| such that

λα1 (Ω
ext) > λα1 (B

ext
R ) as α→ −∞.

Following this idea, we construct for n ≥ 3 a convex domain E ⊆ Rn with |E| = |BR|
and ∂E ∈ C∞ such that λα1 (E

ext) > λα1 (B
ext
R ) for α sufficiently negative. For a ∈ (0, 1)

and n ≥ 3, we consider the hyperellipsoid

E(a) :=

{
x ∈ Rn : (ax1)

2 +

n∑
k=2

x2k ≤ 1

}
.

Due to [20, Theorem B], the principal curvatures of ∂E(a) are given by

κ1 = . . . = κn−2 =
1√

1 + a2(a2 − 1)x21
and κn−1 =

a2

(1 + a2(a2 − 1)x21)
3
2

.

Therefore, the mean curvature of ∂E(a)ext equals

H(x) = −

n−2√
1+a2(a2−1)x2

1

+ a2

(1+a2(a2−1)x2
1)

3
2

n− 1
.

Since a2 − 1 < 0, this becomes maximal (minimal in absolute value) for x1 = 0 with

Hmax(E(a)ext) = −n− 2 + a2

n− 1
.
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It holds that |E(a)| = 1
a |B1| =

∣∣∣B 1
n√a

∣∣∣. Thus, we want to compare λα1 (Bext) and

λα1 (E(a)ext), where B := B 1
n√a

. Using (11), we obtain

λα1 (E(a)ext) = −α2 − (n− 2 + a2)α+ o(α),

λα1 (B
ext) = −α2 − α(n− 1) n

√
a+ o(α).

For small a and n ≥ 3, it holds

n− 2 + a2 > (n− 1) n
√
a. (12)

Thus, it holds that λα1 (E(a)ext) > λα1 (Bext) for α sufficiently negative. Thus, the ball
is not in general the maximizer of the first Robin eigenvalue among all smooth convex
domains with given measure.

If the ball maximized λα1 (Ω
ext) among all smooth domains with given perimeter,

every domain Ω with |∂Ω| = |∂BR1
| would fulfill λα1 (Ω

ext) < λα1 (B
ext
R1

). Let BR2
be

the ball such that |Ω| = |BR2
|. The classic isoperimetric inequality yields R2 ≤ R1.

Thus, Theorem 3 yields λα1 (R
ext
1 ) < λα1 (R

ext
2 ) and we obtain

λα1 (Ω
ext) < λα1 (R

ext
1 ) < λα1 (R

ext
2 ),

which means that the ball also maximizes λα1 (Ω
ext) among all smooth domains with

given measure. So the ball is neither the global maximizer of the first Robin eigenvalue
under measure nor under perimeter constrains for all α.

However, (12) is not true for a close to 1, i.e. E(a) close to B1. Hence, the ball
might be a local maximizer of λα1 (Ω

ext).

3 Domain Variations in Exterior Domains

In the absence of a global approach, our study focuses on the effect of local pertur-
bations on the eigenvalue. For bounded domains, the concept of domain variations
is explained in [16] by A. Henrot and M. Pierre. Similarly, C. Bandle and A. Wag-
ner apply this approach in [5], demonstrating its applicability to a range of problems.
In this paper, we proceed in a similar way. Notably, some of the results presented in
Section 3 have already been published in [8].

3.1 Basic Concepts

Let Ω ⊆ Rn be a connected, bounded, and smooth domain. For a fixed t0 > 0, let
Φ : (−t0, t0)×Rn \Ω → Rn be smooth in t and x. Then, we call (Ωext

t )|t|<t0
, given by

Ωext
t := Φ(t,Ωext),

a family of perturbations of Ωext. If Ωext maximizes a functional G : A→ R, where A
is a suitable collection of subsets of Rn and Ωext

t ∈ A for all |t| < t0, then the mapping
t 7→ G(Ωext

t ) must have a maximum at t = 0.
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To apply this to λα1 (Ω), we assume that ∂Ω ∈ C2,β , 0 < β ≤ 1, and Φ is of the form

Φ(t, x) = x+ tv(x) +
t2

2
w(x) + f(t, x), (13)

where v, w, f(t, ·) ∈ C2,β(Rn \Ω) and f(t, x) = o(t2) as t→ 0 . In addition, we assume

(a) the mapping Φ(t, ·)− id has compact support,

(b)
∣∣∣∣∣∣Φ(t,·)−id

t

∣∣∣∣∣∣
C1(Ωext)

≤ C(Ω) for all |t| < t0 and C(Ω) is defined in Lemma 3,

(c) Φ is a Hadamard perturbation, i.e. v = ⟨v, ν⟩ν and w = ⟨w, ν⟩ν.

The Jacobian matrix of Φ(t, ·), i.e. (DΦ(t, x))i,j :=
∂Φ(t,x)i

∂xj
, equals

DΦ(t, x) = I + tDv(x) +
t2

2
Dw(x) +Df(t, x).

Applying Jacobi’s formula for determinants, as in [5, Section A.1], results in

J(t, x) := det (DΦ(t, x))

= 1 + tdiv(v(x)) +
t2
[
div(v(x))2 + div(w(x))− tr

(
(Dv(x))2

)]
2

+ g(t, x),

where g(t, x) = o(t2). Given the condition (b), there exists a constant c > 0 that
remains independent of the specific perturbation, such that |g(t, x)| ≤ c|t|. Conse-
quently, we can choose t0 such that J(t, x) > 0 for all |t| < t0 and for all x ∈ Ωext.
Thus, Φ(t, ·) : Ωext → Ωext

t is a local diffeomorphism. To show that Φ(t, ·) is a global
diffeomorphism, it remains to show that it is bijective.

Lemma 3. Let geo : ∂Ω× ∂Ω → R denote the geodesic distance between to points on
the boundary. We define the quantity

L(Ω) := sup
x,y∈∂Ω,x ̸=y

geo(x, y)

|x− y|
.

If we choose C(Ω) < 1
L(Ω)t0

in condition (b), then Φ(t, ·) : Ωext → Ωext
t is bijective.

Proof. We start by assuming that for a fixed |t| < t0, there exist x1, x2 ∈ Ωext such

that Φ(t, x1) = Φ(t, x2) and x1 ̸= x2. In addition, we define Φ̂(t, x) := Φ(t,x)−x
t . Then,

|x1 − x2| =
∣∣∣∣tx1 − x2 +Φ(t, x2)− Φ(t, x1)

t

∣∣∣∣ = |t|
∣∣∣Φ̂(t, x1)− Φ̂(t, x2)

∣∣∣ .
We can construct a piecewise continuously differentiable curve ψ : [0, 1] → R \Ω such
that ψ(0) = x1, ψ(1) = x2 and |ψ′(s)| is constant. Specifically, this curve can be chosen
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such that |ψ′(s)| ≤ L(Ω)|x1 − x2|. With g : [0, 1] → Rn, g(s) := Φ̂(t, ψ(s)) ,we have

|x1 − x2| = |t|
∣∣∣Φ̂(t, x1)− Φ̂(t, x2)

∣∣∣ = |t| |g(0)− g(1)| = |t|
∣∣∣∣∫ 1

0

g′(s) ds

∣∣∣∣
< t0

∫ 1

0

||DΦ̂(t, ·)||L∞(Ωext)|ψ′(s)|ds < t0C(Ω)L(Ω)|x2 − x1|.

Thus, the choice of C(Ω) < 1
L(Ω)t0

contradicts x1 ̸= x2.

Hence, for f ∈ L1(Ωext
t ), it holds∫
Ωext

t

f(x) dx =

∫
Ωext

f (Φ(t, x)) J(t, x) dx.

This formula is a direct consequence of the transformation formula applied to bounded
domains and condition (a). Similarly, we can transform boundary integrals. Assuming
∂Ω is smooth, it can be represented by local coordinates, i.e. let V ⊆ Rn be an open
set such that V ∩ ∂Ω = {x̃(ξ) : ξ ∈ U ⊆ Rn−1}. Define the matrix G ∈ R(n−1)×(n−1)

by Gi,j := ⟨x̃ξi , x̃ξj ⟩, where x̃ξi is the derivative of x̃(ξ) with respect to ξi. Then, the

surface element is given by dS =
√

det(G) dξ, i.e.∫
V ∩∂Ω

f(x) dS =

∫
U

f(x̃(ξ))
√

det(G(ξ)) dξ

holds for any continuous function f . There is a finite covering of open sets {Vi}mi=1

and a partition of unity {pi}mi=1 such that∫
∂Ω

f(x) dS =

m∑
i=1

∫
Vi∩∂Ω

f(x)pi(x) dS.

This yields a formula for the surface element on the entire boundary. The boundary
of Ωt can locally be written as{

ỹ(ξ) = x̃(ξ) + tṽ(ξ) +
t2

2
w̃(ξ) + o(t2) : ξ ∈ U ⊆ Rn−1

}
.

Thus, the surface element on ∂Ωt equals dSt =
√

det(K) dξ, where K ∈ R(n−1)×(n−1)

is defined as Ki,j = ⟨ỹξi , ỹξj ⟩. To express dSt in the form dSt = m(t, x) dS, we

introduce the matrices A,B ∈ R(n−1)×(n−1), given by

Ai,j :=⟨x̃ξi , ṽξj ⟩+ ⟨x̃ξj , ṽξi⟩,
Bi,j :=2⟨ṽξi , ṽξj ⟩+ ⟨w̃ξi , x̃ξj ⟩+ ⟨x̃ξi , w̃ξj ⟩.
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Then, K = G+ tA+ t2

2 B + o(t2) = G
(
I + tG−1A+ t2

2 G
−1B

)
+ o(t2). This implies

m(t, x) =

√
det(K)√
det(G)

=

[
det

(
I + tG−1A+

t2

2
G−1B

)] 1
2

+ o(t2). (14)

Simplifications of m(t, x) can be found in [5]. Thus, for f ∈ C0(∂Ωt), we obtain∫
∂Ωt

f(x) dSt =

∫
∂Ω

f (Φ(t, x))m(t, x) dS.

Condition (c) imposes no restrictions, as any perturbation can be expressed as a
Hadamard perturbation by a reparameterization of the boundary, as demonstrated in
[5, Theorem 2.1]. Moreover, for f ∈W 1,2(Ωext), g ∈W 1,2(Ωext;Rn), it holds∫

Ωext

f div(g) dx =

∫
∂Ω

f⟨g,−ν⟩dS −
∫
Ωext

⟨g,∇f⟩dx,

where ν denotes the outward-pointing normal to Ω, meaning −ν represents the outer
unit normal of the exterior domain.

The derivative of a function u with respect to t, called the first variation, is denoted
by u̇. We define the volume or measure of Ωt as V (t) := |Rn \ Ωext

t |. A perturbation
satisfying V̇ (0) = 0, is called measure preserving of first order. Using the divergence
theorem and considering J̇(0, x) = div(v(x)), this can be characterized as

V̇ (0) = 0 ⇔
∫
∂Ω

⟨v, ν⟩dS = 0.

If additionally V̈ (0) = 0, the perturbation is called measure preserving of second order.
The barycenter of a bounded domain Ω ⊆ Rn is defined as 1

|Ω|
∫
Ω
xdx. A perturbation

satisfies the barycenter condition if the barycenter is unchanged in first order. As in [5,
Definition 2.5], this condition is, for measure preserving perturbations, equivalent to∫

∂Ω

⟨v, ν⟩x dS = 0.

We often consider a family of perturbations (Ωt)|t|<t0
, and a family of functions

(u(y, t))|t|<t0
, where u(·, t) : Ωext

t → R. Since the domain of u depends on t, it is useful

to consider ũ(x, t) := u(Φ(t, x), t) : Ωext → R. Assuming ũ is smooth in t, it holds

˙̃u(x, t) =
d

dt
u(Φ(t, x), t) = ⟨∇yu(y, t)

∣∣
y=Φ(t,x)

, ∂tΦ(t, x)⟩+ ∂tu(y, t)
∣∣
y=Φ(t,x)

.

We define the shape derivative as u′(x) := ∂tu(x, t)
∣∣
t=0

and obtain

˙̃u(x, 0) = ⟨∇u(x, 0), v(x)⟩+ u′(x). (15)
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3.2 Domain Variation for the Robin Eigenvalue

To analyze the behavior of the first Robin eigenvalue in exterior domains, we apply
the methods outlined in Section 3.1. To this end, consider a family of perturbations
Ωext

t := Φ(t,Ωext), satisfying conditions (a)-(c), and let α < α∗(Ωext). In view of
Lemma 2, we can choose t0 such that α < α∗(Ωext

t ) holds for all |t| < t0. Consequently,{
∆yu(y, t) + λu(y, t) = 0 in Ωext

t ,

−∂νtu(y, t) + αu(y, t) = 0 on ∂Ωt,
(16)

has a simple, negative eigenvalue λα1 (t) for all |t| < t0. We proceed as in [5, Section 4]
to transform (16) to a problem on Ωext, i.e. transforming the equation

λα1 (t)

∫
Ωext

t

u(y, t)2 dy =

∫
∂Ωt

αu(y, t)2 dSt +

∫
Ωext

t

|∇u(y, t)|2 dy

into an equation involving integrals over Ωext and ∂Ω. By introducing the transforma-
tions y = Φ(t, x) and ũ(x, t) = u(Φ(t, x), t) we, immediately obtain∫

Ωext
t

u(y, t)2 dy =

∫
Ωext

ũ(x, t)2J(t, x) dx,∫
∂Ωt

u(y, t)2 dSt =

∫
∂Ω

ũ(x, t)2m(t, x) dS.

For the last integral, we use the chain rule, where we write ∂xi
short for ∂

∂xi
. Denoting

Ψt as the inverse of Φ(t, ·), and using ∂xi

∂yk
= ∂yk

(Ψt)i (Φ(t, x)), we have

∂yk
u(y, t) = ∂yk

ũ(Ψt(y), t) =

n∑
i=1

∂xi
ũ(x, t)∂yk

(Ψt)i (Φ(t, x)) ,

which leads to

|∇u(y, t)|2 =

n∑
i,j,k=1

∂yk
(Ψt)i(Φ(t, x))∂xi ũ(x, t)∂yk

(Ψt)j(Φ(t, x))∂xj ũ(x, t).

Thus, we can define

Ai,j(t, x) :=

n∑
k=1

[∂yk
(Ψt)i(Φ(t, x))∂yk

(Ψt)j(Φ(t, x))] J(t, x)

and deduce∫
Ωext

t

|∇u(y, t)|2 dy =

∫
Ωext

n∑
i,j=1

∂xi
ũ(x, t)∂xj

ũ(x, t)Ai,j(t, x) dx.
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This results in

λα1 (t) =

∫
Ωext

∑n
i,j=1 ∂xi ũ(x, t)∂xj ũ(x, t)Ai,j(t, x) dx+ α

∫
∂Ω
ũ(x, t)2m(t, x) dS∫

Ωext ũ(x, t)2J(t, x) dx
(17)

or alternatively, if we define

LA(t,x) :=

n∑
i,j=1

∂xj
(Ai,j(t, x)∂xi

) and ∂νA(t,x)
:=

n∑
i,j=1

νiAi,j(t, x)∂xj
,

we obtain that (16) is equivalent to{
LA(t,x)ũ(x, t) + λα(t)ũ(x, t)J(t, x) = 0 in Ωext,

−∂νA(t,x)
ũ(x, t) + αm(t, x)ũ(x, t) = 0 on ∂Ω.

(18)

In [10, Theorem 5.5, p. 489], it is demonstrated that when λα1 is a simple eigenvalue,
the associated eigenfunction is analytic in t. Moreover, J,A andm are smooth in t since
∂Ω and Φ are smooth. Consequently, we are able to differentiate (17) with respect to t.

3.2.1 First and Second Variation

The expressions for the first and second variation of λα1 (t) can be obtained analogously
to those for the Robin eigenvalue on bounded domains, as discussed in [5, Section 11].
The proofs of Corollary 3 and Theorem 4 are given in Section B. Notably, the formula
for the first variation is independent of the shape derivative, allowing a straightforward
evaluation if the eigenfunction is known.

Theorem 4. The first and second variation of λα1 are given by

λ̇α1 (t) =

∫
Ωext

(∇ũ(x, t))T Ȧ(t, x)∇ũ(x, t)− λα1 (t)ũ(x, t)
2J̇(t) dx

+ α

∫
∂Ω

ũ(x, t)2ṁ(t, x) dS, (19)

λ̈α1 (t) =

∫
Ωext

(∇ũ(x, t))T Ä(t, x)∇ũ(x, t)− 2(∇ ˙̃u(x, t))TA(t, x)∇ ˙̃u(x, t) dx

+ α

∫
∂Ω

ũ(x, t)2m̈(t, x)− 2m(t, x) ˙̃u(x, t)2 dS

− λ̇α1 (t)

∫
Ωext

ũ(x, t)2J̇(t, x)− ˙̃u(x, t)ũ(x, t)J(t, x) dx

− λα1 (t)

∫
Ωext

ũ(x, t)2J̈(t, x)− 2 ˙̃u(x, t)2J(t, x) dx.

Evaluating λ̇α1 (t) at t = 0 allows a significant simplification. The resulting formula
depends only on the eigenfunction, α, and the mean curvature of ∂Ω. We use the
notation u(x) := ũ(x, 0) and omit arguments of the function where context permits.
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Corollary 3. It holds

λ̇α1 (0) =−
∫
∂Ω

⟨v, ν⟩
[
|∇u|2 − 2α2u2 + αu2(n− 1)H(Ωext)− λα1 (0)u

2
]
dS, (20)

where H(Ωext) = −H(Ω) denotes the mean curvature of ∂Ωext.

If we consider Ω = BR ⊆ Rn for n ≥ 2, the first eigenfunction is given in (8). Since
u is radial and H is constant on ∂BR, it holds

|∇u|2 − 2α2u2 + αu2(n− 1)H(Bext
R )− λα1 (0)u

2 = const on ∂BR.

In view of −∂νu(x) + αu = 0 on ∂BR, we obtain |∇u|2 = (∂νu)
2 = α2u2 and it holds

H(Bext
R ) = − 1

R . Hence, by defining K := α2+αn−1
R +λα1 (0) and writing u(R) as u(x)

for x ∈ ∂BR, (20) simplifies to

λ̇α1 (0) = u2(R)

(
α2 + α

n− 1

R
+ λα1 (0)

)∫
∂Ω

⟨v, ν⟩dS = u2(R)K

∫
∂Ω

⟨v, ν⟩dS. (21)

Given V̇ (0) =
∫
∂Ω

⟨v, ν⟩dS, we obtain λ̇α1 (0) = u2(R)KV̇ (0). Thus, λ̇α1 (0) vanishes
for all measure preserving perturbations of the ball. To determine whether the ball is
a local minimizer, maximizer, or neither, we are interested in the sign of the second
variation. In addition to conditions (a) - (c), we now also assume

(e) Φ is measure preserving of second order, i.e. V̇ (0) = V̈ (0) = 0,
(f) Φ satisfies the barycenter condition, i.e.

∫
∂Ω

⟨v, ν⟩xdS = 0.

A useful property of the shape derivative arises from differentiating (18) with respect
to t, as elaborated in [5, (6.2.12), Lemma 6.1]. This leads to the following lemma.

Lemma 4. Let u denote the first eigenfunction of (16) for Ω = BR. Then, u
′ satisfies{

∆u′ + λα1 (0)u
′ = 0 in Bext

R ,

−∂νu′ + αu′ = −Ku⟨v, ν⟩ on ∂BR.

We can use Lemma 4 as in [8, Corollary 3.6], to simplify the second variation,
detailed in Section B. The result is

λ̈α1 (0) = 2u2(R)αK

∫
∂BR

⟨v, ν⟩2 dS + αu2(R)S̈(0)− 2Q(u′), (22)

where S(t) := |∂Ωt| and

Q(u′) :=

∫
Bext

R

|∇u′|2 − λα1 (0) (u
′)
2
dx+ α

∫
∂BR

(u′)
2
dS. (23)

The main challenge at this stage is determining the sign of λ̈α1 (0).
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3.3 The Sign of the Second Variation for the Ball

Due to the technical complexity of calculating λ̈α1 (0), we introduce the following
notation, where y = fn(z) and R

2K = an(z) as per (8).

Definition 2. For α < α∗ and λα1 < 0, we set y := −αR and z :=
√

−λα1 (0)R.
Furthermore, we define the functions

fn : (0,∞) → (n− 2,∞) , x 7→ x
Kn

2
(x)

Kn−2
2

(x)
,

an : (0,∞) → R, x 7→ fn(x)
2 − (n− 1)fn(x)− x2.

3.3.1 Inequalities Involving the Modified Bessel Functions

We start by establishing some useful inequalities involving fn and an. While (A10)
provides a lower bound for the ratio of Bessel functions, the subsequent lemma intro-

duces an alternative lower bound. Specifically, for (n−2)2−1
4 < z, Lemma 5 enhances

(A10), and as z tends to infinity, it becomes sharp.

Lemma 5. For all z ∈ (0,∞) and n ≥ 3, it holds that

z
Kn

2
(z)

Kn−2
2

(z)
= fn(z) ≥ z +

n− 1

2
.

Proof. We prove the statement by induction. To this end, we consider n = 3, . . . , 6
separately. The Bessel functions of half integer order can be expressed by elementary
functions (see e.g. [1, Chapter 9]), yielding

K 1
2
(z) =

√
π

2

e−z

√
z
, K 3

2
(z) =

√
π

2

e−z

√
z

z + 1

z
, K 5

2
(z) =

√
π

2

e−z

√
z

z2 + 3z + 3

z2
.

Hence, Lemma 5 directly follows for n ∈ {3, 5}. From [23, Remark 3.11], we obtain
2(z+1)2

z(2z+1) <
K2(z)
K1(z)

< 4z2+9z+6
z(4z+3) . Therefore,

f4(z) = z
K2(z)

K1(z)
>

2(z + 1)2

2z + 1
= z +

3

2
+

1

2(2z + 1)
> z +

3

2
.

By using Km+1(x)
Km(x) = Km−1(x)

Km(x) + 2m
x , we obtain

f6(z) = 4 + z
K1(z)

K2(z)
> 4 + z

z(4z + 3)

4z2 + 9z + 6
= z +

5

2
+

15z + 18

8z2 + 18z + 12
> z +

5

2
.

Thus, Lemma 5 is shown for 3 ≤ n ≤ 6. For n ≥ 7, the recurrence relation (A2) yields

fn(z) = z
Kn

2
(z)

Kn−2
2

(z)
= z

Kn−4
2

(z)

Kn−2
2

(z)
+ n− 2 =

z2

fn−2(z)
+ n− 2. (24)
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Assuming fn(z) ≥ z + n−1
2 , we obtain

fn+4(z)− z − n+ 4− 1

2
=

z2

fn+2(z)
+ n+ 2− z − n+ 3

2

=
z2

z2

fn(z)
+ n

+ n+ 2− z − n+ 3

2

=
1

z2 + nfn(z)

(
fn(z)

[
z2 − nz + n

n+ 1

2

]
− z3 + z2

n+ 1

2

)
>

1

z2 + nfn(z)

([
z +

n− 1

2

] [
z2 − nz + n

n+ 1

2

]
− z3 + z2

n+ 1

2

)
=

1

z2 + nfn(z)
n

[
z +

n− 1

2

n+ 1

2

]
> 0.

Thus, the statement is shown by induction.

Lemma 5 does not hold for n = 2, since, by (10), limz→0 f2(z) = 0. The following
lemma demonstrates the negativity of K.

Lemma 6. For all z ∈ (0,∞), n ≥ 2 it holds that an(z) < 0.

Proof. We assume there exists a z0 > 0 with an(z0) = 0, and denote fn(z0) = y0.
Then, it holds y20 − (n− 1)y0 − z20 = 0, which is equivalent to z0 =

√
y20 − (n− 1)y0.

This implies

fn

(√
y20 − (n− 1)y0

)
= y0.

Using (A10), we obtain

fn

(√
y20 − (n− 1)y0

)
− y0 <

n− 1

2
+

√
(n− 1)2

4
+ y20 − (n− 1)y0 − y0

=
n− 1

2
+

√[
y0 −

n− 1

2

]2
− y0 = 0.

Here, we used (10), i.e. y0 ≥ limz→0 fn(z) = n−2. Hence, an(z) has no zeros in (0,∞).
For n ≥ 3, we have limz→0 an(z) = −(n − 2) < 0, and an(z) is continuous. Thus,

an(z) < 0 for all n ≥ 3 and z ∈ (0,∞).
For n = 2, the asymptotic behavior of the Bessel functions for small arguments,

as given in (A6), yields

a2(z) =

(
z
K1(z)

K0(z)

)2

− z
K1(z)

K0(z)
− z2 ≈ 1

− ln( z2 )− γ

(
1

− ln( z2 )− γ
− 1

)
− z2,

where γ is Euler’s constant. Hence, a2(z) is also negative for small z, and we conclude
a2(z) < 0 for all z > 0.
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While Lemma 6 provides an upper bound for an, we also establish a lower bound
in the next lemma.

Lemma 7. For all z > 0, n ≥ 2, it holds that

an(z) ≥

{
−(n− 2) for n ≥ 3,

− 1
2 for n = 2.

(25)

Proof. To prove the claim by induction, we establish the statement separately for
n = 3, . . . , 6. For odd n, we have, analogously to the proof of Lemma 5 ,

a3(z) =

(
z
K 3

2
(z)

K 1
2
(z)

)2

− 2z
K 3

2
(z)

K 1
2
(z)

− z2 =

(
z
z + 1

z

)2

− 2z
z + 1

z
− z2 = −1,

a5(z) =

(
z
K 5

2
(z)

K 3
2
(z)

)2

− 4z
K 5

3
(z)

K 1
2
(z)

− z2 =
−2z2 − 6z − 3

(z + 1)2
> −3.

For even n, we utilize (24) to obtain

a4(z) =

(
z2

f2(z)
+ 2

)2

− 3

(
z2

f2(z)
+ 2

)
− z2 = −2 + z2

(
z2

f22 (z)
+

1

f2(z)
− 1

)
.

Now, (A10) with m = 0 yields f2(z) <
1
2 +

√
1
4 + z2. Therefore,

z2

f22 (z)
+

1

f2(z)
− 1 >

z2(
1
2 +

√
1
4 + z2

)2 +
1

1
2 +

√
1
4 + z2

− 1 = 0.

Thus, we can conclude a4(z) > −2. Proceeding in the same manner yields

a6(z) =

(
z2

f4(z)
+ 4

)2

− 5

(
z2

f4(z)
+ 4

)
− z2 = −4 + z2

(
z2

f24 (z)
+

3

f4(z)
− 1

)
.

As before, (A10) yields f4(z) <
3
2 +

√
9
4 + z2 which implies a6(z) > −4.

The same procedure applies for any n ≥ 3, i.e.

an+4(z) =

(
n+ 2 +

z2fn(z)

z2 + nfn(z)

)2

− (n+ 4− 1)

(
n+ 2 +

z2fn(z)

z2 + nfn(z)

)
− z2

=− (n+ 2) +
z2

(nfn(z) + z2)2
(
f2n(z)(n+ z2)− (n− 1)z2fn(z)− z4

)
=− (n+ 2) +

z2

(nfn(z) + z2)2
(
z2an(z) + nf2n(z)

)
.
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Assuming an(z) > −(n− 2), the last bracket is positive because of

z2an(z) + nf2n(z) > −z2(n− 2) + nz2 = 2z2 > 0,

where we used fn(z) > z (see (A10)). Thus, (25) follows inductively for all n ≥ 3.
We now consider the case n = 2. Assuming the existence of a positive z such that

f22 (z)− f2(z)− z2 + 1
2 = 0, we would have

f2(z) =
1

2
±
√
z2 − 1

4
.

This expression is only well-defined for z ≥ 1
2 . By [23, Theorem 3.10] it holds

f2(x) > x

(
1 +

1

2x+ 1
2

)
>

1

2
+

√
x2 − 1

4
.

Thus, we conclude f2(z) >
1
2 ±

√
z2 − 1

4 . Consequently, f
2
2 (z) − f2(z) − z2 + 1

2 = 0

has no solution. Furthermore, we observe limz→0 f
2
2 (z)− f2(z)− z2 + 1

2 = 1
2 , thereby

confirming the statement.

3.3.2 Series Expansion

To evaluate the sign of the second variation, we adopt the approach outlined in [5,
Section 8], which entails representing u′ and ⟨v, ν⟩ in an appropriate orthonormal
basis. To this end, we employ the Steklov eigenvalue problem{

∆ϕk + λα1 (0)ϕk = 0 in Bext
R ,

−∂νϕk + αϕk = µkϕk on ∂BR.
(26)

For λα1 (0) ̸= 0, the corresponding bilinear form

a :W 1,2(Ωext)×W 1,2(Ωext) → R, (u, v) 7→
∫
Ωext

⟨∇u,∇v⟩dx− λα1 (0)

∫
Ωext

uv dx

fulfills

min{1, |λα1 (0)|}||u||2W 1,2(Ωext) ≤ a(u, u) ≤ max{1, |λα1 (0)|}||u||2W 1,2(Ωext).

Hence, (26) possesses a sequence of eigenvalues (µk)k∈N accumulating at infinity. The
corresponding eigenfunctions (ϕk)k∈N ⊂ W 1,2(Ωext) form an orthogonal basis, as dis-
cussed in [3, Section 4]. Consequently, we can write u′ =

∑∞
k=0 ckϕk. Notably, in

contrast to Section 2.1, we operate within the space W 1,2(Ωext) instead of E1(Ωext).
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To solve (26), we set x = r · ξ for r ∈ [R,∞), ξ ∈ Sn−1 and use the ansatz
ϕ(x) = a(r)b(ξ). Expressing the Laplace operator as

∆ =
∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
∆Sn−1 ,

where ∆Sn−1 denotes the Laplace-Beltrami operator, we obtain

∆ϕ(x) + λα1 (0)ϕ(x) = b(ξ)

[
d2a(r)

dr2
+
n− 1

r

da(r)

dr
+ λα1 (0)a(r)

]
+
a(r)

r2
∆Sn−1b(ξ).

We set b(ξ) = Yk,i(ξ), representing the i−th spherical harmonic of degree k ∈ N0. The
dimension of the space of spherical harmonics of degree k is given by

dk :=

(
n+ k − 1

n− 1

)
−
(
n+ k − 3

n− 1

)
,

and {Yk,i}k∈N0,i=1,...,dk
is an orthonormal basis of L2(∂B1). Furthermore, it holds

∆Sn−1Yk,i(ξ) + k(n+ k − 2)Yk,i(ξ) = 0.

Hence,

∆ϕ(x) + λα1 (0)ϕ(x) = b(ξ)

[
d2a(r)

dr2
+
n− 1

r

da(r)

dr
− a(r)

r2
k(n+ k − 2) + λα1 (0)a(r)

]
.

Therefore, a(r) must satisfy

d2a(r)

dr2
+

da(r)

dr

n− 1

r
− k(k + n− 2)

r2
a(r) + λα1 (0)a(r) = 0,

leading to

ak,i(r) = pk,ir
−n−2

2 Kn+2k−2
2

(√
−λα1 (0)r

)
+ qk,ir

−n−2
2 In+2k−2

2

(√
−λα1 (0)r

)
,

with pk,i, qk,i ∈ R. In view of the asymptotic behavior of the Bessel functions given in
(A7) and (A8), we have to choose qk,i = 0 to ensure that ϕ ∈ L2(Ωext). Hence, it holds

− d
drϕk,i + αϕk,i

ϕk,i
=
− d

dr

(
r−

n−2
2 Kn+2k−2

2
(
√

−λα1 (0)r)
)

r−
n−2
2 Kn+2k−2

2
(
√

−λα1 (0)r)
+ α

=− k

r
+

√
−λα1 (0)Kn+2k

2
(
√

−λα1 (0)r)

Kn+2k−2
2

(
√

−λα1 (0)r)
+ α.
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Thus, the boundary condition of (26) yields

µk,i(z) = α+
z

R

Kn+2k
2

(z)

Kn+2k−2
2

(z)
− k

R
= −fn(z)

R
+
fn+2k(z)

R
− k

R
. (27)

As this is independent of i, we write µk := µk,i. Additionally, the eigenvalues µk exhibit
the same ordering as the spherical harmonics as demonstrated in the next lemma. In
particular, Lemma 8 shows that µk(z) > 0 for k ≥ 1 and z ∈ (0,∞).

Lemma 8. Let n ≥ 2. The Steklov eigenvalues are ordered analogously to the spherical
harmonics, i.e. µk(z) < µk+1(z) holds for all k ∈ N0 and z ∈ (0,∞).

Proof. For k ∈ N, the inequality µk+1(z) > µk(z) is equivalent to

fn+2k+2(z)− 1 >fn+2k(z)

⇔ z2

fn+2k(z)
+ n+ 2k − 1 >fn+2k(z)

⇔ z2 + (n+ 2k − 1)fn+2k(z)− fn+2k(z)
2 > 0

⇔ −an+2k(z) > 0.

In Lemma 6 it has been established that am(z) < 0 for all z ∈ (0,∞),m ≥ 2. Since
µ0 = 0, it remains to show µ1 > 0. But analogously we obtain µ1 > 0 ⇔ −an > 0.
Hence, the assertion is proven.

As mentioned earlier, we express the shape derivative in terms of eigenfunctions
of (26) to determine the sign of the second variation. If u′ =

∑∞
k=0

∑dk

i=1 ck,iϕk,i, and
we define bk,i :=

ck,iµk

−Ku(R) , the boundary condition of Lemma 4 implies

⟨v, ν⟩ =
∞∑
k=0

dk∑
i=1

ck,i (∂νϕk,i − αϕk,i)

Ku(R)
=

∞∑
k=0

dk∑
i=1

ck,iµk

−Ku(R)
ϕk,i =

∞∑
k=0

dk∑
i=1

bk,iϕk,i.

An illustration of such perturbations can be found in [8, Section 3.3.1]. Since the
spherical harmonics of degree 0 are constant functions, we obtain

ϕ0,j V̇ (0) =

∫
∂BR

⟨v, ν⟩ϕ0,j dS =

∫
∂BR

∞∑
k=2

dk∑
i=1

bk,iϕk,iϕ0,j dS

=

∞∑
k=2

dk∑
i=1

bk,i

∫
∂BR

ϕk,iϕ0,j dS =

∞∑
k=2

dk∑
i=1

bk,iδk,0δj,i = b0,j .

Thus, Φ is measure preserving if and only if b0,i = 0 (and therefore also c0,i = 0) for
all 1 ≤ i ≤ d0. Similarly, by incorporating spherical harmonics of degree 1, we have

Φ satisfies the barycenter condition ⇔ b1,i = 0 for all 1 ≤ i ≤ d1.
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In summary, assuming that the perturbation is measure preserving and satisfies
the barycenter condition, we obtain the representations

u′ =

∞∑
k=2

dk∑
i=1

ck,iϕk,i and ⟨v, ν⟩ =
∞∑
k=2

dk∑
i=1

bk,iϕk,i (28)

with bk,i =
ck,iµk

Ku(R) . We insert this representation into (22). Integration by parts yields

Q(u′) =

∫
Bext

R

|∇u′|2 − λα1 (0) (u
′)
2
dx+ α

∫
∂BR

(u′)
2
dS

=

∫
∂BR

(−∂νu′ + αu′)u′ dS

=

∫
∂BR

( ∞∑
k=2

dk∑
i=1

ck,i (−∂νϕk,i + αϕk,i)

) ∞∑
p=2

dp∑
q=1

cp,qϕp,q

 dS

=

∞∑
k=2

dk∑
i=1

∞∑
p=2

dp∑
q=1

cp,qck,iµk

∫
∂BR

ϕk,iϕp,q dS =

∞∑
k=2

dk∑
i=1

c2k,iµk.

Additionally, it holds

∫
∂BR

⟨v, ν⟩2 dS =

∞∑
k=2

dk∑
i=1

∞∑
p=2

dp∑
q=1

bk,ibp,q

∫
∂BR

ϕk,iϕp,q dS =

∞∑
k=2

dk∑
i=1

b2k,i.

The second variation of the surface, S̈(0) is given in [5, (2.3.28)] and [5, Lemma 13.1].
Assuming the perturbation is measure preserving of second order, it holds

S̈(0) = 1

R2

∞∑
k=2

dk∑
i=1

k(n+ k − 2)b2k,i −
n− 1

R2

∞∑
k=2

dk∑
i=1

b2k,i.

Inserting this into (22) results in

λ̈α1 (0) = 2αu(R)2K

∫
∂BR

⟨v, ν⟩2 dS + αu2(R)S̈(0)− 2Q(u′)

=αu(R)2
∞∑
k=2

dk∑
i=1

[
2K +

1

R2
[k(n+ k − 2)− (n− 1)]

]
b2k,i − 2

∞∑
k=2

dk∑
i=1

c2k,iµk

=

∞∑
k=2

dk∑
i=1

αu(R)2
[
2K +

1

R2
[k(n+ k − 2)− (n− 1)]

]
b2k,i − 2

(bk,iKu(R))
2

µk

=u(R)2
∞∑
k=2

dk∑
i=1

[
2Kα+

α

R2
[k(n+ k − 2)− (n− 1)]− 2

K2

µk

]
b2k,i. (29)
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Supposing L(α, n, k,R) :=
[
2Kα+ α

R2 [k(n+ k − 2)− (n− 1)]− 2K2

µk

]
< 0 holds for

all α < α∗, n ≥ 2, k ≥ 2 and R > 0, we can conclude that the second variation is
negative. To show L(α, n, k,R) < 0, we use the inequalities from Section 3.3.1.

Theorem 5. For all n ≥ 2, R > 0 and α < α∗(Bext
R ) it holds that λ̈α1 (0) < 0.

Proof. Considering Definition 2 and R2K = an, we obtain

R4µk(z)L(α, n, k,R)

=− 2yan(z)Rµk(z)− 2an(z)
2 − yRµk(z)[k

2 + (n− 2)k − (n− 1)]

=− 2an(z)
2 − yRµk(z)

[
2an(z) + k2 + (n− 2)k − (n− 1)

]
.

For n = 2, it holds that

R4µk(z)L(α, n, k,R) = −2a2(z)
2 − yRµk(z)

[
2a2(z) + k2 − 1

]
.

Using Lemma 7, i.e. a2(z) > − 1
2 , we obtain 2a2(z) + k2 − 1 > k2 − 2 > 0. Hence,

L(α, 2, k, R) < 0 holds for all k ≥ 2, R > 0 and α < α∗(Bext
R ).

For n ≥ 3, we distinguish two cases.
Case 1: k ≥ 3. Due to Lemma 7, i.e. an(z) > −(n− 2), it holds

2an(z) + k2 + (n− 2)k − (n− 1) > (k − 3)n+ k2 − 2k + 5 > 0.

Thus, we conclude

R4µk(z)L(α, n, k,R) = −2an(z)
2 − yRµk(z)

[
2an(z) + k2 + (n− 2)k − (n− 1)

]
< 0.

Case 2: k = 2. For n ≤ 5, the same reasoning as in Case 1 applies. However, for
n ≥ 6, the calculations become more intricate. It holds

L(α, n, 2, R) < 0 ⇔ an(z)
2 +Rµ2(z)yan(z) +Rµ2(z)y

n+ 1

2
> 0

⇔
(
an(z) +

Rµ2(z)y

2

)2

− (Rµ2(z)y)
2

4
+Rµ2(z)y

n+ 1

2
> 0

⇔
(
an(z) +

Rµ2(z)y

2

)2

+
Rµ2(z)y

2

(
n+ 1− Rµ2(z)y

2

)
> 0.

We aim to prove Rµ2(z)y
2 < n + 1, which makes the last inequality clearly valid, thus

proving L(α, n, 2, R) < 0. Because of

Rµ2(z)y =
zKn

2
(z)

Kn−2
2

(z)

(
−
Kn

2
(z)z

Kn−2
2

(z)
+
Kn+4

2
(z)z

Kn+2
2
(z)

− 2

)
= y

(
−y +

Kn+4
2
(z)z

Kn+2
2
(z)

− 2

)
,
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it holds

n+ 1− Rµ2(z)y

2
= n+ 1− y

2

(
−y + z

Kn+4
2
(z)

Kn+2
2
(z)

− 2

)
.

Applying (A2), we obtain z
Kn+4

2
(z)

Kn+2
2

(z) = n+2+z
Kn

2
(z)

Kn+2
2

(z) and z
Kn

2
(z)

Kn+2
2

(z) =
z2y

ny+z2 . Thus,

n+ 1 >
Rµ2(z)y

2
⇔ n+ 1 >

y

2

(
−y + n+

z2y

ny + z2

)
.

Given limz→0 y = limz→0 fn(z) = n− 2, and considering (A8), we have

lim
z→0

n+ 1− y

2

(
−y + n+

z2y

ny + z2

)
> 0, lim

z→∞
n+ 1− y

2

(
−y + n+

z2y

ny + z2

)
> 0.

Furthermore, the function µ2(z)y
2 is continuous. Thus, if n+ 1− y

2

(
−y + n+ z2y

ny+z2

)
has no zeros, we obtain n+ 1 > Rµ2(z)y

2 . Since z > 0, the only possible zero occurs at

z0 =

√
−(ny − 2n− 2)ny(ny − y2 − 2n− 2))

ny − 2n− 2
.

However, according to (A10),

fn(z0)− y >
n− 2

2
+

√
(n− 2)2

4
+ z20 − y

=
1

2

(
n− 2− 2y +

√
−8 + n3(y − 2) + n2(−4y2 + 4y + 6) + n(4y3 + 12y)

−2 + (y − 2)n

)
.

This expression can only be negative if n− 2− 2y < 0. Consequently,

1

2

(
n− 2− 2y +

√
−8 + n3(y − 2) + n2(−4y2 + 4y + 6) + n(4y3 + 12y)

−2 + (y − 2)n

)
> 0

⇔

√
−8 + n3(y − 2) + n2(−4y2 + 4y + 6) + n(4y3 + 12y)

−2 + (y − 2)n
> 2y − n+ 2

⇔ 8y(2n+ y + 2)

−2 + (y − 2)n
> 0.

The numerator is obviously positive, and so is the denominator by the assumption

y > n− 2 and n ≥ 3. Thus, n+ 1− y
2

(
−y + n+ z2y

ny+z2

)
has no zeros. Consequently,

L(α, n, 2, R) < 0 is shown, concluding the proof.
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Combining Theorem 5 and (21) yields that the exterior of the ball maximizes
λα1 (Ω

ext) locally among all nearly spherical domains with prescribed measure. However,
the neighborhood of BR in which the ball maximizes λα1 (Ω

ext) might depend on the
particular perturbation. We conjecture that an appropriate choice of condition (b)
(page 17) addresses this issue.

Remark 2. For k = 1, the perturbation is volume preserving. Consequently, the first
variation remains zero. Regarding the second variation, we obtain

R4µ1(z)L(α, n, 1, R) = −2an(z) (an(z) + yRµ1(z)) .

Due to

yRµ1(z) = fn(z) (−fn(z) + fn+2(z)− 1) = fn(z)

(
−fn(z) +

[
z2

fn(z)
+ n

]
− 1

)
= −fn(z)2 + (n− 1)fn(z) + z2 = −an(z),

we obtain L(α, n, 1, R) = 0. This is in line with the idea that spherical harmonics of
degree 1 merely shift the domain, implying that the first eigenvalue remains unchanged.

3.4 Quantitative Inequalities

To derive a quantitative inequality for λα1 (t), we want to find an inequality of the form

λα1 (0)− λα1 (t) ≥ c [S(t)− S(0)] for |t| small, (30)

where S(t) := S(Ωt) = |∂Ωt| and c is independent of the perturbation. It is known that
the unique minimizer of the surface area, among all domains with prescribed volume,
except translations, is the the ball. Consequently, we have S(t)− S(0) > 0 for t ̸= 0.
Furthermore, inequalities for S(t)−S(0) are known which involve the geometry of Ωt,
see e.g. [13]. To achieve (30), we follow a similar approach as outlined in [5, Section
10]. In order to determine c, we need Lemma 9. The proof has the same structure as
the proof of Theorem 5. A detailed proof of Lemma 9 can be found in [8, Lemma 3.17].

For the remainder of this section, we assume n ≥ 2, and we assume that Φ is
perturbation of Bext

R satisfying the conditions (a) - (f) (page 17, 22). Additionally, we
assume that α < α∗(Ωext

t ) for all |t| < t0.

Lemma 9. It holds

S(0)
λα1 (0)

λ̈α1 (0)

S̈(0)
≥ αu(R)2

n+ 1

S(0)
λα1 (0)

> 0.

To prove (30), we introduce the following notations.

Definition 3. For |t| < t0 we define

δS(t) := S(t)
S(0)

− 1, δλα1 (t) :=
λα1 (t)

λα1 (0)
− 1, δ(t) :=

δλα1 (t)

δS(t)
.
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Using the first two definitions, δ(t) equals δ(t) = − S(0)
λα
1 (0)

λα
1 (0)−λα

1 (t)
S(t)−S(0) . Thus, a lower

bound for δ gives the desired inequality, as shown in Theorem 6.

Theorem 6. We define

C1 := sup
|t|<t0

∣∣∣λα1 (t)− λα1 (0)− tλ̇α1 (0)− t2

2 λ̈
α
1 (0)

∣∣∣
t3

,

C2 := sup
|t|<t0

∣∣∣S(t)− S(0)− tṠ(0)− t2

2 S̈(0)
∣∣∣

t3
.

Then, for every ε > 0 and |t| < min
{

−ελ̈α
1 (0)

2C1
, εS̈(0)

2C2
, t0

}
, it holds

λα1 (0)− λα1 (t) > −αu(R)2S(t)− S(0)
n+ 1

1− ε

1 + ε
.

Proof. Considering Ṡ(0) = λ̇α1 (0) = 0, we obtain

δλα1 (t) =
λα1 (t)− λα1 (0)

λα1 (0)
≥
tλ̇α1 (0) +

t2

2 λ̈
α
1 (0) + t3C1

λα1 (0)
=

t2

2 λ̈
α
1 (0) + t3C1

λα1 (0)
,

δS(t) = S(t)− S(0)
S(0)

≤
tṠ(0) + t2

2 S̈(0) + t3C2

λα1 (0)
=

t2

2 S̈(0) + t3C2

λα1 (0)
.

This leads to

δ(t) ≥
t2

2
λ̈α
1 (0)

λα
1 (0) + t3 C1

λα
1 (0)

t2

2
S̈(0)
S(0) + t3 C2

S(0)

=
S(0)

−λα1 (0)
−λ̈α1 (0)− 2tC1

S̈(0) + 2tC2

.

By choosing |t| < min
{

−ελ̈α
1 (0)

2C1
, εS̈(0)

2C2

}
, and considering Lemma 9, it holds

δ(t) ≥ S(0)
−λα1 (0)

−λ̈α1 (0) + ελ̈α1 (0)

S̈(0) + εS̈(0)
=

S(0)λ̈α1 (0)
λα1 (0)S̈(0)

1− ε

1 + ε
≥ αu(R)2

n+ 1

S(0)
λα1 (0)

1− ε

1 + ε
.

Since δ(t) = − S(0)
λα
1 (0)

λα
1 (0)−λα

1 (t)
S(t)−S(0) , we obtain

λα1 (0)− λα1 (t)

S(t)− S(0)
>

−αu(R)2

n+ 1

1− ε

1 + ε
.

We cannot assure that the values of C1 and C2, and thus the interval for t, where
the inequality holds true, can be chosen independently of the specific perturbation.
Nonetheless, we expect that the condition (b) can effectively address this problem.
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Appendix A Properties of Bessel Functions

The properties of the modified Bessel functions, presented in this section, are well
known and can, for example, be found in [1, Chapter 9]. For m ∈ R≥0, the modified
Bessel functions Im(x) and Km(x) are defined as the canonical solutions of

x2
d2f(x)

dx2
+ x

df(x)

dx
− (x2 +m2)f(x) = 0. (A1)

They satisfy the recurrence relations

Km+2(x) =
(2m+ 2)Km+1(x)

x
+Km(x), (A2)

Im+2(x) =
−(2m+ 2)Im+1(x)

x
+ Im(x). (A3)

Differentiating these functions with respect to x yields

d

dx
Km(x) = −Km+1(x) +

mKm(x)

x
and

d

dx
Im(x) = Im+1(x) +

mIm(x)

x
. (A4)

The Bessel functions have the following asymptotic behavior. For x→ 0, it holds

Im(x) ≈ 1

Γ(m+ 1)

(x
2

)m
, (A5)

Km(x) ≈

{
−
(
ln
(
x
2

)
+ γ
)

for m = 0,
Γ(m)

2

(
2
x

)m
for m > 0,

(A6)

where γ denotes the Euler constant. For x→ ∞, we have the asymptotic behavior

Im(x) =
ex√
2πx

(
1− 4m2 − 1

8x
+

(4m2 − 1)(4m2 − 9)

2(8x)2
+O

(
1

x3

))
, (A7)

Km(x) =

√
π

2x
e−x

(
1 +

4m2 − 1

8x
+

(4m2 − 1)(4m2 − 9)

2(8x)2
+O

(
1

x3

))
. (A8)

A relation between Km and Im is given by

−Km(x)Im+1(x) = − 1

x
+ Im(x)Km+1(x). (A9)

A useful inequality for the ratio of Bessel functions is proven in [22, Theorem 1,
Theorem 5] by J. Segura: For x > 0,m ≥ 0 it holds that

m

2
+

√
m2

4
+ x2 ≤ x

Km
2 +1(x)

Km
2
(x)

≤ m+ 1

2
+

√
(m+ 1)2

4
+ x2. (A10)

For m ̸= 0, inequality (A10) is strict.
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Appendix B Variation of the Robin Eigenvalue

In this section, we partly omit, in favor of readability certain arguments of a function
if it is obvious from the context.

Proof of Theorem 4. The proof is similar to the calculations of the variation of the
Robin eigenvalue on bounded domains given in [5, Section 9.1.2 and Section 9.1.3].
We use the normalization ||u(t)||L2(Ωext

t ) = 1, which implies

0 =
d

dt

∫
Ωext

ũ2(t)J(t) dx =

∫
Ωext

2ũ(t) ˙̃u(t)J(t) + ũ2(t)J̇(t) dx. (B11)

Therefore, it holds

λα1 (t) =

∫
Ωext

(∇ũ(t))T A(t)∇ũ(t) dx+ α

∫
∂Ω

ũ2(t)m(t) dS.

If we differentiate this expression with respect to t, we obtain

λ̇α1 (t) =

∫
Ωext

2
(
∇ ˙̃u(t)

)T
A(t)∇ũ(t) + (∇ũ(t))T Ȧ(t)∇ũ(t) dx

+ α

∫
∂Ω

2 ˙̃u(t)ũ(t)m(t) + ũ2(t)ṁ(t) dS.

In order to eliminate expressions containing ˙̃u, we multiply (18) with ˙̃u and integrate
over Ωext, which yields

λα1 (t)

∫
Ωext

˙̃u(t)ũ(t)J(t) dx = −
∫
Ωext

˙̃u(t)LAũ(t) dx.

In view of LAũ = div(A∇ũ), we can use integration by parts and obtain

λα1 (t)

∫
Ωext

˙̃u(t)ũ(t)J(t) dx =

∫
∂Ω

˙̃u(t)⟨A(t)∇ũ(t), ν⟩dS +

∫
Ωext

⟨A(t)∇ũ(t),∇ ˙̃u(t)⟩dx

=

∫
∂Ω

˙̃u(t)∂νA(t)
ũ(t) dS +

∫
Ωext

(∇ ˙̃u(t))TA(t)∇ũ(t) dx

= α

∫
∂Ω

˙̃u(t)m(t)ũ(t) dS +

∫
Ωext

(∇ ˙̃u(t))TA(t)∇ũ(t) dx,

where we inserted the boundary condition in the last equality. Thus, we obtain

λ̇α1 (t) =

∫
Ωext

(∇ũ(t))T Ȧ(t)∇ũ(t) + 2λα1 (t)
˙̃u(t)ũ(t)J(t) dx+ α

∫
∂Ω

ũ2(t)ṁ(t) dS.

Using the normalization (B11), we obtain (19).
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For the second variation, we differentiate (19) with respect to t and obtain

λ̈α1 (t) =

∫
Ωext

(∇ũ(t))T Ä(t)∇ũ(t) + 2
(
∇ ˙̃u(t)

)T
Ȧ(t)∇ũ(t) dx

+ α

∫
∂Ω

ũ2(t)m̈(t) + 2ũ(t) ˙̃u(t)ṁ(t) dS

− λ̇α1 (t)

∫
Ωext

ũ2(t)J̇(t) dx− λα1 (t)

∫
Ωext

ũ2(t)J̈(t) + 2ũ(t) ˙̃u(t)J̇(t) dx.

To simplify this expression, we differentiate (18) with respect to t, which leads to{
LȦ(t)ũ(t) + LA(t)

˙̃u(t) + λ̇α1 (t)ũ(t)J(t) + λ1α(t)
[
˙̃u(t)J(t) + ũ(t)J̇(t)

]
= 0 in Ωext,

−∂νȦ(t)
ũ(t)− ∂νA(t)

˙̃u(t) + αṁ(t)ũ(t) + αm(t) ˙̃u(t) = 0 on ∂Ω.

Multiplying this equation with ˙̃u and integrating over Ωext yields

0 =

∫
Ωext

˙̃u(t) div(Ȧ(t)∇ũ(t)) + ˙̃u(t) div(A(t)∇ ˙̃u(t)) dx

+

∫
Ωext

˙̃u(t)λ̇α1 (t)ũ(t)J(t) +
˙̃u(t)λα1 (t)

[
˙̃u(t)J(t) + ũ(t)J̇(t)

]
dx.

After integration by parts and using the boundary condition, we obtain

0 =−
∫
∂Ω

˙̃u(t)
[
αṁ(t)ũ(t) + αm(t) ˙̃u(t)

]
dS

−
∫
Ωext

(∇ ˙̃u(t))T Ȧ(t)∇ũ(t) + (∇ ˙̃u(t))TA(t)∇ ˙̃u(t) dx

+

∫
Ωext

˙̃u(t)λ̇α1 (t)ũ(t)J(t) +
˙̃u(t)λα1 (t)

[
˙̃u(t)J(t) + ũ(t)J̇(t)

]
dx.

Finally, adding this two times to λ̈α1 yields the claimed formula for the second variation.

Proof of Corollary 3. From Theorem 4, we obtain

λ̇α1 (0) =

∫
Ωext

(∇u)T Ȧ(0)∇u− λα1 (0)u
2J̇(0) dx+ α

∫
∂Ω

u2ṁ(0) dS.

It holds J̇(0) = div(v) and from [5, (2.3.19)] we conclude for Hadamard perturbations
ṁ(0) = (n − 1)H⟨v,−ν⟩. Furthermore, in [5, Lemma 4.1] it is shown that Ȧi,j(0) =
div(v)δi,j − ∂jvi − ∂ivj , where ∂i is short for ∂xi

. Hence, it holds∫
Ωext

(∇u)T Ȧ(0)∇udx− 2

∫
Ωext

∆u⟨∇u, v⟩dx
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=

∫
Ωext

div(v)|∇u|2 dx− 2

∫
Ωext

n∑
i,j=1

(∂iu)(∂ju)(∂ivj) dx− 2

∫
Ωext

∆u⟨∇u, v⟩dx

=

∫
Ωext

div(v)|∇u|2 + ⟨v,∇(|∇u|2)⟩dx− 2

∫
Ωext

⟨∇u,∇(⟨∇u, v⟩)⟩+∆u⟨∇u, v⟩dx

=−
∫
∂Ω

⟨v, ν⟩|∇u|2 − 2∂νu⟨∇u, v⟩dS,

where we used integration by parts in the last step. Therefore, using ∆u = −λα1 (0)u
in Ωext, we obtain

λ̇α1 (0) =−
∫
∂Ω

⟨v, ν⟩|∇u|2 − 2(∂νu)⟨∇u, v⟩+ αu2(n− 1)H⟨v, ν⟩dS

+ 2

∫
Ωext

∆u⟨∇u, v⟩dx− λα1 (0)

∫
Ωext

u2 div(v) dx

=−
∫
∂Ω

⟨v, ν⟩|∇u|2 − 2(∂νu)⟨∇u, v⟩+ αu2(n− 1)H⟨v, ν⟩dS

− 2λα1 (0)

∫
Ωext

u⟨∇u, v⟩dx− λα1 (0)

∫
Ωext

u2 div(v) dx.

Using again integration by parts, the last integral can be transformed to

−
∫
Ωext

u2 div(v) dx =

∫
Ωext

⟨v, ∇u2︸︷︷︸
=2u∇u

⟩dx+

∫
∂Ω

u2⟨v, ν⟩dS.

Under the assumption v = ⟨v, ν⟩ν and in view of the boundary condition, it holds that
(∂νu)⟨∇u, v⟩ = α2u2⟨v, ν⟩. Hence, (20) follows.

Proof of (22). Inserting t = 0 into Theorem 4 and using A(0) = In×n as well as
m(0) = J(0) = 1 yields

λ̈α1 (0) =

∫
Bext

R

(∇u)T Ä(0)∇u− 2|∇ ˙̃u(0))|2 dx+ α

∫
∂BR

u2m̈(0)− 2 ˙̃u(0)2 dS

− λ̇α1 (0)︸ ︷︷ ︸
=0

∫
Bext

R

u2J̇(0)− ˙̃u(0)udx− λα1 (0)

∫
Bext

R

u2J̈(0)− 2 ˙̃u(0)2 dx.

Using (15), i.e. ˙̃u(0) = ⟨v,∇u⟩+ u′, we obtain

λ̈α1 (0) =

∫
Bext

R

(∇u)T Ä(0)∇u− 2|∇(⟨v,∇u⟩+ u′)|2 dx

+ α

∫
∂BR

u2m̈(0)− 2(⟨v,∇u⟩+ u′)2 dS

− λα1 (0)

∫
Bext

R

u2J̈(0)− 2(⟨v,∇u⟩+ u′)2 dx.
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With Q(u′) as in (23) and using S̈(0) =
∫
∂Ω
m̈(0) dS, the second variation becomes

λ̈α1 (0) =

∫
Bext

R

(∇u)T Ä(0)∇u− 2|∇(⟨v,∇u⟩)|2 − 4⟨∇(⟨v,∇u⟩),∇u′⟩dx

+ αu2(R)S̈(0)− 2α

∫
∂BR

⟨v,∇u⟩2 + 2⟨v,∇u⟩u′ dS

− λα1 (0)

∫
Bext

R

u2J̈(0)− 2(⟨v,∇u⟩2 + 2⟨v,∇u⟩u′) dx− 2Q(u′). (B12)

We transform the remaining domain integrals into boundary integrals. To this end,
we proceed similar to [5, Section 6.5.1]. By [5, Lemma 4.1], it holds

Äi,j(0) =
[
(div(v))2 − Tr

(
Dv(Dv)

T
)
+ div(w)

]
δi,j − 2 div(v) [(∂jvi) + (∂ivj)]

+ 2

n∑
k=1

(∂kvi)(∂jvk) + (∂kvj)(∂ivk) + (∂kvi)(∂kvj)− (∂iwj)− (∂jwi).

Therefore, it is straight forward to verify that

(∇u)T Ä(0)∇u =
[
(div(v))2 − Tr

(
Dv(Dv)

T
)
+ div(w)

]
|∇u|2 − 4 div(v)⟨∇u,Dv∇u⟩

+ 4⟨(Dv)
T∇u,Dv∇u⟩+ 2⟨Dv∇u,Dv∇u⟩ − 2⟨∇u,Dw∇u⟩.

Additionally, it holds

|∇(⟨v,∇u⟩)|2 = ⟨Dv∇u,Dv∇u⟩+ 2⟨Dv∇u, (D2u)v⟩+ ⟨(D2u)v, (D2u)v⟩,

where D2u is the matrix given by (D2u)i,j = ∂i∂ju. Furthermore, it holds

⟨∇(⟨v,∇u⟩),∇u′⟩ = div(⟨v,∇u⟩∇u′)− ⟨v,∇u⟩∆u′.

Thus, we obtain

(∇u)T Ä(0)∇u− 2|∇(⟨v,∇u⟩)|2 − 4⟨∇(⟨v,∇u⟩),∇u′⟩
=
[
(div(v))2 − Tr

(
Dv(Dv)

T
)
+ div(w)

]
|∇u|2 − 4 div(v)⟨∇u,Dv∇u⟩

+ 4⟨(Dv)
T∇u,Dv∇u⟩+ 2⟨Dv∇u,Dv∇u⟩ − 2⟨∇u,Dw∇u⟩

− 2
[
⟨Dv∇u,Dv∇u⟩+ 2⟨Dv∇u, (D2u)v⟩+ ⟨(D2u)v, (D2u)v⟩

]
− 4 [div(⟨v,∇u⟩∇u′)− ⟨v,∇u⟩∆u′]

=
[
(div(v))2 − Tr

(
Dv(Dv)

T
)]

|∇u|2 − 2⟨∇u,Dw∇u⟩+ div(w)|∇u|2

− 4 div(v)⟨∇u,Dv∇u⟩+ 4⟨(Dv)
T∇u,Dv∇u⟩

− 4⟨Dv∇u, (D2u)v⟩ − 2⟨(D2u)v, (D2u)v⟩
− 4 div(⟨v,∇u⟩∇u′) + 4⟨v,∇u⟩∆u′.
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We examine the terms separately. To this end, we define

E1 :=
[
(div(v))2 − Tr

(
Dv(Dv)

T
)]

|∇u|2,
E2 :=− 2⟨∇u,Dw∇u⟩+ div(w)|∇u|2,
E3 :=− 4 div(v)⟨∇u,Dv∇u⟩+ 4⟨(Dv)

T∇u,Dv∇u⟩
− 4⟨Dv∇u, (D2u)v⟩ − 2⟨(D2u)v, (D2u)v⟩,

E4 :=− 4 div(⟨v,∇u⟩∇u′) + 4⟨v,∇u⟩∆u′.

A straightforward calculation shows that first, it holds that

E1 =div
(
[v div(v)− (Dv)

T v]|∇u|2
)
− 2 div(v)⟨v,D2u∇u⟩+ 2⟨(Dv)

T v,D2u∇u⟩,
E2 =div

(
w|∇u|2 − 2∇u⟨w,∇u⟩

)
+ 2∆u⟨w,∇u⟩,

and for E3, we use the identity

− div(v)⟨∇u,Dv∇u⟩ − ⟨Dv∇u, (D2u)v = div [∇u⟨v,Dv∇u⟩ − v⟨∇u,Dv∇u⟩]
+ ⟨(D2u)v, (Dv)

T∇u⟩ − ⟨(Dv)
T∇u,Dv∇u⟩ −∆u⟨v,Dv∇u⟩ − ⟨(Dv)

T v, (D2u)∇u⟩.

Hence, E1 + E3 equals

div
(
[v div(v)− (Dv)

T v]|∇u|2
)
+ 4div [∇u⟨v,Dv∇u⟩ − v⟨∇u,Dv∇u⟩]

− 4∆u⟨v,Dv∇u⟩+ 2div
[
∇u⟨(D2u)v, v⟩

]
− 2∆u⟨v, (D2u)v⟩

− 2 div
[
v⟨(D2u)v,∇u⟩

]
.

In total, we obtain that E1 + E2 + E3 + E4 equals

div
[
[v div(v)− (Dv)

T v]|∇u|2 + 4 (∇u⟨v,Dv∇u⟩ − v⟨∇u,Dv∇u⟩)
]

+ 2div
[
−v⟨(D2u)v,∇u⟩+∇u⟨(D2u)v, v⟩ − 2 [⟨v,∇u⟩∇u′]

]
+ div

[
w|∇u|2 − 2∇u⟨w,∇u⟩

]
+ 2∆u⟨w,∇u⟩+ 4⟨v,∇u⟩∆u′ − 2∆u⟨v, (D2u)v⟩ − 4∆u⟨v,Dv∇u⟩.

Using integration by parts, we obtain that
∫
Bext

R
E1 + E2 + E3 + E4 dx equals

−
∫
∂BR

|∇u|2⟨v div(v)− (Dv)
T v, ν⟩+ 4⟨v,Dv∇u⟩⟨∇u, ν⟩ − 4⟨∇u,Dv∇u⟩⟨v, ν⟩dS

− 2

∫
∂BR

⟨(D2u)v,∇u⟩⟨−v, ν⟩+ ⟨(D2u)v, v⟩⟨∇u, ν⟩ − 2⟨v,∇u⟩⟨∇u′, ν⟩dS

−
∫
∂BR

|∇u|2⟨w, ν⟩ − 2⟨w,∇u⟩⟨∇u, ν⟩dS

+ 2

∫
Bext

R

∆u⟨w,∇u⟩+ 2⟨v,∇u⟩∆u′ −∆u⟨v, (D2u)v⟩ − 2∆u⟨v,Dv∇u⟩dx.
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Since u is radial, it holds ∇u = (∂νu)ν. Thus, ⟨v,Dv∇u⟩∂νu− ⟨∇u,Dv∇u⟩⟨v, ν⟩ = 0
and we obtain∫

Bext
R

E1 + E2 + E3 + E4 dx

=−
∫
∂BR

|∇u|2⟨v div(v)− (Dv)
T v, ν⟩dS

− 2

∫
∂BR

⟨(D2u)v,∇u⟩⟨−v, ν⟩+ ⟨(D2u)v, v⟩⟨∇u, ν⟩ − 2⟨v,∇u⟩⟨∇u′, ν⟩dS

−
∫
∂BR

|∇u|2⟨w, ν⟩ − 2⟨w,∇u⟩⟨∇u, ν⟩dS

+ 2

∫
Bext

R

∆u⟨w,∇u⟩+ 2⟨v,∇u⟩∆u′ −∆u⟨v, (D2u)v⟩ − 2∆u⟨v,Dv∇u⟩dx.

For the last integral in (B12), we use J̈(0) = div
[
v div(v)− (Dv)

T v + w
]
and

div [vu⟨∇u, v⟩]− ⟨∇u, v⟩2 − u⟨(D2u)v, v⟩ − u⟨v,Dv∇u⟩ = u⟨∇u, v⟩div(v).

Therefore, we obtain

u2J̈(0) =u2 div
[
v div(v)− (Dv)

T v + w
]

=div
[
u2(v div(v)− (Dv)

T v + w)
]
− 2u

[
⟨∇u, v div(v)− (Dv)

T v + w⟩
]

=div
[
u2(v div(v)− (Dv)

T v + w)
]
− 2u

[
⟨∇u,−(Dv)

T v + w⟩
]

− 2
[
div [vu⟨∇u, v⟩]− ⟨∇u, v⟩2 − u⟨(D2u)v, v⟩ − u⟨v,Dv∇u⟩

]
.

Thus, it follows∫
Bext

R

u2J̈(0)− 2(⟨v,∇u⟩2 + 2⟨v,∇u⟩u′) dx

=−
∫
∂BR

u2⟨v div(v)− (Dv)
T v + w, ν⟩dS − 2

∫
Bext

R

u⟨∇u, v⟩div(v) dx

− 2

∫
Bext

R

u⟨∇u,−(Dv)
T v + w⟩+ ⟨v,∇u⟩2 + 2⟨v,∇u⟩u′ dx

=−
∫
∂BR

u2⟨v div(v)− (Dv)
T v + w, ν⟩dS + 2

∫
∂BR

u⟨∇u, v⟩⟨v, ν⟩dS

+ 2

∫
Bext

R

⟨v,∇ (u⟨∇u, v⟩) dx

− 2

∫
Bext

R

u⟨∇u,−(Dv)
T v + w⟩+ ⟨v,∇u⟩2 + 2⟨v,∇u⟩u′ dx.
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Together with

⟨v,∇ (u⟨∇u, v⟩)⟩ = ⟨∇u, v⟩2 + u⟨(D2u)v, v⟩+ u⟨v,Dv∇u⟩,

we obtain∫
Bext

R

u2J̈(0)− 2(⟨v,∇u⟩2 + 2⟨v,∇u⟩u′) dx

=−
∫
∂BR

u2⟨v div(v)− (Dv)
T v + w, ν⟩ − 2u⟨∇u, v⟩⟨v, ν⟩dS

+ 2

∫
Bext

R

u⟨(D2u)v, v⟩+ u⟨v,Dv∇u⟩ −
[
u⟨∇u,−(Dv)

T v + w⟩+ 2⟨v,∇u⟩u′
]
dx

=−
∫
∂BR

u2⟨v div(v)− (Dv)
T v + w, ν⟩ − 2u⟨∇u, v⟩⟨v, ν⟩dS

+ 2

∫
Bext

R

u⟨(D2u)v, v⟩+ 2u⟨v,Dv∇u⟩dx− 2

∫
Bext

R

u⟨∇u,w⟩+ 2⟨v,∇u⟩u′ dx.

Inserting this into (B12) and using ∆u = −λα1u yields

λ̈α1 (0) =−
∫
∂BR

|∇u|2 [div(v)⟨v, ν⟩ − ⟨v, (Dv)ν⟩+ ⟨w, ν⟩] dS

− 2

∫
∂BR

⟨(D2u)v,∇u⟩⟨−v, ν⟩+ ⟨(D2u)v, v⟩∂νu− 2⟨v,∇u⟩⟨∇u′, ν⟩dS

+ 2

∫
∂BR

⟨w,∇u⟩∂νudS + αu2(R)S̈(0)− 2α

∫
∂BR

⟨v,∇u⟩2 + 2⟨v,∇u⟩u′ dS

+ λα1 (0)

∫
∂BR

u2⟨v div(v)− (Dv)
T v + w, ν⟩ − 2u⟨∇u, v⟩⟨v, ν⟩dS

+ 2λα1 (0)

∫
Bext

R

2⟨v,∇u⟩u′ dx+ 2

∫
Bext

R

2⟨v,∇u⟩∆u′ dx− 2Q(u′)

=−
∫
∂BR

[
|∇u|2 − λα1 (0)u

2
]
[div(v)⟨v, ν⟩ − ⟨v, (Dv)ν⟩+ ⟨w, ν⟩] dS

− 2

∫
∂BR

−⟨(D2u)v,∇u⟩⟨v, ν⟩+ ⟨(D2u)v, v⟩∂νu− 2⟨v,∇u⟩⟨∇u′, ν⟩dS

+ 2

∫
∂BR

⟨w,∇u⟩∂νudS + αu2(R)S̈(0)− 2α

∫
∂BR

⟨v,∇u⟩2 + 2⟨v,∇u⟩u′ dS

− λα1 (0)

∫
∂BR

2u⟨∇u, v⟩⟨v, ν⟩dS

+ 2λα1 (0)

∫
Bext

R

2⟨v,∇u⟩u′ dx+ 2

∫
Bext

R

2⟨v,∇u⟩∆u′ dx− 2Q(u′).
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Using

⟨(D2u)v, v⟩∂νu− ⟨(D2u)v,∇u⟩⟨v, ν⟩
=⟨(D2u)v, ⟨v, ν⟩ν⟩∂νu− ⟨(D2u)v, (∂νu)ν⟩⟨v, ν⟩ = 0,

the second variation becomes

λ̈α1 (0) =−
∫
∂BR

[
|∇u|2 − λα1 (0)u

2
]
[div(v)⟨v, ν⟩ − ⟨v, (Dv)ν⟩+ ⟨w, ν⟩] dS

− 2λα1 (0)

∫
∂BR

u⟨∇u, v⟩⟨v, ν⟩dS + 4

∫
∂BR

⟨v,∇u⟩ [∂νu′ − αu′] dS

− 2α

∫
∂BR

⟨v,∇u⟩2 dS + 2

∫
∂BR

⟨w,∇u⟩∂νudS + αu2(R)S̈(0)

+ 4

∫
Bext

R

⟨v,∇u⟩ [λα1 (0)u′ +∆u′] dx− 2Q(u′).

In view of Lemma 4, u′ satisfies{
∆u′ + λα1u

′ = 0 in Bext
R ,

−∂νu′ + αu′ = −Ku(R)⟨v, ν⟩ on ∂BR.

Hence, we obtain

λ̈α1 (0) =−
∫
∂BR

[
|∇u|2 − λα1 (0)u

2
]
[div(v)⟨v, ν⟩ − ⟨v, (Dv)ν⟩+ ⟨w, ν⟩] dS

− 2λα1 (0)

∫
∂BR

u⟨∇u, v⟩⟨v, ν⟩dS + 4K

∫
∂BR

⟨v,∇u⟩⟨v, ν⟩udS

− 2α

∫
∂BR

⟨v,∇u⟩2 dS + 2

∫
∂BR

⟨w,∇u⟩∂νudS + αu2(R)S̈(0)− 2Q(u′).

Using that u and ∂νu are constant on ∂BR as well as ∂νu = αu, we have

λ̈α1 (0) =−
[
α2u2(R)− λα1 (0)u

2
] ∫

∂BR

div(v)⟨v, ν⟩ − ⟨v, (Dv)ν⟩+ ⟨w, ν⟩dS

− 2λα1 (0)αu
2(R)

∫
∂BR

⟨v, ν⟩2 dS + 4Kαu2(R)

∫
∂BR

⟨v, ν⟩2 dS

− 2α3u2(R)

∫
∂BR

⟨v, ν⟩2 dS + 2α2u2(R)

∫
∂BR

⟨w, ν⟩dS + αu2(R)S̈(0)− 2Q(u′).

The first integral vanishes because of∫
∂BR

div(v)⟨v, ν⟩ − ⟨v, (Dv)ν⟩+ ⟨w, ν⟩dS =−
∫
Bext

R

J̈(0) dx = V̈ (0) = 0.
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Thus, we obtain

λ̈α1 (0) =2u2(R)α
[
−λα1 (0) + 2K − α2

] ∫
∂BR

⟨v, ν⟩2 dS

+ 2α2u2(R)

∫
∂BR

⟨w, ν⟩dS + αu2(R)S̈(0)− 2Q(u′).

In [16, (5.56)], A. Henrot and M. Pierre show that for f ∈ C1(∂Ω), it holds∫
∂BR

f div∂Ω(v) dS =

∫
∂BR

−⟨v,∇τf⟩+ (n− 1)f⟨v, ν⟩H dS,

where div∂Ω(v) := [div(v)− ⟨(Dv)ν, ν⟩] and ∇τf := ∇f −⟨∇f, ν⟩ν. Since we consider
a Hadamard perturbation, it holds

⟨v,∇τf⟩ = ⟨v,∇f⟩ − ⟨v, ⟨∇f, ν⟩ν⟩ = ⟨⟨v, ν⟩ν,∇f⟩ − ⟨v, ⟨∇f, ν⟩ν⟩ = 0.

Since ν is the outer normal of BR, we have H = 1
R . Thus, for f = ⟨v, ν⟩, we obtain,∫

∂BR

⟨v, ν⟩div∂Ω(v) dS =

∫
∂BR

(n− 1)⟨v, ν⟩2 1
R

dS. (B13)

Because of V̈ (0) = 0, it holds that 0 =
∫
∂BR

div(v)⟨v, ν⟩ − ⟨v, (Dv)ν⟩ + ⟨w, ν⟩dS.
Hence, we obtain∫
∂BR

⟨w, ν⟩dS = −
∫
∂BR

div(v)⟨v, ν⟩ − ⟨v, (Dv)ν⟩dS

= −
∫
∂BR

[div∂BR
(v) + ⟨Dvν, ν⟩] ⟨v, ν⟩ − ⟨⟨v, ν⟩ν, (Dv)ν⟩dS

= −
∫
∂BR

(n− 1)⟨v, ν⟩2

R
dS −

∫
∂BR

⟨Dvν, ν⟩⟨v, ν⟩ − ⟨v, ν⟩⟨ν, (Dv)ν⟩dS

= −
∫
∂BR

(n− 1)⟨v, ν⟩2

R
dS.

Thus, it finally holds

λ̈α1 (0) =2u2(R)α
[
−λα1 (0) + 2K − α2

] ∫
∂BR

⟨v, ν⟩2 dS

− 2α2u2(R)
n− 1

R

∫
∂BR

⟨v, ν⟩2 dS + αu2(R)S̈(0)− 2Q(u′)

=2u2(R)αK

∫
∂BR

⟨v, ν⟩2dS + αu2(R)S̈(0)− 2Q(u′).
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