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Abstract. Accurate cancer diagnosis remains a critical challenge in dig-
ital pathology, largely due to the gigapixel size and complex spatial re-
lationships present in whole slide images. Traditional multiple instance
learning (MIL) methods often struggle with these intricacies, especially in
preserving the necessary context for accurate diagnosis. In response, we
introduce a novel framework named Semantics-Aware Attention Guid-
ance (SAG), which includes 1) a technique for converting diagnostically
relevant entities into attention signals, and 2) a flexible attention loss that
efficiently integrates various semantically significant information, such as
tissue anatomy and cancerous regions. Our experiments on two distinct
cancer datasets demonstrate consistent improvements in accuracy, pre-
cision, and recall with two state-of-the-art baseline models. Qualitative
analysis further reveals that the incorporation of heuristic guidance en-
ables the model to focus on regions critical for diagnosis. SAG is not only
effective for the models discussed here, but its adaptability extends to any
attention-based diagnostic model. This opens up exciting possibilities for
further improving the accuracy and efficiency of cancer diagnostics. Upon
acceptance, our code will be made available.

Keywords: Attention Guidance · Whole Slide Image Diagnosis · Se-
mantic Heuristic · Multiple Instance Learning · Transformers

1 Introduction

In recent years, the landscape of histopathological image analysis has been pro-
foundly reshaped by the advent of deep learning technologies [6,5]. However,
learning from gigapixel whole slide images (WSIs) remains a difficult problem,
as their size makes end-to-end learning extremely expensive. Thus, WSI classifi-
cation methods often follow a bag-of-words (BoW) model for learning represen-
tations, wherein a large patch of a whole slide image is treated as a bag or set,
while smaller image patches inside a bag are treated as words (or instances). Fol-
lowing this BoW model, many studies adopt a multiple instance learning-based
(MIL) approach, which involves first extracting word-level feature representa-
tions and then applying global aggregation to bags of word-level representations
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Fig. 1. Visualization of the baseline model’s (ScAtNet [21]) attention on (a) skin biopsy
WSIs in the melanoma dataset and (b) breast biopsy WSIs in the Camelyon16 dataset.
Green boxes show examples of the baseline model mistakenly focusing on background
regions. The signal and attention values are normalized for visualization purposes.

to obtain WSI-level representations. These approaches are good at reducing the
computational cost and offer a workaround by segmenting WSIs into smaller,
and more manageable patches [9,10,15,12].

However, how pathologists approach diagnosis is very different from MIL
models. Pathologists begin their evaluation by identifying suspicious regions at
low magnification to form initial hypotheses. They then switch to high mag-
nification to examine individual cells, mitotic counts, structures like ducts, and
etc., ultimately reaching a definitive diagnosis [14]. In contrast, by treating image
patches independently, MIL models disregard the multi-scale nature of pathol-
ogy, where zooming in and out is crucial for comprehensive assessment. This lim-
itation in capturing long-range interactions between entities hinders MIL models
from effectively capturing the nuanced details critical for accurate diagnosis.

To learn a better global representation, transformer models have been adopted
to grasp the interdependencies among patches and formulate comprehensive rep-
resentations, notably advancing beyond the MIL’s limitations [17,4,3,23,21]. A
few studies extract features from multiple resolutions and aggregate them hierar-
chically or concatenate them to predict the diagnosis class [21,8,19]. Specifically,
ScAtNet [21] employs a transformer-based end-to-end network that adapts to the
information from different input scales through self-attention and predicts the
classification label. Results show that ScAtNet outperforms other MIL methods
by a large margin in the task of melanoma diagnosis. However, such models often
mistakenly focus on non-cancerous regions or just empty spaces, as highlighted
by the green boxes in Fig. 1. This problem brings up questions about how well
these models can be interpreted, how reliable they are, and if they really match
up with the way pathologists diagnose.

In response, integrating additional domain information into diagnostic mod-
els has emerged as a promising strategy. Such efforts not only enhance classi-
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Fig. 2. Overview of the SAG approach for improving WSIs diagnosis models. First, a
high-resolution histopathological image is divided into p number of non-overlapping
patches. Then, patch embeddings are obtained using an off-the-shelf feature extractor
f. Subsequently, a diagnostic network utilizes the p × e-dimensional feature map for
classification into distinct categories. During training, heuristic guidance (HG) and
tissue guidance (TG) are leveraged to supervise the attention within the diagnosis
model, ensuring the focus on diagnostically relevant regions.

fication accuracy but also improve model performance, especially in scenarios
where data is scarce. Miao et al. introduce spatial prior attention using binary
anatomy knowledge maps, a step towards integrating prior knowledge into WSI
diagnosis [16]. Limited to binary representations, this study suggests the poten-
tial for richer prior knowledge to improve accuracy. Chen et al. broadens the
scope by leveraging genomics information in addition to WSIs to predict patient
outcomes [4]. Yet, their approach lacks adaptability to other modalities and is
hard to integrate additional guidance signals.

Recognizing the limitations of current methods, we propose a Semantics-
Attention-Guiding framework, SAG, whose key contributions are:

– A novel attention guiding module that is applicable to any attention-based
multiple instance learning or Transformer models.

– A flexible attention-guiding loss to effectively incorporate varied semantic
information, such as tissue and cancerous region masks.

– A heuristic attention-generation method to convert diagnostically relevant
entities to heuristic-guidance signals.

– Improving state-of-the-art methods on two datasets of different cancer types.

2 Methodology

Our SAG framework aims to infuse diagnostic models with relevant knowledge,
thereby enhancing the diagnostic performance and the interpretability of attention-
supervised representations. This versatile framework is compatible with a broad
range of attention-based MIL and transformer methods. Fig. 2 illustrates our SAG
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pipeline, which includes three main components: 1) generate patchwise embed-
dings with an off-the-shelf feature extractor, 2) learn diagnostic patterns from
these embeddings via a diagnosis network, and 3) utilize an attention-guiding
loss that leverages heuristic guidance (HG) and tissue guidance (TG). In the
following sections, we give the details of the proposed attention guidance.

2.1 Diagnosis Models

We employ a pre-trained feature extractor f for patch embedding extraction. The
implementation detail of f is provided in Sec. 3.2. Moreover, to demonstrate the
versatility and model-agnostic nature of our SAG framework, we apply SAG to
two state-of-the-art baseline models: a transformer-based model, ScAtNet [21],
and an MIL-based model, ABMIL [10].

2.2 Attention Weights

First, we partition an image into p input patches. For transformer-based models,
the architecture consists of l layers with h self-attention heads per layer. Given
embeddings q, k, v ∈ Rp×dk projected from the inputs, each attention head in-
duces a pairwise similarity from query q and key k to transform the value v. The
similarity (A) and the model attention weights (MAt) of the transformers are
computed as follows:

A = softmax(
qk⊤√
Dh

) ∈ Rp×p,

MAt =
1

p

p∑

i=1

Ai ∈ Rp.

(1)

The model attention weights (MAm) of the MIL methods are formulated as
the weighted aggregation of instance embeddings [10]:

MAm = σ(x) ∈ Rp, (2)

where σ denotes the linear layers to learn the attention weights, and x ∈ Rp×d

denotes the embeddings from p patches.

2.3 Guidance Generation

To regularize the model’s attention MA, we induce two types of semantic at-
tention guidance: tissue guidance (TG) and heuristic guidance (HG) (Fig. 3),
each represented as a vector ∈ Rp. The generation of attention guidance is de-
scribed in two steps: 1) Acquisition of tissue mask and diagnostic heuristics, and
2) Calculation of guidance weights.

To obtain the tissue mask for TG, Otsu’s method [22] is used to perform
high-quality segmentation of tissue patches. This process transforms the input
image shown in Fig. 3a into the binary tissue mask shown in Fig. 3b.
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Fig. 3. Generation of attention guidance: (a) H&E sample image. (b) Tissue segmen-
tation mask. (c) HG and TG. The values are normalized for visualization purpose.
(d) Cellular entities detected (zoom-in for best view). (e) Convex hull of cellular
clusters. (f) A zoomed-in view of the red boxes in (d) and (e). The convex hull is ren-
dered with red color.

To obtain HG, we exploit dataset- and disease-specific prior knowledge, such
as structures, tissues, and cells. In the example shown in Fig. 3, we first perform
cell segmentation for a specific cell type (Fig. 3d). Then, groups of cells are
aggregated via the density-based spatial clustering algorithm DBSCAN [7]. Next,
the convex hull [20] is generated for each cluster (Fig. 3e) and utilized as the
semantic signal for attention supervision (Fig. 3f).

To calculate the guidance weightW ∈ Rp, we leverage Eqn. 3 to transform the
heuristic signals (HG) and the tissue masks (TG) into the attention supervision
(Fig. 3c):

W k
i =

Mk
i∑p

j=1 M
k
j

, k ∈ {TG,HG}, (3)

where W k
i denotes the guidance weight of patch i, and Mk

i is the mask area ratio
of patch i.

2.4 Loss Functions

Since heuristic guidance (HG) reflects the relevance to the diagnosis, we employ
the mean squared error (MSE) loss, Lmse, to regularize MA:

Lmse =
1

p

p∑

i=1

(WHG
i −MAi)

2. (4)

On the other hand, tissue guidance (TG) is useful in guiding the model to
focus on tissue patches and ignore the background and artifact patches. Thus,
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we employ a less constrained loss, Lin&out, which sums the attention weights
outside of the tissue and the negative attention weights inside the tissue, as
defined in Eqn. 5 below:

Lin&out =
1

p
(−

p∑

i,WTG
i >0

MAi +

p∑

i,WTG
i =0

MAi). (5)

For joint learning, we leverage uncertainty weighting, UW [11], which weighs
multiple loss functions by considering the homoscedastic uncertainty of each
task. The overall loss function is defined as:

L = UW ⊗ {Lcls, Lmse, Lin&out}, (6)

where Lcls is the cross entropy loss for the classification task.

3 Experiments and Results

3.1 Datasets

Melanoma. The melanoma diagnosis dataset used in the study consists of 222
H&E stained WSIs. There are four classes in this dataset: 1) mild and mod-
erate dysplastic nevi, 2) melanoma in situ, 3) invasive melanoma stage pT1a,
and 4) invasive mealnoma stage ≥ pT1b. In our study, we use a random split
of 89/22/111 samples for training, validation and testing. We follow the prepro-
cessing steps in ScAtNet[21] which crops the slice into 25, 49, and 81 patches in
7.5x, 10x, and 12.5x magnifications.
Camelyon16. Camelyon16 [1] is a public dataset comprising 400 H&E stained
WSIs from breast cancer. The WSIs are diagnosed into two classes: normal
and tumor. We use the official split of 271/129 slides for training and testing.
To train ABMIL, we follow DSMIL [12], which crops the WSI into 224x224
sized non-overlapping patches in 20x magnification, and excludes background
patches, leaving around 15K patches per bag on average. To train ScAtNet on
breast biopsies, we adapted the original skin biopsy patch size while adjusting
the number of patches per WSI (10x magnification) to maintain similar content
per patch. The result is 35×35, or 1, 225 number of crops. This ensures consistent
representation and preserves model architecture.

3.2 Implementation Details

Feature Extraction and Attention Guidance. For the melanoma dataset,
an ImageNet pre-trained MobileNetV2 [18] extracts a 1280-dimensional feature
vector for each patch, as described in Sec. 2.1. Since melanocytes are believed
to be highly informative about melanoma diangosis, an open-sourced off-the-
shelf melanocyte detection model [13] is employed to generate the cellular entity
map that eventually transforms to HG, as described in Sec. 2.3. To cluster the
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cell entities, DBSCAN in the scikit-learn package [2] is used with eps=20 and
min samples=5. TG is generated using Otsu thresholding [22].

For Camelyon16 [1], a SimCLR pretrained by DSMIL [12] extracts a 512-
dimensional feature vector for each patch. Moreover, the metastasis mask and
tissue mask in the dataset are utilized for HG and TG.
Diagnosis Models and Training Details. SAG is applied to two models: a
transformer model, ScAtNet [21], and a MIL model, ABMIL [10]. For ScAt-
Net, we impose TG across all attention heads and impose HG on half of the
attention heads. This maintains the model’s adaptability and accommodates po-
tential noise in HG. For ABMIL, we apply both HG and TG on the melanoma
dataset, while we only apply HG to Camelyon16 as the dataset already exclude
background patches. We use ABMIL’s [10] and ScAtNet’s [21] public codebase
for implementation and train models under their experimental settings.

3.3 Results

Table 1 compares the overall performance of SAG on different datasets and back-
bone models, demonstrating its consistent ability to enhance diagnostic perfor-
mance in histopathological image analysis. For each setting, we conduct 15 runs
of experiments with randomly sampled seeds and report the average.

Table 1. Experimental Results of SAG across single-scale (SC) and multi-scale (MC)
configurations for Melanoma and Camelyon16 datasets. Baseline methods are indicated
with a †. Performance metrics include Accuracy (Acc), Precision (P), Recall (R), and
Area Under the Curve (AUC).

SAG Melanoma Camelyon16

Methods HG TG Acc P R AUC Acc P R AUC
ScAtNet (SC)†[21] 55.03 57.17 55.36 77.38 67.79 58.17 57.51 70.28
ScAtNet (SC) ✓ 57.14 59.57 57.31 78.75 68.71 58.50 64.01 72.39
ScAtNet (SC) ✓ ✓ 56.67 60.27 56.66 79.72 71.60 64.45 61.22 71.87
ScAtNet (MC)† 58.16 61.54 58.21 79.54 66.82 55.98 61.22 69.45
ScAtNet (MC) ✓ 59.95 64.77 60.13 81.58 67.91 57.28 66.39 72.26
ScAtNet (MC) ✓ ✓ 62.71 65.23 63.34 82.03 70.13 60.53 62.58 73.13

Best Improvement △ +4.55 +3.69 +5.13 +2.49 +3.81 +6.28 +6.50 +3.68

ABMIL†[10] 45.55 48.23 46.42 68.07 93.02 92.47 92.79 97.52
ABMIL ✓ 51.59 57.42 51.02 74.68 94.73 94.61 94.17 97.80
ABMIL ✓ ✓ 52.01 56.25 51.84 74.35 Not Applicable

Best Improvement △ +6.46 +9.19 +5.42 +6.28 +1.71 +2.14 +1.38 +0.28

Notably, incorporating SAG into single- and multi-scale ScAtNet models on
the melanoma dataset yields significant improvements, particularly with multi-
scale inputs achieving a 4.55% accuracy increase (Table 1). Similar trends are
observed on Camelyon16, where SAG boosts accuracy across ScAtNet configu-
rations (3.81% for multi-scale) and increases ABMIL’s accuracy by 1.71% (Ta-
ble 1). These improvements highlight SAG’s effectiveness in refining focus and
enhancing the models’ diagnostic performance.
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Fig. 4. Comparative visualizations of HG and the models’ attention under SAG’s train-
ing on the melanoma and Camelyon16 datasets. The images are sampled from test set.
The HG and attention values are normalized for visualization purpose.

In our analysis, we observe that ABMIL exhibits superior diagnostic per-
formance on the Camelyon16 dataset (94.73% vs. 71.60%), whereas ScAtNet is
more effective on the melanoma dataset (62.71% vs 45.52%). This distinction in
model efficacy can be attributed to the intrinsic characteristics of these datasets
and the models’ specific designs. Notably, our melanoma dataset, presenting a
four-class classification problem, requires a comprehensive understanding of the
entire image at multiple scales and holistic levels. This aligns well with ScAtNet’s
transformer-based architecture, which excels at capturing long-range dependen-
cies and aggregating multi-scale information through attention mechanisms [21].
In contrast, the Camelyon16 dataset, being a binary classification problem, pri-
oritizes local feature identification for diagnosis, which aligns with ABMIL’s
MIL-based approach, suggesting why ABMIL outperforms in this context. On
the other hand, ScAtNet’s complexity and multi-scale inputs may not offer sig-
nificant benefits here due to overfitting risks. This highlights the importance of
choosing an appropriate method based on the specific data characteristics.

To further illustrate, Fig. 4 visualizes the attention patterns of ScAtNet and
ABMIL on both datasets compared to HG. We notice that SAG encourages the
model to focus on diagnostically relevant regions. These visualizations effectively
demonstrate SAG’s capacity to guide attention and improve interpretability. Ad-
ditional visualizations are available in the appendix for further exploration.

4 Conclusion

Motivated by our observation of misplaced attention on irrelevant regions in
previous approaches, we propose a novel framework called Semantics-Aware At-
tention Guidance (SAG). SAG integrates tissue and heuristic attention guidance
to better emulate the diagnostic process of pathologists, focusing on meaningful
interconnections within WSIs. This targeted approach enables SAG to enhance
model performance across various datasets with limited size and potentially noisy
annotations, highlighting its contribution to improving the precision and relia-
bility of computational diagnostics.
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Fig. 1: Comparison of (a) heuristic guidance (HG), (b) ScAtNet (baseline)’s
attention, and (c) ScAtNet (with SAG)’s attention on the melanoma and Came-
lyon16 dataset. These images are sampled from the test set. The signal and
attention weights are normalized for visualization purporse.
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Fig. 2: Comparison of (a) heuristic guidance (HG), (b) ABMIL (baseline)’s at-
tention, and (c) ABMIL (with SAG)’s attention on the melanoma and the Came-
lyon16 dataset. These images are sampled from the test set. The signal and
attention weights are normalized for visualization purporse.


