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Entanglement in quantum many-body systems is required for a variety of quantum information tasks, making
it crucial to identify the parameter space in which the ground state is fully separable, known as the factoriza-
tion surface (FS). Nonetheless, the tuning parameters indicating FS for several quantum spin models remain
unknown. We employ symbolic regression (SR), a supervised learning technique, to determine a closed-form
expression in the parameter regime corresponding to FS of quantum many-body Hamiltonians. We verify the
effectiveness of this method by examining the analytically tractable models, namely a nearest-neighbor (NN)
quantum transverse XY model with additional Kaplan-Shekhtman-Entin-Aharony interactions, for which the
FS is well-known. We construct an accurate expression for the FS of the XY Z model by providing the param-
eter set through the SR algorithm in which the ground state is derived by matrix product state formalism. With
a satisfactory level of accuracy, we estimate the FS for the long-range XY model, and the NN XY model with
Dzyaloshinskii–Moriya type asymmetric interaction for which the factorization surface is not known.

I. INTRODUCTION

Machine learning (ML) algorithms, both supervised and
unsupervised, have been demonstrated to be capable of fore-
casting counter-intuitive phases in several quantum many-
body systems for which order parameters are not easy to de-
termine [1–6]. In addition, these techniques can uncover the
dynamical characteristics of the system by exploiting observ-
ables that can be measured in laboratories. Specifically, recur-
rent neural networks capable of handling sequential data have
been used to unearth the boundary of the many-body localiza-
tion (MBL), and phase transition in random Heisenberg model
[7], understand topological order by acting as a variational
wavefunction ansatz [8, 9], reconstruct the ground state wave-
function of theXY model [10] for analysis of various thermo-
dynamic properties and iteratively, learn the ground state en-
ergy [11] of large lattices. These results demonstrate ML as an
appealing alternative to tensor network methods like density
matrix renormalization group (DMRG) [12, 13], and quantum
Monte Carlo simulations [14–16]. Also neural network archi-
tecture is employed to detect entanglement in a many-body
system [17].

In contrast to deep learning, a supervised learning, known
as symbolic regression (SR) [18–20], can be deployed to ac-
quire a compact analytical expression for a given dataset,
thereby revealing certain features of the system. Despite the
fact that SR has been shown to be NP-hard [21], several meth-
ods have been proposed to tackle this problem ranging from
genetic algorithms [22] to deep learning [23]. Although it
has never been utilized to investigate quantum spin models,
it has been widely applied in astronomy to determine the
mass scaling relations of black holes in spiral galaxies [24], to
model galaxy-halo relations [25], to rediscover Newton’s law
of gravitation in the solar system and determine the masses
of celestial bodies [26], in mathematical physics to determine
the precise relationships between topological invariants of hy-
perbolic knots [27] and predict Sasakian Hodge number h2,1

[28], to learn bilateral accessibility in gravity models for in-
ternational trade [29], to parameterize cloud cover in climate
models [30], and to find symbolic misfolding models for tau

proteins in Alzheimer’s disease [31].
On the other hand, the ground, thermal, and dynamical

states of quantum spin models possess resources like quantum
entanglement [32] required for the development of quantum
technologies like one-way quantum computer [33, 34], quan-
tum state transfer [35] and quantum metrology [36]. More
importantly, they can also be prepared as well as manipu-
lated in laboratories using a variety of physical substrates such
as trapped ions [37], superconducting circuits [38], photonic
systems [39], nuclear magnetic resonance [40, 41], and cold
atoms [42]. However, it turns out that by manipulating the
parameters of the model, one can reach a surface, known as
the factorization surface (FS) [43–45], in which the ground
state is fully separable. Nevertheless, obtaining this surface-
equation proves to be challenging for both integrable and non-
integrable models.

To overcome this obstacle, we employ symbolic regres-
sion, in this work, to determine expressions of the factoriza-
tion surfaces of multiple one-dimensional (1D) spin models
with varying strata. In particular, we focus on analytically
solvable nearest-neighbor models, especially the transverse
XY spin models [46] which may, additionally, involve either
Dzyaloshinsky-Moriya (DUXY ) [47] or Kaplan-Shekhtman-
Entin-Aharony (KSEA) [48, 49] interaction. As non-
integrable models, we examine FS of the nearest-neighbor
(NN) XY Z spin chain in the presence of an external mag-
netic field [50] and long-range XY models in which inter-
action strength obeys a power law decay with the increase of
coordination number [51, 52]. It is noteworthy to mention that
the factorization surfaces are known for theXY ,KSEA, and
XY Z models [45, 53]; but it is unidentified for systems con-
taining Dzyaloshinsky-Moriya and long-range interactions.

By randomly sampling parameters of the Hamiltonian, we
generate a dataset containing entanglement between all pos-
sible neighboring spins. From this database, we collect all
such parameters with vanishingly small entanglement content,
which are then fed to the SR algorithm. In this work, we uti-
lize the PySR package [54] because, in contrast to other SR
programs like AI Feynman [23], it provides a number of ben-
efits including custom expressions, parallelization, and full
open-source availability. By creating a tree of potential bi-
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nary and unary operators, including the constants, this yields
the closest equation. After pruning and adding additional
branches from the permitted pool of operators and constants,
it parses the tree and generates a few potential equations. The
best possible equation can be achieved based on the perfor-
mance measures, which are loss, score, and complexity, with
the goal of maximizing score while minimizing loss and com-
plexity.

We exhibit that the factorization surfaces derived for the
NN XY and KSEA models via the PySR method and the
analytical means do, in fact, match, thereby validating the effi-
cacy of the machine learning approach. The parameter regime
in which FS is known once more in the XY model with
Dzyaloshinskii-Moriya (DM ) interaction agrees with the one
derived from SR. Interestingly, we discover the FS equation
in another parameter domain where FS is entirely unknown in
the literature.

By using the data for the XY Z Hamiltonian generated
through the DMRG method with the matrix product state
(MPS) ansatz, we report that the output equation from the
PySR algorithm replicates the well-known FS once more.
When dealing with the long-range model, the data is produced
using exact diagonalization (ED) for the appropriate param-
eter set. We observe that the PySR algorithm provides the
expression of FS, known with other numerical and analyti-
cal methods for NN and next-nearest neighbor transverse XY
model, within the acceptable levels of accuracy.

The organization of the paper is as follows: In Sec. II, we
describe various quantum spin models, including the ones that
can be solved analytically and the ones that require numerical
diagonalization. We also provide equations for their factoriza-
tion surface, if they are known so that the effectiveness of SR
in this problem can be confirmed. The comprehensive discus-
sions on symbolic regression package, PySR (SubSec. III A),
steps involved in the implementation of the algorithm, and the
definitions of the quantifiers assessing the performance of the
algorithm are presented in Sec. III. In Sec. IV, we discuss
the results obtained, starting from the integrable models to
the non-integrable nearest-neighbor and long-range ones. We
summarize in Sec. V.

II. FACTORIZATION SURFACES OF SPIN MODELS:
ANALYTICALLY VS NUMERICALLY SOLVABLE MODELS

To achieve the goal of finding FS with the aid of machine
learning techniques, we present here the concept of fully fac-
torized states, and the spin models in which such states appear
as ground states (GS) by suitably tuning the parameters of the
model.

1. Fully factorized states

A N -party pure state is said to be fully factorized if it can
be written as |ΨF ⟩ = |ψ1⟩ ⊗ |ψ2⟩ . . . ⊗ |ψN ⟩. To verify
whether a given state is fully factorized, we compute its bi-
partite reduced density matrices after tracing out all the sites,

except the first and an arbitrary site j (j = 2, . . . , N ), given
by ρ1j = tr1j(|ΨF ⟩⟨|ΨF |), where 1j denotes the sites ex-
cept 1 and j. We find the entanglement of ρ1j using logarith-
mic negativity [55–57], E =

∑N
j=2 log2 [2N (ρ1j) + 1], where

N is the negativity of ρ1j, obtained by summing over the ab-
solute values of all the negative eigenvalues in the partially
transposed state ρTj

1j [55, 56]. Note that in the case of nearest-
neighbor Hamiltonian, nearest-neighbor sites, ρ12, typically
possesses a significant amount of entanglement while entan-
glement in ρ1j (j > 2) is either negligibly small or vanishing
and hence, we have E = log[2N (ρ12) + 1]. Towards find-
ing FS, we check when E becomes vanishing small, i.e., when
E < ϵ (with ϵ ∼ O(10−5) being a number close to zero, de-
cided from the accuracy of the computation performed).

2. Factorized states in analytically solvable spin models

We consider a nearest-neighbor XY model with different
symmetric and anti-symmetric exchange interactions, namely
Dzyaloshinskii–Moriya [47] and Kaplan-Shekhtman-Entin-
Aharony interaction [48, 49] in the presence of an transverse
magnetic field. In these models, eigenenergies and eigenstates
can be obtained analytically for an arbitrary number of sites
and also in the thermodynamic limit (N → ∞).

Transverse XY spin chain. For a system of N interact-
ing spin-1/2 particles on a one-dimensional lattice, the XY
Hamiltonian is written as

HXY =
1

2

N∑

j=1

[
J

{
1 + γ

2
σx
j σ

x
j+1 +

1− γ

2
σy
j σ

y
j+1

}
+ h′σz

j

]
,

(1)

where γ ∈ [0, 1] is the anisotropy parameter, J < 0 and h′

represent the strengths of ferromagnetic nearest-neighbor in-
teraction in the xy-plane and the external magnetic field re-
spectively, and σα (α = {x, y, z}) are the Pauli matrices.
Here we consider periodic boundary conditions (PBC) such
that σα

N+1 = σα
1 and set h′/J = h. Using Jordan Wigner and

Fourier transformation, the HamiltonianHXY can be mapped
to a spinless fermionic model (see Appendix A). This model
can be simulated in different trapped ions and cold-atom plat-
forms [58]. It can be analytically shown that the doubly de-
generate ground state of this model becomes fully factorized
(see Appendix B) when the parameters satisfy the surface
equation, given by h2+γ2 = 1, which is known as the factor-
ization surface [45]. There is a prescription to find the FS of
a given model using the single qubit unitary method [45, 59–
61].
XY spin chain with KSEA interactions. Let us now add

KSEA interaction in the transverse XY spin chain [48],

HKSEA = HXY +

N∑

i=1

k′

4

(
σx
i σ

y
i+1 + σy

i σ
x
i+1

)
, (2)

where k = k′/J is the strength of the symmetrical helical
KSEA interaction [48, 49, 62]. It has been found that it exists
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in a helimagnet like Ba2CuGe2O7 [63] and can successfully
explain the weak ferromagnetic behavior of La2CuO4 [64].
In this case, the equation for the FS reads h2 + k2 + γ2 = 1
which can also be analytically proven (see Appendix B).
XY spin chain with DM interactions (DUXY model).

The XY Hamiltonian with Dzyaloshinskii and Moriya inter-
action can be represented as

HDUXY = HXY +

N∑

i=1

d′

4

(
σx
i σ

y
i+1 − σy

i σ
x
i+1

)
, (3)

where d = d′/J is the strength of the anti-symmetric ex-
change interaction. Such a term successfully explains the
presence of weak ferromagnetism in certain types of materials
like α-Fe2O3, Mn2CO3 which breaks the mirror symmetry in
the models [47, 65–69]. In the DUXY model, for d < γ, the
factorization surface is independent of the strength of d and is
identical to that of the XY model. However, for d > γ, there
does not exist a closed and compact expression representing
the factorization surface. The effectiveness of the ML method
will first be tested with the models for which FS equations are
known and then we apply it to the DUXY chain with d > γ.

A. Finite-sized spin chain

XY Z spin model. The XY Z model with open boundary
conditions hosts unequal strengths of interaction in all three
directions, given by

HXY Z = HXY +
∆′

4

N−1∑

i

σz
i σ

z
i+1, (4)

where ∆ = ∆′/J is the coupling constant in the z-direction.
This model has been shown as an effective description of
various many-body systems [70, 71], and can be simulated
in various quantum computing hardwares like quantum dots
[72], optical lattices [73], trapped ions [74, 75] and supercon-
ducting circuits [76]. For γ = 0 and ∆ = J , the model
reduces to the Heisenberg model which can be analytically
solved using Bethe ansatz although for γ ̸= 0 and ∆ ̸= J ,
the ground state can be found by numerical methods [12, 13]
which follow the area law of entanglement [13]. In this work,
we use the ITensor package [77] to obtain the GS for various
parameters, selected randomly from γ ∈ [0, 1], ∆ ∈ [0, 1]
and h ∈ [0, 2.5]. To minimize the boundary effect, we com-
pute entanglement between two sites, namely, between N

2 and
N
2 + j spins (j = 1, 2, . . . , N2 ). Although the GS for arbitrary

sites of this model cannot be obtained, the FS [61] can be
shown to follow the equation, given by h2 + γ2 = (1 +∆)2.

Long-range XY spin chain. Long-range Hamiltonian oc-
curs naturally in many experimental setups such as Rydberg
atom arrays, dipolar systems, trapped-ion setups, and cold
atoms in cavities [78–83]. These long-range interactions
results in non-local behavior in the ground state properties
[84, 85] and in the topological as well as dynamical features

[86]. The long-rangeXY HamiltonianHLR can be written as

HLR =
1

2

N∑

i=1

Z∑

j=1

[
J ′ { 1+γ

2 σx
i σ

x
i+j +

1−γ
2 σy

i σ
y
i+j

}

+h′σz
i

]
, (5)

where J ′ = − J
jα indicates the ferromagnetic interaction

strength, Z is the coordination number and the interaction
strength between spins follows a power-law decay, parameter-
ized by α. We again set h′/J = h. The expression for the fac-
torized surface of this model reads as h =

√
1− γ2

∑Z
j=1

1
jα .

III. SYMBOLIC REGRESSION AND ITS
IMPLEMENTATION DETAILS

The machine learning technique that we deploy here to
obtain the FS is the symbolic regression, which we discuss
along with the justification for this choice over traditional al-
gorithms. We then present the implementation of SR step by
step.

A. Symbolic Regression

For the reliable estimation of an empirical relationship be-
tween the input features and the output of a high-dimensional
scientific dataset, it is pertinent to look for interpretable equa-
tions that can conform to the symmetries and constraints in-
herent in the system being studied. At the same time, SR
should be highly capable in handling three important criteria
– (i) detecting discontinuities in the equations, (ii) stand ro-
bust to any potential noise or outliers and (iii) remain valid
across various limits of the dependent variables. To illus-
trate this idea, consider the FS equation of KSEA, given by
γ =

√
1− h2 − k2. The argument inside square root must

be positive and hence SR must output an equation of the form
γ =

√
max(0, 1− h2 − k2), thereby tackling discontinuities

by incorporating the maximum operator “max”. In the limit
k → 0, we should also recover the FS of the XY model,
which can keep it a outlier-safe. These outliers can exist due
to numerical errors during the calculation of E .

Having setup the required SR’s norms above, we are now in
a capacity to briefly explain SR’s working principles. In SR,
the equations are constructed from operators, input features,
and constants. Once the operator pool and their respective
constraints are specified using domain knowledge, SR can re-
cover existing equations and discover novel ones to the high-
est degree of accuracy possible. Even in cases where certain
features of the system are not completely known, it is pos-
sible to predict multiple equations of different complexities
(which we will define later) using generic operators that fit
the data reasonably well. This is then followed by selecting
equations that provide the deepest insight into the system and
are simple in terms of complexity, in alignment with Occam’s
razor principle. There exist many algorithms and software
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FIG. 1. Data processing pipeline. We first compute E of the spin chain model under consideration by varying the system parameters. For
the XY and KSEA spin models, we perform the ϵ-study, critical of the precision calculation of E . For the XY Z model, we create a random
dataset by varying the system parameters which is then fed to the SR. SR Pipeline. We select the operators based on domain knowledge of the
spin models, operator constraints, and the loss function, and by tuning the relevant hyperparameters, we predict equations. In case there is a
further requirement to improve the equation, we implement template fitting to improve upon the prediction. As we will show, the last strategy
is well-suited for the DUXY spin model, where we do not know the FS equation.

to perform SR from sparse regression to genetic modeling.
In particular, PySR [54] is an open-source Python package
based on genetic programming and dedicated specifically to
scientific symbolic regression. Another popular SR software
tool named AI Feynman [23] fuses elements of dimensional
analysis, polynomial fit, brute-force methods, and deep learn-
ing inspired techniques to distill equations. In comparison to
Eureqa [22], another SR package, although commercial, AI
Feynman discovered 100% of the Feynman equations. To
select the most suitable SR candidate for this study, we re-
quire certain additional conditions like the versatility to de-
fine custom loss functions, discontinuous and custom oper-
ators. PySR meets these particular criteria very well [54]
which AI Feynman does not. In PySR, expressions are rep-
resented as trees. The number of binary trees with n vertices
is (2n)!/((n + 1)!n!). Since the underlying equation for the
phase space is very large, it is prominently suitable for smaller
low-dimensional datasets, in particular, for a dataset size of
≲ 10, 000 training points and dimensions of the input feature

space should be ideally less than 10 [87]. In this work, the
feature space will be at most three-dimensional. PySR out-
puts equations at various complexity levels upto a maximum
value which is defined by the user. The equation complexity,
C, is determined by the total count of operators, variables and
constants in the equation. Since, this is a hyperparameter, one
has to specify its maximum value. The maximum user-defined
complexity is called ‘maxsize’. Maxsize has to be reasonably
selected in accordance with the number of input features and
some prior understanding of the system. Setting maxsize too
high can easily lead to an overfitted complex equation which
can be hard to interpret. Conversely, if it is too small in value,
the predicted equation might not represent the system accu-
rately. It also allows to set constraints on nesting of opera-
tors like max : {max : 2,min : 1} – it indicates that inside
the max operator, there can be atmost two max operators and
one minimum operator “min”. Nesting helps to control over-
fitting, recursion of operators multiple times and can guide
PySR to the right equation sub-space.
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Let us now justify the reasons behind choosing SR instead
of traditional curve fitting or deep neural network. In case of
curve fitting (CF), it assumes a specific functional form of the
output parametrized by a set of variables. While in SR, such
a prior requirement is avoidable since the underlying input
space is a collection of possible equations including the pos-
sibility of optimizing the constants. In the scenario of deep
neural networks, it can learn an accurate representation of the
output as a function of the important features, although an
explicit form cannot be extracted. Further, they are not gener-
alizable and typically hard to interpret.

B. Data generation and types of studies

Before presenting the results, let us first describe in details
how we generate the data sets for entanglement of different
spin models, which are then fed to SR. We perform two kinds
of studies – (1) ϵ-catalogue – we collect nearest-neighbor E
values of the ground state for the XY and the KSEA models
when it is less than the fixed value of, say ϵ ∼ 10−4 and these
values are then inserted into the ML algorithm. Here, ϵ is
a measure of numerical precision during the evaluation of E .
(2) Secondly, we analyze how algorithm’s performance varies
with the size of the data set. The quantifiers used to determine
whether the equation describing specific system properties is
the best one are further explained.

To investigate the FS of the given model, specifically we
perform the ϵ-catalogue by adopting the following procedure:

• Step 1. We randomly generate 30 million points from
the parameter space of a given model. For example,
the sets {hi, γi} for the XY model and additional {ki}
and {di} values for the HKSEA and HDUXY mod-
els respectively are sampled randomly, where the car-
dinality of the set parametrized by i is of the order
of millions for models that can be solved analytically
and in thousands for the spin models that can only be
solved by numerical methods, for example, the XY Z
model and the long-range XY model. In all these mod-
els, the canonical equilibrium state, ρ = e−βH

Z , with
Z = tr(e−βH) (partition function), β = 1

kBT , kB being
the Boltzmann constant having temperature T is con-
structed with β > 100 and the corresponding nearest-
neighbor entanglement, E , is computed after tracing out
N − 2 sites for each set of parameters {hi, γi, ki, di}
with a total of N = 2000 sites. We notice that E ob-
tained with N = 2000 remains intact with the increase
of N and hence it can be considered as the thermody-
namic limit.

• Step 2. We use the entanglement dateset to identify a ϵ-
radius zone where the FS equation can be predicted. We
are interested in finding out how far we can dependably
extract the correct equation for the known FS, as shown
by the parameter ϵ, which should be taken up to be the
numerical precision. We extract ϵ, from the following
collection, {0.0001, 0.005, 0.001, 0.005, 0.01, 0.05}.

• Step 3. For each ϵ, we initially select a random sub-
sample of 3000 data points and tune SR algorithm’s hy-
perparameters using the package “Hyperopt” [88]. This
is crucial in identifying several relevant hyperparame-
ters like the right batch size (the dataset is divided into
smaller random sub-datasets of size “batch-size”), max-
size, constraints and the operator pool. This is done to
reduce overfitting and decrease training time.

• Step 4. Subsequently, again for a given ϵ, we create
30 random training datasets of 2000 and 4000 points
for every ϵ for the XY and the KSEA models respec-
tively. Since KSEA has one additional parameter, we
double the dataset size to account for thorough explo-
ration of the parameter space. PySR is then trained on
this sample to obtain the predicted equation with the
hyperparameter values as evaluated in Step 3.

• Step 5. For every such dataset, equations of FS are pre-
dicted and their respective loss, score, and complexity
values are calculated for assessing the performance of
the SR algorithm. In order to aggregate these results,
we report their respective averages.

In order to train the model, we define the weighted mean-
square error loss, given as

L =

Ntrain∑

i=1

wi

(
γPySR
i − γtruth

i

)2

, (6)

where γPySR
i and γtruth

i are the PySR’s prediction and the ac-
tual γ values for the ith training point respectively,Ntrain is the
number of samples in the training dataset and wi is the weight
of each point. To quantify the usefulness of a predicted equa-
tion, PySR defines a metric called ‘Score’, S, defined by

S = −δ lnL
δC . (7)

The score S penalizes equations at a higher complexity while
trying to minimizing the loss L. The purpose of S is to punish
highly complicated equations. We restrict the maximum com-
plexity C in proportion to the number of input features. There
is thus a trade-off between score and loss. Although there can
exist an equation with a high score but it can compromise loss.
To take this into account, PySR has an inbuilt model selection
criterion, called “Best” which outputs an equation having the
highest score in the candidate pool of the equations within
1.5 times the least loss equation. We show the results of both
the “Highest Score” (for brevity, written as “HS”) and “Best”
equations for each ϵ.

For both the models, we select the following pool of
unary operators, {square, cube, sqrt} and binary operators
{max,min,+,−, ∗}. As the name suggests, the unary and bi-
nary operators have one and two arguments respectively. The
maximum and minimum discontinuous operators are chosen
to account for any plateaus or discontinuous sub-regions in
FS. We also perform general but not too restrictive nesting on
these operators. For example, the maxsize for the XY model
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is set to 15 while for the KSEA spin chain, maxsize of 25 is
taken as there are two input variables, h and k, instead of a
single one in the XY model. Naturally, we suspect the com-
plexity to increase for the KSEA model. Since the datasets
for both the XY and the KSEA models have roughly similar
parameter space-density, each point has a similar number of
points in its neighborhood, barring some points at the periph-
ery of the parameter space. This allows us to set the weights
in the loss function to be unity. The batch-size for both the
spin models is optimized to 64.

For the XY Z model, we perform a similar analysis al-
though we change the number of sampled states in Step 3 by
keeping the ϵ constant in Step 2 to 0.01. Here, we initially
observe that Ntrain = 2000 is not enough to find a reliable
equation which fits the XY Z dataset well. Thus, it becomes
important to study the XY Z model from the perspective of
changing size of the training dataset. We predict equations for
the three cases: Ntrain = 2000, 4000 and 6000. The operator
pool and maxsize are identical to that of the KSEA model.

In case of the DUXY spin chain, there are two impor-
tant partitions of the dataset: d < γ where the FS is well-
established and its counterpart d > γ for which the FS equa-
tion is unknown. For the former case, we keep the parameters
same as in theKSEAmodel, given the same number of input
features and train PySR to predict its equation. After showing
proof of concept in the case ofHXY ,HKSEA andHXY Z , the
case of DUXY with d > γ serves as a perfect testbed to in-
vestigate the capability of PySR. For this model, Ntrain = 104,
ϵ = 5 · 10−4 and batch-size is optimized to 128. We apply
following two different techniques to output a FS equation for
the DUXY model in the domain of d > γ:

• PySR’s preliminary prediction. We predict the expres-
sion of the FS with the same PySR’s settings as that of
the KSEA spin chain.

• PySR + Template fitting. We now implement a simple
curve fitting technique based on the functional form of
the default equation towards optimizing the predicted
equation by PySR. The method is known as template
fitting (discussed in the next subsection).

For each technique, we check the prediction across various
slices along the set of parameters, d = {0, 1.0, 2.0}. This
developed methodology may help to scan a gamut of potential
equations.

Long-range XY spin model: In the long-range XY spin
model, HLR, we want to predict an equation for γ as a func-
tion of α and h. The long-range FS can be written as

γ =

√(
1− h2

R2
sum

)
, (8)

where Rsum is given by Rsum =
Z∑

j=1

1

jα︸︷︷︸
Rj

[83]. Predicting an

equation for long-rangeXY spin model is challenging as each
subsequent term in Rsum is more suppressed than the previous
one for α ≥ 1. Additionally, there can be multiple equations

which could fit the dataset very well, thereby possibly rep-
resenting the FS. However, some of them can be discarded
with the help of the knowledge of the system. For example,
let us assume that we apriori know that the model has spin-
spin interactions following a power-law decay (i.e., which is
a function of α). This allows us to identify the FS equation
as a function of α through the terms Rj which represents the
range of interactions present in the Hamiltonian, denoted by
Z .

C. Template Fitting

After PySR predicts an equation, this equation can be op-
timized further using a simple curve fitting. In case of deter-
mining FS, we first investigate whether the plot of true γ vs
predicted γ follows a linear trend along the line y = x. If
there are deviations from this line, we can improve upon the
equation from SR by first polishing the values of the constants
in the equation. Subsequently, we can try fitting an equation
of the same functional form as that output by SR.

Let us illustrate this with an example. Consider the true
relationship for z-dependent on two variables x1, and x2
such that z(x1, x2) = 10x2.51 x3.22 . Suppose PySR outputs
z(x1, x2) = 2.1x1.21 x2.32 and we find that this equation does
not fit the dataset well. Since PySR predicts a power law form,
we can now fit an equation of the same functional form as
AxB1 x

C
2 via curve-fitting and obtain the constants A, B and

C. We follow this strategy to predict a potential FS equation
of the DUXY model for d > γ whose equation does not yet
exist in the literature.

IV. ESTIMATING FACTORIZATION SURFACE IN
NEAREST-NEIGHBOR MODELS THROUGH SR

In order to construct factorization surface of the NN spin
models, we present the scenario in two ways – (1) let us con-
sider the models for which FS is known [59] so that we can
confirm the effectiveness of the method used. Among all these
models, we first carry out the analysis to obtain the FS of the
XY model for different values of system parameters {hi, γi}.
By increasing the number of system parameters from two to
three, {hi, γi, ki} and {hi, γi,∆i}, we reach the FS equation
of the KSEA and XY Z models respectively. (2) We then
apply our method to the DUXY model with the set of pa-
rameters {hi, γi, di} for which analytical expression for the
FS is not known in the literature [89].

A. FS of the transverse XY and KSEA model reached via SR

By analyzing the pattern of nearest-neighbor entanglement
of the transverseXY model in (h, γ)-plane, it is apparent that
for E < 10−4, the square of the strength of the magnetic field
is related to the anisotropy parameter via a polynomial equa-
tion of degree 2 (see Fig. 2(a)). Further, at |h| = 1, the FS
becomes discontinuous. Both the features indicate that the
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FIG. 2. Symbolic regression results for the XY model. (a) Bipartite entanglement, E as a function of parameters, h (abscissa) and γ
(ordinate). The FS can be clearly seen as a black curve whose equation is γ =

√
1− h2 for −1 ≤ h ≤ 1. Here N = 2000. (b)-(c) Loss L and

score S against 100ϵ respectively. It is evident that the Best and HS equations have similar functional forms at each ϵ. The loss is significantly
higher at ϵ ≥ 0.01 where the dataset is contaminated by points not representing FS. (d)-(e) Optimized equations at each complexity level C
for ϵ = 10−4. Both Best and HS equations are identical here and displayed in bold: γ =

√
0.99984−min(0.99984, h2). This emphasizes

that SR algorithm is successful in discovering the right FS equation for the XY model. All the axes are dimensionless.

vanishing entanglement occurs on the half-circle in the (h, γ)-
plane. By using different measures, let us now establish that
the nearest-neighbor entanglement values obtained via PySR
by varying γ and h are appropriate.

True vs predicted values: When γtrue and γPySR coincide,
i.e., γtrue ≡ γPySR, the algorithm can correctly infer the equa-
tion for the FS. We show in Fig. 2(b) that this is indeed the
case with ϵ < 10−4 where L < 10−6. We find that except at
the quantum critical point, i.e., at |h| = 1, the error between
γtrue and γPySR is negligible for all values of h. The error be-
comes higher at |h| = 1 due to the sudden discontinuity in the
FS. Our observations endorse that PySR works satisfactorily
and the only difference arises from the values of the constants
in the FS equation.

Certifying FS via loss, score and complexity. By exploiting
different metrics, L, S and C defined in Eqs. (6), and (7), we
now check whether the predicted values from PySR and the
true values of γ are certainly close to each other for several
values of ϵ-set in the algorithm. As ϵ increases, we move fur-
ther away from FS, and the loss of the predicted equation also
grows. Till ϵ = 10−3, L is below 10−5 which is acceptable,
while for ϵ ≥ 0.005, L increases. Furthermore, we note that
although the variance across several rounds remains small, all
random datasets perform poorly at this ϵ. The story of S is

similar to that of L but in reverse (see Fig. 2(c)). For e.g., S is
greater than 10 when ϵ = 10−4. There is a striking difference
at ϵ = 0.05, where the interquartile range for the HS equation
increases. This suggests that PySR can find equations with
a high overall score but the respective loss is simultaneously
higher as well. It highlights the importance of carrying out the
comparison between L and S in juxtaposition and justifies the
usage of the Best equation metric. We also try to see varia-
tions across the complexity, C, in equations against different
ϵ, but instead find its value as 6 in each round on average for
each ϵ. This underscores the fact that FS remains interpretable
at all orders in ϵ.

For a fixed ϵ = 10−4 value, let us find the best equations
obtained for characterizing the FS equation. Corresponding to
each equation, we find complexity, C and its score, S and loss,
L as illustrated in Figs. 2(d)-(e). Comparing these two figures,
we again understand the complementary behavior of S and L.
Since in this scenario, the FS is known analytically, we clearly
find that the best equation describing the FS is given by

γ =
√
0.99984−min(0.99984, h2). (9)

We notice that it is also the highest score equation. We can
observe that PySR remarkably predicts equations for FS at a
loss lower than 10−6, although this occurs at the added ex-
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FIG. 3. Symbolic regression results for the KSEA model. (a) The surface in terms of h (x-axis), k (y-axis) and γ (z-axis) when bipartite
entanglement E < 10−4 in HKSEA. (b)-(c) Loss L and score S vs. 100ϵ respectively. The Best and HS equations resemble to some degree
only at ϵ = 10−4. However, the HS equation deviates quite dramatically from the Best one at increasing values of ϵ. (d)-(e) Optimized
equations at each complexity level C for ϵ = 10−4. Both Best and HS equations are different here and displayed in bold. The Best equation
is
√

1− 0.99998min(1, h2 + k2). This again reiterates that SR algorithm is a lucrative method to establish FS equations. All the axes are
dimensionless.

pense of higher equation complexity. We want to avoid the
very complicated looking equations as they are usually a by-
product of overfitting. Although Eq. (9) has higher loss than
some other equations, but it is still a pretty decent loss at a
lower complexity when compared to its counterparts.

FS of the KSEA model. In this system, there is an ad-
ditional parameter, {ki} along with {hi, γi}, and hence, the
complexity in equation increases. By varying system parame-
ters, the NN entanglement of the KSEA model for ϵ < 10−4

is illustrated in Fig. 3(a). The conspicuous hemisphere indi-
cates one additional degree of freedom in the FS equation of
theXY spin chain in the form of parameter k. Again by com-
paring S and L for a fixed complexity, we arrive at the best
expression for FS (Figs. 3(d)-(e)),

γ =
√
1− 0.99998min(1.0, h2 + k2), (10)

for ϵ = 10−4, which matches very well with the known FS
equation. Further, in the limit k → 0, the Eq. (10) reduces
to Eq. (9) obtained for the XY model. Thus, this provides a
guiding method to gain insights into the predicted equations
by evaluating them at various limits. There are, however,

some sharp differences in the ϵ-study of the KSEA model
when compared to the XY spin chain (see Figs. 3(b)-(c)). In
the latter, HS and Best equation are identical barring some dif-
ferences in the values of constants while for the HKSEA with
ϵ ≥ 5 · 10−4, the two metrics lead to two distinct equations.
Even for the case of the standard ϵ = 10−4, the HS equation
is

γ = 1.0003
√
−0.99946h2 − 0.99946k2 + 1, (11)

where, interestingly, it does not involve any discontinuous op-
erators. In Fig. 3(b), the Best equation at each ϵ has a smaller
interquartile range, suggesting lower variations in equations
in each round. The HS equations in each round vary quite sig-
nificantly with respect to each other, thus producing a larger
variation as visible in the violin plot. This primarily happens
due to the increased equation complexity and a poor tradeoff
between score and loss (see Fig. 3(c)). This study establishes
that the Best metric is more reliable.

FS of the non-integrable XY Z model. Let us now move
on to the quantumXY Z model in the presence of the external
magnetic field, given in Eq. (4). The model can be diagonal-
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Training Size Model Criterion Equation Complexity Loss Score

2000
Best

√
max (0.0119, 1.2145− (−∆+ h)2) 8 0.0134 0.6371

HS 1.5605−
√
h 4 0.0589 0.7900

4000
Best

√
max (0.0106, 1.2136− (−∆+ h)2) 8 0.0133 0.6411

HS 1.5561−
√
h 4 0.0594 0.7931

∼ 6000
Best

√
max (0.0004,−h2 + (∆+ 0.9629)2) 11 0.0102 0.0065

HS 1.5635−
√
h 4 0.0600 0.7943

TABLE I. The optimal equations for FS of the XY Z model with the highest score (HS) and Best equations tabulated for several training sizes.
The corresponding complexity, loss, and score are also presented. As the training size increases, the Best equation becomes closer to the actual
FS. The HS and Best equation are not equivalent as evident from the complexity, loss and functional form.

ized only by numerical methods and hence has a different sta-
tus than the ones discussed so far. Interestingly, however, the
FS in terms of h, γ and ∆ is known in the literature [90]. As
there are density variations, i.e., the parameter space of entan-
glement E < ϵ is not spread uniformly as shown in Fig. 4, we
reach the predicted equations as a function of the size of the
training data. We realize that 4000 points used for theKSEA
model are too small here to obtain the right equation. This is
due to the fact that KSEA’s hemispherical FS in the dataset
has points with equal density distribution. In contrast, since
the density of the parameter space is smaller from γ = 0.2 to
γ = 0.6 compared to the high γ values for the XY Z dataset,
the L-metric tries to correct its course based on high-density
regions and reduces the loss in these areas, compromising L in
low-density areas. This leads to either wrong equations or the
right equation which do not have the appropriate score-loss
tradeoff and hence cannot be selected. We find that consider-
ing ∼ 6000 training points, PySR predicts the equation

γ =

√
max

(
0.0004,−h2 + (∆+ 0.9629)

2
)
. (12)

This is in decent agreement with the analytic equation but
the constant 0.96 instead of unity can be optimized further ei-
ther using template fitting or increasing training size as seen
in Table. I. One can observe that at each size of the training
data, the HS metric forecasts a completely incorrect equation
which is independent of ∆. However, in case of the Best met-
ric, we find that there is one more potential competing equa-
tion which has the sub-expression (h −∆)2, dissimilar from
the correct dependence −h2+(1+∆)2. Additionally note that
the system that does not have an analytical solution and can
only be diagonalized through numerical procedures. There-
fore, generating a large dataset is time-consuming and hence
not possible practically. For the results of optimal equations
at each C for Ntrain ∼ 6000 (see Fig. 7).

B. Determining FS of the DUXY model from PySR’s
algorithm

Ascertaining FS of DUXY model with d < γ. Having es-
tablished that PySR can indeed predict FS of benchmark quan-
tum spin chains where expressions are known from analytical
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FIG. 4. Factorization surface of the XY Z model. The surface with
the Hamiltonian parameters when logarithmic negativity, E < ϵ =
5 ∗ 10−2. E is generated via MPS ansatz for different parameters
of the Hamiltonian, ∆ (x-axis), h (y-axis) and γ (z-axis). Other
parameter of the system is N = 60. All axes are dimensionless.

treatment, it is now time to test PySR on the NN DUXY
model for which the exact expression for FS is unknown. For
d < γ, the expression is independent of d and identical to that
of the XY model. Two contrasting features are noticed in this
case in Table II. which were not present in the XY model –
(1) the equations at complexity 7 and 8 are similar and it can
be attributed to the addition square root operation. (2) Corre-
sponding to this complexity, loss suddenly drops off the order
of 10−3, when compared to equation of complexity 6 and at
the same time, the score increases six times more, thereby il-
lustrating the proper correlation between loss and score. In
this case, the estimated expression turns out to be

γ =
√

0.995−min(0.995, h2), (13)

which is also in good agreement with Eq. (9). Notice, how-
ever, that since the dataset contains another set of parameters,
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Equation Complexity Loss Score

0.835 1 0.0357 0.0

max (0.822, d) 3 0.0345 0.0341

0.995− h2 4 0.0207 0.510

(0.99510586− h2) + 0.16635655 6 0.0119 0.528√
0.995−min (0.995, h2) 7 1.45 · 10−5 6.71√√

0.99510586−min (0.995, h2) 8 5.81 · 10−6 0.918

TABLE II. Predicted equations of the DUXY model for d < γ. We can observe that the equation with the highest score has a complexity of
7 but a loss one order of magnitude higher than the“Best Equation” which is γ =

√
0.995−min (0.995, h2)

.

the equations in theXY and in theDUXY model with d < γ
are slightly different which only coincide with the known FS
provided the accuracy being two decimal places.
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FIG. 5. Factorization surface of the DUXY model. We collect
logarithmic negativity for d < γ, E < ϵ = 10−3 and plot the surface
with the Hamiltonian parameters: h (x-axis), d (y-axis) and γ (z-
axis). It is evident from the shape of the factorization surface that its
equation is independent of DM interaction, i.e., the strength of d. All
axes are dimensionless.

Ascertaining FS of DUXY model with d > γ. In this
domain, we encounter the difficulties of severe density varia-
tions. The relationship of γ with h and d looks very non-linear
as displayed in Fig. 6(a). When we restrict the operator space
to that of the KSEA model, we find that the best equation is
given by

γ = 0.82
√
max(0, 0.9999− h2 + d2). (14)

This is what we call the “PySR’s Preliminary Prediction”. At
first glance, this result might look tempting especially due to
its simplicity and similarity to the FS of the XY model on
taking d→ 0 as evident in Fig. 6(c). One can notice that γtruth

follows γPySR along the y = x line. At the same time, the scat-
ter of the fit is higher for γtruth > 0.75. Further investigations
(Fig. 6(e)) disclose that for 0.95 < d < 1.05, this equation
overshoots the prediction and forms an ellipse, thereby indi-
cating that this equation might not be a potential candidate
for the DUXY model for the entire region with d > γ. It
was supposed to terminate when γ > 1 and reduce to a non-
linear discontinuous curve. This also informs that just plotting
γPySR −γtruth alone is not sufficient to measure the correctness
of an equation. One must also check its validity across various
slices of the parameter space of the model.

We also immediately realize that at the limit d → 0, Eq.
(14) does not reduce to Eq. (9). Note, however, when γ >
0, d → 0 is not a valid limit in the domain d > γ. This
becomes evident in studying the entanglement pattern in the
(γ, h)-plane for d > γ (see Fig. 6(a)). It can be observed that
it predicts just the scaled-down equation of the XY model by
a factor of 0.82 and the other constants inside square root are
valid up to the first decimal point. Now, we relax the operator
space as well as nesting conditions and, thereafter, perform a
template fitting to optimize the constants further. In this way,
we reach to the final FS equation, given by

γ =
√
max(0.0217, d2 +min(0.2160, 1.0518− h2)−0.1472.

(15)
We call this equation as “PySR+Template” Fit. In compar-

ison to just PySR’s prediction alone on restricted operator
space, this equation has deviations from the y = x line for
γ ∈ (0, 0.1]. This could, in principle, be an artifact of system-
atics like the density variations, numerical errors and statistics
like number of training points. If one now investigates its per-
formance along the d = 1 slice in Fig. 6(e), one can establish
that the fit nicely cuts at γ = 1. We also check the perfor-
mance of both the methods along d = 0.75, 1.5 slices. In Fig.
6(d), the PySR’s preliminary prediction again surpasses the
correct values at |h| ∼ 1, whereas Template Fit matches per-
fectly. For the last slice in Fig. 6(f), both the equations have
decent fits. Overall, this suggests that using SR+Template Fit-
ting as a potential tool, it may be possible to discover new in-
terpretable empirical equations which can guide the existing
theory.
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FIG. 6. Factorization surface of the DUXY model with d > γ. (a) The surface of h (x-axis), d (y-axis) and γ (z-axis) in HDUXY when
E < 5 ∗ 10−4. (b) PySR’s preliminary prediction for γ – we can notice that the equation has a nice fit to the y = x (black solid line). (c) After
performing template fitting by optimizing the constants along with PySR, the prediction improves overall but deviates at low γ values. It has a
good fit in the middle and high values of d. (d)-(f) To illustrate the performance of PySR and template fitting in (b) and (c), γ is plotted against
h for 0.74 ≤ d ≤ 0.76, 0.98 ≤ d ≤ 1.02 and 1.48 ≤ d ≤ 1.52 respectively. Here, PySR’s prediction overshoots the performance of the
template fitting. We suspect that the fit has to be non-trivially non-linear, especially when γ ∈ [0.8, 1.0] where PySR and template fit together
perform very well. All axes are dimensionless.

C. Prediction of FS of the long-range XY spin model via SR

For the long-range XY model, the ML techniques are uti-
lized to obtain the FS equation for different coordination num-
bers, Z . The dataset, in this case, is generated with the help of
exact diagonalization method. We illustrate that when the data
is inserted to the PySR algorithm, it can predict factorization
surface up to Z = 2 with a high accuracy.

For the case Z = 2, the PySR leads to an equation, given
by

γPySR =

√
max

(
0,

h2

−2.3998R2 − 0.99299
+ 0.99299

)
.

(16)
whereR2 = 1/2α. On the other hand, the actual correct equa-
tion reads as

γtruth =

√
max

(
0, 1− h2

(1 +R2)2

)
. (17)

At first sight, it can appear that the SR’s anticipated equation

is different from the actual one. However, a closer inspection
of the sub-expression, (1 + R2)

2 = 1 + R2
2 + 2R2, reveals

that the prediction is correct to a linear order in R2 in this
sub-expression. Since R2 is small, R2

2 is very small and can
be neglected. Thus, taking into account these factors, the two
equations are similar in their functional form. If the SR algo-
rithm uses the dataset generated with Z = 3 for arriving at
the FS equation, we observe that the prediction does not work
as good as we obtain for the NN and NNN models. It possi-
bly suggests that for the LR model, certain modifications are
required for arriving at the expression for the FS.

V. CONCLUSION

A closed-form expression that can describe the available
data is the aim of various physics endeavors. To that end,
supervised machine learning (ML) techniques like symbolic
regression can be employed. By using a symbolic regression
software, called PySR, we arrived at the equation of factor-
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ization surface (FS), where the ground state of a particular
Hamiltonian becomes fully separable. In recent years, PySR
has been effectively employed to obtain analytical solutions in
numerous physics and mathematics domains.

To confirm the PySR algorithm’s capacity, we find the FS
of the nearest-neighbor transverse XY model with or with-
out Kaplan-Shekhtman-Entin-Aharony (KSEA) interactions
that matches the analytical expressions known in the litera-
ture. In theXY model with Dzyaloshinsky-Moriya (DM ) in-
teractions, there is a parameter regime in which FS is known,
whereas in other circumstances, it is undetermined. In the for-
mer situation, PySR discovers the surface with a high accu-
racy, whereas in the latter case, symbolic regression produces
a new equation that seems to match quite well.

Beyond the analytically solvable models, we address two
spin chain models: the nearest-neighbor XY Z model, which
we solve using the density matrix renormalization group ap-
proach and the long-range XY model using Lanczos diago-
nalization method. While FS was suggested in the latter situ-
ation, it is known in the former case. We again found that the
FS equation for the XY Z model using the PySR approach
coincides with an equation that was known. In contrast, the

FS for the long-range XY model can only be predicted when
the interactions involve nearest-neighbor and next nearest-
neighbor sites. Our results not only validate the ML approach
as a substitute strategy to derive analytical expression, char-
acterizing features in many-body systems, but also highlight
it as a potential candidate to unveil new physics that remains
beyond the reach of analytical and numerical methods.
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[12] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
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magnetic field [46, 91]. The Hamiltonian is given as

HXY =

N∑

i=1

[
(1 + γ)

4
σx
i σ

x
i+1 +

(1− γ)

4
σy
i σ

y
i+1

]
+
h

2
σz
i .

Let us define the spin ladder operators, σ+
i and σ−

i , as

σ+
i =

σx
i + iσy

i

2
; σ−

i =
σx
i − iσy

i

2
∀i = 1, 2, . . . N.

(A1)
Thus the Hamiltonian in terms of raising and lowering opera-
tors reduces to

HXY =

N∑

i=1

[
1

2
(σ+

i σ
−
i+1 + σ−

i σ
+
i+1)

+
γ

2
(σ+

i σ
+
i+1 + σ−

i σ
−
i+1) + hσ+

i σ
−
i

]
. (A2)

We use the highly non-linear Jordan-Wigner transformation to
representHXY in terms of fermionic creation and annihilation
operators, c†i and ci respectively, with

ci = e
−iπ

i−1∑
k=1

σ+
k σ−

k
σ−
i ; c

†
i = σ+

i e
iπ

i−1∑
k=1

σ+
k σ−

k
. (A3)

In the thermodynamic limit (i.e.,N → ∞), the boundary term
would have infinitesimal contribution and hence, ignoring the
boundary term, we obtain

HXY =

N∑

i=1

[
1

2
(c†i ci+1 + cic

†
i+1)

+
γ

2
(c†i c

†
i+1 + cici+1) + hc†i ci

]
. (A4)

We use the Fourier transform of the fermionic operators (be-
cause of the translation invariance), given by

a†p =
1√
N

N∑

j=1

e−ijϕpc†j ; ap =
1√
N

N∑

j=1

eijϕpcj , (A5)

with ϕp =
2πp

N
∀p = [−N

2 ,
N
2 ]. Combining ±p, HXY is

decoupled in the basis, {|0⟩, a†pa†−p|0⟩, a†p|0⟩, a†−p|0⟩}, i.e.,

HXY =

N/2∑

p=1

I ⊗ I ⊗ · · · ⊗Hp
XY ⊗ · · · ⊗ I, (A6)

with I being a 4× 4 identity matrix and

Hp
XY =




h −iγsp 0 0

iγsp 2cp − h 0 0

0 0 cp 0

0 0 0 cp



, (A7)

where cp = cosϕp and sp = sinϕp. Any two-site density
matrix can be represented as

ρi,j =
1

4


I4 + r⃗ · σ⃗ ⊗ I + I ⊗ s⃗ · σ⃗ +

∑

k,l=x,y,z

Cklσk ⊗ σl


 ,

(A8)
where Ckl = tr(σk ⊗ σlρi,j), k, l = x, y, z and r⃗, s⃗ denote
the magnetization vector. The two-site density matrix in this
case can be represented as

ρi,j =
1

4


I4 +mz(σz

i + σz
j ) +

∑

k=x,y,z

Ck
i,jσ

k
i ⊗ σk

j


 .

(A9)
When additional KSEA and DM interactions are included
in the XY model, the above analytical treatment can also be
applied and the form of ρi,j remains same except there are two
more nonvanishing correlators, Cxy

i,j and Cyx
i,j .

Appendix B: Factorization Surface

The KSEA model with periodic boundary condition
(PBC) is described as [48]

HKSEA =
∑

r

(1 + γ)

4
σx
rσ

x
r+1 +

(1− γ)

4
σy
rσ

y
r+1

+
k

4
(σx

rσ
y
r+1 + σy

rσ
x
r+1) +

h

2
σz
r , (B1)

where k is the coupling constant of the KSEA interactions.
By tuning the parameters, we can obtain the ground state of
this model analytically by using the procedure described in the
previous section. It can be shown to be doubly degenerate and
does not possess any bipartite and multipartite entanglement.
This leads to the equation of factorization surface, which de-
pends on the Hamiltonian parameters as

γ2 = 1− h2 − k2. (B2)

In the XY model with k = 0, the FS reduces to h2 + γ2 = 1.
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FIG. 7. Symbolic regression results for the FS of the XY Z Model with Ntrain ∼ 6000. The equation in bold 1.5633 −
√
h refers to the HS

equation, while the other bold equation is the Best equation as discussed in the main text.
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