
Efficient Batch and Recursive Least Squares for Matrix Parameter
Estimation with Application to Adaptive MPC

Brian Lai and Dennis S. Bernstein

Abstract— Traditionally, batch least squares (BLS) and re-
cursive least squares (RLS) are used for identification of
a vector of parameters that form a linear model. In some
situations, however, it is of interest to identify parameters in
a matrix structure. In this case, a common approach is to
transform the problem into standard vector form using the
vectorization (vec) operator and the Kronecker product, known
as vec-permutation. However, the use of the Kronecker product
introduces extraneous zero terms in the regressor, resulting in
unnecessary additional computational and space requirements.
This work derives matrix BLS and RLS formulations which,
under mild assumptions, minimize the same cost as the vec-
permutation approach. This new approach requires less compu-
tational complexity and space complexity than vec-permutation
in both BLS and RLS identification. It is also shown that
persistent excitation guarantees convergence to the true matrix
parameters. This method can used to improve computation time
in the online identification of multiple-input, multiple-output
systems for indirect adaptive model predictive control.

I. INTRODUCTION

Least squares based identification methods are founda-
tional to systems and control theory, particularly identifica-
tion, signal processing, and adaptive control [1], [2]. Batch
least squares (BLS) and recursive least squares (RLS) are
traditionally used to identify a vector of parameters in a linear
measurement process [2], [3]. However, it may be of interest
to identify parameters in a matrix structure, for example, in
adaptive control of multiple-input, multiple-output (MIMO)
systems [3], [4]. One approach is to use vec-permutation
[5], a method which rewrites the linear measurement process
such that the columns of the parameters to be identified
are stacked into a vector. This is accomplished using the
the vectorization operator and Kronecker product, and is a
straightforward solution for various situations [4], [6]–[12].

A significant drawback, however, is that the vec-
permutation method increases the dimension of the linear
measurement process by using the Kronecker product, intro-
ducing extraneous zero terms in the regressor (e.g. equation
(15) of [4]). This results in increased computational cost
and storage requirements. Other methods for identifying pa-
rameters in a matrix structure have been proposed including
square root filtering [13], multiinnovations [14], [15], and
gradient-based methods [16]. However, these methods do
not address whether a least squares cost function is globally
minimized or the relationship of the method to standard least
squares methods.

Brian Lai and Dennis S. Bernstein are with the Department of Aerospace
Engineering, University of Michigan, Ann Arbor, MI, USA. {brianlai,
dsbaero}@umich.edu.

This work develops a batch and recursive least squares
algorithm for identification of matrix parameters which,
under mild assumptions, minimizes the same cost function
used in the vec-permutation approach. This method provides
a O(m3) times improvement in computational cost and a
O(m2) times improvement in storage requirements over vec-
permutation, where m ≥ 1 is the number of columns of
the identified parameter matrix. We also show how per-
sistent excitation guarantees convergence of the identified
matrix parameters to true matrix parameters, which extends
established results for identification of vector parameters
[17]–[19]. Finally, we show how this method can be used
to significantly reduce computation time spent on online
identification in predictive cost adaptive control (PCAC) [4].

II. THE VEC-PERMUTATION APPROACH

Consider a measurement process of the form1

yk = ϕkθ, (1)

where k = 0, 1, 2, . . . is the time step, yk ∈ Rp×m is the
measurement at step k, ϕk ∈ Rp×n is the regressor at step
k, and θ ∈ Rn×m is a matrix of unknown parameters.
Parameters θ can be identified by minimizing the least
squares cost function Jk : Rn×m → R, defined as

Jk(θ̂) =

k∑
i=0

vec(yi − ϕiθ̂)
TΓ̄i vec(yi − ϕiθ̂)

+ vec(θ̂ − θ0)
TR̄ vec(θ̂ − θ0), (2)

where vec(·) is the column stacking operator, positive-
definite R̄ ∈ Rmn×mn is the regularization matrix, θ0 ∈
Rn×m is an initial estimate of θ, and, for all k ≥ 0, positive-
definite Γ̄k ∈ Rmp×mp is the measurement weighting matrix.

Using vec-permutation [5], (1) can be rewritten as

ȳk = ϕ̄kθ̄, (3)

where ȳk ∈ Rmp, ϕ̄k ∈ Rmp×mn, and θ̄ ∈ Rmn are defined

ȳk ≜ vec(yk), (4)

ϕ̄k ≜ (Im ⊗ ϕk), (5)

θ̄ ≜ vec(θ), (6)

1Note that since the measurement, regressor, and parameters are all
matrices, the results of this work can be easily extended to measurements
processes of the form yk = θϕk by rewriting as yTk = ϕT

k θ
T and

identifying parameters θT. For brevity, we leave the details to the reader.

ar
X

iv
:2

40
4.

10
91

1v
1

 [
ee

ss
.S

P]
 1

6
A

pr
 2

02
4

and where ⊗ is the Kronecker product. Note, for all k ≥ 0
and θ̂ ∈ Rn×m that vec(yk − ϕkθ̂) = ȳk − ϕ̄k vec(θ̂) and
vec(θ̂ − θ0) = vec(θ̂)− θ̄0, where θ̄0 ∈ Rmn is defined as

θ̄0 ≜ vec(θ0). (7)

It then follows that, for all k ≥ 0, the cost function Jk, given
in (2), can be rewritten as

Jk(θ̂) =

k∑
i=0

(ȳi − ϕ̄i vec(θ̂))
TΓ̄i(ȳi − ϕ̄i vec(θ̂))

+ (vec(θ̂)− θ̄0)
TR̄(vec(θ̂)− θ̄0). (8)

Propositions 1 and 2 respectively give the batch and recursive
least squares methods using vec-permutation to minimize
cost function Jk.

Proposition 1. Let N ≥ 0. For all 0 ≤ k ≤ N , let ϕk ∈
Rp×n, let yk ∈ Rp×m, and let Γ̄k ∈ Rmp×mp be positive
definite. Furthermore, let θ̄0 ∈ Rn×m and let R̄ ∈ Rmn×mn

be positive definite. Then, JN : Rn → R, defined in (2), has
a unique minimizer whose vectorization is given by

vec

(
argmin
θ̂∈Rn×m

JN (θ̂)

)
= Ā−1

N b̄N , (9)

where

ĀN ≜ R̄+

N∑
i=0

ϕ̄T
i Γ̄iϕ̄i, (10)

b̄N ≜ R̄ vec(θ0) +

N∑
i=0

ϕ̄T
i Γ̄iȳi, (11)

and where, for all 0 ≤ k ≤ N , ȳk ∈ Rmp and ϕ̄k ∈ Rmp×mn

are defined in (4) and (5), respectively.

Proof. This result follows directly from Lemma A.3.

Proposition 2. For all k ≥ 0, let ϕk ∈ Rp×n, let
yk ∈ Rp×m, and let Γ̄i ∈ Rmp×mp be positive definite.
Furthermore, let θ̄0 ∈ Rn×m and let R̄ ∈ Rmn×mn be
positive definite. Then, for all k ≥ 0, Jk : Rn → R, defined in
(2), has a unique minimizer, whose vectorization is denoted
as

θ̄k+1 ≜ vec

(
argmin
θ̂∈Rn×m

Jk(θ̂)

)
. (12)

Moreover, for all k ≥ 0, θ̄k+1 is given recursively by

P̄−1
k+1 = P̄−1

k + ϕ̄T
k Γ̄kϕ̄k, (13)

θ̄k+1 = θ̄k + Pk+1ϕ̄
T
k Γ̄k(ȳk − ϕ̄kθ̄k). (14)

where ȳk ∈ Rmp and ϕ̄k ∈ Rmp×mn are defined in (4)
and (5), respectively, P̄0 ≜ R̄−1, and, for all k ≥ 0,
P̄k ∈ Rmn×mn is positive definite, and hence nonsingular.
Moreover, for all k ≥ 0, P̄k can be expressed recursively as

P̄k+1 = P̄k − P̄kϕ̄
T
k (Γ̄

−1
k + ϕ̄kP̄kϕ̄

T
k)

−1ϕ̄kP̄k. (15)

Proof. This result follows directly from Lemma A.3.

An inefficiency with this method is that the Kronecker
product in (5) introduces extraneous zero terms in ϕ̄k when
m > 1, resulting in a sparse and higher dimension regressor
matrix. However, there is no way to simplify the results of
Propositions 1 and 2 as the regularization matrix R̄ and mea-
surement weighting matrices Γ̄k are not necessarily sparse.
The computational complexities of BLS and RLS with vec-
permutation are shown in Tables I and II respectively.

III. INDEPENDENT COLUMN WEIGHTING

Next, we assume there exist positive-definite
R1, . . . , Rm ∈ Rn×n such that R̄ is block diagonal
of the form

R̄ =

 R1 · · · 0n×n

...
. . .

...
0n×n · · · Rm

 . (16)

Furthermore, assume that, for all k ≥ 0, there exist positive-
definite Γ1,k, . . . ,Γm,k ∈ Rp×p such that Γ̄k is block
diagonal of the form

Γ̄k =

Γ1,k · · · 0p×p

...
. . .

...
0p×p · · · Γm,k

 . (17)

This corresponds to independent weighting of the columns
of yi − ϕiθ̂, i = 0, . . . , k, and θ̂ − θ0 in (2). Then, for all
k ≥ 0 and θ̂ ∈ Rn×m, (2) can be rewritten as

Jk(θ̂) =

m∑
j=0

Jj,k(θ̂j), (18)

where, for all j = 1, . . . ,m, Jj,k : Rn → R is defined as

Jj,k(θ̂j) =

k∑
i=0

(yj,i − ϕiθ̂j)
TΓj,i(yj,i − ϕiθ̂j)

+ (θ̂j − θj,0)
TRj(θ̂j − θj,0). (19)

where the vectors y1,k, . . . , ym,k ∈ Rp, θ1,0, . . . , θm,0 ∈ Rn,
and θ̂1, . . . , θ̂m ∈ Rn are the m columns of yk, θ0, and θ̂,
respectively. In particular,

yk ≜
[
y1,k · · · ym,k

]
, (20)

θ0 ≜
[
θ1,0 · · · θm,0

]
, (21)

θ̂ ≜
[
θ̂1 · · · θ̂m

]
. (22)

The following Lemma shows that minimizing the cost func-
tion Jk, given by (18), can be done by separately minimizing
Jj,k for all j = 1, . . . ,m.

Lemma 1. For all k ≥ 0, let ϕk ∈ Rp×n, let yk ∈
Rp×m, and let Γ1,k, . . . ,Γm,k ∈ Rp×p be positive definite.
Furthermore, let θ̄0 ∈ Rn×m and let R1, . . . , Rm ∈ Rn×n be
positive definite. Then, for all k ≥ 0, Jk : Rn → R, defined
in (18), has a unique minimizer given by

argmin
θ̂∈Rn×m

Jk(θ̂) =

[
argmin
θ̂1∈Rn

J1,k(θ̂1) . . . argmin
θ̂m∈Rn

Jm,k(θ̂m)
]

Proof. Note that, for all j = 1, . . . ,m, since Jj,k is a
function of only θ̂j , it follows from Lemma A.3 that Jj,k has
a unique minimizer. Then, since Jk(θ̂) =

∑m
j=0 Jj,k(θ̂j), it

follows from (22) that the Lemma holds.

Propositions 3 and 4 respectively give the independent
column weighting batch and recursive least squares methods
to minimize cost function Jk given by (18).

Proposition 3. Let N ≥ 0. For all 0 ≤ k ≤ N , let
ϕk ∈ Rp×n, let yk ∈ Rp×m, and let Γ1,k, . . . ,Γm,k ∈ Rp×p

be positive definite. Furthermore, let θ̄0 ∈ Rn×m and let
R1, . . . , Rm ∈ Rn×n be positive definite. Then, JN : Rn →
R, defined in (18), has a unique minimizer given by

argmin
θ̂∈Rn×m

JN (θ̂) =
[
A−1

1,Nb1,N · · · A−1
m,Nbm,N

]
, (23)

where, for all j = 1, . . . ,m,

Aj,N ≜ Rj +

N∑
i=0

ϕT
i Γj,iϕi, (24)

bj,N ≜ Rjθj,0 +

N∑
i=0

ϕT
i Γj,iyj,i, (25)

and where, for all 0 ≤ k ≤ N , yj,k ∈ Rp is defined in (20)
and θj,0 ∈ Rn is defined (21).

Proof. It follows from Lemma A.3 that, for all j = 1, . . . ,m,
argminθ̂1∈Rn Jj,N (θ̂j) = A−1

j,Nbj,N . Hence, Lemma 1 im-
plies (23).

Proposition 4. For all k ≥ 0, let ϕk ∈ Rp×n, let yk ∈
Rp×m, and let Γ1,k, . . . ,Γm,k ∈ Rp×p be positive definite.
Furthermore, let θ̄0 ∈ Rn×m and let R1, . . . , Rm ∈ Rn×n be
positive definite. Then, for all k ≥ 0, Jk : Rn → R, defined
in (18), has a unique minimizer, denoted as

argmin
θ̂∈Rn×m

Jk(θ̂) =
[
θ1,k+1 · · · θm,k+1

]
, (26)

where, for all j = 1, . . . ,m, θj,k+1 ∈ Rn is given by

P−1
j,k+1 = P−1

j,k + ϕT
k Γj,kϕk, (27)

θj,k+1 = θj,k + Pj,k+1ϕ
T
k Γj,k(yj,k − ϕkθj,k). (28)

where yj,k ∈ Rp is defined in (20), θj,0 ∈ Rn is defined
(21), Pj,0 ≜ R−1

j , and, for all k ≥ 0 and j = 1, . . . ,m,
Pj,k ∈ Rn×n is positive definite, and hence nonsingular.
Moreover, for all k ≥ 0 and j = 1, . . . ,m, Pj,k can be
expressed recursively as

Pj,k+1 = Pj,k − Pj,kϕ
T
k (Γ

−1
j,k + ϕkPj,kϕ

T
k)

−1ϕkPj,k. (29)

Proof. For all j = 1, . . . ,m, let θj,k+1 ≜ argminθ̂1∈Rn Jj,k.
It then follows from Lemma A.3 that, for all j = 1, . . . ,m,
(27) and (28) hold. Finally, Lemma 1 implies (23).

An advantage of independent column weighting versus
vec-permutation is that no Kronecker product is used, imply-
ing that no sparse matrices are introduced. The computational
complexities of BLS and RLS with independent column

weighting are shown in Tables I and II respectively. Indepen-
dent column weighting results in a O(m2) times improve-
ment in computational complexity over vec-permutation for
both BLS and RLS as well as a O(m) times improvement
in space complexity.

IV. INDEPENDENT IDENTICAL COLUMN WEIGHTING

Finally, we now assume there exist positive-definite R ∈
Rn×n such that R̄ is block diagonal of the form

R̄ =

 R · · · 0n×n

...
. . .

...
0n×n · · · R

 = Im ⊗R. (30)

Furthermore, assume that, for all k ≥ 0, there exist positive-
definite Γk ∈ Rp×p such that Γ̄k is block diagonal of the
form

Γ̄k =

 Γk · · · 0p×p

...
. . .

...
0p×p · · · Γk

 = Im ⊗ Γk. (31)

This corresponds to independent and identical weighting of
the columns of yi − ϕiθ̂, i = 0, . . . , k, and θ̂ − θ0 in (2).
Then, it follows from Lemma A.2 that, for all k ≥ 0, (2)
can be rewritten as

Jk(θ̂) = tr

[k∑
i=0

(yi − ϕiθ̂)
TΓi(yi − ϕiθ̂)

+ (θ − θ0)
TR(θ − θ0)

]
. (32)

Propositions 5 and 6 respectively give the independent iden-
tical column weighting batch and recursive least squares
methods to minimize cost function Jk given by (32).

Proposition 5. Let N ≥ 0. For all 0 ≤ k ≤ N , let
ϕk ∈ Rp×n, let yk ∈ Rp×m, and let Γk ∈ Rp×p be positive
definite. Furthermore, let θ0 ∈ Rn×m and let R ∈ Rn×n be
positive definite. Then, JN : Rn → R, defined in (32), has a
unique minimizer given by

argmin
θ̂∈Rn×m

JN (θ̂) = A−1
N bN , (33)

where

AN ≜ R+

N∑
i=0

ϕT
i Γiϕi, (34)

bN ≜ Rθ0 +

N∑
i=0

ϕT
i Γiyi. (35)

Proof. Note that (32) can be rewritten as (18) where, for all
k ≥ 0 and j = 1, . . . ,m, Γj,k = Γk and Rj = R. It then
follows from Proposition 3 that argminθ̂∈Rn×m JN (θ̂) =[
A−1

N b1,N · · · A−1
N bm,N

]
= A−1

N

[
b1,N · · · bm,N

]
,

where AN ∈ Rn×n is defined in (34) and bj,N is defined in
(25). Finally, note that bN = [b1,N · · · bm,N], thus yielding
(33).

Proposition 6. For all k ≥ 0, let ϕk ∈ Rp×n, let yk ∈
Rp×m, and let Γk ∈ Rp×p be positive definite. Furthermore,
let θ0 ∈ Rn×m and let R ∈ Rn×n be positive definite. Then,
for all k ≥ 0, Jk : Rn → R, defined in (32), has a unique
minimizer, denoted as

argmin
θ̂∈Rn×m

Jk(θ̂) = θk+1. (36)

Moreover, for all k ≥ 0, θk+1 ∈ Rn×m is given by

P−1
k+1 = P−1

k + ϕT
k Γkϕk, (37)

θk+1 = θk + Pk+1ϕ
T
k Γk(yk − ϕkθk). (38)

where P0 ≜ R−1 and, for all k ≥ 0, Pk ∈ Rn×n is positive
definite, hence nonsingular. Finally, for all k ≥ 0, Pk+1 can
be expressed recursively as

Pk+1 = Pk − Pkϕ
T
k (Γ

−1
k + ϕkPkϕ

T
k)

−1ϕkPk. (39)

Proof. Note that (32) can be rewritten as (18) where, for all
k ≥ 0 and j = 1, . . . ,m, Γj,k = Γk and Rj = R. It then
follows from Proposition 4 that, for all k ≥ 0,

argmin
θ̂∈Rn×m

Jk(θ̂) =
[
θ1,k+1 · · · θm,k+1

]
,

where, for all j = 1, . . . ,m, θj,k+1 ∈ Rn is given by

P−1
k+1 = P−1

k + ϕT
k Γkϕk,

θj,k+1 = θj,k + Pk+1ϕ
T
k Γk(yj,k − ϕkθj,k).

Applying (20) and (22) then implies (37) and (38).

Note that in independent identical column weighting, the
same covariance matrix is used for each column of θk versus
independent column weighting which computes a separate
covariance matrix for each column of parameters θj,k, j =
1, . . . ,m. The computational complexities of BLS and RLS
with independent identical column weighting are shown in
Tables I and II respectively. Independent column weighting
results in a O(m3) times improvement in computational
complexity over vec-permutation as well as a O(m2) times
improvement in space complexity over vec-permutation.

Figure 1 shows numerical testing of BLS and RLS
with vec-permutation, independent column weighting, and
independent identical column weighting. We consider the
measurement process (1) with p = 10, n = 50, and
1 ≤ m ≤ 20. For larger values of m, we see significantly
faster computation time for independent identical column
weighting over vec-permutation and independent column
weighting.

A. Convergence of Matrix RLS

It is well-known that in standard RLS, the parameter
estimate vector converges to the vector of true parameters
if the sequence of regressors (ϕk)

∞
k=0 is persistently exciting

[17]–[19]. Theorem 1 extends this result to matrix RLS. The
following definition is from page 64 of [1].

Fig. 1: Consider the measurement process (1) with p = 10, n = 50, and
1 ≤ m ≤ 20. Batch least squares (top) shows computation time with
N = 100 data points, averaged over 10 trials. Recursive least squares
(bottom) shows computation time per step, averaged over 100 trials. Error
bars show the 95% confidence intervals.

Definition 1. (ϕk)
∞
k=0 ⊂ Rp×n with weight (Γk)

∞
k=0 is

persistently exciting (PE) if

C ≜ lim
k→∞

1

k

k−1∑
i=0

ϕT
i Γiϕi ∈ Rn×n (40)

exists and is positive definite.

Theorem 1. Let θ, θ0 ∈ Rn×m and let R ∈ Rn×n be positive
definite. For all k ≥ 0, let ϕk ∈ Rp×n, let yk ∈ Rp×m be
given by (1), let Γk ∈ Rp×p be positive definite, and let
Pk ∈ Rn×n and θk ∈ Rn×m be given by (37) and (38),
respectively. Assume that (ϕk)

∞
k=0 with weight (Γk)

∞
k=0 is

PE, and define C ∈ Rn×n by (40). Then,

lim
k→∞

k(θk − θ) = C−1R(θ0 − θ). (41)

Proof. Note that

θk = (R+

k−1∑
i=0

ϕT
i Γiϕi)

−1(Rθ0 +

k−1∑
i=0

ϕT
i Γiyi)

= (R+

k−1∑
i=0

ϕT
i Γiϕi)

−1(Rθ0 −Rθ +Rθ +

k−1∑
i=0

ϕT
i Γiϕiθ)

= (R+

k−1∑
i=0

ϕT
i Γiϕi)

−1
[
R(θ0 − θ) + (R+

k−1∑
i=0

ϕT
i Γiϕi)θ

]
= (R+

k−1∑
i=0

ϕT
i Γiϕi)

−1R(θ0 − θ) + θ.

Hence, it follows that

lim
k→∞

k(θk − θ) = lim
k→∞

(
1

k
R+

1

k

k−1∑
i=0

ϕT
i Γiϕi)

−1R(θ0 − θ)

= C−1R(θ0 − θ). □

TABLE I: Batch identification summary and computational complexities for N measurements

Algorithm Comp. Complexity (No Assumptions) Comp. Complexity
(N ≫ n ≥ p)

Comp. Complexity
(N ≫ p ≥ n)

Vec-Permutation (9), (10), (11) O(max{Npnm3 max{p, n}, n3m3}) O(Npn2m3) O(Np2nm3)
Indep. Column Weight (23), (24), (25) O(max{Npnmmax{p, n}, n3m}) O(Npn2m) O(Np2nm)

Indep. Iden. Column Weight (33), (34), (35) O(max{Npmax{n,m}max{p, n}, n3}) O(Npnmax{n,m}) O(Np2 max{n,m})

TABLE II: Recursive identification summary and computational/space complexities per step

Algorithm
(n ≫ p)

Comp. Complexity
(n ≫ p)

Algorithm
(p ≥ n)

Comp. Complexity
(p ≥ n)

Number of Parameters
in Memory

Vec-Permutation (15), (14) O(pn2m3) (13), (14) O(p2nm3) n2m2 + nm
Indep. Column Weight (29), (28) O(pn2m) (27), (28) O(p2nm) n2m+ nm

Indep. Iden. Column Weight (39), (38) O(pnmax{n,m}) (37), (38) O(p2 max{n,m}) n2 + nm

V. APPLICATION TO ONLINE IDENTIFICATION FOR
INDIRECT ADAPTIVE MODEL PREDICTIVE CONTROL

Consider a MIMO input-output system of the form

yk = −
n̂∑

i=1

Fiyk−i +

n̂∑
i=0

Giuk−i, (42)

where k ≥ 0 is the time step, n̂ is the model order, uk ∈ Rm

is the control, yk ∈ Rp is the measurement, and F1, . . . , Fn̂ ∈
Rp×p and G0, . . . , Gn̂ ∈ Rp×m are the system coefficient
matrices to be estimated. A model of the form (42) is
identified online in the indirect adaptive model predictive
control scheme: predictive cost adaptive control (PCAC) [4].
For all k ≥ 0, the system coefficient matrices are estimated
by minimizing the cost function Jk : Rp×n̂(m+p)+m → R,
defined as

Jk(θ̂) =

k∑
i=0

zTi (θ̂)zi(θ̂) + vec(θ̂ − θ0)
TP̄−1

0 vec(θ̂ − θ0),

(43)
where zk : Rp×n̂(m+p)+m → Rp is defined

zk(θ̂) ≜ yk +

n̂∑
i=1

F̂iyk−i −
n̂∑

i=0

Ĝiuk−i, (44)

θ̂ ∈ Rp×n̂(m+p)+m are the coefficients to be estimated,
defined

θ̂ ≜
[
F̂1 · · · F̂n̂ Ĝ0 · · · Ĝn̂

]
, (45)

and where θ0 ∈ Rp×n̂(m+p)+m is an initial guess of the co-
efficients and P̄0 ∈ R[n̂p(m+p)+mp]×[n̂p(m+p)+mp] is positive
definite. Note that, for all k ≥ 0, zk(θ̂) can be written as

zk(θ̂) = yk − θ̂ϕk, (46)

where ϕk ∈ Rn̂(m+p)+m is defined as

ϕk ≜
[
−yTk−1 · · · − yTk−n̂ uT

k · · · uT
k−n̂

]T
. (47)

Further defining ϕ̄k ∈ Rp×n̂p(m+p)+mp as

ϕ̄k ≜ ϕT
k ⊗ Ip, (48)

it follows that zk(θ̂) can be written as

zk(θ̂) = yk − ϕ̄k vec(θ̂) (49)

where vec(θ̂) ∈ Rn̂p(m+p)+mp is the vectorization of θ̂.
Using (49), we derive the identification algorithm used in
[4].

Proposition 7. For all k ≥ 0, let uk ∈ Rm, yk ∈
Rp. Furthermore, let θ0 ∈ Rp×n̂(m+p)+m and let P̄0 ∈
R[n̂p(m+p)+mp]×[n̂p(m+p)+mp] be positive definite. Then, for
all k ≥ 0, Jk, defined in (43), has a unique global minimizer,
denoted

θk+1 ≜ argmin
θ̂∈Rp×n̂(m+p)+m

Jk(θ̂), (50)

which is given by

P̄k+1 = P̄k − P̄kϕ̄
T
k (Ip + ϕ̄kP̄kϕ̄

T
k)

−1ϕ̄kP̄k, (51)

vec(θk+1) = vec(θk) + P̄k+1ϕ̄
T
k (yk − ϕ̄k vec(θk)). (52)

Proof. This result follows from Lemma A.3. For further
details, see equations (8) through (20) of [4].

Next, we provide an alternate formulation using matrix
RLS.

Proposition 8. Consider the notation and assumptions of
Proposition 7. If there exists P0 ∈ R[n̂(m+p)+m]×[n̂(m+p)+m]

such that P̄0 = P0 ⊗ Ip, then, for all k ≥ 0, θk+1 ∈
Rp×n̂(m+p)+m is given by

Pk+1 = Pk − Pkϕkϕ
T
k Pk

1 + ϕT
k Pkϕk

, (53)

θk+1 = θk + (yk − θkϕk)ϕ
T
k Pk+1. (54)

Proof. Note that, for all k ≥ 0, zk(θ̂)
Tzk(θ̂) =

tr(zk(θ̂)
Tzk(θ̂)) = tr(zk(θ̂)zk(θ̂)

T). It then follows from
(57) of Lemma A.2 that, for all k ≥ 0, (43) can be written
as

Jk(θ̂) = tr
[k∑

i=0

zi(θ̂)zi(θ̂)
T + (θ̂ − θ0)P

−1
0 (θ̂ − θ0)

T
]
.

Proposition 5 then implies that, for all k ≥ 0, (53) and
θTk+1 = θTk +Pk+1ϕk(y

T
k −ϕT

k θ
T
k) hold. Taking the transpose

then yields (54).

Example 1. This example is from [10] and uses PCAC
for the control of a flexible structure under harmonic and

broadband disturbances. Consider the 4-bay truss show in
Figure 2 made of flexible truss elements with unknown
mass and stiffness. Two actuators are placed at nodes 3 and
4 with control authority in the x-direction and x-direction
displacement sensors are placed at nodes 5, 6, 7, and 8. The
objective is to use PCAC to suppress the effects of harmonic
and broadband disturbances without prior knowledge of the
truss dynamics. See [10] for further details.

This example has inputs uk ∈ R2 and outputs yk ∈ R4.
Online identification was done in [10] using vec-permutation,
given by (51) and (52), with identity regularization. We
replicated the results of [10] using matrix RLS, given by (53)
and (54). Table III shows that using matrix RLS resulted in
a 97.6% decrease in computation time needed for system
identification per step. Moreover, since system identification
is a significant part of PCAC, Table III also shows a 21.4%
decrease in total computation time per step. ⋄

Fig. 2: Flexible truss structure from [10] with nodes labeled.

TABLE III: Truss ex. computation time per step: mean ± std. deviation

Vec-Permutation Matrix RLS Change

ID Time per Step (5.9± 0.5)ms (0.14± 0.03)ms −97.6%
Total Time per Step (28± 6)ms (22± 6)ms −21.4%

VI. CONCLUSIONS

This work derives batch and recursive least squares al-
gorithms for the identification of matrix parameters. Under
the assumption of independent, identical column weighting,
these methods minimize the same cost function as the vec-
permutation approach. It is also shown how, under persistent
excitation, convergence guarantees can be extended from the
vector case to the matrix case. This approach can be used
fast online identification of MIMO systems which is critical
in indirect adaptive model predictive control.

REFERENCES

[1] K. J. Astrom and B. Wittenmark, Adaptive Control, 2nd ed. USA:
Addison-Wesley Longman Publishing Co., Inc., 1994.

[2] L. Ljung and T. Söderström, Theory and practice of recursive identi-
fication. MIT press, 1983.

[3] S. Islam and D. S. Bernstein, “Recursive least squares for real-time
implementation,” IEEE Ctrl. Sys. Mag., vol. 39, no. 3, pp. 82–85,
2019.

[4] T. W. Nguyen, S. A. U. Islam, D. S. Bernstein, and I. V. Kolmanovsky,
“Predictive cost adaptive control: A numerical investigation of persis-
tency, consistency, and exigency,” IEEE Control Systems Magazine,
vol. 41, no. 6, pp. 64–96, 2021.

[5] H. V. Henderson and S. R. Searle, “The vec-permutation matrix,
the vec operator and kronecker products: A review,” Linear and
multilinear algebra, vol. 9, no. 4, pp. 271–288, 1981.

[6] S. A. U. Islam, T. W. Nguyen, I. V. Kolmanovsky, and D. S. Bernstein,
“Data-driven retrospective cost adaptive control for flight control
applications,” Journal of Guidance, Control, and Dynamics, vol. 44,
no. 10, pp. 1732–1758, 2021.

[7] K. Zhu, C. Yu, and Y. Wan, “Recursive least squares identification with
variable-direction forgetting via oblique projection decomposition,”
Journal of Automatica Sinica, vol. 9, no. 3, pp. 547–555, 2021.

[8] F. Ding, “Coupled-least-squares identification for multivariable sys-
tems,” IET Control Theory & Applications, vol. 7, no. 1, pp. 68–79,
2013.

[9] Y. Wang, F. Ding, and M. Wu, “Recursive parameter estimation algo-
rithm for multivariate output-error systems,” Journal of the Franklin
Institute, vol. 355, no. 12, pp. 5163–5181, 2018.

[10] N. Mohseni and D. S. Bernstein, “Predictive cost adaptive control of
flexible structures with harmonic and broadband disturbances,” in 2022
American Control Conference (ACC). IEEE, 2022, pp. 3198–3203.

[11] A. Farahmandi and B. Reitz, “Predictive cost adaptive control of a
planar missile with unmodeled aerodynamics,” in AIAA SCITECH
2024 Forum, 2024, p. 2218.

[12] H. Ma, J. Pan, L. Lv, G. Xu, F. Ding, A. Alsaedi, and T. Hayat, “Re-
cursive algorithms for multivariable output-error-like arma systems,”
Mathematics, vol. 7, no. 6, p. 558, 2019.

[13] V. Peterka, “A square root filter for real time multivariate regression,”
Kybernetika, vol. 11, no. 1, pp. 53–67, 1975.

[14] F. Ding, P. X. Liu, and G. Liu, “Multiinnovation least-squares iden-
tification for system modeling,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 40, no. 3, pp. 767–778,
2009.

[15] F. Ding and T. Chen, “Performance analysis of multi-innovation
gradient type identification methods,” Automatica, vol. 43, no. 1, pp.
1–14, 2007.

[16] B. Bamieh and L. Giarre, “Identification of linear parameter varying
models,” International Journal of Robust and Nonlinear Control:
IFAC-Affiliated Journal, vol. 12, no. 9, pp. 841–853, 2002.

[17] A. L. Bruce, A. Goel, and D. S. Bernstein, “Necessary and sufficient
regressor conditions for the global asymptotic stability of recursive
least squares,” Systems & Control Letters, vol. 157, p. 105005, 2021.

[18] R. M. Johnstone, C. R. Johnson Jr, R. R. Bitmead, and B. D. Anderson,
“Exponential convergence of recursive least squares with exponential
forgetting factor,” Sys. & Control Letters, vol. 2, no. 2, pp. 77–82,
1982.

[19] B. Lai, S. A. U. Islam, and D. S. Bernstein, “Regularization-induced
bias and consistency in recursive least squares,” in 2021 American
Control Conference (ACC). IEEE, 2021, pp. 3987–3992.

APPENDIX

Lemma A.1. Let A ∈ Rk×l and B ∈ Rl×m. Then,

vec(AB) = (Im ⊗A) vec(B) = (BT ⊗ Ik) vec(A). (55)

Lemma A.2. Let x ∈ Rn×m, let A ∈ Rn×n, and let B ∈
Rm×m. Then,

vec(x)T(Im ⊗A) vec(x) = tr(xTAx), (56)

vec(x)T(B ⊗ In) vec(x) = tr(xBxT). (57)

Proof. Note that by Lemma A.1, vec(x)T(Im⊗A) vec(x) =
vec(x)T vec(Ax) = tr(xTAx), proving (56).
Next, by Lemma A.1, vec(x)T(B ⊗ In) vec(x) =
vec(x)T vec(xBT) = tr(xTxBT) = tr(xBTxT) =
tr(xBxT).

Lemma A.3. For all k ≥ 0, let ϕk ∈ Rp×n, let yk ∈ Rp, and
let Γi ∈ Rp×p be positive definite. Furthermore, let θ0 ∈ Rn

and let P0 ∈ Rn×n be positive definite. For all k ≥ 0, define
function Jk : Rn → R as Jk(θ̂) =

∑k
i=0(yi −ϕkθ̂)

TΓi(yi −
ϕiθ̂) + (θ̂ − θ0)

TP−1
0 (θ̂ − θ0). Then, for all k ≥ 0, Jk has

a unique minimizer, denoted as θk+1 ≜ argminθ̂∈Rn Jk(θ̂).
Furthermore, for all k ≥ 0,

θk+1 = A−1
k bk, (58)

where Ak ≜ P−1
0 +

∑k
i=0 ϕ

T
i Γiϕi and bk ≜ P−1

0 θ0 +∑k
i=0 ϕ

T
i Γiyi. Moreover, for all k ≥ 0, θk+1 can be

expressed recursively as

P−1
k+1 = P−1

k + ϕT
k Γkϕk, (59)

θk+1 = θk + Pk+1ϕ
T
k Γk(yk − ϕkθk), (60)

where, for all k ≥ 0, Pk ∈ Rn×n is positive definite, hence
nonsingular. Finally, for all k ≥ 0, Pk+1 can be expressed
recursively as

Pk+1 = Pk − Pkϕ
T
k (Γ

−1
k + ϕkPkϕ

T
k)

−1ϕkPk. (61)

Proof. See [3].

	Introduction
	The Vec-permutation Approach
	Independent Column Weighting
	Independent Identical Column Weighting
	Convergence of Matrix RLS

	Application to Online Identification for Indirect Adaptive Model Predictive Control
	Conclusions
	References
	Appendix

