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On the Li–Zheng theorem

Gennadiy Feldman

Abstract. By the well-known I. Kotlarski lemma, if ξ1, ξ2, and ξ3 are independent real-valued random
variables with nonvanishing characteristic functions, L1 = ξ1−ξ3 and L2 = ξ2−ξ3, then the distribution
of the random vector (L1, L2) determines the distributions of the random variables ξj up to shift.
Siran Li and Xunjie Zheng generalized this result for the linear forms L1 = ξ1 + a2ξ2 + a3ξ3 and
L2 = b2ξ2 + b3ξ3 + ξ4 assuming that all ξj have first and second moments, ξ2 and ξ3 are identically
distributed, and aj , bj satisfy some conditions. In the article, we give a simpler proof of this theorem.
In doing so, we also prove that the condition of existence of moments can be omitted. Moreover, we
prove an analogue of the Li–Zheng theorem for independent random variables with values in the field
of p-adic numbers, in the field of integers modulo p, where p 6= 2, and in the discrete field of rational
numbers.
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1. Introduction

In the article [5] dedicated to the characterization of the gamma and the Gaussian distribution I. Kot-
larski proved the following lemma: Let ξ1, ξ2, and ξ3 be independent real-valued random variables
with nonvanishing characteristic functions, and let L1 = ξ1 − ξ3 and L2 = ξ2 − ξ3. Then the distri-
bution of the random vector (L1, L2) determines the distributions of the random variables ξj up to
shift. The characterization theorems proved in [5] remained known only to mathematicians who deal
with characterization problems of mathematical statistics. At the same time, a number of studies that
are far from characterization problems are based on Kotlarski’s lemma. See, e.g., [6], where numerous
articles with references to Kotlarski’s lemma including in economics literature, are mentioned. We
especially pay attention to the important article by C.R. Rao [7]. In particular, he considered n inde-
pendent real-valued random variables ξj with nonvanishing characteristic functions, the linear forms
L1 = a1ξ1 + · · · + anξn, L2 = b1ξ1 + · · · + bnξn and proved that under some natural conditions on
the coefficients aj, bj the characteristic function of the random vector (L1, L2) determines the char-
acteristic functions of the random variables ξj up to factors of the form exp{Pj(y)}, where Pj(y) is a
polynomial of degree at most n− 2. Kotlarski’s lemma follows from this Rao theorem. Note also that
some generalizations of Rao’s theorem were studied in [1], see also [2, §15], for locally compact Abelian
groups. The proof of Rao’s theorem is based on the following statement on solutions of a functional
equation.

Lemma 1.1. Let aj , bj , j = 1, 2, . . . , n, be nonzero real numbers such that aibj 6= ajbi for all i 6= j.
Consider the equation

n
∑

j=1

ψj(aju+ bjv) = A(u) +B(v), u, v ∈ R,

where ψj(y), A(y), and B(y) are continuous complex-valued functions on R. Then ψj(y) are polynomial

on R of degree at most n.
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This lemma is well known. In fact, the lemma was first used, although it was not explicitly
formulated, in the works by Skitovich and Darmois, where the Gaussian distribution on the real line
is characterized by the independence of two linear forms of n independent random variables. Two
different proofs of the lemma and some generalizations can be found in [4, §1.5].

In article [6], Siran Li and Xunjie Zheng proved the following statement.

Li–Zheng theorem. Let U and V be random variables with nonvanishing characteristic functions.

Assume that

U = X + aZ1 + bZ2, V = Y + cZ1 + dZ2,

where X, Y , Z1, and Z2 are independent random variables with well-defined first and second moments,

Z1 and Z2 are identically distributed, and a, b, c, and d are nonzero real constants which are known.

Suppose that ac 6= −bd and (a, c) 6= (−b,−d). Then, the joint distribution of (U, V ) uniquely determines

the distributions of X, Y , Z1, and Z2 up to a change of location.

Our article consists of three parts. In the first part, we give a simpler proof of the Li–Zheng theorem
and show that it essentially follows from Lemma 1.1. In doing so, we also prove that the condition of
existence of moments of the random variables X, Y , Z1, and Z2 can be omitted. In the second part, we
prove an analogue of the Li–Zheng theorem for independent random variables with values in the field
of p-adic numbers. In the third part, we prove an analogue of the Li–Zheng theorem for independent
random variables with values in the field of integers modulo p, where p 6= 2, and in the discrete field
of rational numbers. For the proof of the corresponding theorems we solve some functional equations
on the character group of the additive group of the field.

2. Real-valued random variables

Let us formulate the Li–Zheng theorem in more familiar for us notation. In doing so, we omit the
condition of existence of moments of independent random variables.

Theorem 2.1. Let ξ1, ξ2, ξ3, and ξ4 be independent real-valued random variables with nonvanishing

characteristic functions. Let aj , bj, j = 2, 3, be nonzero real numbers such that a2b2 6= −a3b3 and

(a2, b2) 6= (−a3,−b3). Consider the linear forms L1 = ξ1 + a2ξ2 + a3ξ3 and L2 = b2ξ2 + b3ξ3 + ξ4. If

the random variables ξ2 and ξ3 are identically distributed, then the distribution of the random vector

(L1, L2) determines the distributions of the random variables ξj , j = 1, 2, 3, 4, up to shift.

Proof. 1. Let η1, η2, η3, and η4 be independent real-valued random variables with nonvanishing
characteristic functions. Assume that η2 and η3 are identically distributed. Denote by µj and νj the
distributions of the random variables ξj and ηj and by µ̂j(y) and ν̂j(y) their characteristic functions.
Put M1 = η1 + a2η2 + a3η3 and M2 = b2η2 + b3η3 + η4. Suppose that the distributions of the
random vectors (L1, L2) and (M1,M2) coincide. Taking into account that the random variables ξj are
independent and µ̂j(y) = E

[

eiξjy
]

, the characteristic function of the random vector (L1, L2) can be
represented in the form

E
[

ei(L1u+L2v)
]

= E
[

ei((ξ1+a2ξ2+a3ξ3)u+(b2ξ2+b3ξ3+ξ4)v)
]

= E
[

eiξ1ueiξ2(a2u+b2v)eiξ3(a3u+b3v)eiξ4v
]

= E
[

eiξ1u
]

E
[

eiξ2(a2u+b2v)
]

E
[

eiξ3(a3u+b3v)
]

×E
[

eiξ4v
]

= µ̂1(u)µ̂2(a2u+ b2v)µ̂3(a3u+ b3v)µ̂4(v), u, v ∈ R. (1)
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Analogically, the characteristic function of the random vector (M1,M2) is of the form

E
[

ei(M1u+M2v)
]

= ν̂1(u)ν̂2(a2u+ b2v)ν̂3(a3u+ b3v)ν̂4(v), u, v ∈ R. (2)

It follows from (1) and (2) that the random vectors (L1, L2) and (M1,M2) have the same characteristic
functions and hence they are identically distributed if and only if the characteristic functions µ̂j(y)
and ν̂j(y) satisfy the equation

µ̂1(u)µ̂2(a2u+ b2v)µ̂3(a3u+ b3v)µ̂4(v) = ν̂1(u)ν̂2(a2u+ b2v)ν̂3(a3u+ b3v)ν̂4(v), u, v ∈ R. (3)

Set
fj(y) = ν̂j(y)/µ̂j(y), ψj(y) = ln fj(y), j = 1, 2, 3, 4. (4)

Since the characteristic functions µ̂j(y) and ν̂j(y) do not vanish, (3) is equivalent to the fact that the
functions fj(y) satisfy the equation

f1(u)f2(a2u+ b2v)f3(a3u+ b3v)f4(v) = 1, u, v ∈ R. (5)

Note that we obtained equation (5) without assuming that the random variables ξ2 and ξ3 and also
η2 and η3 are identically distributed.

It follows from (5) that the functions ψj(y) satisfy the equation

ψ1(u) + ψ2(a2u+ b2v) + ψ3(a3u+ b3v) + ψ4(v) = 0, u, v ∈ R. (6)

Rewrite this equation in the form

ψ2(a2u+ b2v) + ψ3(a3u+ b3v) = A(u) +B(v), u, v ∈ R. (7)

2. First assume that a2b3 6= a3b2. Then by Lemma 1.1, the functions ψ2(y) and ψ3(y) are
polynomial of degree at most 2. Taking into account that ψ2(0) = ψ3(0) = 0, we have

ψj(y) = σjy
2 + βjy, y ∈ R, j = 2, 3, (8)

where σj , βj are complex numbers. Substituting (8) into (6) and setting first v = 0 and then u = 0 in
the obtained equation, we infer

ψj(y) = σjy
2 + βjy, y ∈ R, j = 1, 4, (9)

where σj , βj are complex numbers. Substitute (8) and (9) into (6). We get from the received equation

σ1u
2 + σ2(a2u+ b2v)

2 + σ3(a3u+ b3v)
2 + σ4v

2 = 0, u, v ∈ R. (10)

It follows from (10) that
σ2a2b2 + σ3a3b3 = 0. (11)

Since ξ2 and ξ3 are identically distributed and η2 and η3 are also identically distributed, we have
µ̂2(y) = µ̂3(y) and ν̂2(y) = ν̂3(y), y ∈ R. Hence ψ2(y) = ψ3(y), y ∈ R. This implies in particular
that σ2 = σ3. Inasmuch as a2b2 + a3b3 6= 0 by the conditions of the theorem, we get from (11) that
σ2 = σ3 = 0. Then it follows from (10) that σ1 = σ4 = 0. Thus

ψj(y) = βjy, y ∈ R, j = 1, 2, 3, 4. (12)
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In view of (4), ψj(−y) = ψj(y) for all y ∈ R and (12) implies that βj = iαj , where αj are real numbers.
Hence fj(y) = eiαjy. Thus we proved that

ν̂j(y) = µ̂j(y)e
iαjy, y ∈ R.

It follows from this that
νj = µj ∗ Eαj

, j = 1, 2, 3, 4,

where Eαj
is the degenerate distribution concentrated at the point αj. So, if a2b3 6= a3b2, the theorem

is proved.
3. Assume now that a2b3 = a3b2. In this case, we can not apply Lemma 1.1 for solving equation

(7), but equation (7) can be easily solved directly.
Since ξ2 and ξ3 are identically distributed and η2 and η3 are also identically distributed, we have

ψ2(y) = ψ3(y), y ∈ R. Put
ψ(y) = ψ2(y) = ψ3(y). (13)

In view of a2b3 = a3b2, set c = b2/a2 = b3/a3. Inasmuch as a2u + b2v = a2(u + cv) and a3u + b3v =
a3(u+ cv), it is easy to see that equation (7) can be rewritten in the form

ψ(a2(u+ cv)) + ψ(a3(u+ cv)) = ψ(a2u) + ψ(a3u) + ψ(a2cv) + ψ(a3cv), u, v ∈ R. (14)

Let a2 = a3. Then (14) implies that ψ(y) is a homogeneous linear function. If we consider this
fact, it follows from (6) and (13) that ψ1(y) and ψ4(y) are also homogeneous linear functions, i.e., (12)
is fulfilled. As noted in the proof of the final part of item 2, the statement of the theorem follows from
this.

Let a2 6= a3. Put
ϕ(y) = ψ(a2y) + ψ(a3y).

It follows from (14) that the function ϕ(y) satisfies the equation

ϕ(u+ v) = ϕ(u) + ϕ(v), u, v ∈ R.

Hence there is a complex number a such that ϕ(y) = ay for all y ∈ R. Consider the function

γ(y) = ψ(y)− by, y ∈ R, (15)

where b = a
a2+a3

. Then we have

γ(a2y) + γ(a3y) = ψ(a2y)− ba2y + ψ(a3y)− ba3y = ϕ(y)− ay = 0.

This implies that
γ(y) = −γ(ky), y ∈ R, (16)

where k = a2
a3

. Since a2b3 = a3b2 and (a2, b2) 6= (−a3,−b3), we have k 6= −1. By the condition, k 6= 1.
For this reason |k| 6= 1. Suppose for definiteness that |k| < 1. We get from (16)

γ(y) = (−1)nγ(kny), y ∈ R, n = 1, 2, . . . (17)

Obviously, kny → 0 as n → ∞ for all y ∈ R. Taking into account that γ(y) is a continuous function
and γ(0) = 0, it follows from (17) that γ(y) = 0 for all y ∈ R. Hence (15) implies that ψ(y) is a
homogeneous linear function. Then it follows from (6) that ψ1(y) and ψ4(y) are also homogeneous
linear functions, i.e., (12) is fulfilled. As noted above, the statement of the theorem follows from this.
The theorem is completely proved.
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Let aj, bj, j = 2, 3, be nonzero real numbers. It is obvious that if a2b3 6= a3b2, then (a2, b2) 6=
(−a3,−b3). Assume that a2b3 = a3b2. This implies that a2b2 6= −a3b3, and the condition (a2, b2) 6=
(−a3,−b3) is equivalent to the condition that either |a2| 6= |a3| or a2 = a3. Taking this into account,
Theorem 2.1 can be reformulated as follows (compare below with Theorems 3.2, 4.1, and 4.3).

Theorem 2.2. Let ξ1, ξ2, ξ3, and ξ4 be independent random variables with values in R with nonvan-

ishing characteristic functions. Suppose that the random variables ξ2 and ξ3 are identically distributed.

Let aj, bj, j = 2, 3, be nonzero real numbers. Consider the linear forms L1 = ξ1 + a2ξ2 + a3ξ3 and

L2 = b2ξ2 + b3ξ3 + ξ4. Assume that one of the following conditions holds:

(I) a2b3 6= a3b2 and a2b2 6= −a3b3;

(II) a2b3 = a3b2 and |a2| 6= |a3|;

(III) a2b3 = a3b2 and a2 = a3.

Then the distribution of the random vector (L1, L2) determines the distributions of the random variables

ξj, j = 1, 2, 3, 4, up to shift.

Remark 2.3. Let us assume that in Theorem 2.2 the coefficients aj and bj satisfy the condition

(IV) a2b3 = a3b2 and a2 = −a3.

We will verify that in this case the distribution of the random vector (L1, L2) uniquely determines
the distributions of the random variables ξ1 and ξ4, i.e., ν1 = µ1 and ν4 = µ4, but need not necessarily
determines the distribution of the random variables ξ2 and ξ3 up to shift. Taking into account that
|a2| = |a3| if and only if either a2 = a3 or a2 = −a3, it means that we can not strengthen Theorem 2.2
and replace conditions (II) and (III) in Theorem 2.2 by the condition a2b3 = a3b2.

Since the random variables ξ2 and ξ3 are identically distributed and η2 and η3 are also identically
distributed, put f(y) = f2(y) = f3(y). In view of (IV), equation (5) takes the form

f1(u)|f(a2(u+ cv))|2f4(v) = 1, u, v ∈ R. (18)

Set l(y) = |f(a2y)|
2. It follows from (18) that the function l(y) satisfies the equation

l(u+ v) = l(u)l(v), u, v ∈ R.

Hence l(y) = eκy, where κ ∈ R. Inasmuch as l(−y) = l(y), we have κ = 0, i.e., l(y) = 1 for all y ∈ R.
Taking this into account, we get from equation (18) that f1(y) = f4(y) = 1 for all y ∈ R. Hence
ν̂1(y) = µ̂1(y) and ν̂4(y) = µ̂4(y) for all y ∈ R. This implies that ν1 = µ1 and ν4 = µ4.

Consider the distributions µ and ν with the characteristic functions

µ̂(y) = exp{(eiy − 1)}, ν̂(y) = exp{(e−iy − 1)}, y ∈ R.

Then we have
|µ̂(y)| = |ν̂(y)| = exp{cos y − 1}, y ∈ R.

This implies that
|f(y)| = 1, y ∈ R. (19)

It is obvious that ν is not a shift of µ. Moreover, It is easy to see that there is no a distribution λ such
that either ν = µ ∗ λ or µ = ν ∗ λ.

Let ξ1, ξ2, ξ3, and ξ4 be independent random variables such that ξ2 and ξ3 are identically distributed.
Assume that the random variable ξj has the distribution µj, j = 1, 2, 3, 4, where µ1 and µ4 are arbitrary

5



distributions with nonvanishing characteristic functions and µ2 = µ3 = µ. Consider the linear forms
L1 = ξ1+a2ξ2−a2ξ3 and L2 = b2ξ2−b2ξ3+ξ4. Let η1, η2, η3, and η4 be independent random variables
such that η2 and η3 are identically distributed. Suppose that ηj has the distribution νj , j = 1, 2, 3, 4,
where ν1 = µ1, ν2 = ν3 = ν, and ν4 = µ4. Put M1 = η1 + a2η2 − a2η3 and M2 = b2η2 − b2η3 + η4.

Taking into account that f1(y) = f4(y) = 1 for all y ∈ R and (19), we see that the functions f1(y),
f(y), and f4(y) satisfy equation (18). Hence the random vectors (L1, L2) and (M1,M2) are identically
distributed, while ν is not a shift of µ.

3. Random variables with values in the field of p-adic numbers

Let X be a locally compact Abelian group, Y be its character group. Denote by (x, y) the value of a
character y ∈ Y at an element x ∈ X. Let µ be a distribution on X. Denote by

µ̂(y) =

∫

X

(x, y)dµ(x), y ∈ Y, (20)

the characteristic function of the distribution µ.
Let f(y) be a function on Y and let h be an element of Y . Denote by ∆h the finite difference

operator
∆hf(y) = f(y + h)− f(y), y ∈ Y.

A function f(y) on Y is called a polynomial if

∆n+1
h f(y) = 0

for some n and for all y, h ∈ Y .
We need the following well-known statement (for the proof see, e.g., [2, Proposition 1.30]).

Lemma 3.1. Let Y be a locally compact Abelian group such that all its elements are compact. Then

any continuous polynomial on Y is a constant.

Consider the field of p-adic numbers Qp. When we say the group Qp, we mean the additive group
of the field Qp. The group Qp is a locally compact Abelian group. Its character group is topologically
isomorphic to Qp ([3, (25.1)]). Multiplication by a nonzero element of Qp is a topological automorphism
of the group Qp. Note that (ax, y) = (x, ay) for all a, x, y ∈ Qp. If µ is a distribution on Qp, the
characteristic function µ̂(y) is defined by formula (20), where X = Y = Qp. The group Qp is totally
disconnected and consists of compact elements. Denote by | · |p the norm in the field Qp.

In this section, we prove the following analogue of the Li–Zheng theorem for the field Qp.

Theorem 3.2. Let ξ1, ξ2, ξ3, and ξ4 be independent random variables with values in the field Qp

with nonvanishing characteristic functions. Let aj, bj , j = 2, 3, be nonzero elements of Qp. Consider

the linear forms L1 = ξ1 + a2ξ2 + a3ξ3 and L2 = b2ξ2 + b3ξ3 + ξ4. Assume that one of the following

conditions holds:

(I) a2b3 6= a3b2;

(II) a2b3 = a3b2, |a2|p 6= |a3|p, and the random variables ξ2 and ξ3 are identically distributed.

Then the distribution of the random vector (L1, L2) determines the distributions of the random variables

ξj, j = 1, 2, 3, 4, up to shift.
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Proof. Consider independent random variables η1, η2, η3, and η4 with values in the field Qp with
nonvanishing characteristic functions. Put M1 = η1+ a2η2 + a3η3 and M2 = b2η2+ b3η3+ η4. Suppose
that the distributions of the random vectors (L1, L2) and (M1,M2) coincide. Note that if ξ is a random
variable with values in Qp and distribution µ, then µ̂(y) = E[(ξ, y)]. Taking this into account and the
fact that (ax, y) = (x, ay) for all a, x, y ∈ Qp, we can argue as in item 1 of the proof of Theorem 2.1.
Keeping the same notation, we arrive at the equation

f1(u)f2(a2u+ b2v)f3(a3u+ b3v)f4(v) = 1, u, v ∈ Qp. (21)

1. Assume that condition (I) holds. Since we do not suppose that ξ2 and ξ3 are identically
distributed and η2 and η3 are identically distributed, we can assume, without loss of generality, that
L1 = ξ1 + ξ2 + ξ3 and M1 = η1 + η2 + η3. Then equation (21) takes the form

f1(u)f2(u+ b2v)f3(u+ b3v)f4(v) = 1, u, v ∈ Qp, (22)

and the condition a2b3 6= a3b2 is transform to the condition b2 6= b3. The group Qp is totally discon-
nected. For this reason, as opposed to the case of the real line, we can not take the logarithm of both
sides of equation (22) and pass to the corresponding additive equation.

To solve equation (22) we use a slightly different approach and split the solution of equation (22)
into two parts. First we prove that |fj(y)| = 1 for all y ∈ Qp, j = 2, 3. Then we prove that the
functions fj(y), j = 1, 2, 3, 4, are characters of the Qp. It is obvious that the statement of the theorem
follows from this.

Put
θj(y) = ln |fj(y)|, j = 1, 2, 3, 4.

It follows from (22) that the functions θj(y) satisfy the equation

θ1(u) + θ2(u+ b2v) + θ3(u+ b3v) + θ4(v) = 0, u, v ∈ Qp,

which can be written in the form

θ2(u+ b2v) + θ3(u+ b3v) = C(u) +D(v), u, v ∈ Qp. (23)

For solving equation (23) we use the finite difference method. The reasoning is standard and the same
as in the case of the real line. We present it here for completeness.

Let g be an arbitrary element of the group Qp. Substitute u− b3g for u and v+ g for v in equation
(23). Subtracting (23) from the resulting equation we get

∆(b2−b3)gθ2(u+ b2v) = ∆−b3gC(u) + ∆gD(v), u, v ∈ Qp. (24)

Let h be an arbitrary element of the group Qp. Substitute u + h for u in equation (24). Subtracting
(24) from the resulting equation we obtain

∆h∆(b2−b3)gθ2(u+ b2v) = ∆h∆−b3gC(u), u, v ∈ Qp. (25)

Let k be an arbitrary element of the group Qp. Substitute v + k for v in equation (25). Subtracting
(25) from the resulting equation we get

∆b2k∆h∆(b2−b3)gθ2(u+ b2v) = 0, u, v ∈ Qp. (26)

Substituting v = 0 in equation (26), we obtain

∆b2k∆h∆(b2−b3)gθ2(u) = 0, u ∈ Qp.
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Since b2− b3 6= 0 and g, h and k are arbitrary elements of the group Qp, we conclude that the function
θ2(y) satisfies the equation

∆3
hθ2(y) = 0, y, h ∈ Qp,

i.e., is a polynomial on Qp. Since the group Qp consists of compact elements and the polynomial θ2(y)
is continuous, by Lemma 3.1, θ2(y) is a constant. In view of θ2(0) = 0, we have θ2(y) = 0 for all
y ∈ Qp. For the function θ3(y) we argue similarly excluding first the function θ2(y) from equation (23).
Thus we proved that θ2(y) = θ3(y) = 0 and hence

|f2(y)| = |f3(y)| = 1, y ∈ Qp.

Let us prove that the functions fj(y), j = 1, 2, 3, 4, are characters of the group Qp. Rewrite equation
(22) in the form

f2(u+ b2v)f3(u+ b3v) = S(u)T (v), u, v ∈ Qp. (27)

To solve equation (27), we apply the method that was used to prove Theorem 3.1 in [1], see also [2,
Theorem 15.8].

Let g be an arbitrary element of the group Qp. Substitute u− b3g for u and v+ g for v in equation
(27). Dividing the resulting equation by equation (27), we get

f2(u+ b2v − b3g + b2g)

f2(u+ b2v)
=
S(u− b3g)T (v + g)

S(u)T (v)
, u, v ∈ Qp. (28)

Let h be an arbitrary element of the group Qp. Substitute u+ h for u in equation (28). Dividing the
resulting equation by equation (28), we receive

f2(u+ b2v − b3g + b2g + h)f2(u+ b2v)

f2(u+ b2v + h)f2(u+ b2v − b3g + b2g)
=
S(u− b3g + h)S(u)

S(u+ h)S(u− b3g)
, u, v ∈ Qp. (29)

Let k be an arbitrary element of the group Qp. Substitute v + k for v in equation (29). Dividing the
resulting equation by equation (29), we obtain

f2(u+ b2v − b3g + b2g + h+ b2k)f2(u+ b2v + b2k)

f2(u+ b2v + h+ b2k)f2(u+ b2v − b3g + b2g + b2k)

×
f2(u+ b2v + h)f2(u+ b2v − b3g + b2g)

f2(u+ b2v − b3g + b2g + h)f2(u+ b2v)
= 1, u, v ∈ Qp. (30)

Substitute in (30) u = v = 0 and g = − b2k
b2−b3

. Then we get

f22 (h)f2(b2k)f2(−b2k)

f2(h+ b2k)f2(h− b2k)
= 1, h, k ∈ Qp. (31)

Taking into account that
f2(−y) = f2(y), |f2(y)| = 1, y ∈ Qp, (32)

we have f2(b2k)f2(−b2k) = 1 for all k ∈ Qp. Then it follows from (31) that the function f2(y) satisfies
the equation

f22 (u) = f2(u+ v)f2(u− v), u, v ∈ Qp. (33)

In view of (32), we get from (33) that

f22 (u+ v) = f22 (u)f
2
2 (v), u, v ∈ Qp, (34)
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i.e., the function f22 (y) is a character of the group Qp. Substituting u = v = y in (33), we obtain

f22 (y) = f2(2y), y ∈ Qp. (35)

Taking into account that the mapping y → 2y is a topological automorphism of the group Qp, it follows
from (34) and (35) that the function f2(y) satisfies the equation

f2(u+ v) = f2(u)f2(v), u, v ∈ Qp,

i.e., is a character of the group Qp. For the function f3(y) we argue similarly. By the Pontryagin
duality theorem, there are elements x2, x3 ∈ Qp such that

fj(y) = (xj , y), y ∈ Qp, j = 2, 3. (36)

Substituting (36) into (22) and putting first v = 0 and then u = 0 in the obtained equation, we get
that the functions f1(y) and f4(y) are also characters of the group Qp.

Thus, we have proved that the characteristic functions µ̂j(y), j = 1, 2, 3, 4, are determined up to
multiplication by a character. Hence the distributions µj, j = 1, 2, 3, 4, are determined up to shift.
The theorem is proved if condition (I) is satisfied.

2. Assume that condition (II) holds. Put

c = b2/a2 = b3/a3, g(y) = f2(a2y)f3(a3y), τ(y) = ln |g(y)|. (37)

2a. We prove in this item that the functions f1(y), f4(y), and g(y) are characters of the group Qp.
In doing so, we do not assume that |a2|p 6= |a3|p and the random variables ξ2 and ξ3 are identically
distributed.

Since a2u+ b2v = a2(u+ cv) and a3u+ b3v = a3(u+ cv), rewrite equation (21) in the form

f1(u)g(u + cv)f4(v) = 1, u, v ∈ Qp. (38)

Substituting first v = 0 and then u = 0 in (38), we get that the function g(y) satisfies the equation

g(u+ v) = g(u)g(v), u, v ∈ Qp. (39)

It follows from (39) that the function τ(y) satisfies the equation

τ(u+ v) = τ(u) + τ(v), u, v ∈ Qp.

Hence τ(y) is a continuous polynomial. Since the group Qp consists of compact elements, by Lemma
3.1, τ(y) is a constant. In view of τ(0) = 0, we have τ(y) = 0 and hence |g(y)| = 1 for all y ∈ Qp.
Taking into account (39), this means that the function g(y) is a character of the group Qp. By the
Pontryagin duality theorem, there is an element a ∈ Qp such that

g(y) = (a, y), y ∈ Qp. (40)

Hence
g(u + cv) = (a, u+ cv), u, v ∈ Qp. (41)

Substituting (41) into (38), we find from the resulting equation that the functions f1(y) and f4(y) are
also characters of the group Qp.

Note that in the proof we did not use the fact that |a2|p 6= |a3|p and the random variables ξ2 and
ξ3 are identically distributed.
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2b. Suppose that the random variables η2 and η3 are identically distributed. Since the random
variables ξ2 and ξ3 are also identically distributed, we have f2(y) = f3(y). Set

f(y) = f2(y) = f3(y).

Then
g(y) = f(a2y)f(a3y). (42)

We will prove now that the function f(y) is a character of the group Qp. Set

θ(y) = ln |f(y)|.

We have
τ(y) = ln |g(y)| = ln |f(a2y)f(a3y)| = θ(a2y) + θ(a3y), y ∈ Qp.

Since τ(y) = 0 for all y ∈ Qp, it follows from this that

θ(a2y) + θ(a3y) = 0, y ∈ Qp. (43)

Inasmuch as |a2|p 6= |a3|p, assume for definiteness that |a2|p < |a3|p. Put k = a2
a3

. Then |k|p < 1.
We obtain from (43) that θ(y) = −θ(ky), and hence

θ(y) = (−1)nθ(kny), y ∈ Qp, n = 1, 2, . . . . (44)

It is obvious that |kny|p → 0 as n→ ∞ for all y ∈ Qp. Since θ(y) is a continuous function and θ(0) = 0,
we obtain from (44) that θ(y) = 0 and hence |f(y)| = 1 for all y ∈ Qp.

Since |a2|p 6= |a3|p, we have a2 + a3 6= 0. Put

b =
a

a2 + a3
, h(y) = f(y)(−b, y). (45)

It follows from (40), (42), and (45) that

h(a2y)h(a3y) = f(a2y)(−b, a2y)f(a3y)(−b, a3y)

= g(y)(−b(a2 + a3), y) = g(y)(−a, y) = 1, y ∈ Qp.

Hence h(y) = h−1(ky). This implies that

h(y) = h(−1)n(kny), y ∈ Qp, n = 1, 2, . . . . (46)

We have |kny|p → 0 as n→ ∞ for all y ∈ Qp. Inasmuch as h(y) is a continuous function and h(0) = 1,
it follows from (46) that h(y) = 1 for all y ∈ Qp, and (45) implies that

f(y) = (b, y), y ∈ Qp. (47)

Taking into account (47) and the fact that f1(y) and f4(y) are also characters of the group Qp, we see
that the characteristic functions µ̂j(y) are determined up to multiplication by a character. Hence the
distributions µj are determined up to shift. The theorem is proved if condition (II) is satisfied, and
hence is completely proved.

Corollary 3.3. Let ξ1, ξ2, ξ3, and ξ4 be independent random variables with values in the field Qp

with nonvanishing characteristic functions. Let aj, bj , j = 2, 3, be nonzero elements of Qp. Consider

the linear forms L1 = ξ1 + a2ξ2 + a3ξ3 and L2 = b2ξ2 + b3ξ3 + ξ4. Then the distribution of the random

vector (L1, L2) determines the distributions of the random variables ξ1 and ξ4 up to shift.
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Proof. By Theorem 3.2, in the case, when a2b3 6= a3b2, the statement of the corollary is true. If
a2b3 = a3b2, as has been proved in item 2a of the proof of Theorem 3.2 the functions f1(y) and f4(y)
are characters of the group Qp. The statement of the corollary follows from this.

We can not omit the condition |a2|p 6= |a3|p in condition (II) of Theorem 3.2. Namely, the following
statement is true.

Proposition 3.4. Let aj , bj, j = 2, 3, be nonzero elements of the field Qp such that a2b3 = a3b2.
Assume that |a2|p = |a3|p. Then there are independent random variables ξ1, ξ2, ξ3, and ξ4 with values

in Qp with nonvanishing characteristic functions such that the following is true:

(I) the random variables ξ2 and ξ3 are identically distributed;

(II) the distribution of the random vector (L1, L2), where L1 = ξ1 + a2ξ2 + a3ξ3 and L2 = b2ξ2 +
b3ξ3+ ξ4, need not necessarily determine the distribution of the random variables ξ2 and ξ3 up to

shift.

Proof. Let G be a second countable compact Abelian group, H be its character group. Then H is a
countable discrete Abelian group. Let α(h) be a real-valued nonvanishing function on the group H
satisfying the conditions:

(i) α(0) = 1;

(ii) α(−h) = α(h) for all h ∈ H;

(iii)
∑

h∈H

|α(h)| < 2;

Consider on the group G the function

ρ(g) =
∑

h∈H

α(h)(g, h), g ∈ G.

It follows from (i)–(iii) that ρ(g) is the nonnegative density with respect to the Haar distribution on
G of a distribution µ on the group G with the characteristic function µ̂(h) = α(h).

Put

β(h) =

{

1 if h = 0,

−α(h) if h 6= 0.

Then β(h) is a real-valued nonvanishing function on the group H. Obviously, the function β(h) also
satisfies conditions (i)–(iii). Hence there is a distribution ν on the group G with the characteristic
function ν̂(h) = β(h). It is easy to see that if G is not isomorphic to the additive group of the integers
modulo 2, then ν is not a shift of µ.

Let G = Zp be the ring of p-adic integers. Then Zp is a compact subgroup of the group Qp. Let
µ and ν be the distributions on Zp constructed above. Let ξ1, ξ2, ξ3, and ξ4 be independent random
variables with values in Zp such that ξ2 and ξ3 are identically distributed. Assume that the random
variable ξj has the distribution µj, j = 1, 2, 3, 4, where µ1 and µ4 are arbitrary distributions on Zp with
nonvanishing characteristic functions and µ2 = µ3 = µ. Consider the linear forms L1 = ξ1+a2ξ2+a3ξ3
and L2 = b2ξ2 + b3ξ3 + ξ4. Let η1, η2, η3, and η4 be independent random variables with values in Zp

such that η2 and η3 are identically distributed. Suppose that ηj has the distribution νj , j = 1, 2, 3, 4,
where ν1 = µ1, ν2 = ν3 = ν, and ν4 = µ4. Put M1 = η1 + a2η2 + a2η3 and M2 = b2η2 + b2η3 + η4.

Consider ξj and ηj as independent random variables with values in the field Qp and verify that
the characteristic functions of the random vectors (L1, L2) and (M1,M2) coincide. This is equivalent
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to the fact that the functions fj(y) = ν̂j(y)/µ̂j(y) satisfy equation (21), where f2(y) = f3(y) = f(y).
Taking into account that f1(y) = f4(y) = 1 for all y ∈ Qp, equation (21) takes the form

f(a2(u+ cv))f(a3(u+ cv)) = 1, u, v ∈ Qp,

where c = b2/a2 = b3/a3, or
f(a2y)f(a3y) = 1, y ∈ Qp. (48)

We consider the distributions µ and ν as distributions on Qp. It is easy to see that then the function
f(y) is of the form

f(y) =

{

1 if y ∈ pZp,

−1 if y /∈ pZp.
(49)

It follows from (49) and the condition |a2|p = |a3|p that the function f(y) satisfies equation (48). Thus,
the characteristic functions of the random vectors (L1, L2) and (M1,M2) coincide. Hence the random
vectors (L1, L2) and (M1,M2) are identically distributed, while ν is not a shift of µ.

We note that if |a2|p 6= |a3|p, then the function f(y) does not satisfy equation (48), i.e., the random
vectors (L1, L2) and (M1,M2) are not identically distributed.

The condition |a2|p = |a3|p is an analogue for the field Qp of the condition |a2| = |a3| for the field
R. Comparing the statement of Theorem 2.2 in the case when condition (III) holds and Proposition
3.4, we see that in the field Qp do not exist nonzero elements aj , bj , j = 2, 3, such that a2b3 = a3b2
and |a2|p = |a3|p and the distribution of the random vector (L1, L2) determines the distributions of
the random variables ξ2 and ξ3 up to shift.

4. Random variables with values in the field of integers modulo p, where

p 6= 2, and in the discrete field of rational numbers

Let p be a prime number and Z(p) be the field of integers modulo p. When we say the group Z(p),
we mean the additive group of the field Z(p), i.e., the additive group of the integers modulo p. The
character group of the group Z(p) is isomorphic to Z(p). Multiplication by a nonzero element of Z(p)
is an automorphism of the group Z(p). Note that (ax, y) = (x, ay) for all a, x, y ∈ Z(p). If µ is a
distribution on Z(p), the characteristic function µ̂(y) is defined by formula (20), where X = Y = Z(p).
The group Z(p) is finite and hence compact.

In this section, we prove analogues of the Li–Zheng theorem for the field of integers modulo p,
where p 6= 2, and for the discrete field of rational numbers Q.

Theorem 4.1. Consider the field Z(p), where p 6= 2. Let ξ1, ξ2, ξ3, and ξ4 be independent random

variables with values in Z(p) with nonvanishing characteristic functions. Let aj , bj , j = 2, 3, be nonzero

elements of Z(p). Consider the linear forms L1 = ξ1 + a2ξ2 + a3ξ3 and L2 = b2ξ2 + b3ξ3 + ξ4. Then

the following statements hold.

1. If a2b3 6= a3b2, then the distribution of the random vector (L1, L2) determines the distributions

of the random variables ξj, j = 1, 2, 3, 4, up to shift.

2. If a2b3 = a3b2, then the distribution of the random vector (L1, L2) determines the distributions

of the random variables ξ1 and ξ4 up to shift.
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Proof. 1. Assume that a2b3 6= a3b2. The proof of Theorem 3.2 in the case, when condition (I) holds,
is based only on the following properties of the group Qp: the group Qp consists of compact elements
and the mapping y → 2y is a topological automorphism of the group Qp. Both of these properties are
also valid for the group Z(p), where p 6= 2. For this reason the proof remains unchanged if, instead of
the field Qp, we consider the filed Z(p). Thus, statement 1 is valid.

2. Assume that a2b3 = a3b2. The reasoning carried out in item 2a of the proof of Theorem 3.2
is based only on the fact that the group Qp consists of compact elements. For this reason the proof
remains unchanged if, instead of the field Qp, we consider the filed Z(p). Thus, statement 2 is valid.

Theorem 4.1 can not be strengthened. Namely, the following statement is true.

Proposition 4.2. Let aj, bj , j = 2, 3, be nonzero elements of the field Z(p), where p 6= 2, such that

a2b3 = a3b2. Then there are independent random variables ξ1, ξ2, ξ3, and ξ4 with values in Z(p) with

nonvanishing characteristic functions such that the following is true:

(I) the random variables ξ2 and ξ3 are identically distributed;

(II) the distribution of the random vector (L1, L2), where L1 = ξ1 + a2ξ2 + a3ξ3 and L2 = b2ξ2 +
b3ξ3+ ξ4, need not necessarily determine the distribution of the random variables ξ2 and ξ3 up to

shift.

Proof. To prove the proposition, we argue for the field Z(p) in the same way as in Proposition 3.4 we
argued for the field Qp and keep the same notation. The only difference is that instead of (49) the
function f(y) is of the form

f(y) =

{

1 if y = 0,

−1 if y 6= 0,
(50)

because we construct the distributions µ and ν at once on Z(p). The proposition will be proved if we
verify that that the function f(y) satisfies the equation

f(a2y)f(a3y) = 1, y ∈ Z(p).

In view of (50), it is obvious.

Proposition 4.2 shows that, unlike Theorems 2.2 and 3.2, in the field Z(p) do not exist nonzero
elements aj , bj , j = 2, 3, such that a2b3 = a3b2 and the distribution of the random vector (L1, L2)
determines the distributions of the random variables ξ2 and up ξ3 to shift.

Let Q be the field of rational numbers considering in the discrete topology. When we say the group
Q, we mean the additive group of the field Q. The character group of the group Q is topologically
isomorphic to the a-adic solenoid Σa, where a = (2, 3, 4, . . . ) ([3, (25.4)]). The group Σa is compact.
Since the multiplication by any nonzero integer is an automorphism of the group Q, the multiplication
by any nonzero integer is a topological automorphism of the group Σa. Therefore, the multiplication
by any nonzero rational number is well-defined and is also a topological automorphism in the group
Σa. Note that (ax, y) = (x, ay) for all a, x ∈ Q, y ∈ Σa. If µ is a distribution on the group Q,
the characteristic function µ̂(y) is defined by formula (20), where X = Q, Y = Σa. The set Q is a
countable subset of R. For this reason, if a random variable ξ take values in Q we can consider ξ as a
random variable with values in R. This implies, in particular, that Theorem 2.2 is valid for the field
Q, i.e., when ξj take values in Q and aj , bj ∈ Q. However, the fact that random variables ξj can be
considered as random variables taking values in the discrete field Q allows us to strengthen Theorem
2.2 for the field Q.
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Theorem 4.3. Let ξ1, ξ2, ξ3, and ξ4 be independent random variables with values in the field Q

with nonvanishing characteristic functions. Let aj , bj , j = 2, 3, be nonzero elements of Q. Consider

the linear forms L1 = ξ1 + a2ξ2 + a3ξ3 and L2 = b2ξ2 + b3ξ3 + ξ4. Assume that one of the following

conditions holds:

(I) a2b3 6= a3b2;

(II) a2b3 = a3b2, |a2| 6= |a3|, and the random variables ξ2 and ξ3 are identically distributed;

(III) a2b3 = a3b2, a2 = a3, and the random variables ξ2 and ξ3 are identically distributed.

Then the distribution of the random vector (L1, L2) determines the distributions of the random variables

ξj, j = 1, 2, 3, 4, up to shift.

Proof. Assume that condition (I) holds. The proof of Theorem 3.2 in the case, when condition (I)
holds, is based only on the following properties of the group Qp: the group Qp consists of compact
elements and the mapping y → 2y is a topological automorphism of the group Qp. Both of these
properties are also valid for the group Σa, where a = (2, 3, 4, . . . ). For this reason the proof remains
unchanged if, instead of the field Qp, we consider the filed Q.

Note that if a2b3 6= a3b2, then it follows from Theorem 2.2 that the random vector (L1, L2) deter-
mines the distributions of the random variables ξj, j = 1, 2, 3, 4, up to shift, only if additional conditions
are satisfied, namely a2b2 6= −a3b3 and the random variables ξ2 and ξ3 are identically distributed.

In the case, when condition (II) or (III) is satisfied, the corresponding statements follows from the
corresponding statements of Theorem 2.2 for the field R.

Remark 4.4. The distributions µ and ν constructed in Remark 2.3 in fact are the distributions on the
group of integers. We can consider µ and ν as as distributions on Q. Hence Remark 2.3 is valid for
the random variables with values in the field Q and it shows that we can not strengthen Theorem 4.3
and replace conditions (II) and (III) in Theorem 4.3 by the condition a2b3 = a3b2.

In Theorems 2.2, 3.2, 4.1, and 4.3 independent random variables take values in a locally compact
field, namely in R, Qp, Z(p), and Q. In doing so, coefficients of the linear forms are elements of the
field. We can also study a more general problem, when independent random variables take values in a
locally compact Abelian group X, and coefficients of the forms are continuous endomorphisms of X.
Taking this into account, we formulate the following problem.

Let X be a second countable locally compact Abelian group. Let ξ1, ξ2, ξ3, and ξ4 be independent

random variables with values in X with nonvanishing characteristic functions. Let aj , bj , j = 2, 3,
be continuous endomorphisms of the group X. Consider the linear forms L1 = ξ1 + a2ξ2 + a3ξ3 and

L2 = b2ξ2 + b3ξ3 + ξ4. What are the conditions on aj , bj , and ξj to guarantee that the distribution of

the random vector (L1, L2) determines the distributions of the random variables ξj , j = 1, 2, 3, 4, up to

shift?
It follows from the results of the article that these conditions depend on the group X.
A more general problem can also be formulated.
Let us assume that we know the distribution of the random vector (L1, L2). How uniquely does this

distribution determine the distributions of the random variables ξj , j = 1, 2, 3, 4?
In connection with this problem, we note that in the case when X is an arbitrary a-adic solenoid

Σa, it follows from Theorem 3.1 in [1], see also [2, Theorem 15.8], that if L1 = ξ1 + ξ2 + ξ3 and b2, b3,
and b2− b3 are topological automorphisms of the group Σa, then the distribution of the random vector
(L1, L2) determines the distributions of the random variables ξj, j = 1, 2, 3, 4, up to convolution with
a Gaussian distribution on Σa.

14



Acknowledgements

This article was written during the author’s stay at the Department of Mathematics University of
Toronto as a Visiting Professor. I am very grateful to Ilia Binder for his invitation and support.

Funding The author declares that no funds, grants, or other support were received during the prepa-
ration of this manuscript.

Data Availability Statement Data sharing not applicable to this article as no datasets were gener-
ated or analysed during the current study.

References

[1] Feldman, G.M.: On analogues of C.R. Rao’s theorems for locally compact Abelian groups. J.
Difference Equat. Appl. 24 (12), 1967–1980 (2018)

[2] Feldman, G.M.: Characterization of Probability Distributions on Locally Compact Abelian
Groups. Mathematical Surveys and Monographs, vol. 273. American Mathematical Society, Prov-
idence, RI (2023)

[3] Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Vol. 1: Structure of topological groups, inte-
gration theory, group representations, 2nd ed., Grundlehren der Mathematischen Wissenschaften,
vol. 115, Springer-Verlag, New York–Berlin (1994)

[4] Kagan, A. M., Linnik, Yu. V., Rao, C.R.: Characterization problems in mathematical statistics.
Wiley Ser. Probab. Math. Statist. John Wiley & Sons, New York-London-Sydney (1973)

[5] Kotlarski, I.: On characterizing the gamma and the normal distribution. Pacific J. Math. 20,
69–76 (1967)

[6] Li, Siran, Zheng, Xunjie: A generalization of Lemma 1 in Kotlarski (1967). Statist. Probab. Lett.
165, 108814 (2020)

[7] Rao, C. R.: Characterization of probability laws by linear functions. Sankhya. Ser. A 33, 265–270
(1971)

B. Verkin Institute for Low Temperature Physics and Engineering
of the National Academy of Sciences of Ukraine
47, Nauky ave, Kharkiv, 61103, Ukraine

Department of Mathematics University of Toronto
40 St. George Street Toronto, ON, M5S 2E4 Canada

e-mail: gennadiy_f@yahoo.co.uk

15


	 Introduction
	 Real-valued random variables
	 Random variables with values in the field of p-adic numbers
	 Random variables with values in the field of integers modulo p, where p=2, and in the discrete field of rational numbers

