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Abstract

Disordered media is known to modify the transport properties of active matter depending on

interactions between particles and with the substrate. Here we study systems of active particles

with visual-like perception that co-align with the positions of perceived conspecifics, and anti-align

with positions of static obstacles. We report a novel self-trapping mechanism of particles forming

closed loops that progressively shrink, surrounding one or multiple obstacles. This mechanism

corresponds to a pinning behavior preventing particle diffusion. Increased co-alignment strength

is found to reduce loop shrinking time, although this effect reaches a plateau at higher strengths.

Loops are found to initially exhibit local polar order, but eventually they transition to nematic

states as they absorb more particles. We show a phase diagram demonstrating self-trapping occurs

within a specific range of aperture angles of the vision cone.

Most examples of natural systems, if not all, where collective motion occurs in the wild,

take place in heterogeneous media. Examples can be found at all scales. Microtubules

driven by molecular motors form complex patterns inside the cell where the space is filled

by organelles and vesicles [1, 2]. Bacterial colonies exhibit complex collective behaviors,

e.g. swarming in heterogeneous environments such as the soil [3, 4] or highly complex

tissues such as in the gastrointestinal tract [5–7]. At a larger scale, herds of mammals

migrate long distances traversing rivers, forests, etc. [8, 9]. In active matter, the influence

of static obstacles on the collective behavior has been a focus of research in recent years.

For example, when velocity alignment is considered, it has been found that a single small

obstacle can have a dramatic impact in the large-scale dynamics of polar flocks, leading

to flow reversals and chaotic dynamics [10]. In the presence of several randomly placed

obstacles, the system becomes disorganized overall, with some of the particles aggregating

into small independent clusters [11, 12]. For coupled arrays of active particles, e.g. active

polymers, it has been found that they can either rectify or segregate when navigating in

porous media [13–15]. Non-reciprocal interactions pertains to a new class of active matter

that can be found in system interacting via chemotaxis, hydrodynamic forces, or quorum-

sensing [16]. It has been recently explored in theoretical studies [17–21], as well as in

particle-based numerical simulations, e.g. in models of particles that move according to

positional-based interactions while considering conspecifics located within a restricted cone

of vision [22–27]. This mechanism, fundamentally different from the celebrated Vicsek rule,
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has been successfully applied to describe the collective dynamics of sheep [28, 29], and to

induce cohesive group formation in swarms of light-activated colloids [30–32].

In this work, we consider the impact that a heterogeneous medium, i.e. quenched dis-

order [33–36], may have on collective dynamics of active particles with non-reciprocal in-

teractions. We investigate a new mechanism of self-trapping of active particles forming a

loop around static obstacles. This behavior is found to emerge from interactions of particles

with visual-like perception combined with positional-based co-alignment between moving

particles, as well as anti-alignment between particles and static obstacles. We find trapped

loops consist of active particles that remain tangentially oriented in the loop with small fluc-

tuations in the orientation given by thermal diffusion. Once formed, loops can absorb other

incoming particles in the system, and also some of the particles can escape due to thermal

diffusion. As a result of the increasing number of particles in the loop, the local order of the

structure transitions from polar to nematic. We characterize the trapped loops in terms of

dynamic parameters like the radius of gyration and mean-squared displacement, as well as

distributions for cluster size and displacement. Our analysis shows that self-trapping corre-

sponds to pinning behavior preventing particle diffusion. It is found to induce an exponential

decay in the cluster size distribution for small clusters, with a delta peak at larger sizes,

and also a quadratic dependence in the displacement probability-density function for small

displacements with a range corresponding to the loop size. A phase diagram is also obtained

for varying values of the aperture angles of the vision cone, showing that trapping occurs

only for intermediate values of the parameters. We also study the emergence of nematic

bands that percolate while avoiding the obstacle configuration, or they can self-trap forming

a closed loop surrounding multiple obstacles. Our study sheds light to the understanding of

active matter with non-reciprocal interactions, including the effect of crowded environments

on the collective behavior and transport properties.

Model.–We consider a system of N motile particles and No static obstacles distributed

inside of a square box of length L. The motion of each motile particle i is governed by

ṙi = v0ei, (1a)

θ̇i = τ atti ({rj}) + τ repi ({ro}) + ξi. (1b)

Here v0 and ei = (cos θ, sin θ)T are the self-propulsion magnitude and direction, ξi is a

noise term sampled from a normal distribution of width
√
2Dθ, where Dθ is the rotational
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FIG. 1. (a) Illustration of alignment interactions given by Eqs. (2). Each active particle perceives

neighbors within a narrow cone of vision of angle α, and obstacles within a wide cone of vision

of aperture β. (b) Representative snapshot for a configuration of N = 900 particles and No = 30

static obstacles. Simulation parameters are α = 0.3, β = 0.6,
√
2Dθ = 0.3.

diffusion coefficient; the terms τ atti ({rj}), τ repi ({ro}) correspond to alignment torques induced

by neighbour particles j and obstacles o, respectively. They are given by

τ atti ({rj}) = −γatt

natt

∑
j∈V att

i

sin(βij − θi), (2a)

τ repi ({rj}) = −γrep

nrep

∑
o∈V rep

i

sin(βio − θi), (2b)

with βij the polar angle of the vector rij = rj − ri, and similarly for βio. Coefficients γatt,

γrep are attraction and repulsion alignment strengths, respectively; V att
i , V rep

i are interaction

zones satisfying Vi
att ∈ Vi

rep. The interaction zone V att
i corresponds to a cone of vision of

aperture angle α, and V rep
i to a cone of vision of angle β, see Fig. 1a. Each term is normalized

by natt, nrep the number of neighbours within each interaction region.

We consider a configuration of homogeneously distributed obstacles, separated by a dis-

tance d. As we increase the number of obstacles No, d decreases as well. The effective obsta-

cle size is given by the interaction with the active particles, which have an interaction range

cutoff rcut. Therefore, obstacles overlap occur only when d < 2rcut. We perform particle-

based numerical simulations by solving Eq. 1 for N = 900 particles randomly distributed
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within a square box of side length L = 30, with fixed self-propulsion speed v0 = 1, align-

ment strengths γatt = −γ, γrep = γ with γ = 5, and cone of vision range of rcut = 1.5. We

choose two different sets of parameters for (α,Dθ). One set with α/π = 0.3 and
√
2Dθ = 0.3

where particles are known to aggregate into polar filaments. Another set with α = 0.6π and
√
2Dθ = 0.8 where particles form percolating nematic bands, see Ref. [23].

Results.–A polar filament consists of a chain of particles moving altogether in the same

direction. The direction of movement of the chain is given by an incidental leader in the head

of the structure. The leader is then followed by a tail of particles. A particle j in the tail

reorients its direction of motion ej according to neighbors it perceives within narrow cone

of vision V att
j of aperture angle α. The leader’s self-propulsion orientation ei is determined

by rotational diffusion Dθ. Active particles can also scatter away from an obstacle that is

perceived within the wide cone of vision V rep
i of aperture angle β, see Fig. 1b. Particles can

escape a polar filament due to a strong fluctuation of their self-propulsion orientation, e.g.

for high values of Dθ, on encounter with an obstacle, or on encounter with more particles.

Collisions of several filaments can also lead to aggregation into a single bulky structure,

which does not necessarily consist of a single chain of head-to-tail particles, but can contain

many particles in a localized region.

For No = 30 obstacles, we observe that filaments navigate while trying to avoid obstacles,

and furthermore they show to self-trap around an obstacle, see Fig. 1b. Loop formation can

occur when the incidental leader of a motile filament starts following the tail. In the presence

of obstacles, a loop can be formed from a single polar filament that reorients due to collisions

with obstacles, thus leading to a closed polar structure. However, other particles can also

join the loop in any direction, thus leading to a final closed nematic structure, where some

of the particles in the structure rotate clockwise with respect to the center of the group,

and some others rotate counter-clockwise. Once formed, the loop shrinks down arguably

due to an effective line tension, then when an obstacle is in the center of the configuration

the loop displays self-trapping: the obstacle prevents the loop from shrinking down any

further, meanwhile particles still align with their neighbors keeping the loop cohesive, see

Fig. 2b. In contrast, when no obstacles are present, the shrinking loop becomes unstable

when it reaches a minimum size, then fragments into several polar filaments propagating

radially outwards of the loop center, see Fig. 2a. To quantify the shrinking behavior, we

compute the radius of gyration Rg with respect to the center of a loop formed by N = 100.
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FIG. 2. Loop shrinking. (a) Without an obstacle, the loop shrinks down to a size r < ro, then frag-

ments into several polar filaments that propagate radially out of the center. (b) With an obstacle

the loop shrinks down to a size r = ro and stabilizes around the obstacle. (c,d) Time evolution

of dynamic parameters corresponding to configurations in (a,b), namely radius of gyration Rg(t),

and mean squared displacement σ2(t). (e) Probability density of finding a particle with radial

orientation er with respect to the center of the configuration at t1.

Results in Fig. 2c show that Rg initially decreases both with and without an obstacle.

When the loop self-traps around the obstacle Rg reaches a constant value proportional to

the size of the obstacle, Rg ≈ ro. Without the obstacle, the radius of gyration decreases

to a minimum value of Rg ≈ 0.2, then it diverges at longer times when the loop has lost

cohesion forming propagating polar filaments. Moreover, we quantify the mean-squared

displacement σ2, which is found to transition from ballistic to diffusive regime in the case

without an obstacle, and displays a plateau in the case with an obstacle. We conclude that

6



self-trapping corresponds to a pinning mechanism that drastically impacts the transport

properties of the system. Finally, to quantify the average orientation of the particles in the

loop, we obtain the radial orientation component er = ê · r̂ for each particle, where r̂ is a

unitary radial vector with origin at the center of the configuration at time t1, see Fig. 2a,b.

Here, er = 1 indicates particles are radially outward oriented, and er = −1 are radially

inward oriented, wheres er = 0 corresponds to tangentially oriented particles. We obtain

the probability density P(er), see Fig. 2e. We find that, in the case with an obstacle, P(er)

is centered around er = 0 and vanishes at er = −1, 1. This shows that trapped particles have

an orientation vector mostly tangential to the obstacle with slight deviations corresponding

to the width of P . Deviations result from fluctuations due to rotational noise. Conversely,

in the case without an obstacle, the maximum occurs at er = −1, 1 as here particles are

mostly propagating radially away from the center of the initial configuration.

We study the order transition of a trapped loop from polar to nematic. Consider an

initially polar closed loop. This loop consists of a certain number of active particles that can

be rotating either clockwise (CW) or counter-clockwise (CCW). Note that, in contrast to the

Vicsek model, the positional-based alignment defined in Eq. (2) does not align orientations

of neighbouring particles to be the same. In other words, local order can be either polar or

nematic. In Fig. 3a we show a polar loop formed by NCCW < N particles, i.e. it contains

only a fraction of the total particles in the system. As the system evolves, more particles can

join the loop, and they can join either in the counter- or clockwise direction. Therefore, an

initially polar loop can become nematic over time with NCCW and NCW particles. In Fig. 3b

we show the time evolution of the number of particles in the loop. We observe that the

number increases over time, with step increases that correspond to incoming bulky filaments

that are absorbed by the loop. The loop in this case starts with NCCW = 200, and NCW = 0

particles at t = 2200. At a later time t = 4700 the loop consists of NCCW ≈ 500 and NCW ≈
100 particles. We also compute the time evolution of the local polar order s1 as well as local

nematic order s2 with the formula

sn =

∣∣∣∣ 1N
N∑
i=1

einθi
∣∣∣∣. (3)

We observe a decrease from s1 ≈ 0.85 to s1 ≈ 0.6 in the final configuration. The local

nematic order s2 decreases only slightly from s2 ≈ 0.5 to s2 ≈ 0.4.

We consider a nematic loop of N = 90 particles placed at an initial distance of R0 = 6
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FIG. 3. (a) Transition of the loop from initial polar to final nematic. Time evolution of (b) the

number of clockwise NCW and counter-clockwise NCCW particles in the loop, and(c) the local polar

order s1, as well as local nematic order s2.

from the center of a single obstacle. For the standard parameters considered, namely v0 = 1

and γ = 5, we obtain that the loop shrinks and gets trapped around the obstacle. We test

this scenario for several values of the turning strength γ at v0 = 1, and obtain the radius of

gyration Rg for each realization. Results are shown in Fig. 4a. For v0 = 1, we observe that Rg

decreases and saturates at longer times when the loop has stabilized around the obstacle,

reaching the minimum size of Rg = 1.5. For larger values of γ, the radius of gyration shows

to decrease more rapidly. Furthermore, for v0 = 2, we observe that with the small turning

speed γ = 4 shown here, Rg monotonously increases in time, indicating that the loop does

not shrink in this case, see Fig. 4b. On the contrary, the spread of active particles around

the obstacle grows, thus indicating that the loop grows in size instead. For γ = 5, Rg

slowly decreases, and does not saturate for the simulation time here considered. To further
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FIG. 4. Radius of gyration for several values of the alignment strength γ and self-propulsion

velocity (a) v0 = 1, and (b) v0 = 2. Horizontal dotted line indicates the minimum value Rg = 1.5

given by the obstacle size. (c) Shrinking time obtained from (a,b) when the loop reaches minimum

size.

characterize the shrinking behavior, we compute the shrinking time τs from Rg(τb) = 1.5.

Obtained values are shown in Fig. 4c, indicating that the shrinking time remains mostly

constant for larger values of the turning speed, namely for γ > 10. However, τs significantly

increases for smaller values γ < 10 at any given self-propulsion speed v0.

In the absence of external disturbances, the stability of a particle loop surrounding an

obstacle is not guaranteed. For example, large values of Dθ can also trigger de-trapping, as it

directly influences the particle orientation e, allowing them to point radially out of the loop

configuration. When the aperture angle α of the cone of vision is narrow, particles pointing

out of the loop configuration do not perceive other neighbors and do not co-align to join

the loop anymore, instead they escape the trap. This can trigger de-trapping of the whole

structure, as the escaping particle can serve as an incidental leader which will be followed by

the rest of the particles in the loop. To test particle trapping for different parameters of the

cone of vision as well as noise strength, we perform simulations of a single loop around one

obstacle. We consider several values of α and β, both at low and also high values of the noise

strength
√
2Dθ. See results in Fig. 5. We observe that at low noise,

√
2Dθ = 0.3, trapping
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FIG. 5. Single loop trapping diagram for several values of α and β at (a) low noise
√
2Dθ = 0.2,

and (b) high noise
√
2Dθ = 0.8.

only occurs for large values of the obstacle perception angle β ≥ 0.5, and for intermediate

values of the neighbor perception angle α. For high noise,
√
2Dθ = 0.8, we observe trapping

only occurs for α = 0.6 and large β = 0.5.

We obtain the cluster size distribution P (m) by performing a clustering analysis with a

cutoff radius of rc = 1.5, such that neighbors are considered to be part of a single cluster only

when they are close together a distance r < rc. The clustering analysis is averaged over a time

interval of ∆τ = 100, during which particles are aggregated into a large filament in the case

without obstacles No = 0, or into a dense nematic loop in the case with obstacles No = 30.

Results are shown in 6a. Without obstacles, P (m) shows as a delta distribution around N =

900, as well an exponential distribution for clusters of small size m < 10. With obstacles,

a delta distribution is shown around No = 600, as well as a power law distribution for

clusters of small size m < 102. We also obtain the marginal displacement probability

density P(x), where each displacement is measured during a time interval of ∆t = 15.

Results are shown in 6b. Without obstacles No = 0, P shows to be a uniform distribution.

With obstacles No = 30, the marginal displacement PDF shows a quadratic dependence P ∼
−x2 for small displacements which correspond to the trapped particles in the nematic loop.

Moreover, for larger displacements a Gaussian-like dependence is shown.

A percolating nematic band is formed due to a reorientation mechanism similar to the
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FIG. 6. (a) Polar filament found in the case without obstacles, and closed loops for self-trapping

around 1, 2, and 3 obstacles. (b) Cluster size distribution P (m), and (c) marginal displace-

ment probability density P(x) for No = 0, 30. Cases considered correspond to those in panel (a).

For P (m) a clustering analysis is performed with a cutoff radius of rc = ro. For P(x), displacements

are calculated during a time interval of ∆t = L/v0.

filaments case, however here the particles can reorient and reverse their direction due to

the broader vision cone aperture angle α = 0.6. Over time the band tends to rectify and

percolate, as described in Ref. [23]. However, in the presence of obstacles, a band can find

its way around an obstacle. In some cases, the bands won’t percolate, but the structure

might close within itself, forming a nematic loop enclosing multiple obstacles, see Fig. 7.We

obtain local polar and local nematic order parameters, s1 and s2, respectively. For pa-

rameters (α,D)=(0.3π,0.3) corresponding to filaments, we observe that s1 monotonously

decreases with the number of obstacles No, see Fig. 8a. Without obstacles particles ag-
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FIG. 7. Representative snapshots of nematic bands formed for two different obstacle configurations

where the band is (a) percolated, and (b) forming a closed loop around several obstacles.

gregate into a single dense filament, and with increasing number of obstacles the filament

has a larger probability of fragmenting, which explains the decrease in polar order. For

(α,
√
2Dθ)=(0.3π,0.3) corresponding to bands, s1 remains zero at any No, as in this case the

bands are nematic due to the local interaction of between particles. Furthermore, the local

nematic order parameter s2 shows monotonously decrease both for filaments and bands,

see Fig. 8b. Note that local polar order contributes to the overall value of s2. For this

reason, filaments show the same behavior for both s1 and s2, with slightly larger values of s2

at larger No, as nematic loops appear for higher No. For bands, s2 is non-vanishing and

shows to decrease with increasing No, indicating the effect of obstacles is to diminish local

nematic order due to the bending around obstacles.

Discussion.–Self-trapping of polar filaments depends on the parameters of the cone of

vision α, and β. Such perception parameters are intrinsic to the particle and independent

of the obstacle configuration. In a configuration of homogeneously distributed obstacles

like the one employed here, particles have the same probability to self-trap around any of

the obstacles. However, a non-homogeneous configuration can be considered in order to

fabricate a filter [11]. When trapping occurs, the loops become absorbent and a pinning

behavior is induced. Interactions between conspecifics lead to localized nematic alignment
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FIG. 8. Steady state local order parameters for bands and filaments with varying number of

obstacles N . (a) Local polar order. (b) Local nematic order.

within the loops. Note that these interactions do not favor any type of local order (polar

or nematic), instead they tend to influence the orientations of the particles towards regions

of higher particle density. Trapped loops can destabilize due to different mechanisms, like

external filaments passing by or joining the loop, as well as fluctuations given by rotational

diffusion Dθ. Stability can depend on the size of the loops, as well as the number of sur-

rounded obstacles. Noise is also an important parameter, which is already known to change

the collective behaviour of the active particles to transition from polar filaments to nematic

bands, and even to form aggregates at higher values [23]. Trapping around multiple obsta-

cles is more likely to be observed for intermediate values of the noise, which corresponds

to nematic bands. However, bands are also likely to percolate, and it is still to be verified

whether this is a finite-size effect, or truly long-range order.

Our results corresponds to a first examination of the effects of crowded environments

in active particles with non-reciprocal interactions. Self-trapping is a novel effect emerging

from perception parameters, which could be present in animals that interact through visual

perception, or bacteria with non-reciprocal interactions.
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