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Abstract. Molecular relaxation, finding the equilibrium state of a non-equilibrium
structure, is an essential component of computational chemistry to understand
reactivity.  Classical force field methods often rely on insufficient local energy
minimization, while neural network force field models require large labeled datasets
encompassing both equilibrium and non-equilibrium structures. As a remedy, we
propose MoreRed, molecular relaxation by reverse diffusion, a conceptually novel
and purely statistical approach where non-equilibrium structures are treated as noisy
instances of their corresponding equilibrium states. To enable the denoising of
arbitrarily noisy inputs via a generative diffusion model, we further introduce a novel
diffusion time step predictor. Notably, MoreRed learns a simpler pseudo potential
energy surface instead of the complex physical potential energy surface. It is trained
on a significantly smaller, and thus computationally cheaper, dataset consisting of
solely unlabeled equilibrium structures, avoiding the computation of non-equilibrium
structures altogether. We compare MoreRed to classical force fields, equivariant neural
network force fields trained on a large dataset of equilibrium and non-equilibrium
data, as well as a semi-empirical tight-binding model. To assess this quantitatively,
we evaluate the root-mean-square deviation between the found equilibrium structures
and the reference equilibrium structures as well as their DFT energies.
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1. Introduction

Geometry optimization is crucial for understanding reactivity in computational
chemistry [1], as it allows for the study of chemical reaction networks [214], which
are fundamental in catalysis [15H19], combustion |20} 21|, polymerization [22|, or
atmospheric chemistry [23]. Reactivity is governed by activation energy barriers
connecting two equilibrium structures via a transition state, and are necessary for
microkinetic modeling [24-29]. Moreover, for generative [30|, or enumerative [31}[32]
explorations, e.g. in drug, battery, or catalyst design [33-38|, a common approach is
to use a computationally cheap method to generate a dataset, followed by a geometry
optimization to obtain equilibrium structures for which most physical properties are
defined. Equilibrium structures represent local minima on the Born—Oppenheimer
potential energy surface (PES) [39,40| and are identified by molecular relaxation, that
is solving the electronic Schrédinger equation while varying nuclear coordinates by
iteratively following the negative gradients of the energy, i.e. the forces, until they
converge to zero [1}/41},42].

Because iterative ab initio electronic structure calculations are computationally
expensive and not feasible in high-throughput settings, methods for finding equilibrium
structures need to be efficient [41,42]. To address this limitation, numerous approaches
have been developed that speed up the computation of forces but also suffer from a loss in
accuracy compared to ab initio methods. These include classical force field (FF) methods
like MMFF94 [43], the universal force field [44], or CHARMM [45], on the one hand,
and semiempirical methods such as GFN2-xTB [46], PM6-7 [47,148], or OM2 [49] on the
other hand. Furthermore, machine learning FF (MLFF) models [50H65] have emerged
as promising alternatives to physical models. When trained on a sufficient amount of
ab initio calculations, MLFF models, using kernel methods such as sGDML [66-68| or
neural networks such as SchNet [69,70], learn the physical PES and very efficiently
predict the forces. Moreover, they have been shown to produce promising results in
relaxation tasks [71,/72|, while reducing computational cost by several magnitudes.
Although MLFF models significantly accelerate gradient computations for structural
relaxation, the training dataset must cover a wide range of the chemical space including
equilibrium and non-equilibrium structures with accurately computed physical labels,
introducing a large computational cost for generating a training dataset.

An emerging machine learning-based approach to exploring chemical space is
training generative models on a dataset of equilibrium structures in order to learn
to generate new molecular structures. For instance, diffusion models have been used
recently in molecule generation [73-77|, conformer search [78] and molecular graph
generation [79,80]. They generate samples via iterative denoising, starting from a simple
prior distribution like isotropic Gaussian noise. There exist several other generative
models for 3D molecular structures, but none of them are designed for denoising.
Typically, they generate equilibrium structures from scratch by iteratively adding
new atoms [81-85] or by transforming samples from a prior distribution to a target
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distribution in one shot [86-89]. Furthermore, generative models have been used to
sample conformations given molecular graphs as input [90-96]. A common drawback of
all generative methods is that, unlike relaxation-based methods, equilibrium structures
are generated from scratch, which makes it difficult to steer the generation towards
desired structures.

In this work, we propose a conceptually novel statistical approach to molecular
relaxation through reverse diffusion, which we will call MoreRed. The distortion in
a non-equilibrium input structure is interpreted as a noise level, as the structure has
“diffused away” from its equilibrium state. In this setting, the molecular relaxation can
be modeled as a denoising process which can be achieved by reverse diffusion. In contrast
to MLFFs, MoreRed does not learn the physical PES, but a simple pseudo PES that
emerges from removing Gaussian noise from distorted structures (see Figure . This
offers a significant advantage over the MLFF models: Training MoreRed requires only
equilibrium structures without labels for physical properties such as energy and forces,
which considerably reduces the computational costs of generating training datasets.
Therefore, it potentially expands the applicability of ML-based relaxation to domains
where MLFFs cannot be trained because only equilibrium structures are reported.

A key technical novelty of MoreRed is the diffusion time step predictor. Existing
diffusion models require the time step as an input that indicates how noisy the input is.
However, in molecular relaxation the noise level, i.e. how far away from the equilibrium
a structure lies, is unknown. Therefore, in MoreRed we predict the appropriate time
step, enabling us to denoise distorted molecular structures at arbitrary noise levels. To
this end, we provide a theoretical argument for why accurate time step prediction via
a neural network is possible. In contrast to existing diffusion models, which follow a
fixed pre-defined time step schedule, this allows furthermore for an adaptive schedule,
where the time step is dynamically increased or decreased during denoising depending
on the detected noise level, potentially correcting errors in the denoising process. We
demonstrate the advantage of our adaptive schedule over classical, fixed sampling.

We test the performance of our method on QM7-X [97], a dataset containing 42 000
equilibrium structures found with third-order self-consistent charge density functional
tight binding [98] (DFTB3) [99-H101] and many-body dispersion (MBD) [102,|103]
corrections. They cover all molecular graphs in GDB13 [104] with up to 7 heavy atoms
and include the elements H, C, N, O, S, and Cl. For each equilibrium structure, 100
non-equilibrium structures generated via normal-mode displacements of the equilibrium
geometry are reported, including DFT calculations for energies and forces at the
PBEO+MBD level [102}[105,/106] with FHI-aims [107,|108]. In our experiments, we
employ several baselines for comparison, including the classical force field MMFF94,
the semiempirical method GFN2-xTB, as well as a MLFF model with an equivalent
neural network backbone architecture, and show that MoreRed performs favourably.
Specifically, MoreRed accurately maps non-equilibrium structures back to the data
manifold of equilibrium structures that it has been trained on. This is despite being
trained on two orders of magnitude fewer structures than the MLFF. Additionally, while
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Figure 1: Schematic depictions of the physical PES (left) and the pseudo PES (right),
which emerge from removing Gaussian noise from distorted structures. Learning
the physical energy requires equilibrium (circles) and many non-equilibrium (crosses)
training structures, while learning the pseudo PES only requires equilibrium training
structures.

MLFFs can only relax structures that are covered by the distribution of training data,
the inherent augmentation of the training data through the diffusion process enhances
the robustness of MoreRed against variations in the noise distribution of the non-
equilibrium test structures. Consequently, MoreRed successfully identifies the correct
equilibrium structures for non-equilibrium inputs where MLFFs fail. We also show that
the difference in DF'T energies between the reference equilibrium structures in QM7-X
and the structures obtained by MoreRed through molecular relaxation falls below the
threshold of chemical accuracy.

2. Theory and methods

2.1. Diffusion models

Introduced by Sohl-Dickstein et al [109], diffusion models are latent-variable generative
models that can efficiently generate samples of a complex data distribution ggat.(Xo),
where direct sampling is intractable, such as the distribution of equilibrium molecular
structures. Instead of directly sampling from the target distribution, the idea is to
obtain an initial sample x7 from a simple prior distribution ¢r(x7), often an isotropic
Gaussian, and then use a learned mapping h(-) to transform xz into a sample xg = h(xr)
within ggata(Xo).

While defining and learning h(-) is challenging, the opposite task of transforming the
complex distribution ggae.(Xo) into a simple distribution ¢r(x7) is manageable because
it only involves simplifying the data by diminishing its signal, for instance by iteratively
adding noise. Diffusion models leverage this concept by using two opposite processes (see
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Figure 2: The diffusion model applied to the molecular structure of imidazole. It
incorporates two stochastic processes: a forward process and a reverse process. The
forward process involves a fixed diffusion kernel ¢(x;|x;_1) to transform the original
sample Xg ~ Qqata(Xo) into complete noise sample, X7 ~ g¢r(xr), usually isotropic
Gaussian noise N (0,I). The backward process is a learned model with parameters
6, which reverses the forward process, i.e. po(X;—1|x¢) ~ q(X4—1|x¢). It maps a noise
sample x7 from the tractable prior distribution pr(x7) = gr(xr) to the complex target
distribution of equilibrium structures, gqata(Xo)-

Figure . A fixed, usually non-learned, forward diffusion process iteratively encodes
(aata(X0) into a tractable latent distribution ¢r(xr) over T steps. A backward or reverse
process parametrized by a machine learning model then learns to reverse the forward
diffusion to effectively map from gr(x7) back to gqata(X0), akin to the objective of the
mapping h(:).

Summarized in Figure 2 we focus on Denoising Diffusion Probabilistic Models
(DDPM) [110] as a special class of diffusion models that defines the forward diffusion
process as the fixed Markov process,

!

Q(XOT = Qdata(X0) Hq Xt|Xt 1) C](Xt|Xt—1) = N(Xt; V1= Bixi-1, B (1)
t=1

where qo(Xo) = Gqata(X0) and N (x4; v/1 — Bix;_1, 3:I) denotes that x; follows an isotropic
Gaussian with mean /1 — 3;x,_; and variance (3,1, with the identity matrix I. The
diffusion process from Eq. can be simulated by sampling Xg ~ @qgata(Xo) from the
training dataset representing the equilibrium positions of atoms and then iteratively
applying x; = /1 — Bix;_1++/Bie; for t = 1,2, ..., T, with Gaussian noise &; ~ N'(0,1).
The variance 3; follows a fixed monotonically increasing noise schedule {3; € (0,1)}L,,
thus progressively injecting Gaussian noise with variance [, into the atom positions
while diminishing the signal with the factor \/1 — ;. This results in the generation
of increasingly noisier molecular structures, xi,Xs, ..., X7, from the original sample x,
with increasing diffusion time step ¢ (see Figure [2| forward Gaussian diffusion process,
from left to right). At the endpoint ¢ = T', the process destroys all the signal in the
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sample, converging to pure Gaussian noise, i.e. xr ~ N (0,1).

When generating progressively noisier samples {x;}/_,, the diffusion process creates
latent distributions ¢;(x;) that are increasingly smoother versions of the original data
distribution ggata(Xo), such that x; ~ ¢;(x;). These latent distributions can be derived
from Eq. as qi(x¢) = [ q(x¢|X0)qdata(X0)dxo for ¢ € [1,T]. The perturbation kernel,
q(x¢|%0), has the closed-form solution N (x;; v/@rxo, (1 — @;)I), where &, = [[._, a, and
as = 1— [ [110]. With this definition, we can directly sample from the forward diffusion
process at any time step t using an equilibrium structure xo from the training data:

X, = vVauxo+ V1 — e, & ~N(0]I) (2)

avoiding the iterative simulation through all intermediate steps xq, ..., x;.

Reversing the forward diffusion process enables the generation of new samples by
mapping back from ¢r(x7) t0 ggata(Xo) using the reverse transition q(x;_1|x;). Given
that T is large enough, the reverse transition is also Gaussian [109]. However, unlike
the forward process, it is not tractable. Therefore, we need to approximate the reverse
process, e.g. by learning a parametrized model pg(x;_1|X;) =~ ¢(x;_1|%;) such that |110]:

T
pe(XOT pT XT H Xt 1|Xt pe(Xt—1|Xt) = N(Xt—l;ll’9<xtut)7o-t21) (3)

where pr(xr) = qr(xr) = N(0,1) is the endpoint of the forward process and the starting
point (or latent prior) of the reverse process. The variance is 0? = = O‘t ——=15, and the
mean, pg(x;,t) = \/% (Xt — \/f—f—&tse(xn t)), is the only unknown quantlty, Where gg(xy, 1)
is an estimate of the noise that was added to xy to obtain x;. This noise is predicted
by a neural network that gets the noisy structure x; and the current time step ¢ as an
input. To train this network, we uniformly sample a diffusion time step ¢t ~ U(1,T"), and
perform forward diffusion to generate the noisy sample x; from a data point x, using
the sampled noise direction €; as described in Eq. . Then, we minimize the mean
squared error between the predicted and true noise direction, resulting in the following
loss:

Looem = Eiti(1,7) xomgummcc~n01) || |€0 — €0(x0, )|, (4)

Once the noise predictor, ey(xy,t), is trained, we can generate new samples
X0 ~ (data(Xo) by simulating the reverse process in Eq. . We first draw a starting
sample X7 ~ pr(x7) from the Gaussian noise distribution and then iteratively apply

1 B L
= — (X - = t ~N(0,1 5
Xi—1 \/Et(Xt \/1_70_51560(}(“ )) +oiE, € ( ) )7 ( )
for t = T,T — 1,...,1, which progressively removes the noise from the sample to

denoise it, in the optimal case ending with a sample x( from the target gqata(xo) after
T reverse steps (see Figure , learned reverse generative process, right to left). This
mimics molecular structure optimization by following atomistic forces. Here, the noise
prediction €4 (xy, t) defines the opposite of the force directions that minimize the energy
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and the scaling terms that depend on «; and [; determine the magnitudes and the step
sizes used at each optimization step. The noise € added at each denoising step results
in a stochastic optimizer instead of a deterministic one, which can be helpful in the
case of the presence of many shallow local minima. However, because noise prediction
gg(xy,t) requires the diffusion time step ¢ as an input, diffusion models can only be
used on structures with known noise level. For data generation, they start with samples
from the known noise distribution at ¢ = T, i.e., input structures that are pure noise.
For molecular relaxation, in contrast, the non-equilibrium input structure can have
an arbitrary level of perturbation such that the suitable initial time step is unknown,
making the application of the standard plain diffusion models infeasible.

2.2. MoreRed: molecular relaxation by reverse diffusion

We therefore introduce Molecular Relaxation by Reverse Diffusion (MoreRed) as a
diffusion-based approach to finding minima on a PES. MoreRed reframes molecular
relaxation as a denoising problem solved using a learned reverse diffusion process, where
non-equilibrium molecular structures are considered as diffused noisy versions of their
equilibrium counterparts. While diffusion models were initially designed to generate
novel samples from complete noise xr ~ pr(xr), we adapt them to be applicable in
this denoising framework, where we initiate the reverse process from a noisy sample
x; ~ q(x;) at an arbitrary diffusion time step ¢ < T to reconstruct the nearest xg.
Taking Figure [2] as an illustration, the objective is to initiate the reverse process from
any step t within the trajectory where the structure of the yet noisy sample x; remains
identifiable, such as the third noisy structure from the left, and perfectly reconstruct
the initial noiseless structure xq on the far left. In contrast, starting from the complete
noise sample x7 on the far right would yield different relaxed structures in repeated
denoising attempts because no structure is apparent in the input.

Using the setup explained in section [2.I] MoreRed learns the distribution of
equilibrium molecular structures as the target data distribution ggata(Xo), and smoothed
versions of it as the latent distributions,

qr(x¢) = /Q(Xt|Xo)CIdata(Xo)dXo, for t € [1,T].

This amounts to learning a pseudo PES, E’t = —log ¢;(x), that depends on ¢ when
diffusion models are trained to predict the noise direction [111]. This is conceptually
similar to MLFF models, which implicitly learn the PES when trained on forces, where
the diffusion noise could intuitively be seen as the opposite of the forces. Yet, as depicted
in Figure , Et is much simpler than the physical potential energy FE,.(x) that the
existing MLFF models need to learn. Furthermore, MoreRed exhibits superior data
efficiency compared to MLFF models, because it requires only equilibrium structures.
The whole input space of non-equilibrium structures, including physically non-plausible
structures, is simply covered by the efficient forward diffusion process that adds Gaussian
noise, as explained in section [2.1] In contrast, for MLFF models to be reliable for any
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possible input structure, a large training dataset with many non-equilibrium structures
derived from the physical PES is required, which can be infeasible to generate. However,
if trained on extensive labeled data, MLFFs become applicable for molecular dynamics
simulations. We note that MoreRed, on the contrary, only targets molecular relaxation
and is, at this stage, not intended for molecular dynamics simulations in its current
form.

We design our diffusion model such that the distribution is invariant with respect
to rotations R(-) and translations T (-), i.e., po(T(R(x:)) = po(x¢). To guarantee
translational invariance, we center the atomic positions after each forward or reverse
step. As proven by Xu et al [78], rotational invariance of the marginal distributions
pe(x;) is achieved by using an invariant prior pr(xr) = N(0,I), and an equivariant
transition probability pe(x;_1|%X;), which amounts to using an equivariant noise model
gg(xy,t). Therefore, we adopt the equivariant message passing architecture PaiNN [112],
which allows us to directly predict equivariant tensor properties, such as the noise
gg(xy, 1), as well as invariant scalar properties.

To perform reverse diffusion starting from a non-equilibrium molecular structure x
at an arbitrary noise level, i.e. not sampled from the prior noise distribution pr(xr), it is
necessary to set the initial diffusion time step ¢ < T for the reverse process appropriately.
A starting time step that does not match the deviation of the noisy input structure from
the data manifold of equilibrium structures would lead to inaccurate predictions of the
noise direction and an incorrect number of denoising steps. Consequently, successful
relaxation would not be possible. To address this issue, we introduce a time step
predictor as a novel extension for diffusion models in the subsequent subsection.

2.3. Diffusion time step prediction

To identify the noise level of non-equilibrium molecular structures that we want to relax,
we train a neural network 7g(x;) parametrized by © to predict the diffusion time step
by minimizing the following loss:

Lptp = EtNZ/{(l,T),xowqdata,stNN(O,I) [(Te(Xt)—CL(t))ﬂ, where x;, = \/@_tX0+v 1 — auey, (6)

a(t) is a monotonic function to scale the output, e.g. a(t) = ¢/T, and t is sampled
uniformally between 1 and 7. Analogous to the noise estimator ey(x,t), we again
adopt the neural network architecture PaiNN [112] for the model 7¢(x;). However,
in this case, we use the scalar features to predict the time step, considering it as an
invariant quantity similar to energy. In the following, we provide a theoretical argument
on why an accurate prediction of the time step is feasible. Empirical evaluations of the
time step prediction performance are found in the results section [3.1}

In Eq. , the latent distribution ¢; at time step t is derived by applying isotropic
Gaussian noise to the training data points representing equilibrium structures in the
input space, denoted as X(()i) ~ (data(X0), where 7 represents the index of the training
data points. This process transforms each x(()i), which is a Dirac delta function, into
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a Gaussian distribution, A (xl(f); \/d_tx(()i), (1 — ay)I). Therefore, considering that the
equilibrium structures, Xg ~ ¢aata(Xo), are isolated from each other in the input space,
up to the symmetry operations, ¢; essentially forms a mixture of Gaussians with each
Gaussian component centered around one of the training equilibrium structures, x(()i).
Moreover, the variance term (1 — &;) of these Gaussian components, which is defined
by the diffusion noise schedule, increases monotonically with the diffusion time step

t. Consequently, predicting the time step ¢ from a sample xgi) ~ q(x;) amounts to

estimating its noise level, (1 — a;), or the distance from x((f). This estimation is feasible
when the dimension D of the input space is large and the different mixture components
do not overlap, due to the following reasons.

Let us transform the Gaussian distribution with variance (1—a;) from the Euclidean

to the polar coordinate system. By marginalizing out the polar directions, we can

compute the marginal distribution over the (scaled) radius 7 = ﬁ as:
DD/27:D—1 Di2
)= —— = 7

where I'(-) denotes the Gamma function. As discussed in Bishop et al [113], for large
D, p(7) has a sharp peak at 7 &~ 1, as illustrated in the left plot in Figure in

the supplementary information. This implies that each Gaussian component of ¢, at

)

time step t represents a sphere centered at a training sample ng , 1l.e. its density,

represented by the set of diffused samples xf), is concentrated in a thin shell at radius
7 & 1. Therefore, most of the samples xﬁ” have similar distance from xéi). Accordingly,
assuming that the model can learn the data manifold, the distance, which corresponds
to the noise level (1 — &), is easy to identify from a single sample xﬁ"), as long as the
noise level is small such that the mixture components (spheres) do not overlap. When
the noise level increases, the diffused samples xﬁ“ from different training data points x(()i)
overlap with each other. This overlap makes the estimation of the diffusion time step

difficult, as indicated by the right plot in Figure[AI] Further explanation and discussion

are provided in section [Appendix A.1|in the supplementary information, where we also

show empirical evidence together with the derivation of Eq. .

2.4. Variants of reverse diffusion

We compare three variants of MoreRed that differ in how they handle the diffusion time
step prediction (section . In the first variant, called MoreRed initial time prediction
(MoreRed-ITP), only the initial diffusion time step, defining the start of the denoising
process, is predicted. Given a non-equilibrium structure x, MoreRed-ITP estimates an
appropriate starting time step, t = 7¢ (X), sets x; = X, and performs the iterative update
described in Eq. fort =%, —1,...,0, instead of starting from t = T..

As a second variant, we use a more flexible process where the time step prediction is
performed before every denoising step instead of only at the start. We call this approach
MoreRed adaptive scheduling (MoreRed-AS). It iterates through a time-adaptive version
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of Eq. :

) i 1 B; A o
t = = (x, = —t -t o ~ 0.1 8
T@(X)> xt—l \/a_f(Xt \/1—7@{80()(“ )) + Ut€7 € N( ) ) ( )
In contrast to the fixed schedule t,t — 1,...,0, which always decreases towards 0 by a

one-step decrement, this adaptive approach allows the denoising process to move back
and forth in the trajectory. In this way, errors in the noise prediction 4(x;,t), which
lead to unexpected noise levels in the subsequent structure, can be compensated. For
instance, if after one denoising step the resulting sample has less noise and converges
faster than expected, the prediction ¢ will be smaller than ¢ — 1 to jump more than
1 step towards 0. If, on the other hand, the resulting sample has a higher noise level
than expected, the prediction ¢ will be higher than in the previous step. Similar to
classical molecular relaxation methods, we define a convergence criterion for stopping
the adaptive denoising process, i.e. we require time step predictions smaller than a
threshold ¢ < t.

A third variant, MoreRed joint training (MoreRed-JT), uses the same adaptive
reverse diffusion process as described in Eq. for MoreRed-AS but differs in the model
definition and training. For MoreRed-AS we employ two separate neural networks with
separate backbone representations, where one is used to predict the noise €y and the
other one to predict the time step 7g. For MoreRed-JT, we use one neural network
as a shared backbone representation, and we add two prediction heads on top, one for
the noise and one for the time step. This forces the noise and the time step heads to
learn a joint molecular representation. We train this joint network by minimizing the
joint loss Lioint = nLpppm + (1 — 1) Lprp, for n € [0,1] defining a trade-off between
the two losses and combining Eq. [ and Eq. [6] In the supplementary information, we
provide details for the training in Algorithm (1)) and for the sampling in Algorithm (2))

in section [Appendix A] and for the models in section [Appendix C.1}

3. Results and discussion

An integral part of relaxation with MoreRed is the time step predictor. It estimates
how far the non-equilibrium input is away from the learned data manifold of equilibrium
structures, which determines the appropriate time step for the reverse diffusion process
and the number of denoising steps. Therefore, we first evaluate the time step predictor.
Subsequently, we validate the relaxation performance of MoreRed with respect to the
root-mean-square deviation (RMSD) and DFT energy. We compare the results against
those obtained from a baseline MLFF, as well as from the FF model MMFF94 [43] and
the semi-empirical model GFN2-xTB [46] in several experiments of molecular relaxation.

3.1. Diffusion time step prediction performance

The diffusion time step predictor determines the starting step ¢ of the reverse diffusion
for molecular relaxation. The further a non-equilibrium structure deviates from its
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Figure 3: a: Scatter plots of the RMSD of 10 000 non-equilibrium test structures from
QM7-X and their equilibrium structures vs. the initial diffusion time step ¢ predicted by
MoreRed. Top: MoreRed-JT, where the time step and the noise are jointly predicted by
the same neural network. Bottom: MoreRed-ITP/-AS, where the time step is predicted
separately from the noise model with an individual neural network. b: Comparison of
time step trajectories for relaxation of three non-equilibrium test structures from QM?7-
X in purple, pink, and orange. MoreRed-JT follows an adaptive schedule (the time step
and noise are predicted at each denoising step; solid lines) and MoreRed-ITP follows
a fixed schedule (the time step is only predicted at the initial denoising step; dashed
lines). The dots show the predicted (but not utilized) time steps for MoreRed-ITP
during denoising with the fixed schedule. The inset box shows the RMSDs between
the reference equilibrium geometry and the non-equilibrium structure after and before
relaxation, respectively.

equilibrium structure, the more denoising steps are required, which means that a higher
starting step ¢ should be predicted. As can be seen in Figure , the predicted starting
steps correlate well with the RMSDs between the non-equilibrium and equilibrium test
structures from QM7-X. This is a notable insight, as the non-equilibrium structures in
QM7-X stem from DFTB normal-mode displacements of equilibrium geometries. All
non-equilibrium examples used for training the time predictors, on the other hand,
stem from diffusing equilibrium structures with Gaussian noise. Nevertheless, the time
step predictors reliably predict £ > 0 for all the 10 000 test structures, highlighting the
robustness in identifying non-equilibrium structures even if they do not contain Gaussian
noise. Moreover, we observe that a joint model for predicting both time step and noise,
as in MoreRed-JT, leads to fewer outliers in the predictions of ¢ and, consequently, a
higher Pearson correlation coefficient (p = 0.85; top) than the separately trained time
step predictor in MoreRed-ITP/AS (p = 0.73; bottom).

Usually, diffusion models follow a fixed schedule where the time step ¢ is reduced
by one after each denoising step until it reaches ¢ = 0. In MoreRed-ITP, we follow
such a fixed schedule and only use the time step predictor once to obtain a suitable
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starting step t. As described in Eq. before, the other two variants, MoreRed-AS/-
JT, utilize the time step predictor at every denoising step to obtain a new time step
estimate £. This results in an adaptive schedule, where the relaxation ends after a
variable number of steps, as soon as ¢ = 0 is predicted. Figure shows the merit
of this approach, where the time step trajectories during geometry relaxations of three
different test structures are plotted in purple, pink, and orange. When following the
fixed schedule (dashed lines), errors can occur and accumulate [111]. If not corrected,
they lead to a mismatch between the true noise level in the structure and the time
step t. Therefore, the relaxation may end before the sample reaches the equilibrium
geometry. This can be observed for all three examples in the plot: The predicted but
not enacted time step values associated with the fixed schedule (dotted lines) show a
high value when the denoising with the fixed schedule ends, as the dashed line reaches
t = 0. In contrast, the adaptive schedule (solid lines), MoreRed-JT in this case, can
account for such errors by adapting ¢ at each denoising step. After converging to ¢ = 0,
the relaxed structures are significantly closer to the ground truth equilibrium geometry
than the ones obtained with the fixed schedule (see the RMSD values after relaxation
in the right-hand side box of Figure )

To conclude, we find that the time step predictor accurately identifies non-
equilibrium structures, where larger time steps are predicted if the RMSD from the
equilibrium structure is larger. Moreover, employing an adaptive schedule that utilizes
the time step predictor to determine the time step at every denoising iteration proves
beneficial compared to constantly decreasing the time step at a fixed rate. We provide

further experiments in section [Appendix B.5|in the supplementary information, where

we show that the time step predictor also significantly enhances the performance of
diffusion models in the original task of novel structure generation from complete noise.

3.2. Molecular relaxation performance

In the following, we compare the relaxation performance of MoreRed with a baseline
MLFF, as well as the FF method MMFF94, [43| and the semi-empirical method GFN2-
xTB [46]. As a molecular representation, all variants of MoreRed as well as the
baseline MLFF use the same equivariant message passing neural network architecture
PaiNN [112] as implemented in the open-source software package SchNetPack [114,[115].
Details on the models’ architectures including the hyperparameters are shown in
the supplementary information [Appendix C| While training MoreRed requires only
different unlabeled equilibrium structures, MLFFs have to be trained on non-equilibrium
structures as well and require the energies and forces as labels. For this reason, we
use QM7-X [97], the only labeled dataset that provides both equilibrium (42 000) as
well as the corresponding non-equilibrium structures (100 each) of different chemical
compositions, enabling the training of both MoreRed and MLFFs. However, the
dataset has a mismatch between the computational methods employed for finding the
equilibrium structures (DFTB3+MBD) and those for computing their energy and force
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labels (PBEO+MBD), introducing a challenge in comparing the performance of MoreRed
and the MLFF. On one hand, evaluating the geometric deviation, such as RMSD,
between a structure after molecular relaxation and the corresponding equilibrium
structure reported in the QM7-X is in favour of MoreRed. This is because it is trained
to learn the data manifold of these reference structures, which were determined using
DFTB3+MDB. On the other hand, comparing the DFT energies of the structures
after relaxation and the equilibrium structures in QM7-X using PBEO+MBD reference
calculations favours the MLFF because it is trained on the energies and forces resulting
from PBEO+MBD calculations. Therefore, we must carefully integrate our findings on
both metrics before drawing conclusions.

For our evaluation, we have reserved a test set of 6504 reference equilibrium
structures from QM7-X which are not utilized for training the neural networks (see

supplementary information [Appendix B.1| for details). To cover a wide range of test

examples, we sort the 100 non-equilibrium structures of each reference structure based
on the RMSD to their equilibrium geometry and choose three of them: the closest,
one from the middle, and the most distant. This results in almost 20 000 non-
equilibrium test inputs, x, for relaxation. Note that whenever we compute the RMSD,
the rotation and translation of structures are aligned. For molecular relaxation, we
employ Open Babel’s [116] built-in routines and optimizer for MMFF94. Additionally,
we utilize the L-BFGS optimization algorithm implemented in ASE [117] for both the
MLFF and the semi-empirical GFN2-xTB, where we set a convergence threshold of
fmax = 1.15 - 1073 keal/mol/A for the forces and use the tblite? Python interface for
the official GFN2-xTB model implementation. Besides, we set a maximum number
of relaxation steps 7' = 1000 for all methods, including MoreRed, and a convergence
criterion of £ < 0 for MoreRed-AS /-JT.

We first evaluate the geometric deviation of structures relaxed with MoreRed and
the different baselines from the reference equilibrium structures in QM7-X. To this end,
we calculate the RMSD ratio, which is the RMSD of the reference structure from the
test structure after relaxation divided by the RMSD of the reference structure from the
test structure before relaxation. It captures to which extent the non-equilibrium test
structure was brought closer to the reference equilibrium structure. We define failure
cases as cases where the RMSD ratio exceeds 1, which means that the RMSD increased
during molecular relaxation. Those failures correspond to cases where the structure
diverges or the relaxation converges to a different local minimum in the PES. Figure
(left) shows boxplots of the RMSD ratio for the MLFF model, the FF method MMFF94,
the semi-empirical method GFN2-xTB, as well as MoreRed-ITP, MoreRed-JT, and
MoreRed-AS. The lowest median RMSD ratios and the lowest percentages of failure
cases are all achieved by MoreRed. There are almost no failure cases for the model with
a fixed time step schedule, MoreRed-ITP, and the median RMSD ratio is particularly
low for the two variants with an adaptive time step schedule, MoreRed-JT /-AS. These

thttps://github.com /tblite/tblite
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Figure 4: The RMSD ratios of structures relaxed with the baselines and the MoreRed
variants for 20 000 non-equilibrium structures from the QM7-X test split (left) and 6500
non-equilibrium structures obtained by adding Gaussian noise over 250 forward diffusion
steps to equilibrium structures from the QM7-X test split (right). The median values
and the percentage of failure cases, i.e., the cases where the RMSD ratio > 1, are shown
above each box plot. In Figure [f, we provide examples of relaxed structures comparing

both MoreRed and the MLFF model.

low ratios translate well to low absolute RMSDs between the relaxed structures and the
reference structures, where the variants MoreRed-ITP /-JT /-AS achieve a median RMSD
of 0.12 A, 0.06 A, and 0.05 A, respectively. Further details and results based on the
absolute RMSD are provided in Figure [BI]in the supplementary information
B.2] Our findings show that the MoreRed variants, especially when using an adaptive
schedule, excel in reliably bringing the test structures close to the reference equilibrium
structures. The classic FF method MMFF94 shows the highest number of failure cases,
which is above 40%, and has the worst median RMSD ratio. Interestingly, the MLFF
and GFN2-xTB show very similar performance to each other, with more than 20%
failure cases and a median RMSD ratio close to 0.4. However, we note that the baseline
methods might capture minima from slightly different PES than the one described by
the reference structures, for instance, due to the discussed structure-label mismatch
in QM7-X. For a more comprehensive understanding, we first test the robustness of all
approaches and then proceed to evaluate the DFT energy levels of the relaxed structures.

We assess the robustness of the methods on synthetically generated inputs by
diffusing equilibrium test structures from QM7-X with 250 forward diffusion steps. We
ensure that the resulting median RMSD between the diffused configurations and the
equilibrium test structures is within the range of the RMSD between the non-equilibrium
structures and the equilibrium test structures from QM7-X. Figure [fh (right) shows the
RMSD ratios after molecular relaxation of the diffused structures. For all MoreRed
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variants, the median RMSD ratio further improves compared to relaxing the QM7-X
test structures, which is expected as our method is trained to denoise diffused structures.
However, there is an increase in failure cases, which we attribute to more often ending
up in equilibrium states different from the reference geometry. We hypothesize that this
is caused by the physically less plausible deviations in the diffused structures compared
to the normal mode displaced structures in QM7-X. The existence of physically less
plausible deviations is supported by the results of the baseline methods, where we
observe a clear deterioration in performance. MMFF94 completely fails to handle input
structures perturbed with Gaussian noise and, in nearly all cases, just returns the non-
equilibrium input structure, leading to a median RMSD ratio of 1 and resulting in 99.6%
failure cases. The median RMSD ratio of GFN2-xTB as well as its percentage of failure
cases are more than doubled. Most notably, the MLFF fails to get closer to the reference
geometry in almost 90% of the cases. For the MLFF, this is expected as the training data
distribution of non-equilibrium structures from QM7-X does not cover all the chemical
space, including the Gaussian diffused inputs. Therefore, relaxation often completely
fails, leading to disconnected structures even if the input structure does not appear
to be overly distorted. We show an example of this in Figure [B2p, with a detailed

discussion in section [Appendix B.3| in the supplementary information. This means
that, although the MLFF uses 100 times more training data than MoreRed, it cannot
easily be transferred to relax the diffused structures. In contrast, MoreRed performs
well on both the diffused samples and on the non-equilibrium structures from QM7-X

albeit requiring only the unlabeled equilibrium structures for training. Accordingly,
the diffusion training scheme leads to a more robust method for relaxation that can be
used for input structures that are obtained from different sources, e.g. different datasets,
various empirical force fields, or other generative models. This also means that MoreRed
will oftentimes find a reasonable structure even if the input was physically not plausible,
which should be considered by practitioners using the method.

For illustration, we show a series of pairwise comparisons of molecular structures
from QMT7-X relaxed by both MoreRed-AS and MLFF methods in Figure Each
panel contains a sequence of depictions, beginning with the equilibrium structure
(eq.), followed by the corresponding non-equilibrium structure, and then structures
relaxed using MoreRed-AS and MLFF respectively. The RMSD values, relative to the
equilibrium structure, are provided for each case. For both models, we show examples
that were successfully relaxed as well as failure cases. Additionally, in Figure and

section [Appendix B.3| in the supplementary information, we provide further examples

and discussion of relaxed structures using all MoreRed variants and baseline models,
including MMFF94 and GFN2-xTB.

Finally, we compare the energies of relaxed structures using DFT calculations. We
randomly sample 100 non-equilibrium test inputs from QM7-X and compute the energy
of the corresponding equilibrium reference structure as well as of the structures resulting
from the relaxation of the test inputs with all methods. The energies are calculated
with PBEO+MBD [102,/103] and a def2-TZVP [118] basis, using the pySCF |119H121]
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Figure 5: A pairwise comparison of molecular structures from QM7-X that were relaxed
with both MoreRed-AS and MLFF. In each block, from left to right, the equilibrium
structure is shown (eq.), followed by the non-equilibrium structure and the structures
relaxed by MoreRed-AS and MLFF, all labelled with their respective RMSD to the
equilibrium structure. The first two structures follow the CPK colouring, i.e. white for
hydrogen, gray for carbon, blue for nitrogen, and red for oxygen. In the subsequent two
depictions, the hydrogen atoms are suppressed and the equilibrium structure (gray) and
the non-equilibrium structure (white) are superimposed with MoreRed-AS and MLFF
relaxed structure in green (RMSD decreased) or red (RMSD increased).

implementation. The results are reported in Figure [6], where we compare the deviation
of the energy of the structures resulting from relaxation with the different methods from
the energy of the reference equilibrium structures reported in QM7-X. Positive energy
differences occur when the relaxation method yields a structure with higher energy than
the reference structure, and a negative difference indicates that the molecular relaxation
yields a structure with lower energy than the reference. The structures relaxed with
MMFF94 mostly have significantly larger energies than the reference structures. Hence,
MMFF94 is clearly outperformed by MoreRed and the other baselines, as it results in the
largest structural deviations in terms of the RMSD ratio and the worst energy levels in
our DFT calculations. The MLFF, on the other hand, mostly finds structures with lower
energy levels compared to the reported reference structures in QM7-X. According to the
previously discussed structure-label mismatch in the dataset, this can be attributed to
training the MLFF on energy and force labels calculated with the PBEO-+MBD, whereas
the reference equilibrium structures were found with DFTB+MBD. These reported
equilibrium structures still have a mean and median force magnitude greater than
5 keal/mol/A when calculated with PBE0-+MBD instead of DFTB+MBD, i.e. they
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Figure 6: Deviation of the energy of structures resulting from relaxation with the
different methods from the energy of the reference structures. Negative values indicate
lower energy than the equilibrium reference structure. The DFT energy calculations
were performed with PBEO+MBD and a def2-tzvp basis for 100 randomly sampled test
structures from QM7-X.

are no minima on the PES defined by PBEO+MBD. The energy of structures relaxed
with GFN2-xTB is higher than with the MLFF but still lower than the energy of the
DFTB+MBD reference structures. This shows that the larger RMSD ratios found for
the MLFF and GFN2-xTB stem from finding minima on a more accurate PES that is
different from the one described by the QM7-X reference equilibrium structures. The
energy levels of structures relaxed with MoreRed-ITP/-JT match the energy levels of
the QMT7-X reference structures the closest. For a majority of relaxed structures, the
energy is less than 1 kcal /mol higher, i.e. within chemical accuracy. Only for MoreRed-
AS, which had the smallest median RMSD ratio, we observe higher energy levels than
expected in the relaxed structures. It also performs more reverse denoising steps than
the other two variants most of the time, further reducing the structural deviation while
underestimating the interatomic distances, which are more strongly penalized in energy
calculations than in the RMSD metric.

In summary, we find that MoreRed accurately captures the data manifold of
equilibrium structures as it outputs relaxed structures that are close to the reference
structures in both structural deviation and in terms of energy difference. Therefore,
using equilibrium structures with lower energy during training may further improve
MoreRed’s energy performance. Furthermore, it outperforms the classical MMFF94
method in all of our experiments and metrics. While the MLFF and GFN2-xTB
find structures with larger structural deviations, the obtained structures have lower
energies according to reference calculations with PBEO+MBD. This can be explained
by the mismatch of computational methods employed in QM7-X to obtain equilibrium
structures (DFTB+MBD) and to compute the energy and force labels (PBE0+MBD),
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which impedes a fair comparison. MoreRed shows improved robustness to distorted
inputs compared to all baseline methods, allowing it to relax structures from different
sources albeit requiring only unlabeled equilibrium structures for training. When
considering all metrics together, MoreRed-JT, which uses an adaptive schedule and
predicts both the time step as well as the noise for reverse diffusion with the same neural
network, performs better than MoreRed-ITP/-AS and is therefore recommended.
Efficiency-wise, we note that training MoreRed takes 1.45 days on average, while
the MLFF model needs more than 7 days on NVIDIA P100. The relaxation of one
single structure with MMFF94 takes 0.022s. A single relaxation step per structure
with the MLFF, GFN2-xTB, and MoreRed takes 0.02s, 1.5s, and 0.03s, respectively.
In contrast to the other methods that relax one structure at a time, MoreRed relaxes
the structures batchwise, which could yield an even higher speed-up on tensor units.
In our experiments, using batches of 128 structures results in 0.05s per relaxation
step per batch, i.e. 0.055/128 ~ 0.0004s per relaxation step per structure. A
more detailed analysis of the computation times can be found in the supplementary

information [Appendix D]

4. Conclusion

In this study, we introduced MoreRed, a conceptually novel and data-efficient approach
for molecular relaxation employing reverse diffusion with a time step prediction
component. MoreRed learns the data manifold of equilibrium structures and accurately
maps non-equilibrium structures to equilibrium structures, without the need for forces,
energies, or non-equilibrium training data. Compared to the other tested methods, its
performance in relaxing non-equilibrium structures distorted by either normal modes or
Gaussian noise remains robust.

A key technical novelty of our diffusion model lies in the integration of a time step
predictor, which estimates the distortion level within a molecular structure. This enables
the denoising of input structures with arbitrary noise levels, extending the applicability
of diffusion models. Additionally, it allows for a novel adaptive schedule, enhancing
MoreRed’s capability to rectify accumulated errors in the reverse denoising process. To
this end, we provided both theoretical arguments and empirical evidence supporting
the feasibility of time step prediction in high-dimensional spaces. Three variants of
MoreRed were introduced: i) MoreRed-ITP (Initial Time Prediction), which estimates
the distortion level for only the initial input structure; ii) MoreRed-AS (Adaptive
Schedule), which predicts a new time step for each denoising step of the reverse diffusion
process, providing enhanced flexibility to move back and forth in time; and iii) MoreRed-
JT (Joint Training), which retains the adaptive schedule of MoreRed-AS but estimates
both the diffusion noise and time step using one joint neural network instead of two
separate ones. Our adaptive approach not only proves beneficial for molecular relaxation
but also for molecular generation tasks.

While not directly comparable due to the mismatch in computational methods
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used to create the dataset, MoreRed exhibits accurate structure relaxation performance
with significantly fewer training points and reduced training time compared to machine
learning force fields. The data efficiency might prove beneficial for larger systems
or extensive databases where generating a sufficient amount of accurately labeled
training data, especially non-equilibrium structures, is challenging. The results also
revealed an inherent issue when using mismatched methods for structure relaxation
and properties calculation, as observed in the QM7-X dataset. While machine learning
force fields produce more accurate minima by following the PBEO+MBD-based forces,
MoreRed accurately learns the data manifold of the provided DFTB-+MBD-based
equilibrium structures. Utilizing more accurate minima during training can further
improve MoreRed’s energy performance while maintaining its data efficiency advantage.

Code and data availability

The code and its associated data are made public in Zenodo [122] and on Github
at https://github.com/khaledkah/MoreRed. The datasets utilized for training the
models, namely QM7-X [97] and QM9 [123}|124], are also publicly accessible.

Acknowledgments

This work was partly funded by the German Ministry for Education and Research
(BMBF) as BIFOLD - Berlin Institute for the Foundations of Learning and
Data (BIFOLD24B) (under refs 01IS14013A-E, 01GQ1115, 01GQO0850, 01IS18056A,
01IS18025A and 01IS18037A) and BBDC/BZML. Furthermore, Klaus-Robert Miiller
was partly supported by the Institute of Information & Communications Technology
Planning & Evaluation (IITP) grants funded by the Korean Government (MSIT) (No.
2019-0-00079, Artificial Intelligence Graduate School Program, Korea University and
No. 2022-0-00984, Development of Artificial Intelligence Technology for Personalized
Plug-and-Play Explanation and Verification of Explanation). We thank Stefan Chmiela,
Jonas Lederer, and Elron Pens for insightful discussions and feedback.


https://github.com/khaledkah/MoreRed

Molecular relaxation by reverse diffusion 20
Appendix A. MoreRed: details

Appendiz A.1. Diffusion time step prediction

Derivation of Eq. (7): In the polar coordinate system (r, ¢), the marginal distribution
of the radius r of the centered isotropic Gaussian over the direction ¢ is given by

p(r) = / p(r. @)de (A1)

1 T D1
= @ron)piz P (—ﬁ) D
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where Sp = IE(WTD//;) is the surface area of the (D—1)-dimensional unit sphere embedded in

the D-dimensional space, I'(+) denotes the Gamma function [113] and ¢? is the variance,
which is equal to (1 — a;) in Eq. . By changing the radius variable r to the scaled

version, 1 = \/%U, we get
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which gives Eq. .

Discussion: Our diffusion time step predictor essentially predicts the noise level of the
input sample, which reduces to predicting the variance of the Gaussian component,
from which the noisy input sample is drawn, using solely this single perturbed sample.
Intuitively, this is too challenging in a low-dimensional space because the distances
between the mean and different samples from the same Gaussian are broadly distributed.
This intuition does not apply to a high-dimensional space.

As discussed in section [2.3] the marginal distribution of the radius in the polar
coordinate system, provided in Eq. and depicted in the left plot in Figure , implies
that most of the Gaussian perturbed samples lie in a thin shell with an equal distance
to the center of the Gaussian. This implies that a neural network, which can learn the
data manifold, can predict the variance of the perturbation noise, and consequently, the
diffusion time step.

One might still worry that training samples drawn from two overlapping Gaussian
components will deteriorate the performance of the diffusion time prediction. Indeed,
such overlapping makes the prediction harder, as can be empirically seen in the right
plot in Figure [AT] However, with high dimensional input space, such overlapping does
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Figure Al: Left: Distribution of the (scaled) radius of one Gaussian component in
the polar coordinate system (Eq. @), illustrating sharper density with increasing
dimensionality D. Right: Diffusion time prediction performance using a molecule
(orange) with 14 atoms from QM7-X, resulting in an input sample with 14 - 3 = 42
dimensions, and using an image (blue) from CIFAR-10 with 32-32-3 = 3072. The time
prediction becomes more accurate with increasing dimensions and/or decreasing noise
variance, meaning low time step ¢.

not significantly affect the time prediction performance for samples perturbed with
small noise variance, meaning when the diffusion time step ¢ is low. Assume that
there are two training molecules x,,x; with the Euclidean distance r = ||x, — x|, and
consider the Gaussian component centered at x,, which represents its noisy versions
with standard deviation ¢ = r. Although, in this situation, x; lies in the high-density
shell of this Gaussian component (the bump in Figure left), the noisy samples of
x, are uniformly distributed all over the high (D — 1)-dimensional shell. Therefore
the probability that the Gaussian noise produces a sample close to x, is extremely
low. On the other hand, many training samples from the neighbourhood of x; are
fed to the diffusion time predictor as slightly noisy versions of x;,, because of its high
density. Accordingly, the network is trained to recognize the molecules close to x, as
low noise samples resulting from x;, without being disturbed by high noise samples from
X,. This intuition can be mathematically confirmed by computing the density ratio
between two Gaussian components around X, i.e., N'(x, + €; xp, 0°T) /N (x3, + €; X4, 7°T)
for |le|| ~ 0 < r, which is extremely high unless D is very small.

To conclude, the high dimensionality of the data space enables accurate diffusion
time step prediction, especially for the samples close to one of the training equilibrium
molecules. This can also be observed empirically. Figure (right) with orange dots
shows a scatter plot of the true diffusion time vs. its prediction by our diffusion time
predictor after training on the equilibrium molecules from the QM7-X dataset. We also
show the performance of the diffusion time predictor trained on CIFARI0 [125] — a
common image benchmark dataset — where the images have a higher dimensionality
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than the molecule data, as blue dots. As discussed above, the diffusion time prediction
is easier when the dimension D is large, and the true diffusion time, i.e., the noise level,
is small.

Appendix A.2. Algorithms

Algorithm [I| shows the training procedure for MoreRed-JT. For the other two variants,
we instead train two separate architectures and use only the first part of the loss in line 7
to train the denoising model and the second part to train the time step prediction model
separately. Algorithm [2|describes the sampling with the adaptive MoreRed variants (AS
and JT). MoreRed-ITP uses a fixed schedule i = t,t—1,...,1 but starts from a predicted
initial time step i = ¢ instead of a fixed value.

Algorithm 2 Sampling

Algorithm 1 Training Input: gy, 7o
Input: qqata(x0), a(t), n, 6, © Output: new sample x;, #iterations ¢
Output: gy, 70 1: =0

1: repeat 2: x; ~ N(0,T)

2 xg ~ q(Xg) 3: while 7¢(x;) # 0 do

3 t~U(LT) 4 t=10(x)

4 e~N(0,I) 5 e ~N(0,1)

5 subtract center of geometry from € 6 subtract center of geometry from &

6 X; = /uXg + /1 — ae 7 g0 = €4(X;, 1)

7 Take SGD step with the gradient 8 subtract center of geometry from

Ve |1lle — eo(xt To (%)) < 1 ,
9: Xit1 = —5= (Xi — IEC_VSQ) + o€
+(1 = n)llre(x) — a(t)|? B A
8: until convergence 11: end while

12: return x;, ¢

Appendix B. Further experiments and details

Appendiz B.1. Datasets

QM7-X: QMT7-X [97] is a comprehensive dataset that was derived from 7000 molecular
graphs sampled from the GDB13 chemical space with up to 7 heavy atoms, including
types C, N, O, S, and Cl. For each SMILES string, structural and constitutional
isomers were obtained using the MMFF94 force field and subsequently optimized with
DFTB3+MBD computations, leading to 42 000 equilibrium structures. To capture
the PES close to the equilibrium molecules, non-equilibrium molecules were generated
by displacing each equilibrium molecule along a linear combination of normal mode
coordinates computed with DFTB3+MBD, such that the energy difference between the
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non-equilibrium and equilibrium structures follow a Boltzmann distribution. For each
equilibrium structure, 100 non-equilibrium configurations were generated, leading to 4
200 000 non-equilibrium structures in total, where forces and energies for each structure
were computed with DFT calculations at the PBEO+MBD level with FHI-aims.

For our experiments, we split the dataset into individual sets for training, validation,
and testing of all methods. This is done at the molecular graph level to prevent bias
leakage between different sets due to related isomers and conformations originating
from the same graph. Specifically, we use the molecules resulting from 4500 graphs for
training, 1250 for validation and the rest for testing. Note that MoreRed does not utilize
the non-equilibrium configurations for training, effectively decreasing the training set
size by a factor of 100 compared to the training set of the MLFF model.

QM9: We evaluate the molecular structure generation performance, discussed in details
in section [Appendix B.5, on the QM9 dataset [123,|124], a widely used benchmark for
molecular generation tasks [73,81,82|. It comprises approximately 130k equilibrium

organic molecules, each containing up to 9 heavy atoms of types C, O, N, and F. We
use Hbk molecules for training, 10k for validation, e.g. for scheduling the learning rate,
and define the rest as the test split.

Appendiz B.2. Fxtended analysis of relaxation with MoreRed

Here we further analyze the three different variants of MoreRed by discussing extended
results from our experiments in section on relaxing non-equilibrium structures from
the QMT7-X test set. In Figure we analyze the RMSD values of the optimized
molecules in comparison to their equilibrium structure, instead of the RMSD ratio as it
is reported in the main text. First of all, in Figure Blp we compare the RMSD values
of the three MoreRed variants to the baseline models, including MMFF94, MLFF and
GFN2-xTB.

Notably, the two variants with adaptive scheduling have lower median RMSDs
than all baselines, while the median RMSD of MoreRed-ITP is slightly worse than
that of MLFF and GFN2-xTB. The reason for this can be seen in Figure [BIk, where
the RMSD values after relaxation are compared to the RMSD values of the initial
non-equilibrium structures for all three MoreRed variants. While the performance of
MoreRed-ITP (green) is particularly good for structures that are already close to the
equilibrium state, its performance is impaired for structures that initially have a high
RMSD. The adaptive variants, MoreRed-JT/-AS (orange, red), show a more balanced
performance, successfully relaxing structures over the whole spectrum of non-equilibrium
test molecules. This suggests that the adaptive scheduling with the time step prediction
improves the relaxation of molecules that are further away from the data manifold, which
is in line with our findings in section [3.1] This comes at the cost of a higher number
of relaxation steps for the adaptive variants and more failure cases (see section and
Figure (4)).
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Figure B1: a: The RMSD of molecules relaxed with the baselines and the MoreRed
variants for 20 000 non-equilibrium structures from the QMT7-X test split. b: The
mean RMSD of 20k non-equilibrium structures from the QM7-X test split vs. their
mean RMSD after relaxation. The mean is taken over bins of 2k non-equilibrium
molecules with increasing RMSD. The bars show the standard deviation of the RMSD
after relaxation over five runs with the respective MoreRed variant. ¢: RMSD of 10k
non-equilibrium structures from the QM7-X test split before (x-axis) and after (y-axis)
relaxation for all three variants of MoreRed and the baseline MLFF model. The three
partitions occur because the test structures are sampled to cover low/intermediate /high
RMSD values, where we sample 3 different non-equilibrium structures per equilibrium

structure.

Furthermore, to investigate the stochasticity of our method, we analyze the mean
RMSD values and their standard deviation from the mean after optimization, subject
to the RMSD of the initial structures. For this, we created 8 bins of initial structures
based on their RMDS and measured the RMSD after optimization (see Figure Blp).
It shows that not only does the mean RMSD increase based on the initial RMSD, but
also the standard deviation of the RMSD after optimization increases, with MoreRed-AS
having the lowest variance and MoreRed-ITP having the highest. However, the variance
is still small in comparison to the mean RMSD. This is expected, because structures
with large RMSD are assigned to high time steps, resulting in higher variance values
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for the diffusion reverse kernel. Besides, with high time steps, MoreRed needs more
optimization steps until convergence and with every step, a small amount of stochasticity
is added to the positions. Considering statistics over all test structures, the deviations
across multiple relaxation runs with MoreRed are very low and therefore not reported
in the boxplots.

In conclusion, for initial structures with higher levels of perturbation, the RMSD of
the optimized structures increases and the variants with adaptive scheduling, MoreRed-
JT/-AS, via time step prediction provide the required flexibility to perform more
accurate optimization. On the other hand, the fixed schedule variant, MoreRed-ITP,
provides fast and very accurate equilibrium molecules for initial structures with low
levels of noise.

Appendiz B.3. Examples of relaxed structures

For illustration, in Figure [B2| we visualize relaxation of non-equilibrium structures from
different sources. Example structures are shown in equilibrium and non-equilibrium on
the left-hand side. On the right-hand side, the different relaxation methods are shown
where the hydrogen atoms are suppressed. In panel b, we use the non-equilibrium
molecules obtained by perturbing the equilibrium geometries using 250 steps of Gaussian
diffusion. Although the diffused non-equilibrium examples are only distorted up to an
extent where the reference structure is visually still recognizable and the median noisy
RMSD matches that of the non-equilibrium structures from QM7-X, they become hard
to relax for the baseline methods. They fail at relaxing the first example while the three
MoreRed variants converge towards the ground-truth equilibrium geometry. Especially
the results from the models with adaptive schedule, MoreRed-JT/-AS, match the
reference structure better than MoreRed-ITP. The MLFF gives a physically implausible
result. In the bottom example, where the non-equilibrium structure has a lower RMSD
from the equilibrium geometry, the MLFF and the semi-empirical method also converge
to the reference geometry. However, all MoreRed variants achieve a significantly lower
RMSD and the simple force field baseline, MMFF94, fails at recovering the reference.
In panel a, we use the QM7-X non-equilibrium structures. In the bottom example, all
methods manage to find the reference equilibrium, where it is matched most closely
by the two MoreRed variants with adaptive schedule (JT/AS). While the low RMSD
values are a good indicator that MoreRed has accurately captured the distribution
of equilibrium reference structures reported in QM7-X, the top example shows why
additional metrics should be considered in the analysis. In this case, where the non-
equilibrium structure has a higher RMSD from the equilibrium geometry, none of the
methods recovers the reference. Nevertheless, the obtained configurations might be
local minima on the PES that structurally deviate even further from the equilibrium
structure reported in QM7-X than the non-equilibrium starting point of the relaxation.
Therefore, we evaluate DFT-computed energies of relaxed structures in section in
the main text to gain further insights into the performance of all methods.
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a
equilibrium  non-equilibrium  MMFF94 MLFF GFN2-xTB  Morered-ITP Morered-JT Morered-AS
from QM7-X
0.892 0.979 1.163 1.253 0.837 1.335 1.332
0.419 0.234 0.087 0.061 0.262 0.054 0.034
equilibrium  non-equilibrium  MMFF94 MLFF GFN2-xTB  Morered-ITP Morered-JT Morered-AS
Gaussian noise ®
ﬂ% tz\v %ﬂ @%i . \%/ % % %
0.638 0.638 1.803 1.253 0.193 0.044 0.027
0.462 0.623 0.071 0.080 0.028 0.027 0.030

Figure B2: Exemplary relaxation results for all baselines and the MoreRed variants.
Equilibrium geometries from the QM7-X test split and corresponding non-equilibrium
structures are shown on the left-hand side with nitrogen in blue, oxygen in red, hydrogen
in white, and carbon in grey. They are followed by results from the different relaxation
methods, where the hydrogen atoms are suppressed for clarity and the equilibrium
and the non-equilibrium structures are super-imposed in black and white respectively,
together with the relaxed structure of the respective method. Failure cases are drawn
in red and success cases in green. The RMSD from the equilibrium geometry is denoted
below each structure. In a, the non-equilibrium molecule is taken from QM7-x. In
b, the non-equilibrium molecule is obtained by applying the forward diffusion process,
i.e. adding Gaussian noise, for 250 steps. In both panels, the top row shows a non-
equilibrium structure with larger RMSD that was more difficult to converge for many
methods than the example in the bottom row.
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Figure B3: The RMSD ratios (left) and RMSD (right) of molecules relaxed with the
baseline MLFF model and with our MoreRed variants for 20k non-equilibrium structures
from the QMT7-X test split using SO3Net implementation in SchNetPack as an
alternative equivariant backbone representation for PaiNN. The median values and the
percentage of relaxation failure cases, i.e., the cases where the RMSD ratio exceeds 1,
are shown above each box plot.

Appendiz B.4. Generalization with different equivariant representations

To further assess the robustness of our method, we conducted a set of experiments
employing an alternative equivariant molecular representation to PaiNN. Specifically,
we trained the MLFF model and all three variants of MoreRed using SO3Net
as a backbone representation. This representation incorporates spherical harmonics in
the spirit of Tensor Field Networks [63] and NequlP to handle SO(3)-equivariance,
distinguishing it from the PaiNN architecture.

Utilizing the same data splits as in the PaiNN experiments, we tested the models
on the same set of 20 000 non-equilibrium structures from the test split of QM7-X. All
other experimental details align with those outlined in section [3.2] for PaiNN. Given the
long training time of the MLFF model (7 days) in comparison to MoreRed, we opted
to use half the number of parameters employed in PaiNN to expedite the experiments.
However, to maintain fairness, we used the identical model hyperparameters for both
MoreRed and MLFF. Additional hyperparameter details for SO3Net are provided in
section [Appendix C.2]

Our findings, summarized in Figure [B3| affirm that our approach performs

comparably well with this alternative equivariant neural network backbone, consistently
outperforming the MLFF model in terms of structure accuracy with MoreRed-AS and
MoreRed-JT. Yet, the overall performance for all models, including the MLFF is slightly
worse than reported in Figure [] with PaiNN, and there is a subtle discrepancy in
performance between MoreRed-AS and MoreRed-JT. We attribute these differences
to the lack of hyperparameter tuning with SO3Net and the use of half the number of
parameters employed in PaiNN.
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Figure B4: Left: Examples of time step trajectories from sampling molecular structures
from complete noise using MoreRed-JT. The solid lines indicate the predicted time steps
by MoreRed through the sampling iterations. For reference, the dashed line indicates
the fixed decreasing time step schedule used in the usual reverse diffusion from plain
DDPM. Each colour indicates a different sample. In the box to the top-right, we note
whether the sampled molecule passes the validity check explained in section
(stable) or not (unstable). Right: The evolution of validity and uniqueness when
increasing the maximum number of iterations for MoreRed-large (short for MoreRed-
JT-Large) in the molecule generation task on QM9.

Appendix B.5. Molecular generation with time step prediction

Improved molecule generation with adaptive schedule: In contrast to existing diffusion
models, e.g DDPM in our case, MoreRed-AS/-JT adaptively control the reverse diffusion
process with the diffusion time step predictor, as observed in the relaxation task
(see Figure in the main text). This means that we follow an adaptive time step
schedule where the time step at each denoising/sampling iteration is estimated by
a neural network { = 7e(x;). Sampling in existing diffusion models follows a pre-
defined fixed schedule where exactly T" denoising steps with decreasing time step values
t=T,T—1,...,1are done, as illustrated by the dashed line in the left plot in Figure [B4]
In the following, we compare the sampling performance with the adaptive schedule of
our MoreRed to the standard, fixed diffusion model sampling process in the task of
data generation from complete noise that diffusion models were originally designed
for. To this end, given a molecular composition Z, complete noise samples from the
isotropic Gaussian prior distribution, A(0,I), are used as initial molecular structures
and are then denoised by both models to sample valid molecular structures. For a
fair comparison, we employ the same noise model for classical sampling with a fixed
schedule, denoted as DDPM, and for adaptive sampling using the time step predictor,
i.e. MoreRed. In the rest of this section, we refer to MoreRed-JT as MoreRed. Examples
of generated structures can be found in Figure and Figure for MoreRed and
DDPM, respectively.
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We evaluate the generation performance on the QM9 dataset [123,|124], which is a
widely used benchmark for molecular generation tasks and described in section[Appendix]
[B.1l For data generation with MoreRed, we set the convergence criteria to £ < 0 or a
maximum number of sampling iterations equal to 2000. For the standard DDPM |[110],
we use a fixed schedule with 7' = 1000 sampling iterations (same as during training). For
our evaluation, we generate 10 000 structures starting from the latent prior distribution
where the atomic compositions Z of molecules are randomly drawn from the QM9 test
split.

As metrics, we adopt validity, uniqueness and novelty as proposed by Gebauer et
al |81], using their publicly available analysis script for comparability. It translates
the generated structures to canonical SMILES [126] encodings, which is a string
representation of molecular graphs. A molecule is considered valid if all its atoms
are connected and possess the proper valency in that encoding. Furthermore, unique
and novel molecules are identified by comparing the canonical SMILES strings of all
generated structures to each other and those of all molecules in QM9, respectively.
Table summarizes the results. We observe that MoreRed, i.e. adaptive scheduling,
performs better than DDPM, i.e. fixed scheduling, in all criteria. The same tendency
can also be observed for architectures with more parameters, i.e. MoreRed-large. This
confirms our hypothesis that our adaptive reverse diffusion procedure based on the time
step prediction is beneficial for unconditional sampling from complete Gaussian noise
and is not restricted to relaxation from noisy non-equilibirum structures.

MoreRed can dynamically adapt the time step at each sampling iteration to match
the current noise level in the sample, correcting for the errors caused by the noise
predictor, €y, as can be seen in some exemplary sampling trajectories in Figure
left. This adaptive scheduling dynamically determines the number of reverse (sampling)
iterations, providing a dynamic solution to the issue identified in Song et al [111]
of one step noise prediction with fixed reverse diffusion leading to potential sample
deviation from the optimal reverse trajectory. Namely, MoreRed mitigates this problem
by automatically adjusting the time steps, offering a promising solution without manual
hyperparameter tuning, which is necessary for previously proposed solutions that use
correction steps after each reverse diffusion step, such as using second-order SDE/ODE
solvers or running Langevin dynamics iterations [111}]127].

Mazimum number of sampling iterations: The results presented in table are
obtained using a maximum number of sampling steps of 2000. However, to gain a
more comprehensive understanding of the model’s behaviour, we conduct experiments
with varying maximum numbers of sampling steps using the large version of MoreRed-
JT, i.e. MoreRed-large, and summarize the validity and uniqueness results in the right
plot in Figure [B4]

We observe that the model can generate around 4% valid and unique molecules
with less or equal to 500 sampling iterations and up to 35% with no more than 800
steps, which is less than 1000 steps during training. Interestingly, MoreRed-large yields
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Table B1: Quality of 10 000 generated molecules after training on QM9. DDPM-
large and MoreRed-large are larger neural networks that use 4 times more learnable
parameters than DDPM and MoreRed, respectively. V=valid, U=unique, N=novel.

Model V (%) V+U (%) V+U+N (%)
DDPM 78.2 77.3 62.5
MoreRed 89.3 88.0 68.6
DDPM-large 86.6 85.3 63.8
MoreRed-large  94.7 92.4 66.7

around 25% fewer valid and unique molecules compared to the standard diffusion model
DDPM-large when using 1000 steps. Yet, it outperforms it by approximately 7% using
2000 sampling steps at most. This suggests that the error introduced by the stochastic
predictor of the diffusion step may slow down convergence in certain cases but ultimately
lead to finer samples. Furthermore, by observing the evolution of the curve, we deduce
that using 2000 steps is sufficient to achieve results close to the best performance.
Beyond 2000 steps and up to 50k sampling steps, it exhibits only marginal improvements
compared to the significant progress observed between 500 and 2000 steps. The latter
aligns with the findings of Song et al |111], who showed that using exactly 2000 steps
of a predictor-corrector sampler with manually tuned hyperparameters instead of only
1000 steps of a predictor-only sampler, like DDPM, to sample from a diffusion model
trained on 1000 steps enhances performance in images. Nevertheless, in our method,
we do not fix the exact number of iterations to 2000 for all the samples and we do not
need a manual tuning of hyperparameters but MoreRed dynamically sets the number of
steps by iteratively predicting the time step, eventually ending sampling after less than
2000 steps if the convergence criteria, t <0, is met.

Appendix C. Model architectures and hyperparameters

Appendiz C.1. Architectures

MLFF: The architecture of MLFF is illustrated in Figure [CI] Using the atomwise
invariant features s from PaiNN, an atomwise multi-layer perceptron (MLP) predicts
the atom-wise energies {Elgio)t}fil, which are then aggregated to form a permutation-
invariant potential energy F,o = Zf\il Eéigt, where N is the number of atoms in the
molecule. The gradients, i.e., the interatomic forces, are computed as the derivative of
the potential energy F,o with respect to the atom positions x, which ensures energy
conservation and equivariant predictions of interatomic forces.

MoreRed variants, including DDPM: The architectures of the different variants are
illustrated in Figure [C2] On the right side is the architecture of MoreRed-JT, where
the time and noise head share the same backbone molecular representation, e.g. PaiNN.
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Figure C1: MLFF architecture: x are the atom positions, and Z are the atom types.
An equivariant graph neural network, e.g. PaiNN, is used to learn an equivariant
molecular representation that extracts one vector of invariant features s and one vector
of equivariant vectorial features v per atom. The scalar features s are used to estimate
the energy oo = Zfil El(fgt using an atomwise MLP E} o — E}(fo)t,
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Figure C2: x; and x; are the (noisy) atom positions at true time step ¢ or unknown
step ¢ respectively, and Z is a vector of integers representing the atom types. @ denotes
the elementwise vector concatenation operation. Both architectures use an equivariant
graph neural network, e.g. PaiNN, to learn an equivariant molecular representation
that extracts one vector of invariant features s and one vector of equivariant vectorial
features v per atom. Left: The model architecture used to predict the diffusion noise
in the plain DDPM (section [2.1). The diffusion step t € {0,1,...,T} is normalized
by dividing by the maximum time step T, i.e. t/T" € [0,1], and concatenated to the
vectorial features v of each atom to directly predict one equivariant noise vector ey(xy, t)
per atom using an equivariant gated MLP. Right: The model architecture for MoreRed-
JT. It is identical to the DDPM architecture except that the unknown time step of x;
is first predicted by an atomwise MLP ¢ = 7¢(x;) on top of the invariant scalar features
s, similar to predicting the invariant potential energy in MLFF. MoreRed-ITP /-AS use
the same architecture as MoreRed-JT except that 7e(x;) and ey(x;, ) use two separate
GNN molecular representations, i.e. two separate green boxes in the diagram. In our
experiments, we use two identical PaiNN architectures to compute the seperate features
for the time and noise head when using MoreRed-ITP /-AS.
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Similar to the invariant energy in MLFF, the time ¢ = 7¢(x;) is predicted by an atomwise
MLP using the invariant features as input. In contrast to the energy-conservative forces
in MLFF, the diffusion noise is directly predicted as an equivariant tensorial quantity
using an equivariant gated MLP on top of the equivariant vectorial features v. For
MoreRed-ITP and MoreRed-AS, we use the same model architecture as for MoreRed-
JT, with the only difference being that the time head 7¢(x;) and the noise head e4(x;, t)
use two separate, but identical, molecular representation networks that are trained
separately, instead of using one joint network. On the left side is the architecture of the
plain DDPM |[110] (section used as a baseline model in the molecular generation
experiments in section [Appendix B.5| The overall architecture is similar to MoreRed,

except that the diffusion time step t is explicitly provided by the user as input to the
noise head, rather than being dynamically predicted by a neural network.
Appendiz C.2. Hyperparameters

The models used in our experiments with molecules are implemented and trained using
SchNetPack [115]. For all our experiments except the generalization experiments in

section [Appendix B.4] we use PaiNN [112] with 3 interaction blocks and 20 Gaussian

radial basis functions with a cosine cutoff of 5A as molecular representation for all the
models. After computing the molecular representation, the number of atomic features
is halved in each layer of the output heads, with a total of 3 layers for each head for all
the models. We use the AdamW [128| optimizer for all the models and train them until
complete convergence. Moreover, we use the exponential moving average (EMA) of the
model parameters with a decay of 0.999 for all models across all training epochs during
validation, testing and inference rather than using the most recent parameter updates.
Additionally, we use a learning schedule that halves the learning rate during training if
the validation loss stagnates for a predefined number of epochs, allowing for finer steps
near the local minima and avoiding fluctuating around them. We use early stopping to
stop the training process when the validation loss stops decreasing after some epochs
instead of using a fixed number of epochs and we use the model checkpoint with the
lowest validation loss for testing and inference. The specific details for the different
models are listed below.

MLFF: Overall, for MLFF training, we follow the hyperparameters and the training
details reported in the original work [112|, but we further tuned the batch size on
{10, 64,128}, the learning rate on {1073, 10~} and the atomic features on {64, 128,256} .
We found that a batch size of 10, learning rate of 10~% and 128 atomic features achieve
the lowest loss, which aligns with the results from previous work using PaiNN [72/112].
We found that using more atomic features than 128, i.e. more parameters, for MLFF
hurt the performance. Additionally, we use a patience of 15 epochs for the learning rate
schedule and 30 epochs for early stopping. The resulting baseline MLFF achieves a mean
square error of 0.376 keal /mol for energy and 0.519 kcal /mol/A for forces after training,
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which is within chemical accuracy of 1 kcal/mol and on par with the benchmarks on
QMT7-X as reported in Unke et al [72].

MoreRed variants, including DDPM: For all diffusion models used in our work, we
employ the polynomial approximation of the cosine noise schedule |73| with 7" = 1000
discretization steps, and a precision parameter of s = 107° to prevent the atoms from
undergoing large unrealistic movements during the initial sampling steps. We use a
large batch size of 128 molecules to improve the accuracy of the loss estimation, as
it involves uniformly sampling a single diffusion step ¢ per molecule per batch instead
of using the whole trajectory for each molecule in the batch. We set the number of
atomic features to 256 for all variants of MoreRed, including the plain DDPM model

used in molecular generation experiments in section [Appendix B.5. In these molecular

generation experiments, we also employ architectures with more parameters, namely
MoreRed-large and DDPM-large. Here we use 512 atomic features and 5 layers for
the noise head instead of 3, resulting in circa 10M parameters instead of 2.5M. For
MoreRed-JT, we found that setting n to 0.9 works well because the noise prediction
provides more signals (3N per molecule with N atoms) compared to diffusion step
prediction (one step per molecule). While we use a separate time predictor with a
separate representation for MoreRed-AS and MoreRed-ITP, all hyperparameters are
kept consistent across all MoreRed variants for all experiments and datasets. As depicted
in Figure [C3] uniformly sampling one time step ¢ per molecule per batch results in a
noisy training loss since the model uses different diffusion steps at each training iteration
instead of the entire diffusion trajectory. To mitigate this issue, we used EMA of the
parameters with a decay of 0.999 across all training epochs during validation, testing
and inference rather than using the most recent parameter updates. This approach
yielded smoother learning evolution, as reflected in the less noisy validation loss in
Figure because the EMA of the parameters better maintains the previously learned
signal from the different diffusion steps seen per molecule. We use a patience of 300
epochs for early stopping and 150 epochs instead of 15 for the learning rate schedule
because MoreRed uses only non-equilibrium molecules resulting in 100 times fewer data
and fewer iterations per epoch.

In initial experiments with MoreRed, we observed that the model outputs
occasionally explode, resulting in exploding gradients and divergence of the training,
as illustrated by the high peaks in the validation loss in Figure after 400 epochs.
Subsequent analysis revealed that this phenomenon occurs only for high diffusion steps
above t = 850, which was associated with highly noisy and unrealistically dense
molecules where all atoms were tightly packed with tiny atomic distances, as shown
in Figure Hence, we added gradient clipping with a global norm of 0.5 to mitigate
this explosive behaviour.

Details for SO3Net: In the generalization experiments, in section [Appendix B.4] using

SO3Net instead of PaiNN, we maintain a consistent configuration with 128 atomic
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Figure C3: Left: Plot showing the evolution of the training loss in blue and validation
loss in orange in the log scale. The validation loss has fewer fluctuations than the
training loss, showcasing the effect of applying EMA on the model’s parameters. The
validation loss shows three high peaks due to exploding model outputs. Subsequent
analysis revealed that this explosive behaviour occurs only for high diffusion steps above
t = 850, which was associated with highly noisy and unrealistically dense molecules
where all atoms were tightly packed with tiny atomic distances, as can be seen in the
rightmost figure. Right: Example of a degenerated molecule after 916 diffusion steps.
On the left is the original molecule. On the right is the diffused molecule, where all the
hydrogens (white nodes) are tightly condensed, resulting in tiny atomic distances and
explosive behaviour of the model. However, this issue does not occur frequently during
training.

features across the entire architecture and utilize 2 hidden layers for all property
prediction heads for all models, including the MLFF. The latter results in identical
model sizes for both MLFF and MoreRed, with MoreRed using fewer parameters than
in the main experiments. Additionally, we set ., = 1 for the maximum degree of
the spherical harmonics features. To speed up training, a large batch size of 512 and a
learning rate of 2 - 1073 is utilized for all models. All other experimental details remain
unchanged from those employed in the main experiments with PaiNN.

Appendix D. Computation time

Here we give a more detailed analysis of the computation time for the three MoreRed
variants and the MLFF model that have been used for the experiments in section [3.2]
The median number of steps until convergence as well as the accuracy of the equilibrium
structures strongly depend on the MoreRed variant, ranging from 53 steps for the fastest
MoreRed-ITP to 1000 steps for the most accurate MoreRed-AS. For MoreRed-AS, we
observe many trajectories where the model predicts many consecutive low-time steps
until reaching the maximum number of allowed steps, but the optimization does not
converge due to the strict convergence criterion of £ < 0. Applying less strict convergence
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criteria might decrease the number of steps per structure optimization significantly,
which is a direction for future work. Furthermore, the computation time per structure
during inference dramatically improves if many structures are evaluated in batches
instead of sequentially. While batch-wise optimization can be done straightforwardly
with all MoreRed variants, batch-wise structure optimization utilizing the MLFF model
is not trivial, due to the dependency on the L-BFGS optimizer. In the following, we
give a rough estimate of the inference time by either using sequential optimization or
batch-wise optimization. For the analysis, we neglect any computational cost that is
not directly related to model inference.

Sequential optimization Comparing MoreRed variants to the MLFF model, we
observed an average inference time for a single structure, not a batch, of 0.03s for
MoreRed and 0.02s for the MLFF model. To compute the mean inference time per
structure optimization performed sequentially, we need to use not the median, as
reported above, but the mean. The mean number of optimization steps until convergence
was measured as 64 steps for MoreRed-ITP, 489 steps for MoreRed-JT, 992 for MoreRed-
AS, and 122 for the MLFF model, which results in an average total inference time per
structure optimization of 0.03s - 64 = 1.92s for MoreRed-ITP, 14.67s for MoreRed-JT,
29.76s for MoreRed-As and 2.44s for the force field.

Parallelized optimization For efficient optimization of a large number of structures, as
is usually the case in many applications, model inference is preferably done in batches.
Assuming batch-wise relaxation with the MLFF model is possible, we observed an
inference time for evaluating a batch of 128 molecules of 0.03 s for the force field
and 0.05 s for the MoreRed variants. Since the batch-wise relaxation is done until
all the structures in the batch have converged, in a worst-case scenario, which is more
likely to happen the larger the batch is, both methods need the maximum number of
allowed steps, which is 1000. This would result in an average inference time per structure
optimization of 29351000 — () 935 for the force field and 22251900 — () 395 for the MoreRed

128 128
variants.
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