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Abstract—Moving object segmentation is critical to interpret
scene dynamics for robotic navigation systems in challenging
environments. Neuromorphic vision sensors are tailored for mo-
tion perception due to their asynchronous nature, high temporal
resolution, and reduced power consumption. However, their
unconventional output requires novel perception paradigms to
leverage their spatially sparse and temporally dense nature. In
this work, we propose a novel event-based motion segmentation
algorithm using a Graph Transformer Neural Network, dubbed
GTNN. Our proposed algorithm processes event streams as
3D graphs by a series of nonlinear transformations to unveil
local and global spatiotemporal correlations between events.
Based on these correlations, events belonging to moving objects
are segmented from the background without prior knowledge
of the dynamic scene geometry. The algorithm is trained on
publicly available datasets including MOD, EV-IMO, and EV-
IMO2 using the proposed training scheme to facilitate efficient
training on extensive datasets. Moreover, we introduce the Dy-
namic Object Mask-aware Event Labeling (DOMEL) approach
for generating approximate ground-truth labels for event-based
motion segmentation datasets. We use DOMEL to label our
own recorded Event dataset for Motion Segmentation (EMS-
DOMEL), which we release to the public for further research and
benchmarking. Rigorous experiments are conducted on several
unseen publicly-available datasets where the results revealed that
GTNN outperforms state-of-the-art methods in the presence of
dynamic background variations, motion patterns, and multiple
dynamic objects with varying sizes and velocities. GTNN achieves
significant performance gains with an average increase of 9.4%
and 4.5% in terms of motion segmentation accuracy (IoU%) and
detection rate (DR%), respectively.

Index Terms—Neuromorphic Vision, Dynamic Vision Sensor,
Event Camera, Motion Segmentation, Graph Transformer Neural
Networks.

I. INTRODUCTION
Scene understanding constitutes a cornerstone to a plethora of
robotic applications where automation and behavioral intel-
ligence are essential, such as navigation [1, 2], exploration
[3], and simultaneous localization and mapping [4]. It in-
corporates perceiving sensory information to infer geometric
and semantic properties of objects present in the context of
a working environment. The robustness of such perception
modules heavily depends on their ability to cope with various
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(A) (B) (C)
Fig. 1: Motion segmentation results of the proposed learning-based
algorithm (GTNN) using EV-IMO (Floor sequence) publicly available
dataset [15]. (A) APS image for visualization only. (B) Approximate
Ground truth events: black represents foreground events and red rep-
resents background events. (C) Segmented events using the proposed
GTNN algorithm: black indicates predicted foreground events and
gray indicates predicted background events. Our GTNN performs a
binary classification to differentiate between foreground events due
to moving objects or background events due to camera motion.

inherent environmental challenges, such as scene dynamics,
varying lighting conditions, and the absence of prior knowl-
edge related to the number of objects. According to [5, 6, 7],
approaches that can tackle such challenges are still under
investigation. Scene Segmentation can be broadly divided into
three main categories: Semantic [8], Instance [9, 10], and
Motion Segmentation [11]. A recent progress in this area can
be contributed towards advanced deep learning approaches
exhaustively reviewed in [12]. Depending on specific appli-
cation requirements, appropriate segmentation techniques can
be selectively employed for accurate scene analysis. In a
navigation scenario, where a robotic vehicle moves in its
task environment and is anticipated to encounter one or more
dynamic objects, motion segmentation is pivotal to ensure
safety of the vehicle and its surrounding environment, and
hence ascertain the continuity of the robotic task. Motion
segmentation is defined as the segregation of some dynamic
object, moving independently, from the background motion,
based on observations acquired from passive [13] or active
[14] sensors.

Vision-based motion segmentation is an active research area
and several approaches have been proposed in the literature
[16]. Neuromorphic vision is an emerging research area and
technology that mimics the working principle of the human
retina, by timely and asynchronously capturing the polarity
of the log intensity variations in the observed scene at the
pixel level. Neuromorphic vision sensors are also referred to
as event-based cameras1 acquire information in the form of
continuous streams at low latency (>20µs), high temporal
resolution (>800kHz), high dynamic range (>120 dB), and
no motion blur [16]. Event-based cameras outperform the ca-

1These two terms (Neuromorphic vision sensors and event-based cameras)
will be used interchangeably throughout the paper.
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pabilities of conventional cameras and therefore make them an
ideal alternative for conventional vision sensors, particularly
in applications that require robust perception, such as motion
estimation of vehicles under varying illumination conditions
in the presence of dynamic scenes. A wealth of event-based
computer vision literature has unlocked new opportunities and
initiated research directions for more robust visual perception.
Such capabilities have been demonstrated in various applica-
tions such as visual localization [17, 18], depth estimation
[19], object tracking [20], precision manufacturing [21], and
tactile sensing [22], to name a few. Though event cameras
have demonstrated significant advantages over their conven-
tional counterparts, respective computer vision paradigms must
handle the data sparsity and low spatial resolution typical of
the acquired event streams.

Recently, few research work are conducted to develop
motion segmentation paradigms based on data acquired from
event cameras. These paradigms can be classified into: (1)
classical approaches such as [23, 24, 25], and (2) learning-
based approaches such as [26, 27]. In the former, motion-
model fitting and clustering methods are used to differentiate
the events that belong to a moving object in the scene from
those belonging to the background. In the latter, classification
or regression using neural networks, such as spike and graph
convolutional, are employed to identify events belonging to a
moving object. These approaches either require prior knowl-
edge of the scene (number of objects) and camera motion,
camera parameter tuning, sensor data pre-processing (filtering,
offline parameter computation, etc.), or initialization of the
optimization problem. These limitations hinder the generality
and applicability of the state-of-the-art (SOTA) event-based
segmentation approaches and hence, this problem remains
unsolved.

In the current work, we propose a learning-based mo-
tion segmentation algorithm2 to aid robotic navigation in
unknown dynamic environments. Particularly, we employ a
Graph Transformer Neural Network (GTNN), based on the
point transformer layer [28], to classify events triggered in
a dynamic scene into moving-object events or background
events. Our GTNN approach is based on processing raw
event streams, acquired by an event camera, without requiring
any prior knowledge about the topology or the dynamics in
the scene, prior knowledge of the camera motion, camera
parameter tuning, event pre-processing, or offline initialization.
Eliminating such requirements is essential to achieve better
generalizability across various scenes, motion scenarios, and
sensors.

Transformers have been recently used for event-based ap-
plications and have demonstrated outstanding performance in
processing event streams for event-denoising [29] object de-
tection [30], and action and gesture recognition [31]. However,
it is worth noting that the transformer operates on 2D frames
in [31, 30]. These frames were reconstructed from events, as
opposed to the work in [29] where a graph-driven transformer
operates on raw event data. A point transformer has recently
been proposed to handle dense representations of point clouds

2A supplementary video is available at: <https://youtu.be/rVvbKdXh6oE>

for object classification and segmentation using 3D data [28].
In the current work, we demonstrate the scalability of GTNN
using the point transformer layer and address the challenges
posed by unconventional and noisy sensor output, as well
as the low-spatial resolution and sparsity of neuromorphic
vision sensors. More specifically, working with event streams
is deemed challenging due to the limited features encoded in
raw event data, such as the spatial coordinate of the pixel
where the intensity change occurred in the scene, the time of
the event, and the polarity; +1 or -1 indicating an increase or
decrease in intensity, respectively. To handle the differences
in input data between the sparse representation of the event
stream and the dense representation of a point cloud, a new
architecture for the GTNN algorithm has been developed.
This architecture includes a point transformer layer, as well
as some additional changes in the number of encoder and
decoder units and the addition of processing layers such as
global aggregation. While the direct implementation of the
point transformer structure developed by [28] was initially
considered, evaluations have shown that it was too complex
and less efficient for the event-based motion segmentation task
at hand.

The proposed GTNN algorithm is trained in a supervised
manner on publicly available datasets [15, 25, 32] to perform
end-to-end motion segmentation, i.e GTNN takes as input un-
processed event streams and outputs the segmentation results.
Evaluation sequences from the publicly available datasets are
used to validate the proposed algorithm and to quantitatively
and qualitatively compare it against the SOTA learning-based
motion segmentation approach [26] and the offline classical
approaches [24, 25, 33]. The segmentation accuracy achieved
by GTNN outperforms SOTA motion segmentation approaches
[26, 24, 25, 33]. Further to that, the GTNN model is more
efficient than [26] in terms of computational requirements
and hence performs faster prediction. The testing scenarios
exhibited various scene dynamics, changing illumination con-
ditions, and different camera motion dynamics. The proposed
algorithm is robust against all of the aforementioned chal-
lenges and requires no fine-tuning upon testing in unknown
environments using unseen sequences. Fig. 1 shows sample
segmentation results obtained when testing our proposed al-
gorithm on a publicly available dataset of EV-IMO (Floor)
[15].

Additional testing sequences are recorded in our lab fa-
cilities to further analyze the performance of the proposed
algorithm in scenarios recorded in a different domain than
that of the publicly available training and testing datasets. To
that end, we propose the Dynamic Object Mask-aware Event
Labeling (DOMEL) approach to generate approximate ground-
truth event labels for the recorded sequences. The performance
of GTNN on these recorded sequences has verified its gener-
alization across new domains.

The overall framework proposed in this paper is depicted in
Fig. 2 highlighting the detailed design of (1) the graph trans-
former neural network (GTNN) for motion segmentation and
(2) the dynamic object mask-aware event labeling (DOMEL).

To summarize, the contributions of this work are:
1) The design and development of an event-based motion

https://youtu.be/rVvbKdXh6oE
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segmentation algorithm, based on GTNN. The proposed
GTNN (1) preserves the asynchronous nature of event
streams and exploits spatiotemporal correlations to infer
the scene and camera motion dynamics, (2) does not
require any prior knowledge about the scene geometry
and/or dynamics, and (3) does not need initialization or
event pre-processing to perform motion segmentation.

2) The design of an effective training scheme that facil-
itates training on an extensive dataset while reducing
computational requirements. This scheme enables faster
convergence and hence higher performance than conven-
tional training by exposing portions of the training data
to the network at every iteration.

3) Extensive evaluation of the proposed GTNN algorithm
on publicly available event datasets and on experimental
sequences recorded locally in our lab facilities. Compar-
isons to the SOTA learning-based and classical motion
segmentation approaches have also shown the superior-
ity of the proposed algorithm in terms of segmentation
accuracy (IoU%) and detection rate (DR%).

4) The release of a new event dataset (EMS-DOMEL) with
the corresponding motion segmentation ground truth
labels obtained using the proposed DOMEL approach.
Data is recorded using two event cameras with different
resolutions, in scenes involving multiple dynamic ob-
jects of various sizes/types in a variety of challenging
environmental scenarios.
The dataset can be accessed through the following
link: <https://github.com/Yusra-alkendi/EMS-GTNN>
for further research and benchmarking.

The remainder of this paper is organized as follows. Section II
provides a review of the related literature. Section III describes
in detail the proposed GTNN algorithm and the EMS-DOMEL
dataset. In Section IV, the experimental results are presented,
analyzed, and compared to SOTA motion segmentation ap-
proaches. The conclusions of the current work are drawn in
Section V.

II. BACKGROUND AND RELATED WORKS

A. Event-based Motion Segmentation

Solutions for event-based motion segmentation have been
investigated throughout the past years for variable environ-
mental conditions at different complexity levels. Owing to
the camera’s working principle, events are only generated if
changes occur, either due to camera motion or dynamics in
the scene. For the simplest scenario where the event camera is
static, motion segmentation has been tackled using clustering
approaches as in [34, 35, 36].

In case the camera capturing the scene is moving, events
are generated due to two main reasons: (1) camera ego-
motion, and (2) moving objects. To differentiate between these
two categories, camera motion should be estimated and/or
additional information about the environment is required [37].
A recent motion segmentation framework based on motion
compensation has been proposed in [23], where raw events are
accumulated into 2D frames. The frames are then aligned with
high contrast contours, and evaluated using dispersion [33] or
sharpness [38, 39] measures. For high dynamic environments,

Mitrokhin et al. [33] have proposed an approach to detect
moving objects by fitting a motion model using multi-key
parameters into the background, and then considering mis-
aligned events to belong to different segments/classes. The
clustered objects are then tracked by a Kalman filter to handle
occlusions and scene uncertainties. This approach might not
work if multiple moving objects appear in one scene. This
work was later extended in [23] by integrating the Expectation-
Maximization (EM) approach in the segmentation method.
Their results showed excellent segmentation and optical flow
estimation. However, the EM-based segmentation algorithm
requires prior knowledge about the scene, particularly the
number of moving objects to start initialization.

Recently, Parameshwara et al. [25], have proposed an
approach using a combined nonlinear optimization method
to segment multiple objects moving independently, without
knowledge of the number of moving objects in the scene.
Furthermore, Mitrokhin et al. [15] proposed a learning-based
framework for motion segmentation using motion compensa-
tion, where depth, ego-motion, and clustering of independent
moving objects (IMOs) and their 3D velocity were estimated.

A recent study by Zhou et al. [24] developed an offline
optimization approach based on energy minimization where
identification of IMOs acquired with an event-based camera
is performed based on motion fitting and clustering methods.
The iterative scheme allows for exploiting spatiotemporal
correlations between event streams for event identification.
The proposed algorithm requires no prior information about
the scene, dynamic objects within the scene, or camera mo-
tion. It, however, requires an initialization stage to start the
optimization.

Lastly, Parameshwara et al. [26] developed a learning-based
motion segmentation approach using an encoder-decoder
spike neural network architecture, called a SpikeMS model.
SpikeMS is a binary classifier based on a novel spatiotemporal
loss function. SpikeMS is capable of performing incremental
predictions for event streams where the segmentation accuracy
is comparable to offline classical-based approaches [33, 23,
25]. Spatiotemporal correlation methods and deep learning
approaches have shown potential in the reviewed event-based
motion segmentation approaches, however, various aspects of
this field remain largely unexplored.

B. Graph Transformers Neural Networks

Deep learning models which operate on non-Euclidean graph-
structured data are known as graph neural networks (GNNs).
GNNs have been successfully employed in a multitude of
applications [40] such as object segmentation [41] due to
their expressive power and modeling flexibility. GNNs perform
mapping of input graphs based on their node features and
connectivity within a neighborhood (edges), despite the order
in which they are fed to the neural network. It is also worth
noting a single GNN architecture may accept input graphs
of variable sizes. This important property of GNNs highly
suits the asynchronous nature and variable input rate of event
streams, which are a function of the scene and camera motion
dynamics.

Transformers, on the other hand, have recently proven

https://github.com/Yusra-alkendi/EMS-GTNN
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Fig. 2: Proposed event-based motion segmentation framework based on graph transformer neural network (GTNN). GTNN is developed and
trained using the proposed training scheme on publicly available event datasets (EV-IMO, MOD, EV-IMO2) and tested on the corresponding
evaluation sequences along with our recorded experiments (EMS-DOMEL). The approximate ground truth event labels of our recorded
experiments are generated using the proposed DOMEL approach. The proposed algorithm classifies incoming event streams into foreground
events related to moving object(s) or background events.

cutting-edge performance in a variety of applications, includ-
ing natural language processing [42] and computer vision tasks
[43, 44, 45, 46, 47]. The self-attention head used in trans-
formers is responsible for capturing the relationships between
inputs and outputs and allowing simultaneous processing
of sequential recurrent networks. Graph-based transformers
with their self-attention operation have proven an outstanding
capability for processing 3D data such as 3D point cloud
[48, 28, 49, 50] for vision tasks like segmentation and classi-
fications. Inspired by this success in 3D data processing and
our previous work on GNN-transformer for events denoising
[29], we design a learning-based motion segmentation network
based on a graph transformer neural network. The proposed al-
gorithm allows for handling the asynchronous nature of events
for revealing their spatiotemporal correlations and processing
the scene dynamics accordingly. An event stream is fed to the
algorithm, which extracts the local features of every event and
integrates them with a global feature representing the whole
stream, prior to processing them using nonlinear operations.
The event stream is then segmented into events that belong to
the background and others that belong to moving objects in

the scene.
III. PROPOSED FRAMEWORK

In this section, the proposed design of (1) the graph trans-
former neural network (GTNN) for motion segmentation and
(2) the dynamic object mask-aware event labeling (DOMEL)
are presented in detail.

A. Graph Transformer Neural Network (GTNN) Algorithm for
Event-based Motion Segmentation

The GTNN motion segmentation algorithm operates on incom-
ing event streams, acquired through a moving event camera
in a dynamic scene to carry out classification of events
into (1) foreground events: events that belong to dynamic
objects in the scene, and (2) background events: events that
belong to the static background and were generated due to
camera ego-motion. GTNN processes events in their raw
formats, i.e. does not perform any event pre-processing such
as accumulation into 2D frames, and hence preserves their
asynchronous nature. Particularly, events are structured as 3D
graphs encapsulating their spatiotemporal properties. Event
graphs are then passed through a set of convolution and
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deconvolution operations as per the architecture visualized in
Fig. 3.

The remainder of this section presents in great detail the
implementation of the proposed GTNN algorithm. Section
III-A1 provides details on events-3D graph construction based
on k-nearest neighborhood (kNN) strategy, Section III-A2
explains the events-3D graph transformation process where
the graph nodes and their features are nonlinearly mapped
by the encoding-decoding GTNN model, and Section III-A3
delineates the architecture of the proposed GTNN.

1) Events-3D graph construction
Data perceived by an event camera report changes in log

intensities of the observed scene in the form of asynchronous
events. Events span a spatial resolution of H×W pixels,
where H and W are the vertical and horizontal dimensions
of the camera’s frame. A stream of N events, {ei}N , can be
represented using a sequence of 4-tuples as indicated below:

{ei}N = {xi, yi, ti, pi}N , (1)

where (xi, yi) is the event’s pixel coordinate at which event i
has occurred within the frame, ti refers to the time at which
event i is triggered, and pi is the event’s polarity. Event
polarity may take one of two values: +1 if the brightness
of the pixel has increased and −1 otherwise.

A stream of events triggered within a pre-defined temporal
window is structured as a 3D graph G. In case of aggressive
vehicle maneuvers, and due to the high temporal resolution of
the event camera, a huge amount of event pixels will be active
simultaneously. Consequently, inferring spatiotemporal event
relationships is deemed challenging due to data redundancy
and high computational requirements. To resolve this issue and
to minimize memory usage, the size of the graph constructed
from the temporal window is limited to a fixed maximum
(Nmax=5000), which was decided based on visual assessments
of the events’ projection on a 2D frame. This means that
the temporal window could be shorter if too many events
were received as a result of high scene dynamics, in which
case the most recent Nmax events will be used to construct
the graph. As for memory requirements, classification of an
event sample requires storing up to Nmax events. It is worth
noting that graphs constructed from a single event sequence
may exhibit variable sizes at different times, depending on
the scene and camera dynamics. Operation on variable-sized
graphs is a property of graph-based neural networks. By virtue
of this, our proposed approach may generalize across various
domains, regardless of the number of triggered events in the
temporal window.

Each node in the graph G represents an event in the stream.
Consequently, node features are the properties of the triggered
events, namely <(xj), (yj), (tj)>, where j represents the node
index in the graph, (xj , yj) are the event’s pixel coordinates,
and tj is the event’s timestamp. Although event polarities may
provide insights about the motion direction through analysis of
brightness changes, this property is sensitive to the camera’s
parameter settings. To that end, performing motion segmen-
tation based on this event property may limit the generality
of the proposed algorithm, hence why we omitted it from the

graph node features. A similar consideration was adopted in
our previous work [29].

Next, the k-Nearest Neighbor (kNN) search is performed
to connect every node (ei) to k-nearest neighboring nodes
(ej) based on their 3D spatiotemporal distances. Resulting
spatiotemporal neighborhoods are referred to as sub-graphs,
each containing k+1 nodes. These sub-graphs will be further
processed by the encoding-decoding operations as will be
discussed in Section III-A2.

2) Events-3D graph transformations
The constructed 3D graph, including all the sub-graphs, will

be passed through a set of encoding and decoding layers in
GTNN. In this section, the details of the core layers will be
explained; namely a point transformer layer, transition down
module, and transition up module.

Point Transformer Layer: The point transformer layer
operates on the sub-graphs generated in the previous step. It is
worth mentioning that several implementations of transformer
layers for classification and segmentation of 3D data were
found in the literature, such as [28, 48]. The implementation
adopted in our proposed approach was inspired by [28], since
the constructed 3D event graphs exhibit the same structure as
3D point clouds, although the data inference is different.

The point transformer layer implements a self-attention
mechanism that captures the sequence relationship between
the inputs and outputs for structured prediction tasks. The
attention mechanism based on the query–key–value (QKV)
model enables functions with high long-term memory [42] and
executes parallel processing which can reveal jointly complex
relationships between inputs and outputs. The most popular
self-attention operators are scalar attention [42] and vector
attention [51]. The vector or dot-product attention operator (i.e.
a simple matrix multiplication) is selected in our algorithm
to achieve faster state update and better space efficiency.
The point transformer layer is composed of a residual block
to perform feature aggregation and feature transformation as
illustrated in Fig. 3-(1).

Let X(i) be a set of input feature vectors. X(i) will be
processed by three connected operation streams. In the first
stream operation, a subtraction relation is used between the
input features after being transformed in a point-wise manner
by φ and ψ. Those will be added with a position encoding δ
(from the second operation) and consequently forming the at-
tention vector which is nonlinearly mapped by γ through MLP.
Concurrently, in the third operation stream, input features are
transformed by α and added to a position encoding δ. Then,
the outputs of all stream operation lines are aggregated using
the Hadamard product. φ, ψ, and α are point-wise feature
transformations, such as linear projections or nonlinear MLPs.
δ is a position encoding function. γ is a mapping function (in
our case, two layers of MLP, followed by ReLU). The output
of the point transformer layer is represented by the following
formula:

yi =
∑

xj⊆X(i)

ρ(γ(φ(xi)− ψ(xj) + δ))⊙ (α(xj) + δ), (2)

where yi is the output feature. ρ is a normalization function.
Spatiotemporal patterns between a set of events are essential
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Fig. 3: Proposed Graph Transformer Neural Network (GTNN) Architecture for Event-based Motion Segmentation. The classification network
takes N number of events as input stream, applies input and feature transformations and mapping, and then aggregates global features by
global max pooling. The output is a binary classification assigned to each event in the stream, indicating whether it belongs to class 0 (a
moving background due to camera motion) or class 1 (dynamic object(s) within the scene).

to carry out event-based motion segmentation. Such patterns
could be obtained based on extracted local and global feature
correlations between events in a graph. By operating on sub-
graphs, the point transformer layer will extract information
on the local coherence between the events. This local graph
operated-attention transformer has been adopted in literature
for image analysis [51] and 3D point cloud processing [28].

The 3D event graph G is passed to the point transformer
layer, where every sub-graph is processed to nonlinearly map
the node features. Sub-graphs are referred to as X(i), where
X(i) ⊆ X , and X is the 3D graph G in our implementation.
The output of the layer is of the same structure as the input
graph G. Details on the point transformer layer are depicted
in Fig. 3-(1).

Transition Down Module: In this module, the cardinality
of the 3D graph is reduced by a certain factor, to convolve
the graph nodes. For instance, for a graph G with N nodes
and a reduction factor 4 is requested, the transition down
module will output a new graph containing N/4 nodes. As
schematically illustrated in Fig. 3-(2), G(p1) refers to the
input graph with p1 nodes that enters the transition down
module where G(p2) is the output graph (reduced graph size)
with p2 nodes. The farthest point sampling (FPS) algorithm
is adopted and performed in G(p1) to identify a well-spread
downsample subset G(p2) (where G(p2)⊂G(p1)) with the
requested cardinality. It is worth noting that the pooling is
performed on G(p1) using the same kNN graph strategy to
obtain G(p2), which is the same neighboring set of data

previously identified in the point transformer layer. In this
work, k is selected to be 16 based on the ablation study which
is performed on this hyperparameter and its variants. In this
module, each input feature is passed sequentially through a
linear transformation, batch normalization, and ReLU opera-
tions. Then a max pooling is operated onto each node in G(p2)
based on k neighborhood nodes in G(p1).

Transition Up Module: U-net architecture is adopted [28]
where the encoder layers, in our case point transformer
layer, are coupled with the corresponding decoder layers.
This coupling was adopted since motion segmentation is
similar to semantic segmentation which requires a dense
prediction-masked output. The main function of the transition
up module is to map features from the reduced graph data
set, G′(p2), onto its superset graph data set, G′(p1) (where
G′(p1)⊃G′(p2)). Similar to transition down operation, each
input point feature is sequentially processed by a linear layer,
batch normalization, and ReLU operations. The node features
of G′(p2) are mapped to a high-dimension graph size, G′(p1),
using trilinear interpolation. To that end, the interpolated
features of G′(p1) and the features of corresponding encoder
stage G′(p1) are concatenated via the skip connection. In other
words, and as mentioned earlier, the point transformer layers
operate as the network encoder layers where their output graph
is connected to the output graph from transition up modules
(decoders) via skip connection. The structure of the transition
up module is depicted in Fig. 3-(3).
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3) The GTNN architecture
Fig. 3 shows the overall architecture of GTNN, where

given an input 3D graph, node features will be processed
by means of various nonlinear operations to perform motion
segmentation. In other words, every event (i.e. node) in the
graph will be classified as a foreground event or a background
event.

The event graph is encoded in two stages, as depicted
in Fig. 4; (1) node features are encoded using the point
transformer layers and (2) graph nodes are encoded using the
transition down module. A point transformer layer coupled
with a transition down module is referred to as an encoder unit.
Similarly, a point transformer layer coupled with a transition
up module is referred to as a decoder unit.

Based on the application and dynamics in the data, the
number of encoder units is varied. In our case and according
to the ablation study, the best-performing network architecture
has three encoder-decoder units. The selected downsampling
rates for the transition down modules are [1, 4, 4] which
correspond to graph sizes of [N, N/4, N/16], where N is
the number of events within the graph G. Consequently, the
upsampling rates for the corresponding transition up modules
will be [4, 4, 1]. Hence, the output graph will be of the same
size as the input graph.

Obtaining a global feature vector that correlates the events
in the graph is necessary for motion segmentation. This is
achieved by transitioning down the graph nodes, obtained after
the three encoder layers, into a single node. The features of
this node are passed through an MLP and transformed by
a graph average pooling operation forming a global feature
vector. Inspired by the other segmentation models [48], the
global feature vector is appended to every node feature in the
graph after the last decoder layer in the network. The output
is then passed to an MLP followed by a softmax (Eq. (3))
layer that generates a N × 2 tensor. The entries in each row
are the predicted probabilities of an event being a foreground
or a background event.

Softmax(xi) =
exi∑2
j=1 e

xj

(3)

A detailed ablation study is presented in the supplementary
material where the number of encoder-decoder units was
varied, and the performance of the network with and without
aggregation of the global feature vector was analyzed.

B. Proposed Effective Training Scheme

In our work, a neural classifier is trained on set of 3D
graphs, representative of event streams to perform motion
segmentation in a supervised manner. The network will carry
out node classification, where it will predict a label/class for
every node in the graph. Given an input 3D graph and the true
node labels, the weights of the classification neural network
are optimized to minimize the difference between the predicted
output and the ground truth label. The sparsity and the limited
information obtained from event data, i.e. < xi, yi, ti, pi >,
make scene interpretation and hence, end-to-end vision tasks
such as motion segmentation challenging. On the plus side,
the high temporal resolution of event data makes it possible
to obtain large amounts of data in a short period of time.

The accuracy of deep learning models heavily depends on
the quality and quantity of the datasets used for training and
evaluation. Exposing neural networks to large amounts of
diverse training data is essential for (1) effectively tuning the
network’s parameters to generate accurate predictions, and (2)
enhancing the network’s ability to generalize well to unseen
samples. Nevertheless, extensive efforts are required to obtain,
for some applications, and correctly annotate large amounts of
training data. Moreover, operating on large training datasets
is computationally expensive and models may not seamlessly
converge to the global optimum solution. To circumvent these
challenges, researchers have investigated various techniques
[52, 53] to optimize the selection of training data to improve
training efficiency.

In this work, we propose an effective training scheme,
to exploit the availability of huge amounts of training data
to facilitate global convergence, while reducing the training
computational requirements, as shown in Fig. 5 and Algo-
rithms 1. Instead of using the full training dataset every epoch,
we propose to split it into L subsets. In every iteration, the
network is exposed to only one of the training subsets, while
other subsets remain idle. Consequently, the network will
train, i.e. carry out backpropagation, on a particular subset
once every L iteration. Therefore, the neural network will be
exposed to the full training dataset after L training epochs.
This approach differs from conventional training methods, in
which the entire training dataset is typically used to update the
weights of the neural network in every epoch using the mini-
batch gradient descent method. Specifically, in this method,
a subset of the dataset (called a mini-batch) is exposed to
the network, the error is calculated, and the weights are
updated accordingly. However, due to the large size of the
graph nodes and the limited memory capacity of the computer,
the mini-batch size in our case is limited to 8. In both the
conventional and proposed effective schemes, we use the mini-
batch gradient descent method.

However, the difference between the conventional approach
(Algorithm 2) and our proposed method (Algorithm 1) is that
the mini-batch gradient descent is implemented on a subset,
rather than the entire dataset. This allows us to take advantage
of the benefits of mini-batches when training a network on
large data samples.
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Fig. 5: The framework of the proposed effective training scheme
compared to the conventional training scheme. Note that i is the
current epoch number, L is the number of training subsets, J = i%L
where % is the modulo operator.

Algorithm 1 Effective Training Scheme with Data-Dropout
Strategy

1: Let L be the total number of subsets
2: Let N be the total number of epochs
3: for i = 0 to N − 1 do
4: Compute subset index J = i mod L
5: Extract subset SJ from the training set
6: Train the model using subset SJ

7: end for

Algorithm 2 Conventional Training Scheme without Data-
Dropout Strateg

1: Let N be the total number of epochs
2: for i = 0 to N − 1 do
3: Train the model using the entire training dataset
4: end for

To show the effectiveness of the proposed training scheme,
it was used to train GTNN and then compared to the conven-
tional training scheme on the same training dataset, namely
MOD [25] dataset. MOD contains sequences of event streams,
for benchmarking learning-based motion segmentation mod-
els. Fig. 6 depicts the loss curves obtained in both cases
where it can be clearly observed that the proposed effective
training scheme has resulted in faster training and better
network learning capacity. Although the loss value obtained
using conventional training in the first 400 training epochs was
less than that obtained using our proposed training scheme,
the training time was five times slower as indicated in Table
I. After 400 epochs, the loss was still decreasing using
the proposed training scheme, which proves the enhanced
network learning capacity. Upon testing the trained models on
unseen data, the results demonstrated the effectiveness of the
proposed training scheme where better segmentation accuracy
was achieved compared to conventional training, as listed in
Table I.

Fig. 6: Loss curves were obtained while training the network with
the proposed effective and conventional training schemes (with and
without data dropout strategy, respectively).

TABLE I: Comparison between the training execution time and
testing performance using the proposed effective and conventional
training schemes.

Large

Execution/Evaluation
Metrics

Effective Training Scheme
(with Data-Dropout strategy)

Conventional Training Scheme
(without Data-Dropout strategy)

Training
Required time to execute

one epoch (s) 42 225

Testing
(TP , FP , FN , TN ) (97681, 96816, 58823, 2216680) (82264, 145343, 74248, 2168062)

F1 score 55.6% 42.8%
Recall score 62.4% 52.5%

C. Dynamic Object Mask-aware Event Labeling (DOMEL)

DOMEL is a new framework capable of generating annota-
tions for event streams from a variety of event camera types,
including but not limited to DAVIS346c and DVXplorer. This
flexibility is made possible by leveraging reference frames
from the DAVIS346c camera, which provides both event
streams and RGB images, unlike the DVXplorer that only
captures event streams. By accommodating different sensing
modalities, DOMEL ensures that event labeling can be consis-
tently applied across diverse camera technologies, facilitating
the development and testing of learning-based models for the
task at hand.

To validate the generalization capability of the proposed
GTNN motion segmentation algorithm, new experimental se-
quences are recorded in various domains using event cameras
with different resolutions. For a thorough quantitative and
qualitative evaluation of GTNN using these sequences, a
labeling method must be devised to facilitate comparison of
the GTNN prediction against the ground truth.

To that end, inspired by the success of the KoGTL [29],
we propose Dynamic Object Mask-aware Event Labeling
(DOMEL), which is an offline approach for annotating event
data for motion segmentation applications. Every event in
the recorded stream is assigned a label; foreground event or
background event. The labeling process requires as input the
corresponding gray-scale frame; which can be captured using
a frame-based sensor, working simultaneously alongside the
event camera. Hence, DOMEL allows labeling event streams
recorded using event cameras that do not generate grayscale
images such as DVXplorer. The frame-based sensor and the
event camera need to visualize the same scene, with the same
field of view.

In the following sections, the experimental setup for record-
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ing the event dataset will be described and the labeling process
will be explained in detail. Please refer to Fig. 2 for an
illustration of DOMEL and how it fits in the overall proposed
framework.

1) Experimental setup
Two dynamic active pixel vision sensors; DAVIS346C and

DVXplorer, are mounted side-by-side on a tripod, to capture a
dynamic scene. DAVIS346C and DVXplorer have a spatial
resolution of 346×260 and 640×480, a bandwidth of 12
and 165 MEvent/s, and a dynamic range of 120 and 90 dB,
respectively. The cameras are moved along various trajectories;
i.e. a sequence of translations and rotations, in environments
with various scene geometries where objects of various types
and sizes are randomly moving.

Three measurements were recorded; (1) DAVIS346C event
streams, (2) DVXplorer event streams, and (3) Grayscale
images which capture intensity measurements of the dynamic
scene. The grayscale images are obtained from the frame
output of the DAVIS346C sensor and are denoted as active
pixel sensor (APS) images hereafter. It is worth noting that in
absence of the frame output of the event camera, it is possible
to use a standard camera to capture the same scene alongside
the event camera.

2) Labeling Framework
DOMEL approach includes four main stages, event-image

synchronization, raw event-edge fitting, spatially shifted event-
mask fitting, and event labeling, as illustrated in Fig. 7.

a) Event-Image Synchronization
Synchronization of the recorded event streams from

DAVIS346c and DVXplorer with the corresponding APS im-
ages is vital to the success of the proposed labeling technique,
since events are matched to the corresponding APS frames
captured at the same time. Synchronization is achieved by
recording sensor data through a single ROS[54] node, and
hence a common clock is used to record the measurements’
timestamps, which can be seamlessly matched to obtain syn-
chronized measurement pairs, as shown in Fig. 7-(I).

b) Raw Event-Edge Fitting
The iterative closest point (ICP) fitting technique [55] is

used to fit event streams to their corresponding APS canny [56]
edge data. Due to the high temporal resolution of event data
acquisition, fitting of events to edges is performed in several
iterations. If the scene exhibits high dynamicity or the motion
of the camera is fast, event streams are generated at a higher
resolution than APS frames. Subsequently, events, particularly
those in between two APS frames, would slightly deviate from
the APS edges. To compensate for this deviation, ICP is used
to perform a spatial shift (i.e., rotation and translation) to the
events, which will facilitate matching them to APS edges, as
presented in Fig. 7-(II). The spatially shifted events will be
used for further processing in the next stages.

c) Spatially Shifted Events-Mask Fitting
APS Frames capturing dynamic objects in the scene are first

processed to generate masks of the objects. These masks could
be obtained using any object masking algorithm, such as image
segmenter [57]. The spatially shifted raw events are fitted to
the corresponding masked-object frames using ICP, similar to
stage (II), in several iterations for both cameras, as shown in

Fig. 7-III. This is due to the high temporal resolution of the
sensors, especially when capturing a dynamic scene, and the
camera is in motion.

d) Event-Labeling
In the last stage, events that are fitted to the corresponding

masked-object frame are labeled as foreground events repre-
senting the moving objects captured when the camera is in
motion (Class 1), as shown in Fig. 7-(IV). Whereas events that
are not part of the masked pixels of the frame are considered
background events (Class 0).

Our framework is efficient due to the use of ICP fitting
which accommodates the high temporal resolution of DVS
data acquisition. Events could slightly misalign with the edges
in images because of slight timing mismatches between the
time when events and image frames are captured. Therefore,
ICP is used to precisely align the edges of event data and
image pixels, correcting any slight shifts in their pixel po-
sitions. This ensures that our annotations accurately overlay
the dynamic object mask, which is a significant improvement
compared to other annotation schemes ([15, 32] that might not
fix these small but important differences.

3) EMS-DOMEL Dataset
In this section, the collection and annotation of the Event-

based Motion Segmentation dataset (EMS-DOMEL) using
the DOMEL framework is discussed. The dataset captures
multiple independently moving objects in an indoor environ-
ment using a moving event camera. The sequences capture a
variety of scenes, multiple objects moving at various speeds
and in random paths, and unknown camera motions with
various sensor resolutions. Table II presents a summary of
event sequences captured using two cameras with different
resolutions, detailing the number of detected objects, dynamic
object events, and background events for each sequence. For
instance, in DOMEL-Seq01 captured using a DAVIS346c
camera, two moving objects were detected, resulting in 42,980
dynamic object events and 440,650 background events. Simi-
larly, DOMEL-Seq07 to DOMEL-Seq09 which were captured
using the DVXplorer camera, showcase varying numbers of
moving objects resulting in different amounts of dynamic and
background events as listed in the table. The ground truth
labels facilitate rigorous assessment through metrics such as
F1 score, Recall, Intersection over Union (IoU), and Detection
Rate, which serve as evaluation benchmarks detailed in the
following section (Section IV-B). This dataset is essential
for advancing learning-based motion segmentation models,
offering a wealth of data for both training algorithms and their
corresponding performance evaluation metrics.

TABLE II: Summary of EMS-DOMEL Dataset.
EMS-DOMEL Sensor Type # Dynamic Objects # Dynamic Object Events # Background Events

Seq01 DAVIS346c 2 42,980 440,650
Seq02 DAVIS346c 2 52,176 494,378
Seq03 DAVIS346c 4 282,397 640,531
Seq04 DAVIS346c 2 37,220 146,949
Seq05 DAVIS346c 2 112,980 816,152
Seq06 DAVIS346c 2 66,989 560,096
Seq07 DVXplorer 3 616,467 2,923,756
Seq08 DVXplorer 3 889,215 5,953,718
Seq09 DVXplorer 1 77,314 4,435,217
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Fig. 7: DOMEL framework for Event-based Motion Segmentation (EMS). DOMEL is a novel event labeling methodology developed to
classify events, acquired when the camera is in motion, into two main classes: foreground or background events. The proposed DOMEL
works irrespective of the sensor resolution, and hence any event camera may be used to record the event streams. A frame-based sensor is
needed to capture intensity images corresponding to the recorded events, which will assist in event labeling.

IV. EXPERIMENTAL EVALUATIONS

A. Training and Testing Datasets

The proposed GTNN will be trained and evaluated using
publicly available datasets including MOD, EV-IMO, and EV-
IMO2 datatsets. MOD [25] is a simulated dataset targeted
for learning-based motion segmentation models for event
cameras. The environment captured in this dataset is a highly
textured synthetic indoor room, where one to three dynamic
objects appear intermittently, while the camera is moving. EV-
IMO [15] dataset, on the other hand, contains various event
sequences recorded in a real lab environment. The sequences
exhibit varying levels of complexity in terms of the motion
of the camera, dynamic objects’ number, motion and speed
randomness, and occlusion, feature-rich background texture,
and a range of lighting conditions in the lab. Five different
sequences of the EV-IMO dataset including Boxes, Floor,
Wall, Table, and Fast are used. Both MOD and EV-IMO
datasets were recorded using the same event cameras, namely
DAVIS 346c which generates events within a spatial resolution
of 346 × 260 pixels.

EV-IMO2 [32] is a second version of EV-IMO, recorded
using a higher resolution event camera (480×640 pixels).
EV-IMO2 contains sequences of small-to-large and slow-to-
fast moving objects with various illumination conditions. It
is targeted for motion segmentation approaches, depth esti-
mation, optical flow, visual odometry, and SLAM methods
[32]. Finally, we release as part of this paper a new event
dataset, called EMS-DOMEL. This dataset is recorded locally
in our lab facilities and includes several scenes of one to
four dynamic objects captured using a moving camera. Event
sequences are labeled using the DOMEL approach, described
in and labeled using the proposed Section III-C. EMS-DOMEL
will be used exclusively for testing. None of the sequences will
be exposed to GTNN during the training phase and hence,
the results will demonstrate the model’s ability to generalize
across various environments.

To train the GTNN algorithm, supervised learning is per-
formed using the backpropagation technique. Pytorch is used

to construct all the neural networks for training and testing.
The Adam optimizer with a learning rate of 0.001 is used
to execute training process to minimize the Dual Focal Loss
(DFL). DFL was proposed in [58] to tackle the challenge of
imbalanced training datasets for neural classification.

B. Evaluation Metrics

To quantitatively evaluate the performance of our proposed
approach, four evaluation metrics are used including F1 score,
Recall metric, Intersection over Union (IoU), and Detection
Rate (DR). The first two metrics are commonly used for object
detection algorithms [59]. Particularly, Recall measures the
ratio of the correctly detected dynamic objects to the true
number of dynamic objects in the scene, as defined in Eq.
(4). Whereas Precision measures the the ratio of the correctly
detected dynamic objects to the total positive detections, as
defined in Eq.(5). F1 score, in consequence, computes the
harmonic mean of Precision and Recall, as defined in Eq. (6).

Recall =
TP

TP + FN
, (4)

Precision =
TP

TP + FP
, (5)

F1 = 2 ∗ Recall ∗ Precision
Recall + Precision

, (6)

where TP , FP , TN , and FN are the number of true posi-
tives, false positives, true negatives, and false negatives pixels,
respectively. TP and FP indicate the number of events that
are correctly and incorrectly predicted as dynamics objects-
related events, respectively. While TN and FN indicate the
number of events that are correctly and incorrectly predicted
as background-related events. Recall and F1 are used to assess
the capability of the proposed algorithm to distinguish between
foreground and background events during the ablation study
as discussed in the supplementary material.

Detection Rate (DR) and Intersection over Union (IoU),
are two standard metrics used to quantitatively evaluate the
performance of SOTA motion segmentation models as reported
in [26, 33, 25]. DR is the area overlap between the bounding
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box containing the predicted foreground events and the corre-
sponding ground truth, as introduced in [33, 25]. The detection
is considered successful if the following criteria is met:

Success if: (D ∩G) > 0.5 and (D ∩G) > (D ∩Gc), (7)

where D is the predicted bounding box (or convex hull), G
is the corresponding ground truth bounding box (or convex
hull), and Gc denotes the complement of the G set.

Intersection over Union (IoU) is the most commonly used
evaluation metric for segmentation algorithms and has been
used for event-based algorithms as reported in [26]. IoU is
defined in the following equation:

IoU =
SD ∩ SG

SD ∪ SG
, (8)

where SD is refers to the predicted object(s) segmentation
mask and SG is the corresponding ground truth mask. To gen-
erate a dense segmentation mask, SD and SG, the events are
first projected into the 2D frame captured within the specified
time window. Then, the convex hull outlining the events that
belong to the dynamic object is computed. Consequently, all
pixels within that convex hull are considered to be foreground
events.
C. Quantitative Evaluation

In this section, we first provide a comparison between the
performance of our GTNN model against SOTA learning-
based motion segmentation model, SpikeMS as proposed in
[26], in terms of IoU%.

Motion segmentation is carried out on the evaluation se-
quences from EV-IMO and MOD datasets, which were not
exposed to the network during training. The results obtained
using GTNN and SpikeMS [26] are reported in Table III.
In addition, the IoU% metric obtained using GTNN for
EV-IMO2 evaluation dataset is 49.76%. The segmentation
results, based on the IoU% metric, obtained using GTNN
outperform SpikeMS [26] in almost all sequences with an
average of 9.4%. This is clearly due to the fact that graph
transformers with the attention mechanism reveal and exploit
the spatiotemporal correlations between the events that belong
to the moving object and segregate them from background
events. The network structure also aids extraction of global
feature information and aggregates them with the local features
extracted by the graph transformer’s encoder-decoder units.
Our network is able to distinguish between foreground and
background events, especially when the relative speed of the
camera and the moving objects is distinct.

Additionally, the performance of the proposed GTNN model
is compared to classical hand-crafted motion segmentation
methods [33, 25] and SpikeMS [26] based on the detection rate
(DR%) metric, as reported in Table IV. Note that our GTNN
model performs event-based motion segmentation without any
prior knowledge about the scene geometry, the number of dy-
namic objects within the scene, and without any initialization
stage, as opposed to the SOTA classical models [33, 25].
The results of the SOTA models are taken directly from
their corresponding publications [33, 25, 26]. Our approach
outperforms SpikeMS [26], the learning-based model, and
has comparable performance against offline classical-based

approaches [33, 25]. It can be concluded that the effective-
ness of the proposed GTNN algorithm is validated across
multiple unseen event streams acquired by a moving camera
in a dynamic environment. The proposed algorithm could
be integrated with other vision-based modules to ensure safe
robotic navigation in an unknown and dynamic environment
under challenging illumination conditions.

D. Qualitative Evaluation

In this section, the testing sequences from the publicly-
available datasets, MOD, EV-IMO and EV-IMO2, and our
recorded experiments are used to qualitatively evaluate the
motion segmentation performance. Note that, the tested se-
quences are not exposed to our network during training and the
output of GTNN has the same structure as the 3D graph input.
However, for visualization purposes, the results are projected
into 2D frames. The results obtained from the proposed model
are projected against the approximate ground truth and SOTA
models SpikeMS [26] and Zhou et al. [24].

1) EV-IMO dataset
a) GTNN vs. learning-based approach (SpikeMS)

In this section, the performance of GTNN will be quali-
tatively compared to SpikeMS on the EV-IMO dataset. Fig.
8 shows selected scenes from three different sequences; (1)
Floor, (2) Fast, and (3) Wall, from the EV-IMO dataset. Every
row shows the 2D frame, the corresponding ground truth
events, GTNN segmentation results, and SpikeMS segmen-
tation results for the selected scenes, respectively. It is worth
noting that SpikeMS [26] segmentation results are obtained
using their publicly available pretrained model. For a fair
comparison, a 10ms time window is selected to slice and
prepare the testing samples for network prediction, since it
is the time window selected to train SpikeMS [26].

Fig. 8-(A) depicts a sample scene from the Floor scenario,
where a toy plane is moving above a highly textured carpet.
The foreground events detected by GTNN solely belong to
the moving object, while SpikeMS falsely segmented some
of the background events as foreground events. GTNN was
able to accurately segment the moving object in presence
of significant background variations and motion dynamics,
compared to SpikeMS.

Fig. 8-(B) shows a another sample scene captured in the Fast
scenario, where the camera is experiencing harsh motion dy-
namics (rotation and translation at a high speed) while having
a dynamic object within the scene. Our proposed model was
able to distinguish events that correspond to dynamic objects in
the scene from the background. Conversely, SpikeMS [26] has
falsely segmented scattered background events, as foreground
events.

Furthermore, in Fig. 8-(C), the performance of the GTNN
model and SpikeMS [26] are tested on the Wall scenario,
where multiple moving objects with different sizes, are moving
along different random trajectories. Our segmentation results
show better interpretation and fine labeling of the dynamic
objects compared to SpikeMS [26]. This proves the robust-
ness and generalization capability of our model to different
environments with significant background textures and motion
dynamics. Accurate motion segmentation results are impor-
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TABLE III: Performance of the GTNN algorithm compared to SOTA motion segmentation learning-based method, SpikeMS [26] on EV-IMO
and MOD event-based datasets. Segmentation results are compared using the IoU (in %) ↑ metric.

EV-IMO dataset
Boxes Floor Wall Table Fast MOD datasetMethod

100 ms 20 ms 10ms 100 ms 20 ms 10ms 100 ms 20 ms 10ms 100 ms 20 ms 10 ms 100 ms 20 ms 10 ms 100 ms 20 ms 10ms

SpikeMS† [26] 61±7 65±8 - 60±5 53±16 - 65±7 63±6 - 52±13 50±8 - 45±11 38±10 - 68±7 65±5 -
GTNN model (ours) 49±36 40±31 34±30 77±13 68±19 63±22 77±15 65±21 58±23 71±23 62±27 56±29 65±22 49±25 43±25 78±21 73±30 73±31

†Results taken directly from [26]

TABLE IV: Comparison with SOTA learning-based and classical
approaches on sequences from EV-IMO and MOD event-based
datasets, in terms of Detection Rate (DR) (in %) metric. Note that
”C” and ”L” indicate the type of the adopted approach; classical or
learning, respectively.

EV-IMO dataset MOD datasetMethod Type 100ms 20ms 10ms 100ms 20ms 10ms

Mitrokhin et al.† [33] C 48.79 70.12
0-MMS‡ [25] C 81.06 82.35

SpikeMS.† [26] L 65.14 68.82
Ours (GTNN model) L 73 56 48 84 77 75

APS frame
for visualization only Ground Truth Events GTNN (ours) SpikeMS[26]

(A) EV-IMO - Floor

(B) EV-IMO - Fast

(C) EV-IMO - Wall
Fig. 8: Segmentation results compared with the SOTA learning-based
motion segmentation model (SpikeMS [26]) on testing sequences
from EV-IMO dataset.

tant for various applications including event-based instance
segmentation [60], recognition [61], and localization [62, 2]
modules.

b) GTNN vs. classical-based approach
To further verify the validity of our proposed model, we

analyze the performance of GTNN on other unseen testing
scenarios of EV-IMO dataset, particularly from the Boxes and
Table sequences, and show qualitatively the results compared
to Zhou et al. [24] model. Note that Zhou et al. [24] model is
a recent classical-based approach where motion segmentation
is solved as an optimization problem of classical multi-model
fitting schemes.

Although Zhou et al. [24] is an offline approach that un-
dergoes an initialization stage based on motion compensation,
the proposed GTNN segmentation results are highly accurate
and comparable with Zhou et al. [24] as depicted in Fig. 9.
In Boxes scene, one dynamic object, a toy car, traverses a
textured carpet from left to right and we continuously segment
the moving objects along the path, as shown in Fig. 9-(A). On
the other hand, in the Table scene, two dynamic objects, a toy

APS frame
for visualization only Ground Truth Events GTNN (ours) Zhou et al. [24]

(A) EV-IMO - Boxes seq00 - single dynamic object within the scene

(B) EV-IMO - Table seq01 - two dynamic objects within the scene

Fig. 9: Qualitative comparison with classical approach for event-
based motion segmentation on EV-IMO testing sequences (Boxes
and Table). Each sample presents (left to right) APS frames (for
visualization only), raw event stream, Zhou et al. [24] segmentation
labels, and our GTNN prediction, respectively.

Ground Truth GTNN (Ours) Ground Truth GTNN (Ours)

(A) MOD - Evaluation - test seq (B) EV-IMO2 - Evaluation Set- seq 14 03

(C) EV-IMO2 - Evaluation Set - seq 15 02 (D) Ours (EMS-DOMEL) dataset - Seq1

Fig. 10: Qualitative evaluation of our GTNN algorithm on unseen
testing simulation (MOD) and experimental (EV-IMO2 and our EMS-
DOMEL) datasets. Our GTNN motion segmentation algorithm is
able to identify dynamic objects within a variety of scenes and from
various event camera resolutions (346×260 and 640×480), when the
camera is in motion.

plane and a car, move towards each other and then collide in
the middle above the carpet, as shown in Fig. 9-(B). When the
dynamic objects collided, our model segmented them together
as one object. Segmentation results have proved the robustness
of the proposed algorithm in presence of background variations
and multiple dynamic objects.

2) MOD, EV-IMO2 and our datasets (EMS-DOMEL)
Fig. 10 provides additional qualitative results of our ap-

proach on the simulated MOD dataset and experimental EV-
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IMO2 dataset compared against approximate event labels esti-
mated from the mask of dynamic objects, provided alongside
the datasets. Note that these sequences are not fed to our
GTNN model during training. As shown in Fig. 10-(A), the
approximate ground truth has some false labeling of the
true dynamic objects (i.e. edges), however, our GTNN model
predicts correctly the labels of the detected dynamic objects
including their edges. Although, our model is trained with
these approximate labels, i.e. including some false labels, the
trained GTNN is able to exploit the spatiotemporal correlations
of the events that belong to the moving object to correctly
segment them from the background events. Fig. 10-(B-C)
presents the predictions of GTNN model when tested on
scenes from the EV-IMO2 dataset. Our segmentation shows
good performance compared to the ground truth.

Further testing and analysis are done on our EMS-DOMEL
recorded experimental dataset without any further training or
fine-tuning of GTNN. GTNN demonstrated good segmentation
and generalization capabilities. Lastly, we provide our segmen-
tation results of a scenario where two toy cars with different
sizes move from right to left and then collide with each other
(EMS-DOMEL-Seq1). GTNN predictions continuously detect
the moving objects (cars) while the camera is in motion, as
shown in Fig. 10-(D). Additional segmentation results can
be found at <https://youtu.be/9z3Ik8V45Ms> and are also
provided in the supplementary material. To that end, the
presented qualitative analyses have proven the capability of
the proposed GTNN model to (1) cope with different camera
parameters and various camera resolutions, and (2) generalize
well to various dynamic scenes with multiple dynamic objects
(moving at different speeds and in different directions) while
the camera is in motion.

E. GTNN Transferability Across Different Domains

GTNN is engineered in a way to facilitate its adaptability
and generalizability, enabling its application across various
domains and modalities. To tailor it for specific tasks, further
refinement is often necessary. For instance, Sanket et al.
[63] employed GTNN in the domain of event-based panoptic
segmentation, by means of a transfer learning approach. They
fed a 3D event stream graph into the GTNN, facilitating the
exchange and nonlinear transformation of features to extract
both local and global spatiotemporal relationships among
graph nodes. The processed information is then directed to
a final layer, which is specifically adjusted for the panoptic
segmentation task. Hence, training was conducted for the final
layer only, leaving the parameters of the early layers in the
GTNN architecture unchanged, as demonstrated in [63].

Beyond vision-related tasks, GTNN’s adaptability extends
to non-visual tasks as well. This is intrinsic to its design
framework, and is achieved by modifying the nodes and
edges within the 3D graph structure to encapsulate the unique
aspects of the problem being addressed. For instance, in non-
vision-related tasks, the graph elements could be redefined to
represent different data types or relationships, showcasing the
GTNN’s broad generalization capabilities. This adaptability
underscores the potential of GTNN to serve as a base architec-
ture for a wide range of applications, provided that appropriate

adjustments are made to align with the specific requirements
of each task.

F. Limitations

1) Segmentation Challenges in Dynamic Environments
Rigorous evaluations are conducted on the publicly-

available datasets as well as our recorded experiments demon-
strating the superiority of the GTNN to segment dynamic
objects (Sections IV-C and IV-D). Our evaluations indicated
that GTNN struggles to differentiate dynamic objects from the
background in scenarios where the camera and object speeds
are similar, often misclassifying all events as background.
This limitation becomes more pronounced in environments
with minimal relative motion between the camera and the
object, leading to inaccurate foreground-background segmen-
tation. Furthermore, GTNN encounters difficulties during rapid
camera rotations, especially in situations where the scene is
cluttered with numerous background events. In these situa-
tions, the model’s effectiveness in recognizing and segregating
smaller or distant moving objects is reduced. Rapid camera
movements exacerbate the problem by flooding the algorithm
with an excessive event stream. This issue is evidenced by our
observed reduction in performance for the ’EV-IMO Boxes’
scenarios, as detailed in Table III. Such scenarios pose a
substantial challenge for GTNN in consistently recognizing
and tracking objects. It is worth mentioning that our GTNN
yet demonstrates outstanding performance in some ’EV-IMO
Boxes’ evaluation sequences, as presented in Fig. 9.

2) Computational Time Analysis
In this section, analysis of computational time required to

process input event streams by the proposed GTNN algorithm
is presented and compared to SpikeMS [26]. Note that tim-
ing analysis was carried out on a Dell Desktop Computer
with Intel(R) Xeon(R) W-2145@2.70GHz×8 and two Nvidia
Quadro RTX 6000 GPUs. A set of 30 event graphs, each
spanning a 10ms time window was selected from the Boxes
sequence of EVI-MO dataset to conduct the time analysis.
The computational time analysis of the proposed algorithm
compared to SpikeMS [26] was done in terms of the forward
prediction time as shown in Fig. 11. It is observed that the
time needed to process each event graph was shorter using
our proposed approach than SpikeMS [26] achieving a double
speedup of processing time.

There is yet more room for improvement to expedite the
runtime performance of the proposed approach to fulfill the
real-time performance requirement and achieve the primary
goal of the event-based motion segmentation. Therefore, to
achieve real-time performance, processing a group of events
within a selected time window should be performed before
receiving the next event graph, i.e. in our case processing
should be done in less than 10ms. This could be achieved
by optimizing the complexities of the GTNN architecture via
knowledge distillation methods [64]. More particularly, a re-
duced network architecture (called a student model) is trained
in parallel with the complex network (called a teacher model)
which has enough nonlinear capacity to handle the problem
at hand. The student model, when trained alone, does not
have the capability to map the nonlinearities in the input and

https://youtu.be/9z3Ik8V45Ms
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Fig. 11: Forward time in seconds to perform motion segmentation
for 10ms time window of event stream using the proposed approach
and SpikeMS [26]

output dataset to provide the required performance, however,
with the student-teacher parallel training methods, this can
be achieved. Alternatively, to reduce the runtime, a simpler
network than the proposed GTNN architecture is suggested
to be trained using knowledge distillation framework. These
areas for improvement will be addressed in the future.

V. CONCLUSIONS
In this work, we presented the first learning-based graph
transformer neural network (GTNN) algorithm tackling a
large-scale problem in computer vision using dynamic vision
sensors. Our GTNN algorithm is developed to infer spatiotem-
poral patterns of the acquired event streams and perform event-
based motion segmentation accordingly. More specifically, the
algorithm reveals the motion dynamics of the camera and
the scene and decides whether the incoming events represent
foreground (due to moving objects) or background (due to
camera motion) event data.

The proposed GTNN successfully operates on event streams
without any initialization stage nor prior knowledge in terms
of scene geometry, motion patterns, or number of independent
dynamic objects. This is attributed to the fact that the adopted
graph structure of the input data exploits the spatiotemporal
patterns between the events, then infers them in the global
context of the scene. Event streams are processed in their
asynchronous form which preserves their temporal attributes,
i.e. without projecting them into 2D frames. Such operation
is carried out in the point transformer with self-attention
mechanism, transition up and transition down layers where
inputs are fed as 3D event graphs which could be of variable
sizes.

GTNN algorithm was trained using the proposed effective
scheme on three publicly available synthetic and real-work
sequences, MOD, EV-IMO, and EV-IMO2. The effective train-
ing scheme uses a portion of the extensive training datasets
at every iteration (epoch) for tuning the network weights. The
proposed effective scheme has reduced the training time and
expedited convergence. The proposed GTNN algorithm has
outperformed the SOTA learning-based motion segmentation
[26] and classical methods [24, 33] in all the testing scenarios
with at least 4.5% higher detection rate and 9.5% accuracy
(IoU%) on testing sets. Moreover, the forward prediction
time is 50% less compared to SOTA learning-based approach.
Furthermore, qualitative results have proven the superiority of

the proposed algorithm to both the learning-based motion seg-
mentation approach [26] and the classical approach proposed
in [24].

Our GTNN model was also tested on our experimental
dataset which was not exposed to the network during train-
ing. A novel offline event labeling technique, referred to as
DOMEL, is proposed to label the recorded dataset, which
involves event streams capturing moving objects when the
camera is in motion. GTNN is able to successfully segment
the moving objects from the background, despite the fact that
the data is recorded under conditions different than those of
the training data; a variety of scenes, multiple objects moving
with various speeds and in random paths, and unknown camera
motions with various sensor resolutions.This work in addition
to our previous research [29] have unlocked the potential
of using graph transformers neural networks on vision-based
navigation modules with event camera. In the future, we
plan to demonstrate the significance of our proposed event-
based motion segmentation algorithm by integrating it with a
dynamic object avoidance module to perform safe navigation
in unknown dynamic environments.
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