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Undoubtedly, machine learning (ML) techniques are being increasingly applied to a wide range of
situations in the field of condensed matter. Amongst these techniques, unsupervised techniques are
especially attractive, since they imply the possibility of extracting information from the data without
previous labeling. In this work, we resort to the technique known as “anomaly detection” to explore
potential exotic phases in skyrmion phase diagrams, using two different algorithms: Principal Com-
ponent Analysis (PCA) and a Convolutional Autoencoder (CAE). First, we train these algorithms
with an artificial dataset of skyrmion lattices constructed from an analytical parametrization, for
different magnetizations, skyrmion lattice orientations, and skyrmion radii. We apply the trained
algorithms to a set of snapshots obtained from Monte Carlo simulations for three ferromagnetic
skyrmion models: two including in-plane Dzyaloshinskii-Moriya interaction (DMI) in the triangular
and kagome lattices, and one with an additional out of plane DMI in the kagome lattice. Then,
we compare the root mean square error (RMSE) and the binary cross entropy (BCE) between the
input and output snapshots as a function of the external magnetic field and temperature. We find
that the RMSE error and its variance in the CAE case may be useful to not only detect exotic low
temperature phases, but also to differentiate between the characteristic low temperature orderings
of a skyrmion phase diagram (helical, skyrmions and ferromagnetic order). Moreover, we apply the
skyrmion trained CAE to two antiferromagnetic models in the triangular lattice, one that gives rise
to antiferromagnetic skyrmions, and the pure exchange antiferromagnetic case. Despite the pre-
dictably larger RMSE, we find that, even in these cases, the RMSE is also an indicator of different
orderings and the emergence of particular features, such as the well-known pseudo-plateau in the
pure exchange case.

I. INTRODUCTION

Machine Learning (ML) has been increasingly incorpo-
rated into a wide variety of technological and scientific re-
search in the last few years. In condensed matter physics,
some of the first studies using ML include the representa-
tion of quantum states [1], the identification of phases of
matter [2], inverse design in photonics [3] and the study of
phase transitions [4–6]. In particular, ML has been used
to explore different aspects of magnetic skyrmions, which
are topological textures [7, 8] with potential technolog-
ical applications, especially in memory storage devices
[9, 10]. Feed forward and convolutional neural network
have been used to classify different magnetic phases and
predict features in simple skyrmion models using simula-
tions data [11–18]. Moreover, ML algorithms have been
applied also to experimental data to explore skyrmion
phases [19–21].

In general, ML techniques could be devided in three
large types of techniques [22, 23]: supervised, unsuper-
vised and reinforcement learning, the latter one being
the case where the algorithm “learns” solely from the
data. In supervised ML, a previous labeling and knowl-
edge of the data is needed before applying the algorithms
to an unknown dataset, and is widely used in classifica-
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tion and regression tasks. On the other hand, no data
labeling is required in unsupervised ML, and some of
these techniques may be used for example to group sim-
ilar instances of the data (clustering) or detect atypical
instances (anomaly detection). A variety of this type
of unsupervised (or semi-supervised) methods has been
used in condensed matter physics, from Principal Com-
ponent Analysis (PCA) in Ising systems [5] to support
vector machines with tensorial kernels applied to models
in different types of topology [24–31], the use of autoen-
coders to study neutron scattering data in spin ice sys-
tems [32, 33] and to explore anomaly detection in simple
frustrated models [34].

In this work, we resort to anomaly detection to ex-
plore possible unusual phases in skyrmion systems. In
order to this, we train two techniques (PCA and Con-
volutional Autoencoders, CAE) to process an analiti-
cally generated (“artificial”) skyrmion crystal dataset.
Then, we use the trained algorithms on spin configu-
rations obtained through Monte Carlo simulations from
different ferromagnetic skyrmion models at different tem-
peratures under magnetic fields, and calculate the root
mean squared error (RMSE) between the input and out-
put snapshot. We find that both the mean value and the
deviation of the RMSE from the data reconstructed with
the CAE may be used to distinguish between three typi-
cal phases found in skyrmion systems (helices, skyrmion
crystals and ferromagnetic), and, most importantly, to
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detect possible exotic orderings, such as bimeron glasses
at higher magnetic fields [35]. We also apply the trained
CAE to snapshots from two antiferromagnetic models,
and explore what information may be obtained from the
RMSE.

The manuscript is organised in the following way. In
Sec. II we go over relevant characteristics from magnetic
skyrmions, and describe the ferromagnetic skyrmion
models chosen in this work. The ML scheme and details
on the dataset and the algorithms are given in Sec. III.
We discuss our results in Sec. IV, where we also consider
other antiferromagnetic models, and present conclusions
and perspectives in Sec. V.

II. BRIEF OVERVIEW ON SKYRMIONS AND
SPIN MODELS

Magnetic skyrmions are an arrangement of spins char-
acterised by the topological charge, defined as Q =
1
4π

´
d2rS⃗ · (∂xS⃗ × ∂yS⃗); S⃗ are the spin unit vectors,

with promising technological applications due to their ro-
bustness, stability and easy manipulation. A large num-
ber of materials and models have been shown to host
skyrmions and skyrmion like textures (such as antifer-
romagnetic skyrmions [36, 37], magnetic bubbles, anti-
skyrmions [38–40], merons [41], etc). A skyrmion crystal
or lattice in a bidimensional system is a periodic arrange-
ment of skyrmions and may simply parametrised as the
superposition of three non-coplanar helices [7, 42]; the
spin parametrization sSkX at position r is given by :

sSkX(r) =
1

s

(
3∑

µ=1

sin (qµ · r+ θµ) exy,µ + (1)

[
3∑

µ=1

cos (qµ · r+ θµ) ez,µ +m0

])

where s normalizes |sSkX(r)| to 1, m0 is the homoge-
nous contribution to the magnetization in the z direc-
tion, arbitrary unit vectors in the xy plane exy,µ satisfy∑

exy,µ = 0, and θµ are the phase factors that fullfill

cos
(∑

µ θµ

)
= −1. The qµ vectors are the three order-

ing vectors of the helices, that lie in the same plane at
120◦, with norm 2π/r0, r0 being the skyrmion radius.
The structure factor, which is the Fourier transform of

the spin-spin correlations, of this type of arrangement
gives six bright peaks, corresponding to the three in-
equivalent q ordering vectors. Thus, a “triple-q” pat-
tern in reciprocal space is a strong suggestion that a
skyrmion lattice is present, as measured first in bulk
MnSi [43]. Another parameter that may be calculated
in a discrete lattice is the scalar chirality, the sum of
the triple product of neighbouring spins (i, j, k) forming

a triangle χ = 1
N

∑N
i S⃗i · (S⃗j × S⃗k). This quantity is

the discrete version of the topological charge, which is

|Q| = 1 for skyrmions [7]. Therefore, for a given arrange-
ment of spins, a non zero value of the chirality may be
an indicator of skyrmions, regardless of whether they are
organized periodically or not.
As was introduced in [44], a possible simple model

to realise these periodic skyrmion arrangements in a
bidimensional lattice is one where ferromagnetic near-
est neighbors coupling competes with antisymmetric in-
plane Dzyaloshinskii Moriya (DM) interactions under an
external magnetic field:

H = J
∑
⟨i,j⟩

S⃗i · S⃗j +
∑
⟨i,j⟩

D⃗ · (S⃗i × S⃗j)− B⃗
∑
i

S⃗i (2)

here the magnetic moment or spin S⃗i is a three dimen-
sional unit vector (Heisenberg spins) at site i, J = −1

is the exchange coupling, D⃗ the in-plane DMI along the

bonds of the chosen lattice (D⃗ = D⃗xy, with absolute

value Dxy), and B⃗ = Bz̆ an external magnetic field per-
pendicular to the lattice plane. At low temperatures
and no external field a helical order is found. Under
an increasing external magnetic field, a skyrmion crys-
tal is stabilized, and then at higher fields all spins are
aligned with the field giving rise to a ferromagnetic or
field polarized phase. Intermediate phases are enhanced
with temperature: a bimeron phase at lower fields, as
helices are distorted into skyrmions, and a skyrmion gas
at higher magnetizations, where skyrmions are stabilized
in a non-periodic arrangement [44, 45]. The inclusion of
additional interactions may imply deviations from this
simple scheme. For example, it has been shown that an
increasing additional in plane site anistropy may take the
skyrmion lattice to an arrangement of merons, which are
topological structures with half the skyrmion topological
charge [41], and more complex phase diagrams may also
be found in models with frustrating exchange interactions
and no DMI [46, 47].
Since we aim to explore techniques that may detect

exotic phases, we focus on three models. First, we take
the Hamiltonian from Eq. (2) in two triangular based
lattices: triangular and kagome, which may itself be de-
vided into three triangular lattices formed by the three
types of spins in each elementary plaquette. Then, as
a third model we take the Hamiltonian from Eq. (2)
in the kagome lattice and include an out-of-plane DMI

(D⃗ = D⃗xy + D⃗z) at the specific value Dz =
√
3. The

combination of this out-of-plane Dz and in plane Dxy

gives rise to several exotic phenomena, most notably a
stabilization of a skyrmion gas at higher temperatures,
which preceds the formation of a skyrmion crystal, and
a “bimeron glass” phase at higher magnetic fields and
lower temperatures, between the skyrmion crystal and
the fully polarized phase [35, 49]. Here, we will show that
it may be possible to detect these phases using unsuper-
vised machine learning techniques, without inspection of
the snapshots.
In Table I we list these three different spin models.
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Triangular (TFDMxy) Kagome (KFDMxy) Kagome + Dz (KFDMz)
m
o
d
el

J -1 -1 -1

Dxy 1.5 0.5 0.5

Dz 0 0
√
3

TABLE I. Three ferromagnetic spin models used in this work, with nearest neighbor exchange (J) and Dzyaloshinskii Moriya
interactions (DMI). The blue arrows indicate the in-plane DMI (with strength Dxy) and the circles indicate the direction of
the out-of plane DMI (Dz). The rows show a sketch of the lattice, the value of the exchange interaction (which in this case is
always J = −1, ferromagnetic), and of the in-plane and out-of-plane DMI strengths.

We label the one in the triangular with ferromagnetic
exchange coupling and in-plane DMI along the bonds
TFDMxy. In analogy, the same model but in the kagome
lattice is named KFDMxy. Finally, the KFDMz spin
model is as the KFDMxy with additional out of plane
DM, Dz. Notice that J is fixed to −1 in all three spin
models, but the Dxy is larger for the triangular lat-
tice. This is simply so that the radius of the resulting
skyrmions be similar to that of the KF spin models.

III. MACHINE LEARNING SCHEME AND
DATASET

In this work, we resort to the technique known as
anomaly detection to obtain information from skyrmion
models, such as if it is possible to distinguish different
phases and/or to detect exotic ones. The anomaly detec-
tion technique is usually described to detect events such
as fraud or spam [50], or new trends in a time series [23].
Simply put, the main idea is that the large amount of
“regular” data may have certain general characteristics,
that the algorithm must “learn”, and that points that

deviate from this, “outliers”, may be worth looking into.
Here, we will consider skyrmion lattices as the “regular”
data, and analyze what possible information may be ob-
tained from anomalies or deviations.
In order to do this, we will train two types of algo-

rithms, Principal Component Analysis (PCA) and a Con-
volutional AutoEntonder (CAE), to reconstruct a set of
different skyrmion lattices. Then, we apply the trained
algorithm to spin configurations obtained from Monte
Carlo simulations of different skyrmion hosting models,
and calculate the root mean square error (RMSE) be-
tween the reconstructed configuration and the original
one. Since the algorithms are trained for skyrmion crys-
tals, a bigger error would imply that the spin arrange-
ment is further from a skyrmion lattice.
The RMSE is calculated as:

RMSE =

√√√√ 1

N

N∑
i

(
Sz
i − S̃z

i

)2
(3)

where Sz
i is the component along the magnetic field at

site i of the input data, and S̃z
i is that of the output (or
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reconstructed) data. Here, as was done before [11, 15],
we only consider the Sz projection of the spins (renor-
malized to take values between 0 and 1), which reduces
significantly the volume of data. This may also be inter-
preted as taking the spin configurations as images, and
thus this work may be potentially applied to experimen-
tal images obtained with spin-polarized scanning tunnel-
ing microscopy techniques [44, 51–53].

For the CAE outputs, we have also calculated de bi-
nary cross entropy (BCE) [22], defined as:

BCE = − 1

N

N∑
i

(
Sz
i log

(
S̃z
i

)
+ (1− Sz

i ) log
(
1− S̃z

i

))
(4)

The BCE is a quantity usually used as a loss variable to
train machine learning algorithms, such as autoencoders.
In the results section, we will show that, for the cho-
sen models, in general resorting to the BCE to use the
anomaly detection approach does not provide as much
information as the use of the RMSE.

In summary, we consider the following scheme:

1. We train two types of algorithms, PCA and CAE,
with a set of different skyrmion lattices.

2. We apply the trained algorithm to spin configura-
tions obtained from Monte Carlo simulations of dif-
ferent skyrmion hosting models, and calculate the
root mean square error (RMSE) between the de-
coded configuration and the original one.

3. We study the behaviour of the RMSE and BCE
for different parameters and comparing models, to
evaluate whether we may obtain information on the
physics of each model, and explore the possibil-
ity of using this technique to find exotic phases in
skyrmion-hosting systems.

Below, we describe in detail the dataset used to train
the algorithms, the dataset obtained from the simula-
tions, and give details on the ML models used.

A. Training dataset

We construct “artificial” skyrmions cristals in triangu-
lar lattices with 48× 48 sites, following the parametriza-
tion presented in Eq. (1). We take 7 possible values for
the skyrmion radii r0 and 10 values of the parameter m0,
which after normalization changes the magnetization of
the lattice. Since in our analysis we will be using snap-
shots from MC simulations as images, in this constructed
dataset we do not require periodic boundary conditions,
but we must take into account rotations and translations
of the parametrization pattern, which we do consider-
ing 8 possible rotations and 3 different translations in
the position along the 3 directions of the nearest neigh-
bors bonds of the triangular lattice. Therefore, we have a

training and validation dataset of 7×10×8×3×3 = 5040
different skyrmion crystals in triangular lattices.

B. Monte Carlo simulations dataset

We performed Monte Carlo Metropolis-Hastings simu-
lations, combined with microcanonical updated (overre-
laxation) on the three spin models described in the previ-
ous section: (1) TFDMxy: a ferromagnetic exchange and
in plane DMI model in a 48×48 triangular lattice under a
magnetic field, fixingDxy/|J | = 1 (2) KFDMxy: a similar
model in a 3× 48× 48 kagome lattice, for Dxy/|J | = 0.5
(3) KFDMz: the model presented in Eq. (2) including an

out of plane Dzyaloshinskii-Moriya interaction Dz =
√
3.

Simulations were done using periodic boundary condi-
tions, and lowering the temperature from high tempera-
ture in 80 steps using the annealing technique. Up to
10 copies with independent seeds were done for each
model and magnetic field. To apply the algorithms to
the kagome snapshots, we chose one of the three sublat-
tices (each one corresponding to the three types of sites
in the kagome lattice, numbered 1, 2, 3 in Table I), so as
to work with a 48× 48 snapshot.

C. Algorithms

Here we give details on the two algorithms used in this
work: Principal Component Analysis (PCA) and Convo-
lutional Auto Encoder (CAE).

1. Principal Component Analysis

Principal Component Analysis [22, 23] is an algorithm
usually used for dimensionality reduction. The idea is
to find the hyperplane that is closest to the dataset, and
project the data onto it. The different principal compo-
nents are the succesive axes where the variance is pre-
served, and there are as many as the dimension of the
dataset. Dimensionality reduction to n dimensions is
done projecting the first n principal components. The
number of such components may be chosen as to ob-
tain a large enough accumulated variance, which is the
sum of the dataset’s variance that lies in each of the n
components. We chose to decompose the 5400 snapshot
dataset in n = 500 principal components, using a Gaus-
sian kernel, where the 99% of the variance is accumu-
lated. In some studies, the two first principal compo-
nents are used to explore and analyse the data. Here,
we take the PCA with d = 500 components that was
trained with the skyrmion lattice dataset and use it to
reconstruct snapshots obtained from simulations for dif-
ferent models, temperatures and magnetic field. Then,
we calculate the root mean square error between the in-
put snapshot and the output one, as Eq. (3), and explore
whether this error may give us information on the physics
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of the models. Calculations were done using the SciKit
Learn Python package [54].

2. Convolutional Autoencoder

Autoencoders (AE) are algorithms where the data is
compressed or encoded into a lower dimension space
(called latent space) and then it is decompressed or de-
coded [23]. If the decoded data retains the most relevant
features of the input data, which may be measured with
some quantity, then the AE has performed satisfactorily.
Moreover, the compressed data in the latent space may
be used for a certain application instead of the input
data, with the advantage that it occupies less memory.
Thus, one of the uses of AE is called “data reduction”.
However, AE has other uses; for example, since spurious
features are removed in the process, the output data is
“cleaner”, and the AE may be used as a “denoiser”.

In our work, we will use the “anomaly detection” ap-
proach. The idea is to train an AE for a given type of
data, and then apply it to a larger dataset, comparing the
input and the output with a convenient variable, such as
the root mean square error. If the error is small, then
the input and output are similar, if it is large, then the
input data may not be of the same type as that used in
training the AE, so a larger error signals an anomaly. As
in the PCA, we will use the artificial skyrmion lattice
dataset to train a convolutional autoencoder (CAE - an
AE with a convolutional layer), measuring the RMSE.
In this case, 80% of the data were used for training and
20% for validation. The RMSE for the trained CAE was
0.00071 in the training set and 0.00073 in the validation
set.

The structure of the CAE is the following: the encoder
consists of one convolutional layer with activation func-
tion ‘relu’, filter size 3 and padding ‘same’, followed by a
MaxPooling layer with filter size 2 and padding ‘same’.
The decoder consists of a convolutional layer, with the
same carachteristics as the first one, and an UpSampling
layer. It finalizes with a convolutional layer with one fil-
ter of size 3, a sigmoid activation function and padding
‘same’. The CAE was trained and validated with batch
size 64, using early stopping for a maximum of 300 epochs
with a patience of 10. Implementation of the CAE was
done in TensorFlow using Keras [55, 56].

IV. RESULTS AND DISCUSSION

In this section, we present the analysis of the compari-
son between the input and output data for the MC snap-
shots obtained when applying the PCA and CAE algo-
rithms that were trained with the artificial set of triple-q
skyrmion lattices. We start in Subsec. A focusing on the
three ferromagnetic models introduced in Sec. II (Table
I). Then, we will explore whether the anomaly detection
technique using the same skyrmion-lattice trained CAE

is able to provide some insight in two different antiferro-
magnetic models, which we will describe in Subsec. B.

A. Application to ferromagnetic skyrmion models

First, we compare the RMSE obtained for both al-
gorithms for the TFDMxy snapshots. In order for the
method to work, we would expect the RMSE to be lower
at the skyrmion lattice phase, which is found at interme-
diate magnetic fields and lower temperature, and higher
in the other phases, such as the low field helical phase at
lower magnetic fields, or the high temperature paramag-
netic phase. In Fig. 1, we present a series of examples
comparing the input Monte Carlo snapshot with the out-
put (decoded) snapshot after applying trained PCA and
CAE. The first four rows correspond to the low tempera-
ture snapshots, for four phases that arise as the magnetic
field B is increased: helical, skyrmion lattice, skyrmion
gas and ferromagnetic. At first glance, the low temper-
ature decoded images seem very close to the input ones,
both for PCA and CAE, even for the helical and the fer-
romagnetic cases, which are types of configurations that
were not used to train the algorithms. In these examples,
the RMSE (indicated in each decoded image) for PCA is
even lower in the helical and ferromagnetic cases than
in the skyrmion lattice. This is not ideal, since we are
proposing to use a larger RMSE as an indicator that the
system is further from an ordered skyrmion phase. How-
ever, there is a significant difference in the output images
at higher temperatures, illustrated in the last row of Fig
1 for a snapshot in the paramagnetic phase: both the
PCA and the CAE have a significantly higher RMSE.
To further explore and quantify whether the RMSE ob-

tained with PCA or CAE is a useful tool to distinguish
between the low temperature phases, in Fig. 2 we present
these RMSE as a function of the external magnetic field
B at the lowest simulated temperature for the TFDMxy

model (T = 0.0009). The curves are averaged over 10
independent copies, and the error bars are calculated as
the standard deviation. The background color in Fig. 2
are a guide to the eye and indicate three type of phases: a
helical phase, a skyrmion phase (which includes skyrmion
lattices and skyrmion gas) and a ferromagnetic or field
polarized region. We also present the absolute value of
the scalar chirality χ (scaled by a factor for better com-
parison), the MC calculated parameter that distinguishes
between the different phases: it is zero at low field in the
helical case, goes up significantly where the skyrmion lat-
tices are stabilized, gets lower as these lattices go into a
skyrmion gas with increasing magnetic field, and finally
is zero when all spins are aligned with the external field.
Let us recall that the chirality cannot be “learned” by the
algorithms, since in this proposal only the z spin compo-
nent is used for training.
As for the RMSE calculated from the output images

of both algorithms, it can be seen that the RMSE from
PCA is in fact lowest for the ferromagnetic phase, highest
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FIG. 1. Examples of MC Snapshots and their corresponding decoded counterparts using the trained PCA and CAE for a simple
ferromagnetic model in the triangular lattice (TFDMxy in Table I).

for the skyrmion gas, and, within the error, does not sig-
nificantly distinguish between the helical and skyrmion

lattice phases. On the other hand, the RMSE obtained
comparing the MC snapshots and the CAE decoded ones
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FIG. 2. Different variables as a function of the external mag-
netic field B at the lowest simulated temperature for sim-
ple ferromagnetic skyrmion model in the triangular lattice
(TFSMxy): RMSE obtained comparing the MC input and
the PCA and CAE outputs, BCE calculated from the CAE
outputs and the absolute value of the scalar chirality |χ| ob-
tained from the MC simulations. BCE and |χ| are scaled by
a factor of 0.2 to for comparison. The errorbars are the stan-
dard deviation of the quantities averaged over 10 independent
copies. The background colors are a guide to the eye to indi-
cate the three main phases of this model.

FIG. 3. RMSE from CAE, scalar chirality χ and magneti-
zation M from MC simulations as a function of the exter-
nal magnetic field B at the lowest simulated temperature
(T = 0.0002) averaged over 10 copies for two ferromagnetic
skyrmion models in the kagome lattice: one with only in-plane
DMI (KFDMxy, left panel) and one with an additional out of
plane DMI with the specific value Dz =

√
3 (KFDMz, right

panel). The background colors are a guide to the eye to in-
dicate the three main phases of the simple skyrmion models,
and the region where an exotic one emerges in panel (b).

shows a more interesting behaviour, clearly distinguish-
ing three regions: a low field one with higher RMSE,
corresponding to the helical phase, an intermediate one
with the lowest values (the skyrmion phases), and then a
third region where the RMSE goes slightly but noticeably
up with B and flattens at the ferromagnetic phase. We
also present the binary cross entropy curve for the CAE.
The BCE (scaled by a factor for better comparison) also
seems to distinguish between these three regions, show-
ing an abrupt change as the system enters the skyrmion
phases, but it is lowest in the ferromagnetic phase, and
not in the skyrmion region, where the CAE was trained.
Therefore, we choose the RMSE from the CAE to apply
the anomaly detection technique in other models. As a
comment, a closer inspection of the RMSE curve also sug-
gests that the RMSE error may also be a useful variable,
an idea we will shortly come back to.

Having chosen our variable, the RMSE between the
MC input snapshot and the decoded output from the
trained CAE, we now apply the CAE to the other two fer-
romagnetic skyrmion models, both in the kagome lattice
with in-plane interactions (KFDMxy), and one with an
additional out of plane DMI (KFDMz) (see Table I). We
plot the RMSE and show the MC chirality [57] and mag-
netization as a function of magnetic field at the lowest
simulated temperature for both models in Fig. 3, where
all curves are normalised to 1 to qualitatevely compare
the behaviours. For the KFDMxy, left panel, the behav-
ior is very similar to the triangular lattice case. However,
for the KFDMz model, before flattening in the ferromag-
netic phase, the RMSE goes clearly up. In the MC vari-
ables this is connected to a jump in the magnetization,
but no significant differences are seen in the chirality,
which is the order parameter connected to the skyrmion
phases. Thus, the RMSE suggests that there is a different
phase at higher magnetic fields, for B ∼ 0.13− 0.14. In-
spection of the snapshots reveals this is indeed the case;
an example is shown in Fig. 4, top row. It is an un-
usual high field bimeron + skyrmion phase, with possi-
ble glassy behaviour [35]. Regardless of the nature of the
ptextures, the RMSE indicates that at higher fields the
KFDMz presents a different phase than the other two
ferromagnetic models. We compare the mean value and
the standard deviation of the RMSE as a function of the
external field for the three models in Fig. 5. In the plot,
B is scaled for the TFDMz model, but the RMSE is not.
From the compariston, it is clear that the RMSE is quan-
titavely and qualitatevely very similar in the three models
in three regions (corresponding to helices, skyrmions and
ferromagnetic), but evidently there is an exotic phase for
the KFDMz case before the system goes into the ferro-
magnetic phase. The jump of the RMSE for this model
in this region is not seen in the other two cases, strongly
supporting the idea that in that region of B the system
goes into a different type of ordering.

The KFDMz model has been shown to have several ex-
otic behaviors, due to the competition between skyrmion
and chiral spin liquid physics [35, 49]. Besides the
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FIG. 4. MC Snapshots and their corresponding CAE decoded
counterpart for the skyrmion model in the kagome lattice with
an additional out of plane DMI (KFDMz, see Table I) at two
different high field phases: a low temperature “bimeron glass”
phase (top row) and an intermediate temperature skyrmion
gas (bottom row).

FIG. 5. Mean value (left panel) and standard deviation (right
panel) of the CAE RMSE as a function of magnetic field for
the three ferromagnetic skyrmion models introduced in Table
I (the magnetic field for the triangular lattice case was scaled
to facilitate the comparison) at the lowest simulated temper-
ature.

“bimeron glass” above mentioned, for the value of Dxy

chosen here, it has been shown that, coming from the
high temperature paramagnetic phase, the skyrmion lat-
tice is formed by the discrete emergence of skyrmions
at intermediate temperatures, forming a skyrmion gas
that gets more densely populated as the temperature is
lowered. We compare the RMSE and BCE as a func-
tion of temperature for the two ferromagnetic kagome
skyrmion models, at three different values of the mag-
netic field B = 0.03, 0.09, 0.13. In panels (a) and (b)
it can be seen that for the KFDMxy model both RMSE
and CAE go down smoothly with temperature. The BCE
is smaller for higher fields, but the RMSE is similar for
both B = 0.09, 0.13. This is simply due to the fact that
for this model at those magnetic fields the system is in a

FIG. 6. RMSE and BCE as a function of temperature for
three magnetic fields B = 0.03, 0.09, 0.13 for the two skyrmion
ferromagnetic kagome models, with in-plane DMI, KFDMxy

(panels (a,b)) and with in-plane and an additional out of plane
DM, KFDMz (panels (c,d))

skyrmion crystal phase (see Fig. 3, left panel). The vari-
ables hint a different physical process for the KFDMz

model. At B = 0.13, both the RMSE and BCE abruptly
go up at intermediate temperatures, a feature which is
much sharper in the BCE curve. As discussed in previ-
ous works [35, 49], for this B the KFDMz model goes
through an skyrmion gas phase at intermediate tempera-
tures, with a field polarized chiral spin liquid background.
Since this type of phase is better decoded by the CAE
than the bimeron glass phase, the BCE and RMSE are
smaller. This type of intermediate phase is also present
at B = 0.09, which is seen as a small well before the
“bump” in the BCE curve. We show an example MC
snapshot in this phase and its decoded image in Fig. 4,
bottom row. Since the temperature is higher and the
background is a polarized chiral spin liquid, it can be
seen that it is not completely aligned with the field (i.
e. the bakcround is not completely red). On the other
hand, this changes when decoding the image with the
CAE, where thermal fluctuations are smoothed. This is
related to the potential “denoising” use of convolutional
autoencoders, showing that these algorithms, if needed,
may also be considered as tools to “erase” fluctuations
and better define structures such as skyrmions.

As a summary, we present a comparison of the B − T
phase diagrams of the (third nearest neighbor) chirality,
RMSE and BCE from CAE for the two kagome models,
in Fig. 7. For both models, we first see that the RMSE
and BCE are higher at higher temperature, as expected.
Then, for BCE, at the lower temperatures it goes down
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FIG. 7. Phase diagrams for the chirality obtained from simulations, RMSE and BCE from CAE, for the two skyrmion
ferromagnetic kagome models, with in-plane DMI, KFDMxy (top row) and with in-plane and an additional out of plane DMI,
KFDMz (bottom row)

with magnetic field and is lowest when the system is in
the field polarized phase, and it does not seem to easily
distinguish the lower field phases. However, at interme-
diate temperatures we see a particular behaviour for the
KFDMz case: a drop in the BCE, which matches the chi-
ral spin liquid region [35, 49]. As for the RMSE, in the
KFDMxy model at lower temperatures it distinguishes
between three regions, with a higher value at lower mag-
netic field (corresponding to helices and bimerons), low-
est values at intermediate magnetic fields (skyrmions
phase) and then goes a bit up at higher fields, in the field
polarized region. An important difference is observed for
KFDMz: a small region at higher field where the RMSE
goes up again, between the skyrmion lattice phase and
the field polarized one. This is another exotic feature of
this model, a higher field bimeron phase with potentially
glassy characteristics [35], which is not evident inspect-
ing the chirality. Thus, we see that the RMSE, and also
BCE, are powerful tools to pinpoint regions in parame-
ter space where a system may deviate from the “typical”
skyrmion phase diagram. Given that we only analyse
snapshots, this technique may be applied to real-space
images, and provide helpful insight of a skyrmion system
without resorting to designing a model and permorfing
simulations.

B. Application to antiferromagnetic models

Although the CAE was trained on ferromagnetic triple-
q skyrmion lattices, in this subsection we aim to explore
whether this CAE may give some insight in two well-
known antiferromagnetic models in the triangular lat-
tice, presented in Table II. For these models, the ex-
change interaction is antiferromagnetic (J = 1), which
implies a frustrated system due to the lattice geometry.
In the first model, TAFDMxy, there are in-plane DMI
(D = Dxy ̸= 0). It has been shown that under a mag-
netic field, at finite temperature an antiferromagnetic
skyrmion lattice formed by three interpenetrated sublat-
tices is stabilized [36], a texture that has been shown to
be stabilized in other frustrated models [40, 58, 59], and
connected to the fractional antiferromagnetic skyrmions
in MnSc2S4 [37, 60]. As a second model we consider the
pure exchange antiferromagnetic model (J = 1, D = 0),
where the Hamiltonian may be rewritten as a sum of
the total spin of triangular plaquettes. Under a mag-
netic field B , a notable feature of this model is that
at B ∼ 3 at finite temperature order-by-disorder (en-
tropic selection) induces a pseudo-plateau at magnetiza-
tion M = 1/3, where in each plaquette two spins are par-
allel to the external field (“up”, u) and one is antiparallel
(“down”, d), and is thus known as a uud pseudo-plateau
[61–63]. For lower fields, there is a coplanar “Y” state,
and for higher fields a coplanar “V” state [61].

Clearly, the emergent antiferromagnetic low-
temperature textures from these models are quite
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TAFDMxy TAF

m
o
d
el

J 1 1

Dxy 0.5 0

TABLE II. Two well known antiferromagnetic (AF) models in
the triangular lattice. Both have antiferromagnetic exchange
interactions J = 1, one has in-plane DMI (TAFDMxy) and
the other one is the pure exchage model (TAF)

different from the triple-q ferromagnetic skyrmion lat-
tices, and thus a significantly larger RMSE is expected.
To explore whether some information on these models
may nonetheless be extracted with the skyrmion-trained
CAE, we proceed as before: we apply the CAE to low
temperature snapshots obtained from MC simulations
of both models, and calculate the RMSE and the BCE.

FIG. 8. RMSE and BCE calculated after applying the CAE
and chirality from MC simulations as a funcion of the ex-
ternal magnetic field B at the lowest simulated temperature
(T = 0.0009) for TAFDMxy (panel (a)) and the TAF (panel
(b)) models. In both panels, the shaded background colors
are guides to the eye to indicate the different phases. Com-
parison of the CAE (panel (c)) and BCE (panel (d)) as a
function of B for the three models in the triangular lattice:
the ferromagnetic skyrmion model TFDMxy, the antiferro-
magnetic skyrmion model TAFDMxy and the pure exchange
antiferromagnetic case TAF. B∗ indicates that for a better
comparison, the magnetic field in the x-axis was scaled for
the TFDMxy curves.

In Fig. 8 (a) and (b) we show the RMSE, BCE and
chirality χ as a function of the external field B for the
TAFDMxy and TAF models, respectively, at the lowest

simulated temperature T = 0.001). In the TAFDMxy

case (panel (a)), the RMSE and the BCE are relatively
flat at lower B and present a sharp decrease at B ∼ 2,
which matches the jump in the chirality χ associated with
the stabilization of the AF skyrmion lattice. Then as B
is increased both quantities go down, and the curves get
steeper when χ drops to zero. Although the behaviour
of the RMSE and the BCE is similar, the features in the
RMSE are sharper than for BCE, particularly the steep
drop at lower field. So, in this case, the RMSE shows that
there is a first type of phase stabilized at B > 2, followed
by a different type of phase up toB ∼ 4, where the RMSE
starts to drop until it flattens at its minimum value at
higher fields, associated to the ferromagnetic phase, with
all spins aligned with B.

FIG. 9. Example of MC Snapshots and their correspond-
ing CAE decoded counterparts for the skyrmion model in
the antiferromagnetic triangular lattice at low temperature
(TAFDMxy, top row) and the pure exchange antiferromag-
netic model in the triangular lattice (TAF, bottom row).

The BCE and RMSE curves are quite different for the
TAF case (panel (b)): the BCE goes down with increas-
ing magnetic field, presenting a small kink at B ∼ 3,
the pseudo-plateau magnetic field. On the other hand,
the RMSE curve has two clearly distinct regions, sepa-
rated at B ∼ 3: a low magnetic field region where the
RMSE goes up, and a higher field region where it goes
down, presenting thus a peak at B ∼ 3. Therefore, even
if, as expected since the CAE was trained for skyrmion
lattices, the obtained RMSE values are quite large, the
RMSE calculated after applying this CAE to the MC
snapshots indicates that there are two types of phases
at lower and higher field, and that there is a particular
feature in the TAF model at B ∼ 3.
Panels (c) and (d) show the RMSE and BCE curves,

respectively, for these two AF models and the simple fer-
romagnetic skyrmion model (TFDMxy; here the mag-
netic field B has been rescaled for a better compari-
son of the magnitude and characteristics of the curve).
As expected, the magnitude of both quantities, particu-
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larly RMSE, is significantly larger for the antiferromag-
netic models. The three RMSE curves, contrary to the
BCE ones, have different characteristics, showing that
the three models have different types of phases. The
kinks and jumps in the three curves are also indicators
of the different phases within each model.

Finally, in Fig. 9 we show the input and output of a
low temperature snapshot in each AF model. The first
row corresponds to a three-sublattice antiferromagnetic
skyrmion crystal (TAFDMxy) and the second one to the
pseudo-plateau at M = 1/3 in the pure exchange model
(TAF). Clearly, in both cases the decoded image is quite
different from the input one. This is due to the fact
that the CAE was trained with perfect ferromagnetic
skyrmion sizes, where the textures are smoothly mod-
ulated, and here it is applied to two snapshots where
there is an abrupt change in the texture at nearest neigh-
bor distances, given the antiferromagnetic nature of the
models. The RMSE is largest at the uud pseudo-plateau,
which is completly washed away by the CAE, trained for
more “coarse-grained” textures.

V. CONCLUSIONS

In this work we propose the use of the anomaly de-
tection technique to explore skyrmion phase diagrams.
We trained two types of algorithms, Principal Compo-
nent Analysis and Convolutional Autoencoder, with a
data set of analytically generated skyrmion lattices. Our
main idea was to compare input configurations, obtained
with Monte Carlo simulations from a given model, with
the decoded (output) snapshot generated when applying
these algorithms to the input data. A large deviation
from the original MC data would imply that the cho-
sen configuration is “further” from a skyrmion lattice.
To quantify the difference between the input and output
snapshots, we calculated the Root Mean Square Error for
both PCA and CAE, and the Binary Cross Entropy for
CAE.

First, we chose a simple and well known skyrmion
model in the triangular lattice, one that combines ferro-
magnetic exchange and in-plane Dzyaloshinskii-Moriya
interactions under an external magnetic field. At low
temperature and low magnetic field, helices are sta-
bilised. As the field increases, a skyrmion lattice is
formed, which then gives place to a skyrmion gas un-
til the spins are completely polarized. Comparing the
RMSE from PCA and CAE, we found that for PCA the
lowest RMSE was found for the ferromagnetic phase, and
that, within the errorbars, it was not possible to distin-
guish between the helical and the skyrmion phases. On
the other hand, the CAE RMSE showed a clear distinc-
tion between these three main phases, and was lowest
in the skyrmion region, which is essential for out pro-
posal. Surprisingly, the RMSE is not very large for heli-
cal and ferromagnetic phases, and the decoded snapshots
are quite close to the input ones. We also compared the

behaviour of the RMSE and the BCE. Although the BCE
may be able to separate between the low temperature re-
gions of this model, it monotonically goes down with the
magnetic field, and thus is minimum for the ferromag-
netic snapshots.
Secondly, we applied the CAE to two models in the

kagome lattice, the well known skyrmion model we had
simulated in the triangular lattice, and one where an ad-
ditional out-of-plane DMI is included. As expected, the
behaviour of the RMSE in the first case (only planar
DMI) is similar to that in the triangular lattice. How-
ever, in the second case (with both planar and out-of-
plane DMI) there is a clear region at low temperature
and higher fields where the error raises, indicating the
possibility of a different type of phase. In fact, previous
studies in this model [35] show that there is a high field
bimeron glass phase. Moreover, this model also has a va-
riety of phases at higher temperature, which is reflected
in both the RMSE and BCE. Our analysis also suggests
that the spread of the RMSE, considering independent
realizations for the MC data, may also be a tool to dis-
tinguish between different low temperature phases.
Finally, we apply the skyrmion-lattice trained CAE

to snapshots from two models in the antiferromagnetic
triangular lattice: one with in-plane DMI, where anti-
ferromagnetic skyrmion lattices are stabilized, and the
pure exchange model, which presents a well known uud
plateau at M = 1/3. Given that the CAE is trained
with ferromagnetic skyrmion lattices, a good decodifica-
tion of the input data is not expected. Nonetheless, the
low-temperature RMSE curves have features that suggest
possible different phases. In particular, in the pure an-
tiferromagnetic exchange model, the RMSE is maximum
for values of the magnetic field where the pseudo-plateau
emerges.
In conclusion, we have shown how the anomaly detec-

tion technique, which we have applied resorting to a very
simple Convolutional Autoencoder trained with analyti-
cally generated skyrmion lattices and choosing the RMSE
to measure the error between input and output data,
may give relevant information on skyrmion systems. We
have demonstrated that it was able to distinguish the
three typical phases in a skyrmion phase diagram (he-
lices, skyrmions and field-polarized spins), and to spot
regions in parameter space where there may be exotic
behavior. Additionally, we have seen how it may also
hint the existence of different phases in other types of
models. Thus, we expect our work to support and fur-
ther promote the exploration and use of machine learning
techniques in different magnetic models.
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