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We investigate the mechanisms by which a particle bed modifies the oscillatory
boundary layer. We perform Euler-Lagrange simulations of an OBL over a particle
bed at Reynolds numbers Reδ = 200, 400, and 800, density ratio ρp/ρf = 2.65,
maximum Shields numbers ranging from 1.42 × 10−2 to 7.40 × 10−2, Galileo number
Ga = 51.9, Stokes number ranging from 3.99 to 15.97, and Kuelegan-Carpenter
number ranging from 1.7 × 103 to 6.8 × 103, and showed large modulation to
the underlying boundary layer. We show two mechanisms of modification to the
oscillatory boundary layer: (I) the permeability of the bed allows fluid flow to
penetrate into the bed, introducing a slip velocity at the bed-fluid interface, an
inflection point and the expansion of the boundary layer, and (II) for Reδ = 400,
and 800, particle motion creates an evolving bedform. For Reδ = 200, particles
are nearly motionless and the permeability of the bed drives the alteration of the
velocity profile. The initial bed form drives velocity fluctuations not seen for flow
over a smooth, impermeable wall. For Reynolds 400 and 800 particle momentum is
associated with the peak velocity fluctuations, indicating that the particle feedback
force contributes to velocity fluctuations. We show that the coefficient of friction,
computed using the bed shear stress, is decreased by nearly half for Reynolds 200
and 400, and nearly an eighth for Reynolds 800.
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1. Introduction
In shallow areas of the ocean, the seafloor maybe subject to large oscillating pressure
gradients and strong shear forces. This causes sediment to become suspended and
transported to new locations, where they are deposited as the shear force oscillates.
A model flow often used to investigate this process is the oscillatory boundary
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layer (OBL) problem. Stokes (1855) was amongst the first to address this prob-
lem, specifically in the limit where viscous effects dominate and where the bottom
surface is represented as a smooth flat wall. Under these assumptions, Stokes (1855)
derived analytical solutions which show the establishment of a boundary layer with
characteristic thickness δ =

√
2ν/ω, where ν is the fluid kinematic viscosity and

ω the angular frequency of the oscillations. Due to the assumption of dominating
viscous effects, these solutions apply only in the limit of very small Reynolds numbers
Reδ = U0δ/ν, where U0 is the velocity amplitude of the oscillations. Later, many
researchers investigated the dynamics of oscillatory boundary layers over smooth
and rough walls at larger Reynolds numbers, including when the Reynolds number
is sufficiently high for turbulence to emerge (Akhavan et al. 1991b; Carstensen et al.
2010, 2012; Costamagna et al. 2003; Fytanidis et al. 2021; Ghodke & Apte 2016,
2018; Hino et al. 1976; Mazzuoli & Vittori 2019; Mazzuoli et al. 2020, 2016; Ozdemir
et al. 2014; Pedocchi et al. 2011; Salon et al. 2007; Sarpkaya 1993; Vittori & Verzicco
1998; Vittori et al. 2020). However, it is unclear whether these results are applicable
to seafloors. Unlike the previously studied configurations with impermeable and fixed
smooth or rough walls, seafloors are made of sediment particles that together form a
porous bed. Depending on the details of the flow over it, the bed may be static, with
or without bedforms, and may even evolve dynamically as sediment particles saltate
or get suspended by the flow (Finn et al. 2016). In this manuscript, we investigate the
extent to which the OBL is altered by a bottom sediment bed at different Reynolds
number.

There has been significant effort devoted to the characterization of the boundary
layer that develops over a smooth or rough wall under the action of an oscilla-
tory forcing. Depending on the Reynolds number Reδ, different regimes have been
identified as detailed in (Vittori & Verzicco 1998; Pedocchi et al. 2011; Akhavan
et al. 1991a; Ozdemir et al. 2014; Fytanidis et al. 2021). To summarize, an OBL
developing over an impermeable wall exhibits four different regimes. In experiments
and simulations with wavy or rough botom walls, with Reynolds number Reδ ⩽ 85
the flow is laminar throughout the oscillation cycle (Blondeaux & Seminara 1979;
Vittori & Verzicco 1998; Akhavan et al. 1991a), and is well described the analytical
solutions of Stokes (1855). For larger Reynolds numbers up to ∼ 500 with rough or
wavy bottom walls, (Hino et al. 1976; Jensen et al. 1989) or ∼ 700 (Blennerhassett &
Bassom 2002), the disturbed laminar regime is observed. The latter is characterized
by the appearance of small amplitude perturbations superimposed upon the Stokes
flow (Vittori & Verzicco 1998). Fytanidis et al. (2021) found that the limiting
Reynolds number for this regime is dependent on background disturbances, such
as initialization parameters. With increasing Reynolds number, the flow enters an
intermittent turbulent regime characterized by sudden eruptions of turbulence during
the decelerating portion of the oscillatory period before relaminarizing again. The
exact value for the transition to intermittent turbulence is dependent upon wall
imperfections, background disturbances, and initialization conditions in numerical
studies (Vittori & Verzicco 1998). For Reynolds numbers greater than ∼ 3460,
Jensen et al. (1989) show that the OBL presents sustained velocity fluctuations
and a logarithmic-layer for at least 90 percent of the cycle. This criterion defines the
turbulent regime.

A number of studies have considered the effects of bottom interfaces upon the
structure of the OBL. Jensen et al. (1989) experimentally studied smooth beds,
rough sandpaper beds, and sand beds. They found that increased roughness relative
to the wave height lead to a thicker boundary layer and larger logarithmic layer.
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Vittori & Verzicco (1998) investigated the transition to turbulence by simulating
an OBL near an imperfect wall. The wall imperfections were modeled through
waviness and roughness elements. These imperfections created instabilities that lead
to transition. Xiong et al. (2020) showed that a temporary roughness element can
trigger the formation of a vortex tube which causes the transition to turbulence.
Additional studies of roughness effects can be found in (Ghodke & Apte 2016, 2018;
Mazzuoli & Vittori 2019). In the case of freely moving particles, Mazzuoli et al.
(2016) considered a chain of particles resting on a horizontal plane. The particles
are shown to form structured chains when set in motion by the OBL. If the particle
bed has some waviness then there is also vortex shedding caused by the bed dunes.
Finn & Li (2016) proposed a regime map based on the Shields and Galileo number
for sediment-turbulence interaction. The Shields number is a nondimensional shear
stress, while the Galileo number is the ratio of gravitational forces to viscous forces
upon a particle. The Shields number is dependent upon the particle parameters and
the flow parameters, while the Galileo number only depends on particle parameters.
This leads to a range of potential bedforms with different waviness that may emerge
dependent upon the underlying fluid flow. Mazzuoli et al. (2020) performed interface-
resolved direct numerical simulations of an OBL over a particle bed. They found
that particle transport varies between the accelerating and decelerating portion of
the flow when the Shields number is small, and is virtually the same when the
Shields number is large. The limitation of interface resolved simulations due to high
resolution requirements prevents the capture of several bedform periods, which may
modulate turbulence. This may further alter particle transport.

To study the OBL, several models can be applied to the study of sediment
transport. Namely, Euler-Euler (EE) methods, Euler-Lagrange (EL) methods, and
Particle-Resolved DirectNumerical Simulations (PR-DNS). EE methods consider the
particle phase as a continuum. Lee et al. (2016) developed a 3D EE method using
phased based averaging. They showed good predictive capability in sheet flow and
scouring simulations. Chiodi et al. (2014) derived an EE model for dense viscous
flows and turbulent suspensions. They used this method to investigate sediment
transport and captured the transition from bedload and suspended load. Maurin
et al. (2016) compared an EE method with an EL in simulations of turbulent bedload
transport and showed agreement between the two methods over a range of Shields
numbers. Kasbaoui et al. (2019) compared EE simulations with EL simulations for
sedimenting particles. They showed that so long as particle clustering is weak, the
two methods agree well. Additionally, EE methods are computationally efficient, but
are difficult to extract information about particle momentum from. EL formulations
provide a high fidelity method for simulating particle-laden flows. EL formulations
track individual particles on a separate Lagrangian grid, while the fluid phase is
solved on a Eulerian mesh. Capecelatro & Desjardins (2013) used EL formulations
previously to simulate dense fluidized beds, and Arolla & Desjardins (2015) used EL
methods to reproduce bed-form regimes in slurries in pipe flows. PR-DNS captures
detailed information about the particle boundary layer. They have a very high degree
of fidelity as they do not rely upon models for the forces on particles. However, this
comes at a high computational cost, which restricts their application to smaller
domains. Compared to PR-DNS, the EL formulation provides a computationally
efficient method for investigating larger fluid domains, which allows meso-scales of
the flow to be captured. Importantly, this allows bedforms to emerge as a result of
the driving flow, with several periods of the bedform.

In this paper, we study the effect of a cohesionless particle bed on the dynamics
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of an OBL from the laminar regime to the onset of turbulence. The structure of the
manuscript is as follows. In section 2, we describe the equations that dictate the
dynamics of the flow and sediment particles. In section 3, we provide information
on the computations and parameters used in this study. In order to understand the
role played by the particle bed, we analyze the dynamics of an OBL over a flat plate
in section 4, i.e., without particles, as a baseline for comparison. In the following
section 5, we analyze the simulations with a particle-bed and highlight the role of
suspended particles and bedforms in the modification of the flow regimes. Finally,
we give concluding remarks in section 6.

2. Governing equations
We use the volume-filtering approach of Anderson & Jackson (1967) and Euler-
Lagrange methodology of Capecelatro & Desjardins (2013) to describe the dynamics
of the sediment-laden flow. The carrier phase is an incompressible fluid with density
ρf and viscosity µf . The volume-filtered Navier-Stokes equations read

∂

∂t
(αf ρf ) + ∇ · (αf ρf uf ) = 0, (2.1)

∂

∂t
(αf ρf uf ) + ∇ · (αf ρf uf uf ) = ∇ · τ + αf ρf g − F p + ∇ · Rµ + A, (2.2)

where αf is the fluid volume fraction, uf is the volume-filtered fluid velocity,
τ = −pI +µ[∇uf +∇uT

f − 2
3(∇·uf )I] is the resolved fluid stress tensor (Capecelatro

& Desjardins 2013), g is the gravitational acceleration, and F p is the momentum
exchange between the particles and the fluid. The tensor Rµ represents the so-
called residual viscous stress tensor. This term arises from filtering the point-wise
stress tensor. It includes sub-filter scale terms which require closure. This term is
believed to be responsible for the apparent enhanced viscosity observed in viscous
fluids containing suspended solid particles. For this reason Capecelatro & Desjardins
(2013) proposed a closure using an effective viscosity, which when combined with
the effective viscosity model of Gibilaro et al. (2007) leads to an expression for the
residual viscous stress tensor

Rµ = µf (α−2.8
f − 1)[∇uf + ∇uT

f − 2
3(∇ · uf )I]. (2.3)

In order to study the dynamics of an oscillatory boundary layer, we drive the flow
using the last term in equation (2.2), which expresses as

A = αf ρf U0ω cos(ωt)ex, (2.4)
which represents a harmonic pressure gradient forcing with angular frequency ω and
amplitude U0. Here, x is the coordinate in the streamwise direction along the unitary
vector ex, y is the coordinate in the wall normal direction, z is the coordinate in the
cross-stream direction.

The momentum exchange term F p contains contributions due to resolved stresses
and drag force. It reads

F p = αp∇ · τ |p + fdρpαp
uf |p − up

τp
(2.5)

where αp = 1 − αf is the particle volume fraction, ρp is the particle density, τp =
ρpd2

p/(18µ) is the response time of a particle with diameter dp, and fd represents

Focus on Fluids articles must not exceed this page length
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Figure 1: Schematic of the configuration with a bottom sediment bed. The
latter is generated in precursor runs where the particles are seeded towards the

middle of the domain and allowed to settle on the bottom boundary.

an inertial drag correction. In this study we, use the correction proposed by Tenneti
et al. (2011) and derived from particle-resolved direct numerical simulations. This
correction accounts for inertial and volume fraction effects.

The particles are described in the Lagrangian frame. Following Maxey & Riley
(1983), the equations of motion of a particle “i” are given by

dxi
p

dt
(t) = ui

p(t) (2.6)

mp

dui
p

dt
(t) = Vp∇ · τ + mpfd

uf (xi
p, t) − ui

p

τp
+ f col

p + mpg (2.7)

where xp, up, mp, and Vp are the particle position, velocity, mass, and volume,
respectively. The term f col

p represents the collisional force exerted on the particle
due to particle-particle and particle-wall collisions. These collision are modeled using
the soft sphere model, as detailed in Capecelatro & Desjardins (2013).

Note that the governing equations (2.1) and (2.2) for the fluid phase are solved in
both simulations with particles and without. In the latter case, αf = 1 throughout
the domain, which recovers the standard Navier-Stokes equations.

We calculate the particle volume fraction and particle velocity from the Lan-
grangian quantities using

αp(x, t) =
N∑

i=1
Vpg(||x − xi

p||) (2.8)

αpup(x, t) =
N∑

i=1
ui

p(t)Vpg(||x − xi
p||) (2.9)

where Vp = πd3
p/6 is the particle volume. In these equations, g represents a Gaussian

filter with width δf = 7dp. Additional details on the computation of these terms, as
well as on the solver, can be found in (Capecelatro & Desjardins 2013).
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Case Reδ ρp/ρf Θmax Ga Stδ KC
1 200 – – – – –
2 400 – – – – –
3 800 – – – – –
4 200 2.6 1.42×10−2 51.9 3.99 1.7×103

5 400 2.6 2.85×10−2 51.9 7.99 3.4×103

6 800 2.6 7.40×10−2 51.9 15.97 6.8×103

Table 1: Summary of the non-dimensional parameters for the presents runs of
an OBL over a smooth wall (runs 1-3) and over a sediment bed (runs 4-6).

3. Numerical experiments
3.1. Configuration

We consider a total of six cases where the Reynolds number is progressively increased
from Reδ = 200 to Reδ = 800. A summary of the relevant non-dimensional parame-
ters for each run is listed in table 1. In order to provide a baseline for comparisons
with the sediment-laden cases, we first investigate the dynamics of an oscillatory
boundary layer over a smooth wall, where we vary the forcing amplitude U0 to yield
Reδ = 200, 400, and 800. The first two cases are in the laminar regime, so the
flow field is expected obey the Stokes solutions (Carstensen et al. 2010). The case
at Reδ = 800 is in the intermittent turbulent regime. Each of these cases is then
compared to a companion run at the same Reynolds number with a particle bed in
order to elucidate the impact of sediment motion, bedforms, and bed permeability
on the flow statistics.

The presence of particles introduces additional dimensionless parameters. These
are: (i) the density ratio ρp/ρf , (ii) the Shields number Θmax = τb,max/((ρp−ρf )gdp),
where τb,max is the maximum bed shear stress observed in simulations, (iii) the
Galileo number Ga = dp

√
(ρp/ρf − 1)gdp/ν, (iv) the Stokes number Stδ = τpU0/δ,

where τp is the particle response time, (v) and the Keulegan-Carpenter number,
KC = U0T/dp. The values for each case is shown in table 1. The work of Finn
et al. (2016) suggests regimes of particle transport determined by the combination
of the Shields and Galileo numbers. Based on their work and the combination of the
present parameters, case 4 falls into the “no motion regime”. Cases 5 and 6 fall in
the gravitational settling regime. We expect particle motion in both of these cases,
with case 6 having higher suspended sediment concentration. Keulegan-Carpenter
number is large in all cases, meaning that particle drag will dominate inertial forces
associated with the flow oscillations.

Figure 1 shows a schematic of the computational domain used in these simulations.
In the single-phase flow simulations, the domain and discretization follow the descrip-
tion in Salon et al. (2007). The dimensions are 50δ in the stream-wise direction, 40δ
in the wall normal direction, and 25δ in the span-wise direction. For Reδ = 200, 400
the discretization is 64 points in the stream-wise direction, 256 in the wall normal
direction, and 64 in the spanwise direction. For Reδ = 800 we use a discretization of
256 points in the streamwise direction, 256 in the wall-normal direction, and 128 in
the spanwise direction. In order to capture the flow structures near the wall, the mesh
is stretched in the wall-normal direction using a hyperbolic tangent function such
that the minimum grid spacing is ∆ymin/δ = 0.03. In simulations with a particle
bed, we use a uniform discretization 672×158×67 such that the mesh spacing ∆x is
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equal to half a particle diameter. The bedheight is kept at 18.59δ, which gives a depth
of 25 particles. This gives a total number of particles N = 3.1 × 105. The particle
restitution coefficient is held constant at 0.9, as is the particle friction coefficient at
0.1.

The simulation timestep differs from single phase to particle-laden cases. In the
single phase cases, we use a period to timestep ratio of T/∆t = 5.6 × 103. The same
ratio in the particle-laden case is T/∆t = 2.24 × 105. The timestep requirement in
the particle-laden case is significantly more restricted. This restriction is driven by
the requirement that the bottom layer of the particles must support the weight of
the particle bed above them. For more details, see (Capecelatro & Desjardins 2013).

The protocol to initialize the simulations and gathering statistics is as follows. For
the single-phase cases at Reδ = 200 and Reδ = 400, we initialize the simulations
with a quiescent flow and simulate 10 periods of the flow. We discard the first two
periods, as they have transient effects from the initialization, and perform phase
averaging on the remaining eight periods. For the single-phase case at Reδ = 800,
we find that intermittent turbulence does not emerge within a reasonable simulation
time when initializing from a quiescent flow. For this reason, we initialize the flow
from an already turbulent flow generated at Reδ = 1790, that we have previously
validated with the experimental data of Jensen et al. (1989). This provides sufficient
initial disturbances for the flow to trigger intermittent turbulence at Reδ = 800.
We run the simulation for several periods until the flow reaches a stationary state,
which requires 2 periods for cases 1-2 and 4-6. Case 3 requires 4 periods to reach
stationary state because it is initialized from a highly turbulent flow field. This is
validated by confirming that fluid velocity statistics no longer vary with additional
periods. After this, we collect data over the following 8 periods for the purpose of
phase-averaging. For cases with a sediment-bed, we perform precursor simulations to
generate a realistic poured-bed as described in §3.2. Then, we carry out simulations
initialized from quiescent flow. Monitoring changes to the flow statistics from period
to period shows that transient effects due to the initialization are gone with 4 periods.
We then, simulate for additional 8 periods to collect statistics.

3.2. Bed formation and bed-fluid interface
To form the sediment bed in cases 4-6, we perform precursor simulations that serve
to generate a realistic bed volume fraction that matches the volume fraction of a
poured bed, about 63% (Scott & Kilgour 1969). In these runs, the oscillatory forcing
is turned off and the particles are initially uniformly distributed towards the middle
of the domain at an average volume fraction of 40% and with small random velocity
fluctuations. We then integrate the governing equations (2.1), (2.2), (2.6), and (2.7)
until the particles fully settle down. Particle-particle collisions and fluid-mediated
particle-particle interactions lead to the formation of the poured bed in figure 1.

Figure 2a shows the average particle volume fraction ⟨αp⟩xz profile as a function
of the wall normal distance. Note that here and onward, the notation ⟨·⟩xz refers to
ensemble and spatial averaging over the streamwise (x) and spanwise (z) directions.
As anticipated, the volume fraction within the bed matches the random poured
packing (Scott & Kilgour 1969). It smoothly transitions to zero away from the bed.
Further, we conduct the simulations with particle beds that are sufficiently deep to
ensure that the interaction between the particle bed and the turbulent flow above is
captured without interference from the bottom boundary. In the present study, the
sediment bed is thick by about 25 particle diameters, which corresponds to about
∼ 8.30δ.
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Figure 2: The particle bed is initialized by letting particles settle onto the
bottom wall. (a) This procedure results in a volume fraction profile that is

consistent with that of a poured bed. (b) The isosurface αp = 0.2 represents a
good indicator of the location of the bed-fluid interface.

At this point, we must address the way we define the bed-fluid interface. We
follow the approach of Kidanemariam & Uhlmann (2014), where we define the bed-
fluid interface using an isosurface of the particle volume fraction αp = αp,b <
0.63. However, it is important to recognize that the choice of the isosurface αp,b

demarcating the bed-fluid interface is somewhat arbitrary since the computation of
the volume fraction field αp depends on numerical choices. For example, the shape
and size of the filter kernel used to compute αp control the width of the transition
region in figure 2a. With the filtering described in §2, the isosurface αp,b = 0.2
provides a good indicator of the approximate location of the bed-fluid interface. We
determine this by verifying that this surface lies right on top of the particles as shown
in figure 2b.

4. Structure of an Oscillatory Boundary Layer over a smooth wall
We now turn our attention to cases 1-3, where the bottom boundary is an imper-
meable smooth wall rather than a sediment bed. The reasons for this are twofold.
First, analytical solutions exist for the laminar regime, which allows the validation
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Figure 3: Normalized spanwsie vorticity fields at Reδ = 400 for a smooth,
impermeable wall, at phases 0, 30, 60, 90, 120 and 150 degrees. The vorticity is

arranged in laminae at all phases.

of the computational approach. Second, these runs serve as benchmark to elucidate
the changes to the flow in presence of a sediment bed.

Figure 3 shows the normalized spanwise vorticity field at phases ωt = 0, 60, 90, 120,
and 180◦ for the case at Reynolds 400. The solution at Reynolds 200 shows similar
vorticity structure to the Reynolds 400 and, thus, is not included here. The vorticity
in these low Reynolds number cases, is organized into sheets in the near-wall region.
This indicates laminar flow, and so the flow at Reynolds 200 and 400 should obey
the Stokes solution,

uf,x/U0 = cos(ωt) − e−y/δ cos(ωt − y/δ), (4.1)
uf,y/U0 = 0. (4.2)
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Figure 4: Normalized stream-wise velocity for the case of an OBL over an
impermeable smooth wall at Reδ = 400 during (a) the positive velocity half
cycle, and (b) the negative velocity half cyle. Solid black lines with symbols

correspond to the Stokes solution, while dashed red lines with symbols
correspond to simulation data. The symbols indicate the phase: (□,ωt = 0, 180),

(◦,ωt = 45, 225), (△,ωt = 90, 270), (⋄,ωt = 135, 315). The strong agreement
between the simulated data and the Stokes solution indicates that the flow is

fully laminar in this case.
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Figure 5: Scaled coefficient of friction over one period at Reδ = 200 and 400, for
a smooth, impermeable wall. The black line correspond to the Stokes solution.

Symbols correspond to the numerical solution at (□,Reδ = 200) and
(△,Reδ = 400). All cases collapse onto the Stokes solution.

To verify this, we compare the Stokes solution to vertical profiles of the phase-
averaged fluid velocity from the simulation at Reδ = 400 in figure 4. The agreement
between the simulated data and the analytical solution is excellent, showing that
the flow is indeed laminar at these Reynolds numbers. This also validates the
computational approach for an impermeable smooth wall oscillatory boundary layer
at low Reynolds numbers.

Rapids articles must not exceed this page length
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As an additional comparison, we compute the coefficient of friction Cf defined as,

Cf = |τw|
(1/2)ρf U2

0
, (4.3)

where τw is the wall shear stress. Figure 5 shows the variation of the coefficient
of friction scaled by Reδ. This cancels the Reynolds number dependence of the
coefficient of friction. The scaled coefficient is plotted over a period for the cases
of an OBL over an impermeable smooth wall at Reδ = 200 and 400, alongside the
Stokes solution. Here too, the agreement between numerical and Stokes solution is
excellent which further demonstrates that the OBL at these Reynolds number is fully
laminar.

Unlike the lower Reynolds number cases, figure 6 shows significant vorticity
throughout the cycle for the case at Reδ = 800. Of particular interest is the
range of scales seen at phase 120◦, which is in the decelerating portion of the
cycle. This eruption of velocity fluctuations, followed by partial relaminarization, is
characteristic of the intermittent turbulence regime. Similar observations were made
by Jensen et al. (1989), Vittori & Verzicco (1998), and Salon et al. (2007).

The vorticity field for Reynolds 800 indicates the possibility of turbulence. To
investigate this further, we plot the spatially averaged streamwise velocity in semilog,
shown in figure 7. The velocity is normalized using wall units, i.e., the friction velocity
uτ =

√
τw/ρf as velocity scale and ν/uτ as length scale. The profiles do not show a

logarithmic layer. The smooth wall baseline flow does not exhibit turbulence.

5. OBL over a cohesionless particle bed
Having characterized the dynamics in the case of a bottom smooth flat wall, we now
analyze the changes that occur when the oscillatory boundary layer develops over a
cohesionless particle bed.

5.1. Case at Reδ = 200
While in the case of an OBL over a smooth impermeable wall at Reδ = 200 the flow
is devoid of any fluctuations, the presence of a sediment bed leads to notable vortex
shedding. These dynamics are visible in figure 8 depicting the spanwise vorticity in a
wall normal plane at different phases of the cycle. To highlight the bedform, figure 8
also shows the volume fraction contour αp = αp,b = 0.2 that demarcates the sediment
bed-fluid interface. The latter displays small waviness which results in some vortex
shedding. These structures are small departures from the single phase case, showing
a shift in the presence of a bedform, towards the disturbed laminar regime.

The mean velocity profile is altered by the cohesionless particle bed. Figure 9 shows
the average velocity profiles for Reynolds 200. To compare the two-phase velocity
profile to the analytical solutions, the vertical distance is shifted by the average bed
height at initialization, that is, the average y location for volume fraction 0.2. In
these cases, the bed does not evolve significantly and so the average bed height does
not meaningfully change throughout the simulation. Reynolds 200 is close to the
analytical solution, but with some important deviations. Specifically, the boundary
layer is thicker, and there is an inflection point near the bed interface. Additionally,
the velocity does not become zero immediately within the bed, showing flow intrusion
within the bed. The flow intrusion leads to a thicker boundary layer in the presence
of a bed. Finally, the maximum velocities within the boundary layer is decreased.



12 J. S. Van Doren, and M. H. Kasbaoui
-0.5 -0.25 0 0.25 0.5

ωz × δ/U0

0 10 20 30 40 500

10

20

30

x/δ

y/δ

(a) ωt = 0◦

0 10 20 30 40 500

10

20

30

x/δ

y/δ

(b) ωt = 30◦

0 10 20 30 40 500

10

20

30

x/δ

y/δ

(c) ωt = 60◦

0 10 20 30 40 500

10

20

30

x/δ

y/δ

(d) ωt = 90◦

0 10 20 30 40 500

10

20

30

x/δ

y/δ

(e) ωt = 120◦

0 10 20 30 40 500

10

20

30

x/δ

y/δ

(f) ωt = 150◦

Figure 6: Normalized spanwise vorticity field in DNS of an OBL over an
impermeable smooth wall at Reδ = 800, for a smooth, impermeable wall. The
eruption of velocity fluctuations during the decelerating portion of the cycle

(120◦ and 150◦) indicates that this flow is in the intermittent turbulent regime.

The presence of a particle bed leads to greater velocity fluctuations than in the
smooth wall cases. Figure 10 shows the streamwise velocity fluctuations. The rms
fluctuations for a smooth wall at Reynolds 200 is zero throughout the water column.
However, the presence of a particle bed leads to non-zero fluctuations. For Reynolds
200, there are peaks near 10 percent of the forcing amplitude at 1dp above the
bed. The fluctuations show multiple peaks for all phases except 150. This indicates
repeated structures at fixed heights above the bed.

The particle bed leads to a different condition at the fluid-bed interface as com-
pared to a smooth wall. In the smooth wall case, no-slip applies at the wall, while the



13

0

5

10

15

20

25

30

0.1 1 10 100 1000

〈u
〉 x

z
/u

τ

y+

(a) ωt = 0◦

0

5

10

15

20

25

30

0.1 1 10 100 1000 10000

〈u
〉 x

z
/u

τ

y+

(b) ωt = 30◦

0

5

10

15

20

25

30

0.1 1 10 100 1000 10000

〈u
〉 x

z
/u

τ

y+

(c) ωt = 60◦

0

5

10

15

20

25

30

0.1 1 10 100 1000 10000

〈u
〉 x

z
/u

τ

y+

(d) ωt = 90◦

0

5

10

15

20

25

30

0.1 1 10 100 1000 10000

〈u
〉 x

z
/u

τ

y+

(e) ωt = 120◦

0

5

10

15

20

25

30

0.1 1 10 100 1000

〈u
〉 x

z
/u

τ

y+

(f) ωt = 150◦

Figure 7: Wall scaled mean velocity profiles for Reδ = 800, for a smooth,
impermeable wall. No logarithmic layer is observed.

particle bed is porous, which leads to a slip velocity at the fluid-bed interface. This
causes the bed shear stress to be reduced compared to the smooth wall case. We define
the bed shear stress as the shear stress conditioned on an isosurface corresponding
to the bed interface αp = αp,b.

τb = ||⟨n · τ ′|αp=αp,b
⟩|| (5.1)

where n is the normal vector on the isosurface αp = αp,b, and τ ′ = µ[∇u + ∇uT −
(2/3)(∇·u)I]+Rµ is the deviatoric stress tensor. With the closure of Gibilaro et al.
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Figure 8: Span-wise vorticity fields at Reδ = 200, at phases 0, 30, 60, 90, 120,
and 150 degrees. Small ripples in the bedform cause repeated shedding vortices

to emerge.
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Figure 9: Profiles of the mean streamwise velocity at Reδ = 200. The profiles
are given at phases 0, 30, 60, 90, 120, and 150. Red lines with symbols

correspond to simulations with a particle bed, black lines correspond to smooth
wall simulations.

(2007), this tensor reads

τ ′ = µα−2.8
f

(
∇u + ∇uT − (2/3)(∇ · u)I

)
(5.2)

The deviatoric stress is computed throughout the domain, and then interpolated to
the bed surface. We spatially average the stress over the bed, and then take the
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Figure 10: Profiles of the rms fluctuations of the streamwise velocity at
Reδ = 200, in presence of a particle bed. The profiles are given at phases 0, 30,
60, 90, 120, and 150. Even at Reynolds 200 velocity fluctuations are non-zero in

the presence of a particle bed, whereas fluctuations are zero throughout the
water columns for a smooth wall.

magnitude. We define the coefficient of friction at the bed interface as

Cf = τb

(1/2)αf ρf U2
0

(5.3)

The coefficient of friction scaled by Reδ is plotted in figure 11 as a function of time for
Reynolds 200. The amplitude of the coefficient of friction is reduced by 40 percent.
The phase is shifted by 30◦. The analytical phase shift for the coefficient of friction
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Figure 11: Coefficient of friction for an OBL over a particle bed at Reδ = 200.
Red symbols corresponds to the particle bed case, blue symbols correspond to

the smooth wall case. The coefficient of friction is reduced in amplitude by
nearly half in the presence of a particle bed. The phase is shifted by 30◦.

in the laminar regime is 45◦, showing a departure even at low Reynolds number
form the analytical behavior. The reduction in coefficient of friction is caused by the
change in boundary condition near the wall, which leads to an inflection point in the
streamwise velocity.

5.2. Case at Reδ = 400
The disturbances caused by the small bedform increase significantly at Reδ = 400.
Figure 12 shows the instantaneous spanwise vorticity at Reδ = 400. We note
significantly greater vortex shedding, particularly at phases 90◦ and 120◦. The vortex
structures observed at those phases show a chaotic behavior. The larger structures
spin off and break down into smaller scale structures. However, the range of scales
is limited compared to what may be expected for a fully turbulent flow. Still, the
presence of vortex shedding shows a process through which turbulence can emerge
at much lower Reynolds numbers than over an impermeable smooth wall, as large
vortices shed by small ripples in the particle bed break into smaller flow structures.
The vorticity does not penetrate more than one Stokes thickness. Flow intrusion
leads to particle transport by creating a seepage flow. Where the flow intrusion leaves
the bedform, the flow exerts drag on particles, which causes particle transport, as
described in Jewel et al. (2019). The outflow from the bed may set some particles
into motion. The bedform, demarked by a black line in figure 12, changes with the
phase. This shows that particles are transported by the flow. Figure 13 shows the
average velocity profiles for Reynolds 400. While the smooth wall case showed good
agreement with the laminar solution for Reδ = 400, the OBL over a particle bed the
profile is significantly altered. The velocity profile shows flow penetration within the
bed, to a depth of up to 2.5δ. This leads to an inflection point within the boundary
layer, and a reduction in the gradient of the streamwise velocity. For all phases,
the boundary layer is significantly thicker in the presence of the bed. The maximum



18 J. S. Van Doren, and M. H. Kasbaoui
-0.5 -0.25 0 0.25 0.5

ωz × δ/U0

0 50 100 150 200 250

20

40

60

x/δ

y/δ

ωt = 150◦

ωt = 120◦

ωt = 90◦

ωt = 60◦

ωt = 30◦

ωt = 0◦

Figure 12: Span-wise vorticity fields at Reδ = 400, at phases 0, 30, 60, 90, 120,
and 150 degrees. Increasing Reynolds number leads to greater vortex shedding,

with small non-repeating vortices emerging at Reynolds 400.
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Figure 13: Profiles of the mean streamwise velocity at Reδ = 400, in the
presence of a particle bed. The profiles are given at phases 0, 30, 60, 90, 120,

and 150. Red lines with symbols correspond to simulations with a particle bed,
black lines correspond to smooth wall simulations.

velocity in the boundary layer is decreased in the presence of a particle bed for phases
0 and 30 degrees.

The presence of a particle bed leads to greater velocity fluctuations than in the
smooth wall cases. Figure 14 shows the streamwise velocity fluctuations. The rms
fluctuations for a smooth wall at Reynolds 400 are zero throughout the water column.
However, the presence of a particle bed leads to non-zero fluctuations. Reynolds 400
shows a peak at 20 percent of the forcing amplitude at phase 90 degrees, located
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Figure 14: Profiles of the rms fluctuations of the streamwise velocity at
Reδ = 400, in presence of a particle bed. The profiles are given at phases 0, 30,

60, 90, 120, and 150. Velocity fluctuations show a thick single peak near the
bed, indicating randomness in the fluctuations.

at 0.25dp above the bed. This indicates that the larger fluctuations are generated
at the fluid-bed interface, possibly by saltating particles. Additionally, we observe
single peaks near the bed interface for all phases except ωt = 30◦. The thickened
single peak indicates randomness in the fluctuations.

To investigate the particle motion we show the particle momentum in figure 15.
The particle momentum is negligible 5.9dp below the bed interface. For all phases,
the particle momentum begins to increase near 1.5dp below the bed interface. Phase
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Figure 15: Particle momentum as a function of vertical direction at Reδ = 400.
(ωt = 0, ),(ωt = 30, ),(ωt = 60, ),(ωt = 90, ),(ωt = 120, ),(ωt =

150, ). Significant particle momentum is seen near the bed interface,
indicating particle motion at around the bed interface.

0◦ shows a momentum peak at 1.4dp below the bed interface, and decays to zero by
2.0dp above the bed surface. The momentum peak increases through phases 30, 60,
and 90◦, and the reagion of particle transport thickens. Phase 90◦ shows a momentum
peak at 0.46dp below the bed interface, and decays to zero by 5.0dp. This indicates
a small layer of of particles transported close to the bed surface. Phase 120◦ shows
a decreased momentum maximum, and the region of particle transport is thinned.
This indicates that particles are slowing and being redeposited in the bed. Phase 150
shows low particle momentum throughout the column, and a reversal in the direction
of the momentum. The particles have been redeposited in the bed and are nearly
at rest. The mobile particles at certain phases are responsible for the fluid velocity
fluctuations observed in 14. Figure 16 shows a top-down view of the particle bed
where the particles are colored by their normalized velocities. Beginning at phase 0
degrees, particles are primarily stationary within the bed. By phase 60 degrees the
fluid velocity increases and some particles are set into motion, rolling over the bed
surface. By phase 90 degrees, a greater number of particles are set in motion, with
some rolling over the bed, and some skipping off the bed surface. After this the fluid
velocity decreases, as does the particle velocity, until most particles rest in the bed
at phase 150 degrees.

At Reynolds 400 the bedform evolves due to particle transport. We use isosurfaces
of the fluid-bed interface, αp,b = 0.2, shown in figure 17, to visualize the bedform. The
bedform is colored by the deviation in local bed height from the average bed height
at the corresponding phase. At phase ωt = 0◦ to 30◦, when the majority of particles
are at rest in the bed, we see a relatively flat bed, close to the average bed height
throughout the domain. As particles are set into motion small dunes emerge at phase
ωt = 60◦. These dunes grow in height, to a maximum of one Stokes thickness above
or below the average bed height at phase ωt = 90◦. After this the particles begin to
be redeposited in the bed, and the dunes are reduced. This continues through phase
ωt = 150◦, which shows only small deviations from the average bed height, and is
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Figure 16: Top-down view of particle bed at Reδ = 400 and phases 0, 30, 60, 90,
120, 150 degrees. The particles are colored by their normalized stream-wise
velocity. Particles are set into motion by the fluid flow, leading to particles

rolling over the bed surface.

relatively flat. The presence of hills and dunes at the bed interface may contribute
to the increased fluctuations observed at the fluid-bed interface. The coefficient of
friction scaled by Reδ is plotted in figure 18 as a function of time for 400. Compared
to the particle free case, Reynolds 400 shows a reduction in coefficient of friction of
about 40 percent with a particle bed. The phase shift is 30◦. The analytical phase shift
for the coefficient of friction in the laminar regime is 45◦, showing a departure even
at low Reynolds number from the analytical behavior. As with the case at Reδ = 200,
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Figure 17: Reynolds 400 bedform height deviations. Small ripples rise and fall
below the average bed height.

the reduction in coefficient of friction is caused by the change in boundary condition
at the fluid-bed interface.

5.3. Case at Reδ = 800
At Reynolds 800 the fluid flow is able to set a greater number of particles into
motion compared to Reynolds 400. Figure 19 shows a top-down view of the particle
bed where the particles are colored by their normalized velocities. The particles first
saltate across the bed surface, and then are suspended. Later, as fluctuations decay,
the particles are deposited in the bed. The particles are at rest in the bed at phase
0. As the velocity of the flow increases a layer of particles are set in motion, which
can be seen at phase 30◦. Most of the particles in motion at this point saltate over
the top of the bed. As the velocity continues to increase to phase 60◦ more particles
are set in motion. At this phase a large number of the particles are lifted into the
flow and transported through the domain. This continues through phase 120◦, where
the fluid velocity has begun to decrease. As the velocity decreases to phase 150◦ less
particles are in motion, most having been redeposited in the bed. Saltation is once
again the dominant mode of particle transport. This cycle continues in the opposite
direction in the following half cycle, which is not visualized here. The process of
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Figure 18: Coefficient of friction for an OBL over a particle bed at Reδ = 400.
Red symbols corresponds to the particle bed case, blue symbols correspond to
the smooth wall case. The coefficient of friction is reduced in amplitude nearly

half in the presence of a particle bed. The phase is shifted by 30◦.

particle transport leads to the formation of ripples in the bed for some phases, while
at others, such as phase 90 a transport layer emerges at the top of the bed.

Particle momentum is shown in figure 20 at phases 0, 30, 60, 90, 120, and 150◦. For
phase ωt = 0 there is small levels of motion from −7.5δ to −2δ deep into the bed. The
particle momentum then increases to a maximum at −0.5δ. Afterwards, the particle
momentum decreases to zero far from the bed. The particle momentum maximum
increases through phases 30, 60 and 90◦, and the region of particle transport thickens.
The phase ωt = 90 shows negligible particle momentum within the bed up to −3δ
from the average bed height. The momentum peaks at −0.5δ for phase 90◦, and
then decreases to zero near 4δ above the initial bed height. This shows a large
number of particles moving with significant velocity at phase 90. The maximum
particle momentum decreases for phase 120, and the region of particle transport is
thinned. This indicates particle deposition. Phase 150 shows a further decrease in the
momentum maximum, to a similar level as in phase 0. The maximum is higher in the
flow, however, with small particle transport above the fluid-bed interface. Compared
to Reynolds 400, this shows continued particle transport, rather than particles being
largely at rest in the bed. Particles are lifted out of the bed and transported in the
flow, within a region of six stokes thickness.

Figure 21 shows snapshots of the bed interface. We note that the bed interface
forms into dunes that are much larger than those seen at Reynolds 200-400. The
dunes expand and roll through the domain. Large numbers of particles are set into
motion at certain phases. Those particles are transported through the flow before
being deposited into dunes. This is different from the Reynolds 200 case, where the
particles only move small amounts and the bedform itself is static. This creates a
lower boundary that greatly varies throughout the simulation, and is different from
both the smooth wall case and the low Reynolds number cases. That is, the bed
interface becomes much more wavy, and at certain phases much of the bed interface
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Figure 19: Top-down view of the particle bed at Reδ = 800 and phases 0, 30, 60,
90, 120, 150 degrees. Particles are colored by their normalized stream-wise
velocity. Particles are set into motion and lifted into the flow before being

redeposited in the bed, driving bedform evolution.

is sliding across the bed. At other phases there are particles lifted out of the and
carried above the interface itself.

At Reynolds 800, the dunes in the bed-form cause greatly increased vortex shedding
which leads to stronger turbulence sustained over a larger portion of the period.
Figure 22 shows the vorticity at Reynolds 800, overlaid with the isocontour αp = αp,b

denoting the location of the bed-fluid interface. The field drastically deviates from
the single phase simulations, with both large scale and small scale structures. The
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Figure 20: Particle momentum as a function of vertical direction at Reδ = 800.
(ωt = 0, ),(ωt = 30, ),(ωt = 60, ),(ωt = 90, ),(ωt = 120, ),(ωt =
150, ). Particle momentum shows small particle transport near the bed

surface for phases 0 and 180◦, while phases 90 and 270◦ show high particle
transport in a layer of 6δ.

bed generates vorticity through the small dunes as seen in lower Reynolds numbers.
Whereas at low Reynolds numbers the dunes caused large shedding vortices to
form in the region just above the bed, Reynolds 800 shows large vortical structures
throughout the water column. In the near bed region, at phases 60, 90, and 120◦,
there are small scale structures. While the smooth wall case also saw significant
fluctuations and a range of scales, the fluctuations were not as significant throughout
the water column as they are here. The vorticity penetrates deeper into the bed than
in the Reynolds 100-400 cases. This indicates greater flow intrusion, large enough at
this Reynolds number to cause significant particle transport, as described in Jewel
et al. (2019). The penetration is most notable at phases 60, 90, and 120◦. These
correspond to the phases with greatest particle transport, as seen above.

The coefficient of friction is shown in figure 23, scaled by Reδ. The turbulent
eruption can be clearly seen in the single phase case as the dramatic increase in
coefficient of friction at phase 75◦. In the case of a particle bed there is a clear eruption
of turbulence which occurs earlier in the cycle compared to the single phase case, at
phase 45◦. This represents a phase shift in the turbulent portion of the cycle of 30◦.
The eruption occurs during the accelerating portion of the cycle, rather than in the
decelerating portion as in the smooth wall case. Additionally, where the presence of
turbulence leads to an increase in the coefficient of friction compared to the laminar
cases in the smooth wall configuration, in the particle bed case the coefficient of
friction is decreased in the turbulent case compared to the lower Reynolds number
cases. This is due to the flow penetration and transport layer, which reduces the rate
the fluid velocity goes to zero within the bed.

The stream-wise velocity is plotted in the figure 24, in semi-logarithmic format.
As before, the y direction is re-centered by the average bed height for that phase. In
all six cases there is clear flow penetration shown by the nonzero velocity at the bed
surface. Indeed, for ωt = 60, 90, and 120◦ the wall scaled streamwise velocity is 40
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Figure 21: Reynolds 800 bedform height deviations at phases 0, 30, 60, 90, 120,
150. Large dunes rise and fall below the average bed height.

at the bed interface. While we don’t observe turbulence at any of the phases shown
here, the high flow penetration and

We also show the velocity profiles scaled using the outer scaling, U0 and δ, seen in
25. This highlights the thickened boundary layer, with a much lower gradient in the
bed case than in the smooth wall case. There is an inflection point in the fluid velocity
profile. Additionally, we note flow penetration, up to 5δ below the bed interface. The
permeability of the particle bed, as well as the particle suspension, represents a very
different condition as compared to the no slip and no penetration conditions present
for a smooth wall.

As in the low Reynolds cases, the presence of a particle bed leads to greater velocity
fluctuations than in the smooth wall cases. Figure 26 shows the stream-wise velocity
fluctuations for Reynolds 800. Phase ωt = 90◦ shows a thick single peak, at the
bed interface. The thickness indicates randomness in the fluctuations, rather than
the periodic fluctuations observed at Reδ = 200. When a particle bed is present,
the peak is thicker than in the smooth wall case, which indicates that the random
fluctuations are present higher in the water column. At phase ωt = 0◦ shows a thick
region of fluctuations that extends throughout the water column. This is compared
to the smooth wall case, where a similar region of fluctuations extends 12δ away from
the wall. While the velocity profiles above show that the flow is no longer turbulent
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Figure 22: Span-wise vorticity at Reδ and phases 0, 30, 60, 90, 120, and 150
degrees. The bedform shifts into dunes at various phases. The shedding vortices

create a large range of scales. The eddies penetrate the bed interface.
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Figure 23: Coefficient of friction for an OBL over a particle bed at Reδ = 800.
Red symbols represent particle-laden flow, blue symbols represent single phase

flow. The particle bed significantly reduces coefficient of friction.

at these phase ωt = 0◦ fluctuations remain throughout the water column. The high
fluctuations and thicker region of fluctuations indicate a greater level of turbulence
in the presence of a particle bed as compared to the smooth wall case.

6. Conclusions
We investigate the mechanisms by which a particle bed modifies the oscillatory
boundary layer. Using Euler-Lagrange simulations of an OBL over a particle bed at
Reynolds numbers Reδ = 200, 400, and 800, density ratio ρp/ρf = 2.65, maximum
Shields numbers ranging from 1.42×10−2 to 7.40×10−2, Galileo number Ga = 51.9,
Stokes number ranging from 3.99 to 15.97, and Kuelegan-Carpenter number ranging
from 1.7×103 to 6.8×103, and showed large modulation to the underlying boundary
layer. Additionally, we performed simulations with a smooth wall to provide a
benchmark of the OBL for comparison with the OBL over a particle bed. We observed
two mechanisms of modulation to the boundary layer: (I) the permeability of the
bedform allows fluid flow to penetrate into the bed, causing an expansion of the
boundary layer, and (II) resuspension of particles at high Reynolds number leads to
significant fluctuations in the fluid phase, as a result of the feedback force exerted
by the particle.

For the case at Reδ = 200, there is significant flow modulation, despite a stationary
bed. In comparison to the case of an OBL over a smooth, impermeable wall, we
observe significant velocity fluctuations, changes to the velocity profile, and reduction
in coefficient of friction. These changes are due to the permeability of the bed and the
rough wavy fluid-bed interface. The bed permeability allows flow penetration, which
creates a slip velocity at the bed-fluid interface, an inflection point in the velocity
profile, and an expansion of the boundary layer. The alteration of the velocity profile
drives a reduction in the coefficient of friction by nearly half. This, in turn leads to
reduced Shields numbers compared to predictions from cases with an impermeable
wall, be it smooth, rough, or wavy.
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Figure 24: Streamwise velocity profile for Reynolds 800. There is no logarithmic
layer present.

The case at Reδ = 400 has a greater extent of flow penetration, and a thicker
boundary layer. The coefficient of friction is reduced by nearly half. In this case,
the particle transport is cyclic. The particles are at rest when the fluid velocity is
minimum. As the latter increases, the particles are set into motion and the saltate
over the particle bed. This leads to an evolving bedform and the emergence of dunes.
These dunes contribute to vortex shedding, in contrast to the smooth wall case,
where no vortex shedding is observed. The particle transport also contributes to the
increased fluid velocity fluctuations through the particle feedback force, as evidenced
by the correspondence of particle momentum and fluid velocity fluctuation peaks.
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Figure 25: Profiles of the mean streamwise velocity at Reδ = 800. The profiles
are given at phases 0, 30, 60, 90, 120, and 150. Red lines with symbols

correspond to simulations with a particle bed, black lines correspond to smooth
wall simulations.

For Reδ = 800, we see more particles set in motion over a greater portion of the
period and higher above the bed surface. The maximum particle momentum is near
3 times as at Reδ = 400. Particle transport is still cyclic. The particles are at rest
when the fluid velocity is minimum. As the fluid velocity increases, particles are set
into motion and saltate over the bed, as at Reδ = 400. This leads to dune formation
as before, but then gives way to particle resuspension. The particles are transported
in a layer of the flow above the particle bed. As the fluid velocity decreases, particles
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Figure 26: Profiles of the rms fluctuations of the streamwise velocity at
Reδ = 800. The profiles are given at phases 0, 30, 60, 90, 120, and 150. Velocity

fluctuations show a thick single peak near the bed, indicating randomness in
the fluctuations.

slow and are redeposited in the bed. This creates a boundary layer that is much
thicker than the smooth wall case, an inflection point in the velocity profile and a
lower slope in the velocity profile in the boundary layer. The alteration to the fluid
velocity profile causes a drastic reduction in the coefficient of friction, by nearly
an eighth. Instead of the increased fluctuations accompanying an increase in the
coefficient of friction, as in the smooth, impermeable wall case, the particle bed case
shows a reduction in the coefficient of friction. This is an important departure from
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the known OBL behavior over an impermeable wall for the intermittent turbulent
regime. The maximum fluctuations are associated with maximum particle transport.
The region of particle transport is associated with the region of velocity fluctuations,
showing that the particle feedback force contributes to the increased fluctuations.

These results show that the permeability of the particle bed introduces additional
physics which are not well captured by impermeable wall treatments, even if the wall
has some degree of roughness and waviness. Predictions of sediment transport may
be inaccurate if the bed permeability is ignored, as inclusion of permeability leads
to lower coefficient of friction, and thereby the Shields number.
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Fytanidis, D. K., Garćıa, M. H. & Fischer, P. F. 2021 Mean flow structure and velocity–bed
shear stress maxima phase difference in smooth wall, transitionally turbulent oscillatory
boundary layers: Direct numerical simulations. Journal of Fluid Mechanics 928, A33.



34 J. S. Van Doren, and M. H. Kasbaoui
Ghodke, C. D. & Apte, S. V. 2016 DNS study of particle-bed-turbulence interactions in an

oscillatory wall-bounded flow. Journal of Fluid Mechanics 792, 232–251.
Ghodke, C. D. & Apte, S. V. 2018 Roughness effects on the second-order turbulence statistics

in oscillatory flows. Computers & Fluids 162, 160–170.
Gibilaro, L. G., Gallucci, K., Di Felice, R. & Pagliai, P. 2007 On the apparent viscosity

of a fluidized bed. Chemical Engineering Science 62 (1), 294–300.
Hino, M., Sawamoto, M. & Takasu, S. 1976 Experiments on transition to turbulence in an

oscillatory pipe flow. Journal of Fluid Mechanics 75 (2), 193–207.
Jensen, B. L., Sumer, B. M. & Fredsøe, J. 1989 Turbulent oscillatory boundary layers at

high Reynolds numbers. Journal of Fluid Mechanics 206, 265–297.
Jewel, A., Fujisawa, K. & Murakami, A. 2019 Effect of seepage flow on incipient motion of

sand particles in a bed subjected to surface flow. Journal of Hydrology 579, 124178.
Kasbaoui, M. Houssem, Koch, Donald L. & Desjardins, Olivier 2019 Clustering in Euler–

Euler and Euler–Lagrange simulations of unbounded homogeneous particle-laden shear.
Journal of Fluid Mechanics 859, 174–203.

Kidanemariam, A. G. & Uhlmann, M. 2014 Interface-resolved direct numerical simulation of
the erosion of a sediment bed sheared by laminar channel flow. International Journal of
Multiphase Flow 67, 174–188.

Lee, Cheng-Hsien, Low, Ying Min & Chiew, Yee-Meng 2016 Multi-dimensional rheology-
based two-phase model for sediment transport and applications to sheet flow and pipeline
scour. Physics of Fluids 28 (5), 053305.

Maurin, Raphael, Chauchat, Julien & Frey, Philippe 2016 Dense granular flow rheology
in turbulent bedload transport. Journal of Fluid Mechanics 804, 490–512, arXiv:
1602.06712.

Maxey, Martin R. & Riley, James J. 1983 Equation of motion for a small rigid sphere in a
nonuniform flow. The Physics of Fluids 26 (4), 883–889.

Mazzuoli, M., Blondeaux, P., Vittori, G., Uhlmann, M., Simeonov, J. & Calantoni, J.
2020 Interface-resolved direct numerical simulations of sediment transport in a turbulent
oscillatory boundary layer. Journal of Fluid Mechanics 885.

Mazzuoli, M., Kidanemariam, A. G., Blondeaux, P., Vittori, G. & Uhlmann, M. 2016
On the formation of sediment chains in an oscillatory boundary layer. Journal of Fluid
Mechanics 789, 461–480.

Mazzuoli, M. & Vittori, G. 2019 Turbulent spots in an oscillatory flow over a rough wall.
European Journal of Mechanics - B/Fluids 78, 161–168.

Ozdemir, C., Hsu, T. J. & Balachandar, S. 2014 Direct numerical simulations of transition
and turbulence in smooth-walled Stokes boundary layer. Physics of Fluids 26.
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