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Abstract

We study the complexity of approximating the permanent of a positive semidefinite matrix
A ∈ Cn×n.

1. We design a new approximation algorithm for per(A) with approximation ratio e(0.9999+γ)n,
exponentially improving upon the current best bound of e(1+γ−o(1))n [Ana+17; YP22].
Here, γ ≈ 0.577 is Euler’s constant.

2. We prove that it is NP-hard to approximate per(A) within a factor e(γ−ǫ)n for any ǫ > 0.
This is the first exponential hardness of approximation for this problem. Along the way,
we prove optimal hardness of approximation results for the ‖ · ‖2→q “norm” problem of
a matrix for all −1 < q < 2.

http://arxiv.org/abs/2404.10959v1


1 Introduction

Given a matrix A ∈ C
n×n, the permanent of A is defined as

per(A) =
∑

σ∈Sn

n
∏

i=1

Ai,σi ,

where the sum is over all permutations over n elements. It is well-known that the permanent of
a matrix with non-negative entries can be approximated up to a 1 + ǫ-multiplicative factor using
the MCMC method [JSV04]. Recently there has been significant interest in studying permanent
of Hermitian PSD matrices because of close connections to quantum optics and Boson sampling.
A folklore algorithm is to simply take the product of the entries of the main diagonal to get an
n!-approximation.

A few years ago, [Ana+17] obtained the first (deterministic) simply exponential approxima-
tion algorithms with approximation factor e(γ+1)n. The algorithm proposed in [Ana+17] uses a
basic SDP relaxation for the problem; many experts expected that perhaps by using higher-level
SDP relaxations one can improve the approximation factor. Later on, several groups attempted to
improve the approximation factor (see e.g., [Bar20]), but for the general case, only subexponen-
tial improvements to the approximation ratio were found [YP21; YP22]. Very recently, Meiburg
showed that contrarily to the permanent of non-negative matrices, it is NP-Hard to approximate

the permanent of a PSD matrix within a factor of e−n1−ǫ
for any ǫ > 0 [Mei23]. So, the MCMC

method falls short of providing a 1 + ǫ-approximation for PSD permanents.
It remained an open problem if, perhaps by using randomness or higher level SDP relaxations,

one can obtain an e−ǫn approximation factor for ǫ arbitrarily small, or at the very least whether
the γ + 1 factor in the exponent can be improved to a smaller constant. We answer both these
questions in our work.

Our first result is an exponential improvement on the e−(γ+1)n approximation algorithm men-
tioned above.

Theorem 1.1 (Main Algorithmic Result). There is a deterministic polynomial time e−(γ+0.9999)n-approximation
algorithm for the permanent of a Hermitian PSD matrix A ∈ C

n×n.

Our second result is the first exponential hardness of approximation for this problem. As a
corollary of a general hardness of approximation result we prove (see Theorem 1.5 below), we
show the following:

Theorem 1.2 (Main Hardness Result). For all ǫ > 0, it is NP-hard to approximate the permanent of a
Hermitian PSD matrix A ∈ C

n×n within a factor e−(γ−ǫ)n.

In particular, the above theorem shows that assuming NP 6= RP even using randomness the
approximation factor of [Ana+17; YP21] cannot be improved by more than a factor of en.

Maximizing Product of Linear Forms Our hardness techniques also apply to an optimization
problem that happens to be related to the permanent of PSD matrices, called the “maximizing
product of linear forms” problem, studied by Yuan and Parrilo [YP22; YP21]: Given a matrix
V ∈ C

n×d with rows v1, . . . , vn ∈ C
d, define

r(V ) := max
x∈Cn:‖x‖2=1

n
∏

i=1

|〈x, vi〉|2. (1)
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They design a polynomial time O(e−γn·(1−o(1)))-approximation algorithm for r(V ) using semidef-
inite programming, where γ ≈ 0.577 is the Euler-Mascheroni constant. They also prove APX-
hardness for this problem, and raise an open problem of finding the true approximability of this
problem. Recently, Meiberg studied an equivalent problem under the name Approximate Quan-
tum Maximum Likelihood Estimation, and showed NP-hardness of approximating it to within
any constant factor [Mei23]. Our main technical hardness result, Theorem 1.5, immediately im-
plies that the maximizing product of linear forms problem (and the Approximate Quantum Maxi-
mum Likelihood Estimation problem) does not admit a e−γn(1+ǫ)-approximation for any constant
ǫ > 0, answering the question of Yuan and Parrilo up to sub-exponential factors in n.

1.1 Technical Contributions

1.1.1 Algorithmic results

In this part, we show the main ideas behind Theorem 1.1. We start by presenting algorithms used
by previous work. Let A = V V † be an n × n PSD matrix where v1, . . . , vn ∈ C

n are the rows of
V . Previous work ([Ana+17; YP22]) showed that the value of the following SDP gives a e−(γ+1)n

approximation to per(A):

SDP(V ) := max
X�0,tr(X)=n

∏

i∈[n]
v†iXvi.

SDP(V ) might seem completely unrelated to the definition of per(A), but we remark that their
relationship is a lot more clear when per(A) is rewritten using Wick’s formula (Lemma 2.9). Notice
that the objective function of SDP(V ) is log-concave, so it can be optimized in polynomial time. It
turns out that upon solving SDP(V ), we can reduce to the case that the maximizer X∗ of SDP(V )

satisfies v†iX
∗vi = 1 for all i ∈ [n] (see Eq. (6)). This property simplifies matters enough that we

will assume it for the rest of this section.
The above property implies that A � I (see Claim 3.1), so we immediately get per(A) ≤ 1.

Conversely, [Ana+17; YP22] prove that

per(A) ≥ n!

nn
· r(V ) ≥ e−n · r(V ). (2)

Noticing that SDP(V ) is a semidefinite relaxation of r(V ), a simple Gaussian rounding argument
([YP22, Lemma 4.3], Lemma C.1) can be used to show

r(V ) ≥ e−γn SDP(V ) = e−γn. (3)

Putting these together, one gets

e−(γ+1)n ≤ per(A) ≤ 1, (4)

giving a e−(γ+1)n approximation factor.
We remark that both sides of the above inequality can be tight, in particular the upper bound is

tight for the identity matrix and the lower bound is tight for a certain family of low rank projection
matrices (see [Ana+17]). So one may expect that no improvement is possible along this line.

In our approach we exploit the fact these inequalities are tight for matrices of very different
rank – the known tight examples for the upper/lower bounds have very high/low rank respec-
tively. In order to make this intuition concrete, we will use tr(A) as a smooth analogue of rank.
Our main technical results are improvements to both sides of Eq. (4).
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Lemma 1.3 (Improved Upper Bound). Let ǫ ∈ [0, 1]. Any matrix 0 � A � I with tr(A) ≤ (1 − ǫ)n
satisfies

per(A) ≤
(

1− ǫ2

20

)n

.

Lemma 1.4 (Improved Lower Bound). Let V V † = A � I , and assume that the maximizer X∗ of

SDP(V ) satisfies v†iX
∗vi = 1 for all i. For any 0 ≤ β ≤ 1,

per(A) ≥ e−n · r(V ) ≥ e−(γ+1)n · exp
(

n ·
(

ln(1− β) +
β

1− β
· tr(A)

n
− 0.273β2

(1− β)2
· n

tr(A)

))

.

Our proof of Lemma 1.3 is inspired by an identity for per(A) appearing in [Bar20]. Our proof
of Lemma 1.4 is based on an improved rounding procedure and is more technical, so we provide
a proof overview in Section 1.2. We can now state our algorithm.

Algorithm: Given a PSD matrix A = V V † where v1, . . . , vn are rows of V , first reduce to the case

that the maximizer X∗ of SDP(V ) satisfies v†iX
∗vi = 1 for all i (as described in Eq. (6)). Output

(

1− ǫ2

20

)n
, where ǫ is defined by tr(A) = (1− ǫ)n.

We will use this algorithm in our proof of Theorem 1.1, which is straightforward to analyze
when equipped with Lemmas 1.3 and 1.4.

1.1.2 Hardness results

In this part we highlight the main technical contributions behind Theorem 1.2. Our proof broadly
consists of two steps:

1. Show that r(V ) does not admit a e−γn(1+ǫ)-approximation algorithm.

2. Give an approximation-preserving reduction from r(V ) to PSD permanents.

We start by elaborating on Item 1. In order to draw analogies to the existing hardness of ap-
proximation literature, we will first rephrase and generalize the optimization problem of r(V ). Let
F ∈ {R,C} be a field. For a vector x ∈ F

n and p ∈ R− {0}, define

‖x‖p = (Ei|xi|p)1/p .

We will be particularly interested in the case that p = 0, for which we define ‖x‖0 = limp→0 ‖x‖p.

It is not too hard to see that for any vector x, ‖x‖0 equals
∏

i∈[n] |xi|1/n, the geometric mean of the
magnitude of the entries of x. Note that in the case that p < 1, ‖ · ‖p is not a norm and not convex,
but we will nevertheless refer to it as the p-norm.

Given a matrix A ∈ F
m×n, the p → q “norm” of A is defined as

‖A‖p→q = max
x∈Fn:‖x‖p=1

‖Ax‖q .

The connection of ‖A‖p→q to r(V ) is apparent: for any matrix V ∈ C
n×d, we have

r(V ) = ‖V ‖2n2→0.
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Over the last decade there has been significant interest in designing approximation algorithms or
proving hardness of approximation for matrix p → q norms for p, q ≥ 1 [Bar+12; BRS15; Bha+23].
Most notably, the 2 → 4 norm has been shown to be closely related to the Unique games and the
small set expansion conjectures [Bar+12]. To the best of our knowledge, the problem is not well-
studied when q < 1. We prove tight hardness of approximation (assuming P 6= NP) for the 2 → q
norm when −1 < q < 2.

For q > −1 let
γF,q = Eg∼FN (0,1)[|g|q]1/q

be the q-norm of a standard (real/complex) normal random variable. Bhattiprolu, Ghosh, Gu-
ruswami, Lee, Tulsiani [Bha+23] showed that for any 1 ≤ q < 2, and any ǫ > 0 it is NP-hard to
approximate the 2 → q norm of a real m×n matrix better than γR,p+ ǫ, matching known semidef-
inite relaxation-based approximation algorithms [Ste05]. In our main theorem, we build on their
techniques and we extend their result to all −1 < q < 2.

Theorem 1.5 (Main Technical Hardness Theorem). Let F ∈ {R,C}. For all −1 < q < 2 and ǫ > 0, it
is NP-hard to approximate ‖A‖2→q given a matrix A ∈ F

m×n within a factor of γF,q + ǫ.

For the sake of completeness, in Appendix C we write down a semidefinite relaxation of
‖A‖2→q for all −1 < q < 2 and prove that it gives a γF,q-approximation to ‖A‖2→q , matching
the above hardness result. As r(V ) = ‖V ‖2n2→0, we also get that it is NP-hard to approximate r(V )
within a factor of (γC,0 + ǫ)2n = e−γn(1+ǫ).

Next, we elaborate on Item 2 – an approximation preserving reduction from r(V ) to per(A).
Our main observation is that the permanent of a highly rank-deficient n×n PSD matrix A = V V †

is essentially (up to subexponential error) the same as r(V ). This is a consequence of Wick’s for-
mula (Lemma 2.9), which allows us to view the permanent of a PSD matrix as a squared absolute
moment of a complex multivariate Gaussian. As a result, we are able to use Theorem 1.5 to prove
Theorem 1.2, which we do in Section 4.2.

1.2 Overview of the proof of Lemma 1.4

Let us start by explaining the proof of Eq. (3), which Lemma 1.4 improves upon. For any distribu-
tion D over Cn with E[‖x‖22] = 1, we have the bound

r(V ) = max
‖x‖2=1

∏

i∈[n]
|〈vi, x〉|2 ≥

(

Ex∼D
∏

i∈[n] |〈vi, x〉|2/n
Ex∼D‖x‖22

)n

= Ex∼D





∏

i∈[n]
|〈vi, x〉|2/n





n

.

Using Jensen’s inequality on the RHS, we get

r(V ) ≥ exp





∑

i∈[n]
Ex∼D ln |〈vi, x〉|2



 . (5)

The basic Gaussian rounding scheme picks x ∼ D = CN (0,X∗) (see Definition 4 for a defi-

nition of the complex Gaussian distribution). Notice that for each i, 〈vi, x〉 ∼ CN (0, v†iX
∗vi) =

CN (0, 1) by assumption of Lemma 1.4. Since Ey∼CN (0,1) ln |y|2 = −γ, we immediately get r(V ) ≥
exp(−nγ).
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One can see that the analysis (in particular, the application of Jensen’s inequality) is tight if
A = V = X∗ = I for example. So to improve on Eq. (5), we must use a different rounding
algorithm. Our first observation is that in the special case that A = V = I where vi = ei, we
can get the optimal lower bound by sampling independent Rademachers s1, . . . , sn ∼ {±1}, and
setting x =

∑

i∈[n] sivi. With this choice, Ex ln |〈vi, x〉|2 = Ex ln 1 = 0, implying r(V ) ≥ 1.
One could try to use a similar rounding scheme in the more general case of Lemma 1.4, i.e.,

when A is close to I in the sense that tr(A) ≥ (1− ǫ)n. Unfortunately this strategy ends up failing,
as when the vi’s are not exactly orthogonal, there could be a nonzero probability that 〈vi, x〉 = 0,
which would imply Ex ln |〈vi, x〉|2 = −∞. Note that if A is close to I , this singularity is a very
small probability event for most of the vectors vi, so it is natural to try to avoid it by adding some
noise to x. We do this by interpolating between the two rounding schemes. We pick a parameter
0 < β < 1, and set x =

√
1− βg+

√
β
∑

i∈[n] sivi, up to some normalization, where g ∼ CN (0,X∗).
On the technical side, this interpolation helps us analyze Ex ln |〈vi, x〉|2 in terms of tractable

quantities. We use a sharp bound on the expected log of the magnitude squared of a noncentral
complex Gaussian (see Lemma 2.7): for any c ∈ C,

Eg∼CN (0,1) ln |g + c|2 ≥ −γ + |c|2 − |c|4
4

.

As a result of this inequality, when β is bounded away from 1, we can effectively boundEx ln |〈vi, x〉|2
using only the second and fourth moments of the random variable

∑

i∈[n] sivi, which are tractable.

1.3 Overview of the proof of Theorem 1.5

As alluded to in Section 1.1.2, prior to our work, optimal hardness results for the 2 → q norm are
already established for q ≥ 1. Our first observation is that these results [Gur+16; BRS15; Bha+23]
can be extended to all −1 < q < 2 (see Theorem 4.1), or even more generally, to 2-concave f -means
(see Definition 2).

In particular, one can deduce the following theorem.

Theorem 1.6 (Informal version of Theorem 4.1). Let q < 2. Assume that there is a family {Ek}
of k × dk gadget matrices such that ‖Ek‖2→q = 1, but for all “smooth” unit vectors x (‖x‖∞ ≪ 1),
‖Ekx‖q ≤ γ. Then for all ǫ > 0, it is NP-Hard to distinguish between the following two cases given a
matrix A : Cm → C

n with ‖A‖2→2 ≤ 1.

1. Completeness: ‖A‖2→q = 1, or

2. Soundness: ‖A‖2→q ≤ γ + ǫ.

It remains to construct an appropriate family of gadget matrices {Ek}. We will use the follow-

ing family, which was suggested in [BRS15]. For k ≥ 1, define E
(C)
k ∈ C

4k×k as the matrix whose
rows consist of the members of 1√

k
· {−1,+1,−i,+i}k ordered arbitrarily.

It remains to show that the matrices E
(C)
k satisfy the requirements of Theorem 1.6 with γ ≈ γC,q.

By construction,
∥

∥

∥
E

(C)
k

∥

∥

∥

2→q
= 1.

To prove this, in Lemma B.1 we prove a Berry-Esseen type result for test functions of the form
|x|q for q 6= 0 and log |x| otherwise, applied to a sum of independent random variables. In partic-
ular, the special case of interest to us (for Theorem 1.2) is q = 0. In that case, the test function is
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log |x| which has a singularity at x = 0, but we are nevertheless one can bound the right hand side
of the lemma below by an arbitrarily small quantity as δ → 0.

Lemma 1.7 (Informal version of Lemma 4.2). Let −1 < q < 2 and 0 < δ < 1. For all “smooth” unit
vectors x with ‖x‖∞ ≤ δ,

f(‖Ekx‖q)− γC,q . −
∫ δ

0
min(0, f(u)) + δ ·

(

max(0, f(2
√

log(1/δ))) + 2f ′(1)
)

,

where f(x) = |x|q for q 6= 0, and f(x) = log |x| for q = 0.

1.4 Future Directions

The most exciting open problem is to determine the correct approximability for PSD permanents.
Improving the hardness result seems to be out of reach of current techniques, but our ideas provide
a clear path to improving the algorithmic result. Any significant improvement to the algorithm
along the lines of our ideas would require significantly better versions of Lemmas 1.3 and 1.4.
In particular, Lemma 1.3 is currently the bottleneck to a better approximation ratio, specifically
the O(ǫ2) dependence. We conjecture that it can be improved to O(ǫ), which would yield better
approximation ratios as a corollary.

Although we don’t have concrete new applications of hardness of approximation of ‖A‖2→q

for q 6= 0, we expect to find further applications of the machinery developed here in addressing
counting and optimization of linear algebraic problems, e.g., in estimating mixed discriminant,
sub-determinant maximization, Nash-welfare maximization, etc.

1.5 Paper Organization

In Section 2, we present preliminary definitions and results that we will use. In Section 3, we
prove Theorem 1.1. In Section 4, we prove Theorems 1.2 and 1.5 (with some components of the
proof appearing in Appendices A and B).

2 Preliminaries

2.1 Generalized Means and Norms

Although we mostly use p-norms that are defined using an expectation, it will be convenient to
also define the counting version of 2-norm, which we denote as ℓ2.

Definition 1 (ℓ2-norm, Frobenius norm). Let F ∈ {R,C}. For a vector x ∈ F
n, define ‖x‖ℓ2 =

√

∑

i∈[n] |xi|2. For a matrix A ∈ F
m×n, define ‖A‖F =

√

∑

i,j∈[n] |Ai,j|2.

We work with a generalization of ‖ · ‖p using the framework of “f -means”.

Definition 2. Let f : R≥0 → R be continuous and injective. Let F ∈ {R,C} be a field. For a vector
x ∈ F

n, define
[x]ff := Ei∼[n]f(|xi|),

[x]f := f−1([x]ff ) = f−1(Ei∼[n]f(|xi|).

6



We will refer to [x]f as the f -mean of x. More generally, for a random variable X over F define

[X]ff = Ef(|X|), [X]f = f−1(Ef(|X|)).

For a matrix A ∈ F
n×d, define

[A]2→f := max
x∈Fn

[Ax]f
‖x‖2

.

f -means provide a convenient and unified way to talk about ‖ · ‖p, even for the case of p = 0.

Observation 1 (Power Means). For all p ∈ R, define

fp(x) =











xp if p > 0,

log x if p = 0,

−xp if p < 0.

Then, we have [x]fp = ‖x‖p for any p ∈ R.

We note that the observation would still hold if we used xp instead of −xp in the third case,
but it will be convenient for fp to always be an increasing function.

We will mostly be concerned with f -means that are dominated by the 2-norm. This happens
exactly when f is 2-concave:

Definition 3. A function f : R>0 → R is 2-concave if x → f(
√
x) is concave.

Example 1. For any p ≤ 2, fp is 2-concave.

We make some useful observations about 2-concave functions.

Claim 2.1. Let f : R>0 → R be a 2-concave increasing function. Then,

1. [x]f ≤ ‖x‖2 for any vector x. Equivalently, [x]ff ≤ f(‖x‖2).

2. f ′(x) ≤ f ′(y)
y · x for 0 < y ≤ x.

3. f(x)− f(y) ≤ f ′(y)
2y · x2 for 0 < y ≤ x.

Proof. 1. Using Jensen’s inequality on the concave function x → f(
√
x),

[x]ff = Ef(|xi|) = Ef
(

√

|xi|2
)

≤ f(
√

E|xi|2) = f(‖x‖2).

2. Follows from the fact that f ′(
√
x) = f(

√
x)

2
√
x

is increasing in x.

3. Integrating the above from y to x,

f(x)− f(y) ≤ f ′(y)
y

· (x
2 − y2)

2
≤ f ′(y)

2y
· x2.

7



One could ask when [x]f is a homogeneous function of x. It turns out that this is exactly when
[x]f is a p-norm.

Lemma 2.2 ([HLP52]). [·]f is 1-homogeneous (that is, [ax]f = a[x]f for all scalars a and vectors x) if and
only if it equals [·]fp = ‖ · ‖p for some p ∈ R.

We will require another simple fact about f -means.

Fact 2.3. Let V be a matrix V ∈ F
n×d and integer k > 0. Then,

[V (k)]2→f :=













V
...
V













2→f

= [V ]2→f ,

where V is copied k times in the right hand side.

Proof. For any vector x ∈ F
d, consider the two vectors z = V x and z(k) = V (k)x. Note that a

uniformly random entry of z has the same distribution as a random entry of z(k), so [z]f = [z(k)]f .
The claim follows from the definition of [·]2→f .

2.2 Gaussians

We will consider both real and complex Gaussians.

Definition 4. Let F ∈ {R,C}. For the n × n identity matrix In, FN (0, In) is defined to be the
distribution over vectors x ∈ F

n given by the density function

pF(x) =

{

(2π)−n/2 · exp
(

−‖x‖2ℓ2/2
)

if F = R,

π−n exp(−‖x‖2ℓ2) if F = C.

More generally, given a positive semidefinite covariance matrix Σ = AA† for A ∈ F
n×d, define

FN (0,Σ) to be distributed as Ax, where x ∼ FN (0, Id). We will sometimes use N to denote RN .

More concretely, a complex Gaussian g ∼ CN (0, 1) can be sampled by sampling its real and
imaginary parts independently from N (0, 1/2). There are formulas for the moments of univariate
real and complex Gaussians in terms of the Gamma function.

Definition 5. For any p ∈ R and F ∈ {R,C}, define γF,p = [g]fp , where g is a random variable
distributed as FN (0, 1).

Fact 2.4. For any p ∈ (−1,∞) − {0},

γp
R,p = Eg∼N (0,1)[|g|p] =

2p/2 · Γ
(

p+1
2

)

√
π

,

and for any p ∈ (−2,∞)− {0},

γp
C,p = Eg∼CN(0,1)[|g|p] = Γ

(p

2
+ 1
)

.

In particular, this implies

γR,1 =

√

2

π
, γC,1 =

√

π

2
, γR,0 = lim

p→0
γR,p =

√

e−γ

2
, γC,0 = lim

p→0
γC,p =

√
e−γ .
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Fact 2.5 (Moment Generating Function of |g|2). Let g ∼ CN (0, 1). For any t < 1, E[et|g|
2
] = (1−t)−1.

We will need sharp bounds on the expected value of ln |g+c|2 for Gaussian g and fixed c. First,
we prove an estimate on the exponential integral function.

Fact 2.6. For x ≥ 0 it holds that

Ei(−x) =

∫ −x

−∞

et

t
dt = γ + ln(x) +

∞
∑

k=1

(−x)k

k · k! ≤ γ + ln(x)− x+
x2

4
.

Proof. The identity is due to Equation 5.1.11 in [AS48]. For the inequality, we must show that the
function

f(x) =

∞
∑

k=3

(−x)k

k · k!

is nonpositive for x ≥ 0. To do this, observe first that f(0) = 0, and

f ′(x) =
∞
∑

k=3

(−1)k · xk−1

k!

=
1

x

∞
∑

k=3

(−x)k

k!

=
e−x −

(

1− x+ x2

2

)

x
≤ 0. (e−x ≤ 1− x+ x2/2 for x ≥ 0)

Therefore, f(x) ≤ 0 for x ≥ 0.

Lemma 2.7. Let c ∈ C. Then, Eg∼CN (0,1)[ln |g + c|2] ≥ −γ + |c|2 − |c|4/4.

Proof. Define x = |c|2. By [Mos20, Eqn. 35, Thm. 1] we have the identity

Eg∼CN (0,1)[ln |g + c|2] = − ln(x)− Ei(x).

By Fact 2.6, this is at least −γ + x− x2/4, as desired.

2.3 Permanent

For a matrix A ∈ C
n×n, its permanent is defined as

per(A) :=
∑

σ∈Sn

n
∏

i=1

Ai,σ(i).

On the domain of positive semidefinite matrices, the permanent has some nice properties. For
example, it is monotone w.r.t. the Loewner order.

Lemma 2.8 (e.g., [Ana+17]). If A,B ∈ C
n×n are hermitian and A � B � 0, then

per(A) ≥ per(B).

9



Proof Sketch. The statement of the lemma follows, because A � B � 0 implies that A⊗n � B⊗n �
0. So, if 1Sn is the indicator vector of all permutations in R

n⊗n,

per(A) =
1

n!
1†Sn

A⊗n1Sn ≥ 1

n!
1†Sn

B⊗n1Sn = per(B)

as desired.

Lemma 2.9. For any PSD matrix V V † with V ∈ R
n×d, we have

Ex∼N (0,I)





∏

i∈[n]
|〈vi, x〉|2



 = cRn,d · Ex∈Rd,‖x‖2=1





∏

i∈[n]
|〈vi, x〉|2



 .

For any PSD matrix V V † with V ∈ C
n×d, we have

per(V V †) = Ex∼CN (0,I)





∏

i∈[n]
|〈vi, x〉|2



 = cCn,d · Ex∈Cd,‖x‖2=1





∏

i∈[n]
|〈vi, x〉|2



 .

Here, v1, . . . , vn are the rows of V . The proportionality constants above are defined by

cRn,d =
Γ(n+ d/2)

Γ(d/2) · (d/2)n , cCn,d =
(d+ n− 1)!

(d− 1)! · dn .

Proof. The first equality in the second conclusion follows from Isserlis’ theorem/Wick’s formula
(see 3.1.4 in [Bar16]).

We prove the other equality in the real case, but the complex case can be proved similarly.
Observe that

Ex∼N (0,I)





∏

i∈[n]
|〈vi, x〉|2



 = Ex∼N (0,I) ‖x‖2n2 ·





∏

i∈[n]

∣

∣

∣

∣

〈

vi,
x

‖x‖2

〉∣

∣

∣

∣

2




= Ex∼N (0,I) ‖x‖2n2 · Ex∈Rn,‖x‖2=1





∏

i∈[n]
|〈vi, x〉|2





= d−n
Ex∼N (0,I) ‖x‖2nℓ2 · Ex∈Rn,‖x‖2=1





∏

i∈[n]
| 〈vi, x〉 |2





The first identity uses that for x ∼ N (0, I), ‖x‖2 is independent from x/‖x‖2. The second identity
uses that fact that if x ∼ N (0, I), then x/‖x‖2 is distributed uniformly on a sphere of radius ‖x‖2.
To conclude the proof, notice that Ex∼N (0,I) ‖x‖2nℓ2 is the nth moment of a chi-squared random

variable with d-degrees of freedom, which is 2n Γ(n+d/2)
Γ(d/2) .

We will also require the following formula for the permanent of the sum of two matrices.

10



Lemma 2.10 ([Per12, Page 2]). For any two matrices A,B ∈ C
n×n,

per(A+B) =
∑

S,T⊆[n],|S|=|T |
per(AS,T ) · per(BS̄,T̄ ).

When A = I , this simplifies to

per(I +B) =
∑

S⊆[n]

per(BS,S).

Above, AS,T is the |S| × |T | submatrix of A containing rows only in S and columns only in T .

3 Algorithm

We start by expanding on the basic setup of the algorithms of [Ana+17; YP22], which we briefly
introduced in Section 1.1.1. After this, we will show how Lemmas 1.3 and 1.4 imply Theorem 1.1.
Later on, in Sections 3.1 and 3.2 respectively, we prove Lemmas 1.3 and 1.4.

Let A = V V † be the PSD matrix whose permanent we wish to compute. Let v1, . . . , vn ∈ C
n be

the rows of V , so by Lemma 2.9,

per(A) = Ex∼CN (0,I)





∏

i∈[n]
|〈x, vi〉|2



 .

Recall the log-concave maximization problem SDP(V ) we associated with this problem:

SDP(V ) = max
X:X�0,tr(X)=n

∏

i∈[n]
v†iXvi.

Let X∗ be the optimal solution to SDP(V ). Note that X∗ can be found efficiently. It will be conve-
nient to make a simplification to our problem. We will replace the matrix A by Ã = D−1/2AD−1/2,

where D is a positive semidefinite diagonal matrix defined as Di,i = v†iX
∗vi. Since D is diagonal,

per(A) = per(Ã) · per(D) = per(Ã) · SDP(V ),

so it suffices to approximate per(Ã) instead of per(A). Writing Ã = Ṽ Ṽ † for Ṽ = D−1/2V , we can
see that the objective functions of SDP(V ) and SDP(Ṽ ) are positive scalar multiples of each other,

so SDP(Ṽ ) is also maximized by X∗. Note that Ã enjoys the additional property ṽ†iX
∗ṽi = 1 for

all i ∈ [n], where ṽi = D−1/2vi. Replacing A by Ã, we will henceforth assume that the maximizer
X∗ of SDP(V ) satisfies

v†iX
∗vi = 1 for all i ∈ [n]. (6)

In particular, this implies SDP(V ) = 1. Under this assumption, A satisfies an important property.

Claim 3.1. We have A � I .

Proof. Let f(X) =
∏

i∈[n] v
†
iXvi be the objective function of SDP(V ). We can compute

∇(ln f)(X) =
∑

i∈[n]

viv
†
i

v†iXvi
.

11



In particular, by Eq. (6), ∇(ln f)(X∗) =
∑

i∈[n] viv
†
i = V †V .

The optimality conditions for X∗ imply that for all symmetric matrices M with tr(M) = 0 and
W− ⊆ Range(X∗) it holds that

〈V †V,M〉 = 〈∇(ln f)(X∗),M〉 ≤ 0.

Here, W− denotes the vector space spanned by the negative eigenvectors of M . Now, let Q � 0

be an arbitrary PSD matrix, and set M = Q− tr(Q)
n X∗. M satisfies both the conditions above, and

therefore we have

0 ≥ 〈V †V,M〉

= 〈V †V,Q〉 − tr(Q)

n
〈V †V,X∗〉

= 〈V †V,Q〉 − tr(Q)

n

∑

i∈n
v†iX

∗vi

= 〈V †V,Q〉 − tr(Q). (by Eq. (6))

In other words, 〈V †V,Q〉 ≤ tr(Q) for all Q � 0, implying V †V � I . Therefore A = V V † � I .

Claim 3.1 immediately implies per(A) ≤ 1. In [Ana+17; YP22], the authors prove the compli-
mentary inequalities

per(A) ≥ n!

nn
· r(V ) ≥ exp(−γn) · n!

nn
· SDP(V ) = exp(−γn) · n!

nn
& exp(−(γ + 1)n), (7)

and together, the two inequalities above provide a e−(1+γ)n approximation for per(A).
Recall Lemmas 1.3 and 1.4, which (under Claim 3.1) improve the above inequalities to

e−(γ+1)n · exp
(

n · ℓ
(

tr(A)

n

))

≤ per(A) ≤ exp

(

n · r
(

tr(A)

n

))

. (8)

Here, ℓ(x) = max0≤β≤1 ln(1 − β) + βx
(1−β) −

0.273β2

(1−β)2x
, and r(x) = ln

(

1− (1−x)2

20

)

. We are now ready

to prove Theorem 1.1.

Proof of Theorem 1.1. Let A = V V † � 0, where V has rows v1, . . . , vn. Our algorithm will first solve

SDP(V ) and use Eq. (6) and Claim 3.1 to reduce to the case that 0 � A � I and v†iX
∗vi = 1 for all i,

where X∗ is the optimal solution to SDP(V ). We will then output exp
(

n · r
(

tr(A)
n

))

=
(

1− ǫ2

20

)n
.

Eq. (8) implies that the approximation factor of this algorithm is at least e−(γ+1−α)n, where α
is the minimum value of r(x) − ℓ(x) over all x ∈ [0, 1]. Write ℓ(x) ≥ ℓ′(x) := max(0, ln(1 − β∗) +
β∗x

(1−β∗) −
0.273(β∗)2

(1−β∗)2x
for β∗ = 0.34. One can numerically determine that α ≥ min0≤x≤1 r(x)− ℓ′(x) ≥

10−4.

12



3.1 Proof of Lemma 1.3

We first prove an inequality that we will require. The proof of this inequality is inspired by an
identity of Barvinok [Bar20].

Lemma 3.2. For any matrix 0 � B ≺ I , per(I +B) ≤ det
(

(I −B)−1
)

.

Proof. Write B = V V † for V ∈ C
×n. Let v1, . . . , vn be the rows of V .

per(I +B) =
∑

S⊆[n]

per(BS,S) (Lemma 2.10)

=
∑

S⊆[n]

Eg∼CN (0,I)

[

∏

i∈S
|〈vi, g〉|2

]

(Lemma 2.9)

= Eg∼CN (0,I)





∏

i∈[n]

(

1 + |〈vi, g〉|2
)





≤ Eg∼CN (0,I)





∏

i∈[n]
e|〈vi,g〉|

2



 (1 + x ≤ ex for all x)

= Eg∼CN (0,I)

[

exp
(

g†V †V g
)]

.

Let σ1, . . . , σn be the eigenvalues of V †V . Since g is invariant under unitary transformations, we
can rotate g into the eigenbasis of V †V to get that

per(I +B) ≤ Eg∼CN (0,I)



exp





∑

i∈[n]
σi|gi|2









=
∏

i∈[n]
Eg∼CN (0,1)

[

eσi|g|2
]

(Independence of gi)

=
∏

i∈[n]

1

1− σi
. (Fact 2.5)

Noting that the eigenvalues of V †V match those of B = V V †, this is equal to det
(

(I −B)−1
)

.

Now, we are ready to prove Lemma 1.3. Let 0 � A � I be a matrix with tr(A) ≤ (1 − ǫ)n.
Let 0 ≤ λ1 ≤ . . . ≤ λn ≤ 1 be the eigenvalues of A, and let v1, . . . , vn be the corresponding
eigenvectors. Let t ∈ (1/2, 1] be a parameter we will set later, and let it be the smallest index i such
that λi > t. For any parameter t ∈ (1/2, 1], we can write

A � tI +
∑

i≥it

(λi − t)viv
†
i = t ·



I +
∑

i≥it

λi − t

t
viv

†
i



 .
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Write B =
∑

i≥it
λi−t
t viv

†
i . Since t > 1/2, B ≺ I , so it satisfies the conditions of Lemma 3.2.

per(A) ≤ tn · per(I +B) (Lemma 2.8)

≤ tn

det(I −B)
. (Lemma 3.2)

We now pick t = 1 − ǫ/5. For this choice of t, we must have it ≥ ǫn
2 , since otherwise, tr(A) ≥

t · (n− it) ≥ (1− ǫ/5) · (1− ǫ/2)n > (1− ǫ)n contradicts the fact that tr(A) ≤ (1− ǫ)n. We compute

det(I −B) =
∏

i≥it

(

1− λi − t

t

)

=
∏

i≥it

(

2− λi

t

)

≥
(

2− 1

t

)n−it

.

Plugging in the definition of t and our lower bound on it, this is at least
(

2− 1

1− ǫ/5

)(1−ǫ/2)n

=

(

1− 2ǫ/5

1− ǫ/5

)(1−ǫ/2)n

.

We now have our upper bound on per(A):

per(A) ≤ (1− ǫ/5)n ·
(

1− ǫ/5

1− 2ǫ/5

)(1−ǫ/2)n

=

(

(1− ǫ/5) · (1− ǫ/5)1−ǫ/2

(1− 2ǫ/5)1−ǫ/2

)n

.

To complete the proof, we use that (1−ǫ/5)·(1−ǫ/5)1−ǫ/2

(1−2ǫ/5)1−ǫ/2 ≤ 1− ǫ2

20 for all ǫ ∈ [0, 1].

3.2 Proof of Lemma 1.4

By Eq. (7), it suffices to prove a lower bound on r(V ). Let X∗ be the optimal solution to SDP(V ).
Consider the following randomized rounding scheme to a solution of r(V ): sample g ∼ CN (0,X∗)

and si ∼ {z ∈ C : |z| = 1} independently for all i ∈ [n]. Let x =
√
1− βg +

√

βn
tr(A)

∑

i∈[n] sivi. We

will use the bound

r(V )1/n = max
‖x‖22=1

∏

i∈[n]
|〈vi, x〉|2/n ≥ Ex[

∏

i∈n |〈vi, x〉|2/n]
Ex[‖x‖22]

.

First we compute the denominator.

n · E[‖x‖22] = n · E[‖x‖22]

= E





∥

∥

∥

∥

∥

∥

√

1− βg +

√

βn

tr(A)

∑

i∈[n]
sivi

∥

∥

∥

∥

∥

∥

2

ℓ2





= (1− β)E[‖g‖2ℓ2 ] +
βn

tr(A)
E





∑

i,j

sisj〈vi, vj〉



 +

√

βn

tr(A)
(1− β)E

[〈

g,
∑

i

sivi

〉]

= (1− β)E[‖g‖2ℓ2 ] +
βn

tr(A)

∑

i

‖vi‖2ℓ2 (Independence)

= (1− β) · tr(X∗) +
βn

tr(A)
·
∑

i∈[n]
‖vi‖2ℓ2 (g ∼ CN (0,X∗), definition of ‖ · ‖ℓ2)

= n. (tr(X∗) = n,
∑

i∈[n] ‖vi‖2ℓ2 = tr(V V †) = tr(A))
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So, E[‖x‖22] = 1. It remains to lower bound the numerator. We start by applying Jensen’s
inequality to get

Ex

[

∏

i∈n
|〈vi, x〉|2/n

]

≥ exp





1

n

∑

i∈[n]
Ex[ln |〈vi, x〉|2]



 . (9)

We will bound each of the terms inside the sum. Fix some i ∈ [n], and let yi =
√

n
tr(A)

∑

j∈[n] sj〈vi, vj〉
and zi = 〈g, vi〉, so 〈vi, x〉 =

√
1− βzi +

√
βyi. Notice that zi ∼ CN (0, v†iX

∗vi) = CN (0, 1) by as-
sumption. Let us bound

E[ln |〈vi, x〉|2] = E[ln |
√

1− βzi +
√

βyi|2]

= ln(1− β) + E



ln

∣

∣

∣

∣

∣

zi +

√

β

1− β
yi

∣

∣

∣

∣

∣

2




≥ −γ + ln(1− β) +
β

1− β
E[|yi|2]−

β2

4(1 − β)2
E[|yi|4].

(Lemma 2.7, zi ∼ CN (0, 1) and is independent of yi)

We bound the second and fourth moments of yi using the below claim, whose proof we defer to
Section 3.2.1.

Claim 3.3. For all i ∈ [n],

E[|yi|2] =
n

tr(A)
v†iV

†V vi,

E[|yi|4] ≤
1.09n2

tr(A)2
‖vi‖2ℓ2 .

Plugging in the bounds from Claim 3.3 and summing over all i, we get

1

n

∑

i∈[n]
Ex[ln |〈vi, x〉|2] ≥ −γ + ln(1− β) +

β

(1− β) tr(A)

∑

i∈[n]
v†iV

†V vi −
0.273β2n

(1− β)2 tr(A)2

∑

i∈[n]
‖vi‖2ℓ2

= −γ + ln(1− β) +
β

1− β
· ‖A‖

2
F

tr(A)
− 0.273β2

(1− β)2
· n

tr(A)

≥ −γ + ln(1− β) +
β

1− β
· tr(A)

n
− 0.273β2

(1− β)2
· n

tr(A)

(‖A‖2F ≥ tr(A)2

n by Jensen’s inequality)

This completes the proof of Lemma 1.4.

3.2.1 Proof of Claim 3.3

Proof. We can directly compute
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tr(A)

n
E[|yi|2] =

∑

j,k∈[n]
E[sjsk] · 〈vi, vj〉〈vi, vk〉

=
∑

j∈[n]
|〈vi, vj〉|2 = v†iV

†V vi (sj is independent from sk for j 6= k)

Similarly,

tr(A)2

n2
E[|yi|4] =

∑

j,k,l,m∈[n]
E[sjskslsm]〈vi, vj〉〈vi, vk〉〈vi, vl〉〈vi, vm〉

=
∑

j∈[n]
|〈vi, vj〉|4 + 2

∑

j 6=k

|〈vi, vj〉〈vi, vk〉|2

= 2





∑

j∈[n]
|〈vi, vj〉|





2

−
∑

j∈[n]
|〈vi, vj〉|4

= 2(v†iV
†V vi)

2 −
∑

j∈[n]
|〈vi, vj〉|4

≤ 2‖vi‖4ℓ2 − ‖vi‖8ℓ2 (V †V � I , since A = V V † � I)

≤ 1.09 · ‖vi‖2ℓ2 (x2 − x4 ≤ 1.09x for x ≥ 0)

The second equality is because E[sjskslsm] = 0 unless each index appears an equal number of
times in {j, k} and {l,m}.

4 Hardness of Approximation

As mentioned in Section 1.1, we will first prove Theorem 1.5. Later on, in Section 4.2, we will use
Theorem 1.5 to prove Theorem 1.2 using an approximation-preserving reduction to the permanent
problem.

Our first result is a general inapproximability result for the f -mean version of ‖A‖2→q that is
dependent on an appropriate family of gadgets {Ek} as defined below.

Theorem 4.1. Let F ∈ {R,C}, and let f : R≥0 → R be a continuous increasing 2-concave function such

that limx→∞
f(x)
x2 = 0. Let δ, γ > 0. Assume that for all k, there is a matrix Ek : Fk → F

dk satisfying the
following:

1. ‖Ek‖2→2 = 1.

2. The entries of Ek have magnitude equal to 1√
k

.

3. for all vectors x ∈ Fk with ‖x‖∞ ≤ δ · ‖x‖ℓ2 , [Ekx]f ≤ γ · ‖x‖2.

Then for all ǫ > 0, it is NP-Hard to distinguish between the following two cases given a matrix A :
F
m → F

n with ‖A‖2→2 ≤ 1.
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1. Completeness: [A]2→f = 1, or

2. Soundness: [A]2→f ≤ γ + ǫ.

The proof of the above theorem is in Section 4.1 and closely follows the arguments used in
[BRS15; Bha+23]. In order to instantiate it, we will have to construct a family of gadgets {Ek} that
have ‖Ek‖2→2 = 1, but at the same time have small 2 → f -norm when restricted to “smooth”
vectors.

Definition 6. For k ≥ 1, let us define E
(R)
k ∈ R

2k×k as the matrix whose rows consist of the

members of 1√
k
· {−1,+1}k ordered arbitrarily. Similarly, we define E

(C)
k ∈ C

4k×k as the matrix

whose rows consist of the members of 1√
k
· {−1,+1,−i,+i}k ordered arbitrarily.

Observe that these matrices are normalized so that ‖E(F)
k ‖2→2 = 1. The following Lemma

shows that condition 3 of Theorem 4.1 is satisfied with γ ≈ γF,p.

Lemma 4.2. Let F ∈ {R,C}. Let f be an absolutely continuous 2-concave increasing function. Let x ∈ F
k,

and E = E
(F)
k . For all 0 < δ < 1, if ‖x‖∞ ≤ δ‖x‖ℓ2 then

[

Ex

‖x‖2

]f

f

≤ [g]ff + C ·
(

−
∫ Cδ

0
min(0, f(u)) + δ ·

(

max(0, f(2
√

log(1/δ))) + 2f ′(1)
)

)

,

where g ∼ FN (0, 1) and C > 0 is a universal constant. In particular if f = fp for some −1 < p < 2, we
have

[Ex]fp ≤ ‖x‖2 · (γF,p + ǫδ),

where ǫδ → 0 as δ → 0.

We prove Lemma 4.2 in Appendix A. The proof requires a Berry-Esseen type result for test
functions of the form f(‖.‖2) applied to a sum of independent random vectors, which we prove in
Appendix B.

With these results in hand, we can now prove Theorem 1.5.

Proof of Theorem 1.5. We pick δ to be such that Lemma 4.2 implies ‖Ex‖q ≤ ‖x‖2 · (γF,q + ǫ/2) for
all x satisfying ‖x‖∞ ≤ δ‖x‖ℓ2 .

We apply Theorem 4.1 to the increasing 2-concave function f = fp, gadget family {E(F)
k }, and

parameters δ, γ = γF,q + ǫ/2, and ǫ/2. By Lemma 4.2, the three conditions are satisfied, implying
that it is NP-Hard to distinguish the case that ‖A‖2→q = 1 and ‖A‖2→q ≤ γF,q + ǫ.

4.1 Proof of Theorem 4.1

We will closely follow the arguments used in [BRS15; Bha+23]. The starting point of our reduction
will be the following result implicit in [BRS15], which informally says that it is NP-hard to find a
sparse vector in a subspace, according to a certain block-wise notion of sparsity.

Theorem 4.3 ([BRS15]). For all ǫ, δ, α > 0 and F ∈ {R,C}, there is a k = poly(1/ǫ, 1/δ, 1/α) such
that given a subspace W ⊆ F

n×k in the form of a projection matrix P ∈ F
(n×k)×(n×k), it is NP-Hard to

distinguish between the following:
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• There is a vector x ∈ W such that for all i ∈ [n], the vector xi ∈ F
k is in {e1, . . . , ek}.

• For all vectors x ∈ W with ‖x‖2ℓ2 = n, the set

S = {i ∈ [n] : ‖xi‖ℓ2 ≤ 1/α, ‖xi‖∞ ≥ δ}

has size at most ǫn.

Let 0 < ǫ′, α ≤ 1 be constant parameters depending on δ, γ, and ǫ that we will specify
later. We prove hardness of the [A]2→f problem by a reduction from the NP-Hard problem de-
scribed in Theorem 4.3 with parameters ǫ′, δ, and α. Theorem 4.3 implies that there is some
k = poly(1/ǫ′, 1/δ, 1/α) such that given a projection matrix P ∈ F

(n×k)×(n×k) for a subspace
W ⊆ F

n×k, it is NP-Hard to distinguish between the following:

• There is a vector x ∈ W such that for all i ∈ [n], the vector xi ∈ F
k is in {e1, . . . , ek}.

• For all vectors x ∈ W with ‖x‖2ℓ2 = n, the set

S = {i ∈ [n] : ‖xi‖ℓ2 ≤ 1/α, ‖xi‖∞ ≥ δ}

has size at most ǫn.

Our reduction will map the projection matrix P ∈ F
(n×k)×(n×k) to the matrix A = (In ⊗ Ek) ·

P . Note that A ∈ F
(n×dk)×(n×k). To analyze the reduction, we must prove completeness and

soundness.

4.1.1 Completeness

If there is a vector x ∈ W such that for all i ∈ [n], xi ∈ {e1, . . . , ek}, we need to show [A]2→f = 1.
Indeed, we can consider the vector z := Ax = (Ek ⊗ In) · Px = (Ek ⊗ In)x. We have for all

i ∈ [n], zi = Ekxi. Since xi is a standard basis vector, zi must be equal to some column of Ek. So by
Assumption 2, all entries of z have magnitude 1/

√
k, implying [z]f = f−1(f( 1√

k
)) = 1√

k
. Therefore

[A]2→f ≥ [z]f
‖x‖2 = 1.

On the other hand, [A]2→f ≤ ‖A‖2→2 ≤ ‖P‖2→2 · ‖Ek‖2→2 ≤ 1 by Claim 2.1.

4.1.2 Soundness

Assuming for all x ∈ W with ‖x‖2ℓ2 ≤ n, the set

S = {i ∈ [n] : ‖xi‖ℓ2 ≤ 1/α, ‖xi‖∞ ≥ δ}

has size at most ǫ′n, we need to show [A]2→f ≤ γ + ǫ.
Let y ∈ F

n×k be an arbitrary vector with ‖y‖2 = 1, and set x = 1
k ·Py and z = Ay = k·(Ek⊗In)x.

Note that because P is a projection matrix, ‖x‖2ℓ2 = nk · ‖x‖22 ≤ n‖y‖22 = n, and ‖z‖2 ≤ ‖y‖2 = 1.
By virtue of the normalization on x, we have ‖xi‖ℓ2 = ‖zi‖2 for each block i ∈ [n].

We must show [z]f ≤ γ + ǫ. We will upper bound the contribution of different indices i ∈ [n]
to [z]f separately. To do this, define the following partition of [n]:

V0 := S = {i ∈ [n] : ‖xi‖ℓ2 ≤ 1/α, ‖xi‖∞ ≥ δ},
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V1 := {i ∈ [n] : ‖xi‖ℓ2 ≤ α, ‖xi‖∞ ≤ δα},
V2 := {i ∈ [n] : ‖xi‖ℓ2 ≥ α, ‖xi‖∞ ≤ δα},

V3 := {i ∈ [n] : ‖xi‖ℓ2 > 1/α}.
For all u ∈ {0, 1, 2, 3}, define z(u) ∈ F

Vu×dk as the collection of zi ∈ F
dk for all i ∈ Vu. Note that

[z]ff =
∑

u∈{0,1,2,3}

|Vu|
|V | · [z

(u)]ff . (10)

We will prove bounds on [z(u)]ff for u ∈ {0, 1, 2, 3}.
For u = 0, Claim 2.1 applied to zi implies

[z(0)]ff = Ei∼V0 [zi]
f
f ≤ Ei∼V0f(‖zi‖2) = Ei∼V0f(‖xi‖ℓ2) ≤ f(1/α). (11)

For u = 1, a similar application of Claim 2.1 implies

[z(1)]ff = Ei∼V1 [zi]
f
f ≤ Ei∼V1f(‖zi‖2) = Ei∼V1f(‖xi‖ℓ2) ≤ f(α). (12)

For u = 2, we have

[z(2)]ff = Ei∼V2 [zi]
f
f ≤

Assumption 3
Ei∼V2 [f(γ · ‖zi‖2)] ≤

Claim 2.1
f(γ · ‖z(2)‖2) ≤

‖z‖2≤1
f

(

γ ·
√

|V |
|V2|

)

.

(13)
Finally, for u = 3,

[z(3)]ff = Ei∼V3 [zi]
f
f

≤
Claim 2.1

Ei∼V3f(‖zi‖2)

= Ei∼V3

[

‖zi‖22 ·
f(‖zi‖2)
‖zi‖22

]

≤ sup
w≥1/α

f(w)

w2
· Ei∼V3‖zi‖22

= sup
w≥1/α

f(w)

w2
· ‖z(3)‖22

≤
‖z‖22=1

sup
w≥1/α

f(w)

w2
· |V |
|V3|

. (14)

Now we are equipped to bound Eq. (10).

19



[z]ff ≤
∑

u∈{0,1,2}

|Vu|
|V \ V3|

[z(u)]ff + sup
w≥1/α

f(w)

w2
(Eqs. (10) and (14))

≤ f







√

√

√

√

∑

u∈{0,1,2}

|Vu|
|V \ V3|

[z(u)]2f






+ sup

w≥1/α

f(w)

w2
(Jensen’s inequality for x → f(

√
x))

≤ f







√

√

√

√

∑

u∈{0,1,2}

|Vu|
(1− α2)|V | [z

(u)]2f






+ sup

w≥1/α

f(w)

w2
(|V3| ≤ α2 · |V0| by def of V3)

≤ f

(
√

ǫ′/α2 + α2 + γ2

(1− α2)

)

+ sup
w≥1/α

f(w)

w2
(Eqs. (11) to (13) and V0 ≤ ǫ′|V |)

≤ f

(

γ +
√
ǫ′/α+ α√
1− α2

)

+ sup
w≥1/α

f(w)

w2
(
√
a+ b ≤ √

a+
√
b, f is monotone)

= f

(

γ + 2α√
1− α2

)

+ sup
w≥1/α

f(w)

w2
. (Setting ǫ′ = α4)

Using the assumption that f is continuous and limx→∞ f(x)/x2 = 0, we get that the limit of
the right hand side as α → 0 is exactly f(γ). Therefore, there exists some α > 0 independent of n
such that [z]f ≤ γ + ǫ. We choose α in our invocation of Theorem 4.3 accordingly, completing the
proof that [A]2→f ≤ γ + ǫ.

4.2 Proof of Theorem 1.2

In this section we prove Theorem 1.2. We use the following lemma which proves that the approx-
imability of the permanent of highly rank-deficient n × n PSD matrices is essentially the same as
the approximability of of the 2 → 0 norm.

Lemma 4.4. Let V ∈ C
n×d. Then,

cCn,d ·
(

n+ d− 1

d

)−1

· ‖V ‖2n2→0 ≤ per(V V †) ≤ cCn,d · ‖V ‖2n2→0,

where cCn,d is defined in Lemma 2.9.

Proof. Let v1, . . . , vn be the rows of V . For the upper bound, we can write

per(V V †) = Ex∼CN(0,I)

∏

i∈[n]
|〈x, vi〉|2

= cn,d · E‖x‖2=1

∏

i∈[n]
|〈x, vi〉|2 (Lemma 2.9)

≤ cn,d · max
‖x‖2=1

∏

i∈[n]
|〈x, vi〉|2

= cn,d · ‖V ‖2n2→0.
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Next we prove the lower bound. Let z ∈ C
d be a vector with ‖z‖2 = 1 vector maximizing

‖V z‖0 =
∏

i∈[n] |〈z, vi〉|1/n. We have zz† � ‖z‖2ℓ2 · I = d · I , so V zz†V † � d · V V †. By Lemma 2.8,

this implies per(V zz†V †) ≤ dn · per(V V †). Since V zz†V † is rank 1, we can compute its permanent
as per(V zz†V †) = n! ·∏i∈[n] |〈z, vi〉|2.

‖V z‖2n0 = max
‖x‖2=1

∏

i∈[n]
|〈x, vi〉|2

=
1

n!
· per(V zz†V †)

≤ dn

n!
· per(V V †)

=

(

n+ d− 1

d

)

· c−1
n,d · per(V V †).

Proof of Theorem 1.2. We start from Theorem 1.5 for the case F = C and q = 0, to get that it is
NP-hard to approximate ‖A‖2→0 within a factor of e−γ/2+ǫ/4 (recall that γC,0 = e−γ/2 by Fact 2.4).

We reduce the problem of approximating ‖A‖2→0 for A ∈ C
n×d to approximating the perma-

nent of the positive semidefinite matrix B = A(k)(A(k))†, where A(k) ∈ C
nk×d is as in Fact 2.3. By

Lemma 4.4, per(B) is proportional to ‖A(k)‖2nk2→0 up to a multiplicative error of

(

nk + d− 1

d

)

≤ eǫkn/2,

which holds for k = O( d
nǫ2

) and ǫ > 0 small enough. Note that the reduction is efficient because
k is polynomial in the size of A.

By Fact 2.3, we have ‖A(k)‖2nk2→0 = ‖A‖2nk2→0 which is hard to approximate within a factor of
e−kn(γ−ǫ/2). Therefore, it is NP-hard to approximate per(B) within a factor of e−kn(γ−ǫ), where
B ∈ C

kn×kn.

References

[Ana+17] Nima Anari, Leonid Gurvits, Shayan Oveis Gharan, et al. “Simply Exponential Ap-
proximation of the Permanent of Positive Semidefinite Matrices”. In: FOCS. Ed. by
Chris Umans. IEEE Computer Society, 2017, pp. 914–925 (cit. on pp. 1, 2, 9, 11, 12).

[AS48] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions with formu-
las, graphs, and mathematical tables. Vol. 55. US Government printing office, 1948 (cit. on
p. 9).

[Bar+12] Boaz Barak, Fernando G.S.L. Brandao, Aram W. Harrow, et al. “Hypercontractivity,
sum-of-squares proofs, and their applications”. In: STOC. ACM, 2012, pp. 307–326 (cit.
on p. 4).

[Bar16] Alexander Barvinok. Combinatorics and complexity of partition functions. Vol. 30. Springer,
2016 (cit. on p. 10).

21



[Bar20] Alexander Barvinok. “A remark on approximating permanents of positive definite ma-
trices”. arxiv. 2020. URL: https://arxiv.org/abs/2005.06344 (cit. on pp. 1, 3,
13).

[Ben05] Vidmantas Bentkus. “A Lyapunov-type bound in Rd”. In: Theory of Probability & Its
Applications 49.2 (2005), pp. 311–323 (cit. on p. 24).

[Bha+23] Vijay Bhattiprolu, Mrinal Kanti Ghosh, Venkatesan Guruswami, et al. “Inapproxima-
bility of Matrix p → q Norms”. In: SIAM Journal on Computing 52.1 (2023), pp. 132–
155. DOI: 10.1137/18M1233418 (cit. on pp. 4, 5, 17).
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A Proof of Lemma 4.2

In this section we prove Lemma 4.2. We use the following corollary which we will prove in
Appendix B.

Corollary A.1. Let f : R>0 → R be an absolutely continuous 2-concave increasing function with 0 ∈
Range(f). Let F ∈ {R,C}, and let z ∈ F

n be a vector with ‖z‖ℓ2 = 1 and ‖z‖∞ ≤ δ. For each i, let σi
be an independently and uniformly sampled member of {−1,+1} if F = R and be an independently and
uniformly sampled member of {−1,+1,−i,+i} otherwise. Then there exists a universal C > 0 such that
Z =

∑

i∈[n] σizi satisfies

[Z]ff ≤ [g]ff + C ·
(

−
∫ Cδ

0
min(0, f(u)) + δ ·

(

f(2
√

log(1/δ)) + f ′(1)
)

)

,

where g ∼ FN (0, 1).

Now we are ready to prove the main result of this section.

Proof of Lemma 4.2. Let z = x/‖x‖2 and y = Ez = Ex/‖x‖2. Let m be the number of rows of E.
Note that for i ∈ [m], we have

yi =
∑

j∈[n]
Ei,j · zj .

Let Zj = Ei,j ·zj be the random variable where i chosen uniformly at random from [m]. We invoke

Corollary A.1 on z/
√
k. We verify its conditions: First,

∥

∥

∥

z√
k

∥

∥

∥

ℓ2
= ‖z‖2 = 1. Second, by definition

of E
(F)
k we can write Zj = σj · zj√

k
, where the random variables σj ∈ {+1,−1} when F = R and

σj ∈ {+1,−1,+i,−i} chosen independently and uniformly at random Lastly,

|zj |√
k
=

|xj |√
k ‖x‖2

=
|xj |
‖x‖ℓ2

≤ ‖x‖∞
‖x‖ℓ2

≤ δ.

Now by invoking Lemma B.1 on the random variables Z1, . . . , Zk, we get

[

Ex

‖x‖2

]f

f

= [y]ff = Ei∼[m]f(yi) = E
[

f
(

∑

j∈[n]
Zj

)]

≤ [g]ff + C ·
(

−
∫ Cδ

0
min(0, f(u)) + δ ·

(

f(2
√

log(1/δ)) + f ′(1)
)

)

as desired.
Now assume f = fp for some −1 < p < 2. By Lemma 2.2, ‖ · ‖p is homogeneous, and we get

[Ex]f = ‖x‖2 ·
[

Ex

‖x‖2

]

f

≤ ‖x‖2 · f−1

(

γp
F,p + C ·

(

−
∫ Cδ

0
min(0, f(u)) + δ ·

(

f(2
√

log(1/δ)) + f ′(1)
)

))

The second term is 0 if p > 0, otherwise it is equal to δp+1

p+1 . The third term is 2δ if p < 0,
otherwise it is bounded by 4δ(log(1/δ) + 1) for δ small enough. Therefore, the limit of the right
hand side as δ → 0 is ‖x‖2 · γF,p.
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B Proof of Corollary A.1

Corollary A.1 follows directly as a special case of the following Lemma, for k = 1 if F = R and for
k = 2 if F = C.

Lemma B.1. Let f : R>0 → R be an absolutely continuous 2-concave increasing function with 0 ∈
Range(f). Let k ≥ 1 and let X1, . . . ,Xn are bounded independent random variables in R

k with E[Xi] = 0,
Cov(

∑

iXi) = Ik/k, and ‖Xi‖ℓ2 ≤ δi such that
∑

i δ
2
i ≤ 1 and δi ≤ δ for some 0 < δ < 1, then there

exists ηk > 0 such that





∥

∥

∑

i∈[n]
Xi

∥

∥

ℓ2





f

f

≤ [‖g‖ℓ2 ]ff − e

∫ Ckδ/e

0
min(0, f(u))du + δ ·

(

Ck ·max(0, f(2
√

log(1/δ))) + 2f ′(1)
)

,

where g ∼ N(0, Ik/k), and Ck is the constant in Theorem B.2.

Before proving Lemma B.1, we state some probabilistic tools we will require in the proof.

Theorem B.2 (Multivariate Berry-Esseen [Ben05]). Let k ≥ 1 and let X1, . . . ,Xn be independent
random variables in R

k satisfying E[Xi] = 0 for 1 ≤ i ≤ n. Define X = X1 + · · · + Xn and suppose
E[XXT ] = Ik. Further let g ∼ N (0, Ik). Then there exists Ck > 0 such that for all convex sets U ⊆ R

k it
holds that

|Pr[g ∈ U ]− Pr[X ∈ U ]| ≤ Ck · Ei∈[n][‖Xi‖3ℓ2 ].
In particular, for all u ≥ 0 it holds that

|Pr[‖g‖ℓ2 ≤ u]− Pr[‖X‖ℓ2 ≤ u]| ≤ Ck · Ei∈[n][‖Xi‖3ℓ2 ].

Theorem B.3 (Multivariate Hoeffding [Pin, Theorem 3]). Let k ≥ 1 and let X1, . . . ,Xn be independent
random variables in R

k satisfying E[Xi] = 0 for 1 ≤ i ≤ n. Further suppose ‖Xi‖ℓ2 ≤ δi almost surely
for δ1, . . . , δn > 0. Define X = X1 + · · ·+Xn.

|Pr[‖X‖ℓ2 ≥ u]| ≤ 2 · e−u2/2
∑

i∈[n] δ
2
i .

Fact B.4. Let f : R>0 → R be an absolutely continuous function. If
∫ b
0 f(u) is bounded then limu→0 uf(u) =

0.

Claim B.5. Let X be a random variable over R>0, and let f : R>0 → R be an absolutely continuous
function with f(a) = 0 for some a ∈ R>0. Then, if E[f(X)] exists,

E[f(X)] = −
∫ a

0
f ′(u) Pr[X ≤ u]du+

∫ ∞

a
f ′(u) Pr[X ≥ u]du+lim

u→0
f(u) Pr[X ≤ u]− lim

u→∞
f(u) Pr[X ≥ u].
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Proof. Let µ : R>0 → R denote the PDF of the random variable X.

E[f(X)] =

∫ ∞

0
f(u)dµ(u)

=

∫ a

0
f(u)dµ(u) +

∫ ∞

a
f(u)dµ(u)

= f(u) Pr[X ≤ u]
∣

∣

∣

a

0
−
∫

I1

f ′(u) Pr[X ≤ u]− f(u) Pr[X ≥ u]
∣

∣

∣

∞

a
+

∫

I2

f ′(u) Pr[X ≥ u]

= lim
u→0

f(u) Pr[X ≤ u]− lim
u→∞

f(u) Pr[X ≥ u]−
∫

I1

f ′(u) Pr[X ≤ u] +

∫

I2

f ′(u) Pr[X ≥ u]

(f(a) = 0.)

Fact B.6. Let k ≥ 1 and let g ∼ N(0, Ik/k). Then for all 0 ≤ u ≤ 1, Pr[‖g‖ℓ2 ≤ u] ≤ eu.

Proof. k · ‖g‖2ℓ2 is distributed as a Chi-squared random variable with k degrees of freedom. In
[DG03, Lemma 2.2], the authors show that

Pr[‖g‖ℓ2 ≤ u] ≤ (u2e1−u2
)k/2 ≤ e · u,

as desired.

With these facts in hand, we are ready to prove Lemma B.1.

Proof of Lemma B.1. Define the random variable X = ‖∑i Xi‖ℓ2 . We split the domain of f into

I1 = f−1([−∞, 0]) and I2 = f−1([0,∞]), where I1 = [0, a] and I2 = [a,∞]. Since 0 ∈ Range(f), we
have f(a) = 0. We use Claim B.5 to write the left hand side as

E[f(X)] = −
∫ a

0
f ′(u) Pr[X ≤ u] +

∫ ∞

a
f ′(u) Pr[X ≥ u] + lim

u→0
f(u) Pr[X ≤ u]− lim

u→∞
f(u) Pr[X ≥ u]

≤ −
∫ a

0
f ′(u) Pr[X ≤ u] +

∫ ∞

a
f ′(u) Pr[X ≥ u]. (f(0) ≤ f(a) = 0, f(∞) ≥ f(a) = 0.)

We bound each of the above integrals separately.

Claim B.7. We have

∫ a

0
f ′(u) Pr[X ≤ u] ≥

∫ a

0
f ′(u) Pr[‖g‖ℓ2 ≤ u] + e

∫ Ckδ/e

0
min(0, f(u)).

Claim B.8. We have
∫ ∞

a
f ′(u) Pr[X ≥ u] ≤

∫ ∞

a
f ′(u) Pr[|g| ≥ u] + δ ·

(

Ck ·max(0, f(2
√

log(1/δ))) + 2f ′(1)
)

.
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We will complete the proof of Lemma B.1 using these two claims, and prove the claims later.

E[f(X)] ≤ −
∫ a

0
f ′(u) Pr[X ≤ u] +

∫ ∞

a
f ′(u) Pr[X ≥ u]

≤ −
∫ a

0
f ′(u) Pr[‖g‖ℓ2 ≤ u]− e

∫ Ckδ/e

0
min(0, f(u))

+

∫ ∞

a
f ′(u) Pr[|g| ≥ u] + δ ·

(

Ck · f(2
√

log(1/δ)) + 2f ′(1)
)

= E[f(‖g‖ℓ2)]−
∫ Ckδ

0
min(0, f(u)) + δ ·

(

Ck ·max(0, f(2
√

log(1/δ))) + 2f ′(1)
)

.

Here, the last equality is by applying Claim B.5 on the random variable ‖g‖ℓ2 :

E[‖g‖ℓ2 ] =−
∫ a

0
f ′(u) Pr[‖g‖ℓ2 ≤ u] +

∫ ∞

a
f ′(u) Pr[|g| ≥ u]

+ lim
u→0

f(u) Pr[‖g‖ℓ2 ≤ u]− lim
u→∞

f(u) Pr[‖g‖ℓ2 ≥ u]

Observe that by Fact B.4, the third term above is zero, and by Claim 2.1,

lim
u→∞

f(u) Pr[‖g‖ℓ2 ≥ u] ≤ lim
u→∞

(f ′(1) · u2 + f(1)) · Pr[‖g‖ℓ2 ≥ u] = 0.

This completes the justification of the last inequality. It remains to prove Claim B.7 and Claim B.8.
We begin by writing an inequality which will be used in both proofs. By Theorem B.2, for any
u ≥ 0,

|Pr[X ≤ u]− Pr[‖g‖ℓ2 ≤ u]| ≤ Ck · Ei∈[n][‖Xi‖3ℓ2 ]
≤ Ck ·

∑

i∈[n]
[‖Xi‖2ℓ2 ] ·max

i∈[n]
‖Xi‖ℓ2

≤ Ck · δ. (15)
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Proof of Claim B.7. For a parameter b with 0 ≤ b ≤ a, we write
∫

I1

f ′(u) Pr[X ≤ u] ≥
∫ a

b
f ′(u) Pr[X ≤ u] (f ′(u) ≥ 0)

≥
∫ a

b
f ′(u)(Pr[‖g‖ℓ2 ≤ u]− Ckδ) (Eq. (15))

=

∫ a

0
f ′(u) Pr[‖g‖ℓ2 ≤ u]−

∫ b

0
f ′(u) Pr[‖g‖ℓ2 ≤ u]− Ckδ(f(a)− f(b))

≥
∫ a

0
f ′(u) Pr[‖g‖ℓ2 ≤ u]− e

∫ b

0
f ′(u)u+ Ckδf(b)

(using f(a) = 0, and Fact B.6)

=

∫ a

0
f ′(u) Pr[‖g‖ℓ2 ≤ u]− euf(u)

∣

∣

∣

b

0
+ e

∫ b

0
f(u) + Ckδf(b)

=

∫ a

0
f ′(u) Pr[‖g‖ℓ2 ≤ u]− ebf(b) + e

∫ b

0
f(u) + Ckδf(b) (Fact B.4)

=

∫ a

0
f ′(u) Pr[‖g‖ℓ2 ≤ u] + e

∫ min(a,Ckδ/e)

0
f(u) (Setting b = min(a,Ckδ/e))

=

∫ a

0
f ′(u) Pr[‖g‖ℓ2 ≤ u] + e

∫ Ckδ/e

0
min(f(u), 0).

The penultimate equality is because if min(a,Ckδ/e) = a, then f(b) = 0, and if min(a,Ckδ/e) =
Ckδ/e, then bf(b) = Ckδf(b)/e.

Proof of Claim B.8. Applying Theorem B.3 on X,

Pr[X ≥ u] ≤ 2 · e−u2/2
∑

δ2i ≤ 2 · e−u2/2. (16)

For max(a, 1) < c < ∞ we write
∫

I2

f ′(u) Pr[X ≥ u] =

∫ c

a
f ′(u) Pr[X ≥ u] +

∫ ∞

c
f ′(u) Pr[X ≥ u]

≤
∫ c

a
f ′(u)(Pr[|g| ≥ u] + Ckδ) +

∫ ∞

c
2f ′(u)e−u2/2 (Eq. (15), Eq. (16))

≤
∫ c

a
f ′(u) Pr[|g| ≥ u] + Ckδ · (f(c)− f(a)) + 2f ′(1) ·

∫ ∞

c
ue−u2/2

(using f is 2-concave, Claim 2.1, and c ≥ 1)

≤
∫ ∞

a
f ′(u) Pr[|g| ≥ u] + Ckδ · f(c) + 2f ′(1) ·

∫ ∞

c
ue−u2/2

(f is increasing, f(a) = 0)

=

∫ ∞

a
f ′(u) Pr[|g| ≥ u] + Ckδ · f(c) + 2f ′(1) · e−c2/2 (17)

Setting c = max(a, 2
√

log(1/δ)), we get
∫

I2

f ′(u) Pr[X ≥ u] ≤
∫ ∞

a
f ′(u) Pr[|g| ≥ u] + δ ·

(

Ck ·max(0, f(2
√

log(1/δ))) + 2f ′(1)
)

. (18)
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The inequality above is by bounding e−c2/2 ≤ δ, and if max(a, 2
√

log(1/δ)) = a, then f(c) =
0.

C Algorithm for approximating 2 → q norm

Let q < 2. Given a matrix A ∈ F
n×d with rows {ai}i∈[n], we write an expression for ‖A‖2→q :

‖A‖2→q = f−1
q



 max
x∈Fd,‖x‖2=1





∑

i∈[n]
fq (|〈ai, x〉|)







 = f−1
q



 max
x∈Fd,‖x‖2=1





∑

i∈[n]
fq

(
√

a†ixx
†ai

)







 .

Notice that xx† is a rank-1 PSD matrix with tr(xx†) = x†x = ‖x‖ℓ2 = d · ‖x‖2 = d. We can relax
the rank 1 constraint to obtain a relaxation of ‖A‖2→q which we denote by SDP2→q(A):

SDP2→q(A) := f−1
q



 max
X�0,tr(X)=d





∑

i∈[n]
fq

(
√

a†iXai

)







 ,

where the maximum is taken over all matrices in F
d×d. Note that the objective function being

maximized is concave for all q ≤ 2 because the function X → a†iXai is linear and fq is 2-concave.

Lemma C.1. For any matrix A ∈ F
n×d and any −1 < q ≤ 2,

‖A‖2→q ≤ SDP2→q(A) ≤ γ−1
F,q · ‖A‖2→q.

Proof. The first inequality is because SDP2→q(A) is a relaxation of ‖A‖2→q . For the second inequal-
ity, we describe a rounding procedure for the relaxation.

Let X∗ ∈ F
d×d be the optimal solution to SDP2→q(A). We sample a vector x ∼ FN (0,X∗).

Clearly,

‖A‖22→q = max
x∈Fn,x 6=0

‖Ax‖2q
‖x‖22

≥
E‖Ax‖2q
E‖x‖22

. (19)

First we calculate the denominator of the right hand side: E‖x‖22 = 1
d · tr(X) = 1. For the

numerator, we bound
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E‖Ax‖2q = E



f−1
q





∑

i∈[n]
fq(|〈ai, x〉|)





2



≥ f−1
q





∑

i∈[n]
Efq(|〈ai, x〉|)





2

(Jensen’s inequality, and x → f−1
q (x)2 is convex)

= f−1
q





∑

i∈[n]
Eg∼FN (0,1)fq

(
√

a†iX
∗ai · |g|

)





2

(〈ai, x〉 is a Gaussian with variance a†iX
∗ai)

= f−1
q

(

Eg∼FN (0,1)fq(|g|)
)2 · f−1

q





∑

i∈[n]
fq

(
√

a†iX
∗ai

)





2

(Homogeneity)

= γ2F,q · SDP2→q(A)
2.

Together with Eq. (19), this implies ‖A‖2→q ≥ γF,q · SDP2→q(A), completing the proof.
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