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ABSTRACT

Deep neural networks (DNNs) have been shown to perform well on exclusive,
multi-class classification tasks. However, when different classes have similar
visual features, it becomes challenging for human annotators to differentiate them.
This scenario necessitates the use of composite class labels. In this paper, we
propose a novel framework called Hyper-Evidential Neural Network (HENN)
that explicitly models predictive uncertainty due to composite class labels in
training data in the context of the belief theory called Subjective Logic (SL).
By placing a grouped Dirichlet distribution on the class probabilities, we treat
predictions of a neural network as parameters of hyper-subjective opinions and
learn the network that collects both single and composite evidence leading to
these hyper-opinions by a deterministic DNN from data. We introduce a new
uncertainty type called vagueness originally designed for hyper-opinions in SL to
quantify composite classification uncertainty for DNNs. Our results demonstrate
that HENN outperforms its state-of-the-art counterparts based on four image
datasets. The code and datasets are available at: https://github.com/
Hugo101/HyperEvidentialNN.

1 INTRODUCTION

In various applications, particularly those dependent on data from low-quality sensors or high-quality
data with insufficiently distinct features to separate some individual classes, the resulting data often
exhibits significant vagueness and ambiguity (Allison, 2001; Ng et al., 2011). For example, in security
surveillance, grainy images from store cameras may not provide clear enough resolution to accurately
distinguish between different individuals or activities, necessitating the use of composite class labels
to address this uncertainty (Allison, 2001). Similarly, in the field of medical imaging, a radiograph
displaying features suggestive of multiple possible diagnoses may require composite labels to capture
this uncertainty (Allison, 2001) effectively. When different classes have similar visual features in
image datasets, it becomes challenging for human annotators to differentiate them. An ambiguous
image, such as a blurry one where an annotator cannot distinguish between a husky and a wolf, may
be labeled with both classes: {husky, wolf}. The composite label implies that the image belongs to
husky or wolf, but not both. When training data consists of composite class labels, existing DNN
methods face the following challenges: (a) how to train a DNN model based on a training set with
composite labels; (b) how to train a DNN to predict the composite labels that human annotators
could provide; and (c) how to quantify the predictive uncertainty of a DNN due to the evidence of
composite labels collected from the training set.

In current literature, partial label learning (Feng et al., 2020; Hong et al., 2023) has been proposed to
address the first challenge. It aims to train a DNN that can disambiguate the partially-labeled training
samples and predict singleton class labels for testing data. To address the second challenge, conformal
prediction (Vovk et al., 2005; Romano et al., 2020; Angelopoulos et al., 2021) is typically considered
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in safety-critical applications (e.g., computer vision based medical diagnostics) and aims to provide
a composite set that covers the true class label (e.g., the true diagnosis) with high probability (e.g.,
90%). A composite set generated by a conformal prediction method is due to high entropy in the
predicted class probabilities rather than composite class labels in the training set.

To the best of our knowledge, limited work has been conducted to address the third challenge.
For predictive uncertainty quantification, several types/sources of predictive uncertainty have been
studied in deep learning: model uncertainty (mutual information between model parameters and
the predicted class probabilities (Depeweg et al., 2018; Malinin & Gales, 2018)), data uncertainty
(entropy of the predicted class probabilities (Gal, 2016)), confidence (the largest predicted class
probability (Hendrycks & Gimpel, 2017)), vacuity (uncertainty due to lack of evidence (Jøsang,
2016; Shi et al., 2020)), and dissonance (due to conflicting evidence (Zhao et al., 2020)). However, it
lacks an effective uncertainty measure (here we name vagueness) that can quantify the uncertainty
associated with predictions of a DNN due to composite class labels in the training set. For example,
if the prediction (e.g., a singleton class or a composite class) of a DNN for a given input sample is
based on evidence collected from training samples mostly labeled to composite sets, the vagueness
should be high. If the collected evidence is from training samples mostly labeled to singleton classes,
the vagueness should be low.

We propose a new framework called Hyper Evidential Neural Network (HENN) that explicitly models
the predictive uncertainty of a DNN due to composite class labels in the training set. HENN is
designed based on the theory of Subjective Logic (Jøsang, 2016) and aims to predict the evidence
parameters of a hyper-opinion regarding the classification of the input sample. A hyper-opinion
defines a belief mass distribution on the composite sets of singleton classes and an uncertainty mass
and can be equivalently represented by a grouped Dirichlet distribution (GDD). We introduce a new
uncertainty measure based on hyper-opinions, originally designed in SL (Jøsang, 2016; Jøsang et al.,
2018), to quantify the vagueness of a DNN. Our contributions are three-fold: (1) We propose a novel
framework (HENN) that can quantify vagueness, a new uncertainty type for measuring the predictive
uncertainty of a DNN due to composite class labels in the training set. (2) We propose a new loss
function, uncertainty partial cross entropy (UPCE), for HENN training. UPCE is a generalization of
the well-known uncertainty cross-entropy (UCE)(Sensoy et al., 2018; Biloš et al., 2019) designed for
singleton class labels. We provide a theoretical analysis of UPCE and propose a regularization term
to future improve the effectiveness of UPCE for HENN learning. (3) We conduct extensive empirical
analyses on four image datasets to demonstrate the effectiveness of the HENN in comparison with
five competitive baselines.

2 RELATED WORK

Evidential Neural Networks (ENNs) (Sensoy et al., 2018; 2020; Ulmer et al., 2023) are deterministic
neural networks that predict subjective opinions (Dirichlet distributions, equivalently) about the
classifications of the input samples. The predicted subjective opinions can be used to quantify
predictive uncertainties, such as vacuity (due to lack of evidence) and dissonance (due to conflicting
evidence). PriorNet (Malinin & Gales, 2018; 2019) and PosteriorNet (Charpentier et al., 2020) are in
this category. While Bengs et al. (2022) investigated the flaw of second-order uncertainty estimation
of ENNs because of the lack of ground truth of target distribution, many applications (Xie et al., 2023;
Sun et al., 2023; Park et al., 2023; Sapkota & Yu, 2023) show the usefulness of ENNs in recent years.

Partial label learning aims to train a DNN that can disambiguate the partially-labeled training
samples and predict singleton class labels for testing data. Average-based methods (Cour et al., 2011)
treat each candidate label as equally important during training. Conversely, identification-based
approaches (Feng et al., 2020; Xu et al., 2021; Wang et al., 2022a; Qiao et al., 2023; Yan & Guo,
2023a;b; Hong et al., 2023) aim to disambiguate the effect of noisy labels and maximize outputs
based on the most likely “ground-truth” label. Soft label learning aims to aggregate labels collected
from multiple annotators to create probabilistic or “soft” labels for training data and learn a DNN for
singleton class predictions based on the soft labels in the training data (Peterson et al., 2019; Collins
et al., 2022). However, both partial and soft-label learning methods are limited to singleton-class
predictions but not composite set predictions. Their learned models do not provide uncertainties
associated with singleton-class predictions due to composite class labels in the training set.

Composite set prediction. E-CNN (Tong et al., 2021) could do set prediction for any possible
combinations among all singleton classes based on Dempster-Shafer theory. RAPS (Angelopoulos
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et al., 2021) is a state-of-the-art conformal prediction method that gives more stable predictive sets by
regularizing the small scores of unlikely classes after Platt scaling. However, these methods predict
composite sets for data instances with large probabilities for multiple classes. This means that their
locations in the representation space are near the decision boundary of the DNN. In contrast, HENN
predicts composite sets for data instances near the training instances with composite labels. These
two methods are considered baselines in our empirical study.

3 HYPER-OPINIONS AND EVIDENTIAL UNCERTAINTY MEASURES

3.1 HYPER-OPINIONS IN SUBJECTIVE LOGIC AND GDD
In the Dempster–Shafer Theory of Evidence (DST) (Shafer, 1976), class probabilities in the Bayesian
theory are generalized to belief masses in subjective opinions. It assigns belief masses to subsets
of a ground set of exclusive possible states or classes (called “domain”). One can then express ‘I
do not know’ by assigning all belief masses to the whole domain as an opinion for the truth over
possible classes. SL formalizes the DST’s notion of belief assignments using a hyper-opinion. More
specifically, let Y = {1, ...,K} denote the class domain with the cardinality K. Let R(Y) denote the
reduced power set of Y (called “hyper-domain”), which is the set of the power set of Y that excludes
{Y} and {∅}. Let C (Y) denote the set of composite sets: C (Y) = R(Y) \ {{1}, · · · , {K}}. A
hyper-opinion ω = (b, u) assigns a belief mass bS to each element (singleton class or composite
set) S ∈ R(Y) and provides an uncertainty mass of u called vacuity. These mass values are all
non-negative and sum up to one, i.e.,

u+
∑

S∈R(Y)
bS = 1. (1)

A belief mass bS is computed using the evidence for each element S ∈ R(Y). S represents a
singleton class if it has a single class element (e.g., S = {1}); otherwise, it represents a composite set
(e.g., S = {1, 2}). Let eS ≥ 0 be the evidence derived for S, then the belief bS and the uncertainty
mass u are computed as:

bS =
eS
T
, and u =

K

T
, (2)

where T =
∑
S∈R(Y) eS +K. The uncertainty mass u is inversely proportional to the total evidence:∑

S∈R(Y) eS . When the total evidence is 0, the belief mass for each S needs to be 0, and the
uncertainty mass u is 1. In contrast to Bayesian modeling terms, we define “evidence” as a measure of
the accumulated support from training samples, indicating that the input sample should be categorized
into a particular singleton class or composite set. The accumulated support can be interpreted as the
weighted aggregated number of training samples that support this class or composite set. Unlike a
simple count of samples, evidence is typically weighted. This means that not all samples contribute
equally to the evidence. For instance, some samples might be more informative or reliable than
others, and the network learns to weigh their contribution to the evidence accordingly. Fig. 1 shows
examples of high uncertainties for different types and their corresponding probability density plots
for 3-class classification.

A hyper-opinion can be equivalently represented by a hyper-Dirichlet distribution of the class-
probability vector p ∈ ∆K , where ∆K = {p|

∑K
k=1 pk = 1 and pk ∈ [0, 1]} is the K-dimensional

simplex. It is characterized by class-specific concentration parameters α = [α1, · · · , αK ] and set-
specific concentration parameters c = [cS ]S∈C (Y). The probability density function (pdf) for possible
values of the class-probability vector p is given by

HyperDir(p|α, c) = Z−1
h

K∏
k=1

p
αk−1
k

∏
S∈C(Y)

(∑
k∈S

pk
)cS

, for p ∈ ∆K , (3)

where Zh is the normalization constant that has no analytical form. The concentration parameters
of a hyper-Dirichlet distribution HyperDir(p|α, c) can be mapped to the evidence parameters of a
hyper-opinion as follows: αk = ek + 1 for k = 1, · · · ,K and cS = eS ,∀S ∈ C (Y).

This paper considers an important special instance of Hyper-Dirichlet distribution: the grouped
Dirichlet distribution (GDD), as it offers the practical appeal of an analytical normalization factor
that can be easily calculated. GDD assumes that the composite sets in C (Y) represent a partition
of the ground set of singleton classes, i.e., S = {S1, ...,Sη}, where ∪ηj=1Sj = Y and Si ∩ Sj = ∅,
∀i, j ∈ {1, ..., η}, and i ̸= j. Let cj denote cSj

. The pdf of GDD has the following form:

GDD(p|α, c) = Z−1
K∏

k=1

p
αk−1
k

η∏
j=1

( ∑
l∈Sj

pl
)cj

, for p ∈ ∆K , (4)
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where Z =
[∏η

j=1B
(
{αl}l∈Sj

) ]
B
(
{βj}ηj=1

)
, βj =

∑
l∈Sj

αl + cj , and B(·) is beta function.
We aim to design and train evidential neural networks that can effectively predict the hyper-opinions
about the uncertainty-aware classification of the input sample. As discussed in the following subsec-
tion, the predicted hyper-opinions can quantify vagueness and other uncertainty types.

Relations with multinomial opinions and Dirichlet distribution. A hyper-opinion is a generalized
version of the multinomial opinion that assigns belief masses to singleton classes but not to composite
sets (Jøsang et al., 2018). In particular, if there is no evidence for the composite sets in C (Y), then
eS = 0, ∀S ∈ C (Y). It follows that c = 0 and the resulting hyper-opinion only assigns belief
masses to singleton classes, and the corresponding Hyper Dirichlet distribution HyperDir(α,0) is
equivalent to the Dirichlet distribution Dir(α).

3.2 VAGUENESS AND OTHER EVIDENTIAL UNCERTAINTY MEASURES BY HYPER-OPINIONS

SL explicitly represents second-order probabilistic uncertainty through a hyper-opinion consisting of
a belief mass distribution on R(Y) and uncertainty mass. A hyper-opinion can be used to quantify
different types of uncertainty, such as vagueness (due to composite evidence), vacuity (due to lack of
evidence), and dissonance (due to conflicting evidence). The vagueness uncertainty measure (also
named total vague belief mass) of a hyper-opinion can be estimated as:

vag(ω) =
∑

S∈C (Y)
bS . (5)

An opinion is totally vague when vag(ω) = 1, and is partially vague when 0 < vag(ω) < 1. An
opinion has mono-vagueness when only a single composite set has (vague) belief mass assigned to it.
On the other hand, an opinion has pluri-vagueness when several composite sets have (vague) belief
masses assigned to them.

The vacuity uncertainty corresponds to the uncertainty mass u in a hyper-opinion and is calculated as
vac(ω) = K/T in Eq. 2. The dissonance of a hyper-opinion can be derived from the same amount
of conflicting evidence for different singleton classes or composite sets (see Eq.54 in App.) for
its estimation based on the hyper-opinion). The vagueness vag(ω) is different from the vacuity
vac(ω) in that vagueness results from existing evidence of composite sets that fail to discriminate
between specific singleton classes, but vacuity reflects the lack of evidence for any singleton classes
and composite sets. A totally vacuous opinion does not contain any vagueness by definition. The
vagueness vag(ω) is different from the dissonance diss(ω) in that vagueness is due to evidence on
composite sets, whereas dissonance reflects conflicting evidence collected from different singleton
classes or composite sets. It is possible that an opinion has a high vagueness (e.g., vag(ω) = 1) but a
low dissonance (e.g., diss(ω) = 0). Hyper-opinions can contain vagueness, whereas multinomial
opinions never contain vagueness. The ability to express vagueness is thus the main aspect that
makes hyper-opinions different from multinomial opinions.

Table 1: An example of hyper-opinion with low vacuity and dissonance but high vagueness.

ω
S ∈ R(Y) {1} {2} {3} {1,2} {1,3} {2,3} u vac(ω) diss(ω) vag(ω)

1 Evidence eS 3 0 0 0 0 24 0.1 0.1 0.2 0.8Belief Mass bS 0.1 0 0 0 0 0.8

2 Evidence eS 3 12 12 0 0 0 0.1 0.1 0.744 0Belief Mass bS 0.1 0.4 0.4 0 0 0

Tab. 1 provides two examples (Y = {1, 2, 3}, K = 3). The first example of hyper-opinion reflects
high vagueness. There is high evidence observed on the composite set {2, 3}, and it causes high
vagueness. There is also conflicting evidence between {1} and {2, 3} that contributes to dissonance.
However, the evidence on {2, 3} dominates the evidence on {1}, the dissonance is low. The total
evidence is large forK = 3, and it results in low vacuity. The second example is a hyper-opinion with
low vagueness and high dissonance, where the evidence in classes 2 and 3 is equally distributed on
singletons instead of a composite set and becomes the conflicting evidence between the two classes.

4 HYPER EVIDENTIAL NEURAL NETWORK

In this section, we will present a novel hyper-evidential neural network (HENN) that predicts a
hyper-opinion about the classification of the input feature vector x. The predicted hyper-opinion
can be used to quantify different types of predictive uncertainty, such as vagueness, vacuity, and
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(a) Confident (b) Dissonance

(c) Vacuity (d) Vagueness

Examples of different uncertainties. Different predictive uncertainties from HENN.

Figure 1: Left: Different probability densities corresponding to specific uncertainty type for 3-class classification
(Brighter colors mean higher density). Each corner represents a class. (a) A confident prediction. (b) Conflicting
evidence exists for two classes (dissonance or data uncertainty). (c) Uniform Dirichlet distribution with no
evidence for known classes (i.e., OOD inputs) (vacuity uncertainty). (d) There is enough evidence to exclude one
class but still fail to determine the final prediction from the rest of the classes. Right: The first example shows
a confident prediction w/o vagueness and low dissonance. The other two examples have the same projected
probabilities but different sources of uncertainties. One is caused by conflicting evidence (dissonance), and
the other one is caused by vague evidence only for the final decision from the set {Husky, Wolf} (vagueness).
Fig.(d) is drawn by grouped Dirichlet distribution, not ordinary Dirichlet distribution.

dissonance, as discussed in Section 3.2. We consider the scenario where the composite sets form
a partition of the ground set of singleton classes, S = {S1, ...,Sη}, and the hyper-opinion can be
equivalently represented by a grouped Dirichlet distribution. Formally, the HENN is defined as a
function f(·,θ) : RD → R

K+η
+ , mapping an input x ∈ RD to the evidence vector e ∈ RK+η , where

θ are the network parameters, e = [e1, · · · , eK , eS1
, · · · , eSη

] and ek and eSi
refer to the predicted

evidence values of the singleton class k and the composite set Si, respectively. The architecture
of HENNs for classification is similar to classical neural networks. The only difference is that the
softmax layer is replaced with an activation layer (e.g., Softplus or ReLU) to ascertain non-negative
and unbounded output that is considered as the evidence vector for the predicted hyper-opinion (or
grouped Dirichlet distribution, equivalently). Based on the predicted evidence vector, we can then
predict the singleton class or composite set that has the largest evidence:

m = argmaxi∈{1,2,...,K+η}ei (6)

If m ∈ {1, · · · ,K}, then the prediction is a singleton class; otherwise, it is the composite set
Sm−K ∈ S. We can also transform the evidence vector e to a grouped Dirichlet distribution
GDD(p|α, c) based on the mapping between the parameters (α, c) and e: α = [e1 + 1, · · · , eK + 1]
and c = [eS1

, · · · , eSη
]. The relations between this distribution GDD(α, c), the class probability

vector p, and the class label y have the form:
y ∼ Cat(p), p ∼ GDD(α, c), e = f(x;θ), (7)

where Cat(p) is a categorical distribution on the class variable y. The expectation of the class-
probability vector p has the form:

p̄ := Ep∼GDD(p|α,c)[p], p̄k = E[pk] =
αk

β0

( η∑
j=1

βj
αSj

· 1(k ∈ Sj)

)
for k ∈ {1, · · · ,K}, (8)

where β0 =
∑η
j=1 βj , αSj =

∑
l∈Sj

αl, βj = αSj + cj . Then, use p̄ as the projected class
probability vector, we can also predict the singleton class with the largest projected class probability:

y = argmaxk∈{1,2,...,K}p̄k. (9)

Relations with ENNs: ENNs (a.k.a prior networks (Malinin & Gales, 2018)) and their variants
(e.g., posterior networks (Charpentier et al., 2020)) are deterministic neural networks that predict the
multinomial opinion (Dirichlet distribution, equivalently) about the singleton class label of the input
sample. In comparison, HENNs are deterministic neural networks that predict the hyper-opinion
(GDD, equivalently) about the classification of the input sample into a singleton class or composite
class label. As discussed in Section 3.2, hyper-opinion has the ability to express the vagueness
uncertainty (due to evidence collected from composite labels in the training data), but multinomial
opinions never contain vagueness. HENNs are designed to handle composite labels in the training
set and can quantify the composite classification uncertainty using the vagueness measure, whereas
ENNs can not. In addition, as multinomial opinion is a special instance of hyper-opinion, by setting
the evidence on composite sets to zero, HENNs include ENNs as a special instance.
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4.1 THE LOSS FUNCTION AND REGULARIZATION FOR HENN LEARNING

Let D = {(x(i), ỹ(i))}Ni=1 denote a training set, where x refers to the input and ỹ ∈ {0, 1}K refers
to the binary vector representation of a singleton class label or composite set label. For instance,
ỹ(i) = [0, 1, 1, 0]⊤ represents a composite set label {2, 3} for the sample i and ỹ(i) = [0, 0, 1, 0]⊤

represents a singleton class label 3. In the related task of partial label learning (Cour et al., 2011),
the partial cross-entropy (PCE) is used as a loss function for learning a softmax-based NN based on
composite set (or called partial) labels:

PCE(p, ỹ) = − log(
∑K

k=1
ỹkpk), (10)

where p refers to the class probability vector predicted by the softmax layer of the NN. When ỹ is
a singleton class label, the PCE loss becomes equivalent to the standard cross-entropy (CE) loss:
CE(p, ỹ) = −

∑K
k=1 ỹk log pk. As the output of a HENN is a GDD of p, we propose a new loss

function, namely, Uncertainty Partial Cross Entropy (UPCE), to learn the parameters of a HENN:
UPCE(x, ỹ;θ) = Ep∼GDD(p|α,c)[PCE(p, ỹ)], (11)

where θ refers to the network parameters of the HENN. We note that if ỹ is a singleton class label,
and we replace GDD with the Dirichlet distribution, then the UPCE loss becomes equivalent to the
default UCE loss used in learning ENNs: UCE(x, ỹ) = Ep∼Dir(p|α)[CE(p, ỹ)]. Our proposed UPCE
loss has the following analytical form (see our Proposition A1 in App. B.2 for derivations):

UPCE(x, ỹ;θ) =
[
ψ(β

(i)
0 )− ψ(β

(i)
IC )

]
1(∥ỹ(i)∥1 > 1)+[(

ψ(β
(i)
0 )− ψ(α

(i)
IS )

)
−

η∑
j=1

(
ψ(β

(i)
j )− ψ(α

(i)
Sj
)
)
1(y(i) ∈ Sj)

]
1(∥ỹ(i)∥1 = 1),

(12)

where the first term corresponds to composite example and the second term refers to singleton
example respectively. In particular, ψ(·) is digamma function, β(i)

0 =
∑η
j=1 β

(i)
j = ∥α(i)∥+ ∥c(i)∥

denotes the sum of all positive strength parameters for the i-th sample, α(i)
Sj

=
∑
l∈Sj

α
(i)
l is the

sum of strength parameters corresponding all singleton classes in the partition Sj . For simplicity,
we let βIC represent IC-th β corresponding to one of a composite label in the list {S1, ...,Sη} which
contains the singleton ground truth, and αIS denote IS-th α corresponding to the singleton target.

Our proposed UPCE loss function has the lower bound (see Proposition A2 in App. C.1):
UPCE(x, ỹ;θ) ≥ PCE(Ep∼GDD(p|α,c)[p], ỹ;θ). (13)

It follows that the minimization of the UPCE loss ensures the minimization of the PCE loss between
the projected class-probability vector EGDD(p|α,c)[p] and the composite set label ỹ. This result
indicates a favorable property of UPCE: The HENN with the UPCE loss function is optimized
to output high projected probabilities for the classes belonging to the composite set label but low
projected probabilities for the other classes.

However, as shown in Proposition 1, we observed an issue with the UPCE loss function in differenti-
ating the evidence values of singleton classes and composite sets. In particular, when ỹ is a composite
set label, the learned HENN based on UPCE tends to predict large evidence values for both the
composite set label ỹ and for all the singleton classes belonging to the composite set. Similarly, when
ỹ is a singleton class label, the learned HENN based on UPCE tends to predict large evidence values
for this singleton class and all the composite set that contains this singleton class as an element.
Proposition 1 (Properties of the empirical UPCE risk function). Assume that the universal ap-
proximation property (UAP) holds for a HENN, i.e., the network can learn an arbitrary mapping
function from the input feature vector x to the evidence vector e. Then, the empirical UPCE risk
function R(f) = 1

N

∑N
i=1 UPCE(x

(i), ỹ(i);θ) approaches the infimum 0 if the solution θ⋆ satisfies
the following properties, with e = f(x;θ⋆): (1) ∀(x, ỹ) ∈ D, where ỹ denotes a singleton class
label, k ∈ [K], the predicted evidence values ek → +∞ and eSi → +∞,∀Si ∈ S, such that
k ∈ Si; and (2) ∀(x, ỹ) ∈ D, where ỹ denotes a composite set label Si, the predicted evidence
values eSi → +∞ and ek → +∞,∀k ∈ Si.

To address the previous issue, we propose the following KL-divergence regularization term (see
App. B.3 for derivations) to make the evidence output more flat:

Reg(x, ỹ;θ) = KL
[
GDD(p|ᾱ, c̄)∥GDD(p|1K ,0η)

]
, (14)
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where KL(·) is KL-divergence, and ᾱ = ỹ + (1 − ỹ) ⊙ α and c̄ = (1 − ỹ) ⊙ c are the GDD
parameters after the removal of ground-truth parameters from the predicted parameters α and c. This
regularization term is designed to enforce misleading evidence from the false single and composite
classes in α and c to be as small as possible. The regularized UPCE loss function has the form:

L(θ) = 1

N

∑N

i=1

(
UPCE(x(i), ỹ(i);θ) + λ · Reg(x(i), ỹ(i);θ)

)
, (15)

where λ is the tradeoff coefficient. As indicated in Proposition 2 below, the HENN, when trained
using the aforementioned regularized UPCE loss, tends to predict high evidence for the ground-truth
singleton class/composite set while predicting low evidence for other elements. Stochastic gradient
descent (i.e., Adam) is adopted to optimize the regularized loss function. The pseudocode is shown
in App.(Algo. 1).

Proposition 2 (Effectiveness of the regularization term Reg(x, ỹ;θ)). Following the UAP assump-
tion, the regularized empirical UPCE risk defined in Eq. (15) approaches the infimum 0 if the
solution θ⋆ satisfies the following properties: 1) ∀(x, ỹ) ∈ D, where ỹ is a singleton class la-
bel k ∈ [K], the predicted evidence values ek → +∞ and et → 0,∀t ∈ S ∪ [K] \ k; and 2)
∀(x, ỹ) ∈ D, where ỹ denotes a composite set label Si, the predicted evidence values eSi

→ +∞
and et → 0, ∀t ∈ S ∪ [K] \ Si.

The proofs of the Propositions are shown in App. C.2 and C.3, respectively. This is consistent with
the fact that the Dirichlet distribution is a special instance of GDD. As a generalized framework of
ENN, the HENN learned based on UPCE will perform similarly to the ENN learned based on UCE
when trained based on the same dataset with only singleton class labels.

Limitations and discussions. In essence, the proposed HENN is the GDD extension of evidential
deep learning (Ulmer et al., 2023) that is based upon Dirichlet distributions. The propositions
demonstrate the need for the KL regularization term in the cost function so that only evidence for
the corresponding ground truth class can grow large. While the assumption of UAP in the above
propositions may not hold in practice, the analysis does demonstrate how UPCE requires the KL
regularization term to moderate the evidence. An ablation study is discussed in Section 5.2 to
empirically demonstrate the need for the regularization term.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets & Preprocessing. TinyImageNet (Fei-Fei et al., 2015), Living17 (Santurkar et al., 2021),
Nonliving26 (Santurkar et al., 2021), and CIFAR100 (Krizhevsky & Hinton, 2009) are used in
the experiments. Each dataset has class hierarchy relation. For example, CIFAR100 has 100
subclasses which are grouped into 20 disjointing superclasses. Superclasses are utilized to generate
composite class labels because of their semantic and visual similarities. We first select a fixed
number of composite class labels, denoted as M . Then several random subclasses for each selected
superclass will be chosen. A subset of the selected images will be blurred by the Gaussian Blurring
operation (RichardWebster et al., 2018) to generate vague images, and the corresponding set of
categories/subclasses of these vague images will be the new label (composite instead of singleton) of
these vague images to build the dataset. Detail is presented in App. E.

Baselines. DNN is the traditional deep neural network model. ENN (Sensoy et al., 2018) is the
evidential network that only deals with traditional singleton domains as DNN does. We also use UCE
loss and KL regularizer for a fair comparison for ENN. In practice, it is necessary to set a threshold
value of predicted conditional class probabilities to generate set predictions for DNNs and ENNs.
(see App. E.3). E-CNN (Tong et al., 2021) could do set prediction for any possible combinations
among all singleton classes based on DST. RAPS (Angelopoulos et al., 2021) leverages conformal
prediction to generate a prediction set to ensure the size of the predicted set is as small as possible.
PiCO (Wang et al., 2022b) applies contrastive learning into partial label learning problem.

Implementation. Both HENN and ENN use Softplus as the activation layer. Since HENN is model-
agnostic, we consider three pre-trained backbones: EfficientNet-b3 (Tan & Le, 2019), ResNet50 (He
et al., 2015) and VGG16 (Simonyan & Zisserman, 2015) for HENN model and all other baselines for
a fair comparison. Model agnoistic property experiments are represented in App. F.2 due to the space
limit. To generate composite examples for baselines, we create duplicate training examples with
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Table 2: Results (%) based on Gaussian kernel size: 3×3 on CIFAR100 and tinyImageNet. (The
average of three runs is provided, and the confidence interval is included in the App. due to space limitations.)

tinyImageNet living17 nonliving26
M Methods OverJS CompJS Acc OverJS CompJS Acc OverJS CompJS Acc

DNN (Tan & Le, 2019) 83.4 66.9 79.8 88.1 81.0 83.3 85.6 62.0 82.9
ENN (Sensoy et al., 2018) 75.9 63.5 80.7 88.0 72.3 84.5 85.0 52.9 84.5

10 E-CNN (Tong et al., 2021) 33.4 31.1 68.2 30.5 36.8 65.7 28.3 35.8 60.6
RAPS (Angelopoulos et al., 2021) 73.1 43.6 79.8 86.4 61.3 83.3 82.7 46.3 82.9
PiCO (Wang et al., 2022b) 57.2 35.6 64.3 62.5 43.7 65.2 61.8 42.6 64.8
HENN (ours) 84.4 93.4 82.5 88.8 96.5 85.6 86.9 96.8 85.4

DNN (Tan & Le, 2019) 84.3 67.3 79.5 88.1 84.8 80.2 85.6 68.9 81.5
ENN (Sensoy et al., 2018) 83.5 60.7 81.2 88.0 78.3 82.4 85.4 62.6 82.9

15 E-CNN (Tong et al., 2021) 32.5 33.3 68.4 31.6 37.3 65.5 29.8 35.1 60.1
RAPS (Angelopoulos et al., 2021) 68.1 45.6 79.5 85.5 66.5 80.2 83.8 56.1 81.5
PiCO (Wang et al., 2022b) 56.8 35.3 64.6 61.4 43.1 64.8 61.5 42.5 64.6
HENN (ours) 84.6 90.6 81.6 88.8 96.6 85.7 86.9 96.2 84.1

different singleton labels in the composite set. We adopt grid search based on a held-out validation set
to select the best hyperparameters for each competitive method. Please refer to App. E.4 for details.

Evaluation Metric. Jaccard Similarity (JS) (Zaffalon et al., 2012) is used to evaluate a model’s
performance in predicting a set of classes: JS(y, ŷ) = |y∩ŷ|

|y∪ŷ| , where ŷ is the predicted set of classes
and y is ground-truth set of classes. Either ŷ, y or both can be a single class or a set of two or
more classes. A model identifies a datapoint as composite if two or more classes are predicted
and singleton otherwise. We compare HENN’s performance with baselines in terms of different
average JS. OverJS: averaged JSs of all test samples, 1

Nt

∑Nt

i=1 JS(y
(i), ŷ(i)). CompJS: averaged

JSs of composite samples the model identifies, 1
Nc

∑Nc

i=1 JS(y
(i), ŷ(i)), where len(ŷ(i)) > 1. Here

Nc =
∑Nt

i=1 1(len(ŷ
(i)) > 1) denotes the number of examples which are predicted as composite

sets. Accuracy is used to evaluate the projected singleton label prediction (Acc). The Area Under
the Receiver Operating Characteristic (AUROC, the larger the better) is to measure the different
uncertainties in discriminating between true composite and true singleton samples.

5.2 EXPERIMENTAL RESULTS

For each dataset, we consider different numbers of composite class labels during training: M= 10,
15, 20, and multiple Gaussian kernel sizes of blurring operation:3×3, 5×5, 7×7. Due to the space
limit, some additional experiments including CIFAR100 are presented in App. F.

Classification. Tab. 2 shows the results of composite predictions on tinyImageNet, living17 and
nonliving26 in terms of OverJS, CompJS (for composite prediction) and accuracy (for singleton
prediction) based on Gaussian kernel size 3×3. HENN outperforms other baselines in terms of
OverJS (over 1% for tinyImageNet) and CompJS. In particular, the improvement of CompJS is
significant (over 15-20% for three datasets). This validates that HENN is not only able to recognize
vague images, but also differentiate different vague images. In particular, both RAPS and E-CNN
underperform HENN in terms of compJS. This is because RAPS and E-CNN are inclined to make set
predictions if they are unsure about the final prediction. In addition to the vague images, there might
be other difficult (not vague) images in which E-CNN and RAPS cannot make a single decision.
Therefore, compared to DNN, more examples will be wrongly predicted as composite sets. On the
other hand, Tab. 2 also demonstrate the efficacy of HENN in singleton prediction (Eq. 9) in terms of
Acc. The improvement is over 2-5% for three datasets. PiCO performs worse than HENN because
the composite labels in its setting are randomly flipped, and it might not be able to deal with blurring
images during training. In summary, HENN can generate high-quality composite prediction and
accurate singleton label classification. It is practical to consider a limited number of composite sets
due to the majority of clearly labeled data. So our experiments do not encounter the combinatorial
complexity issue (2K).

Analysis of confusion between multiple classes. The ROC curves depicted in Fig. 2 show-
case performances of various uncertainty indicators, namely vagueness of HENN, vacuity and
dissonance of ENN, and entropy of DNN, in identifying confusion between multiple classes when
some samples have composite labels, and some have singleton labels (see more in Fig. 4 and
Fig. 5 in App.). For both datasets, HENN’s vagueness outperforms the other uncertainties, as
indicated by its larger AUC score and smallest error region, making it a highly effective dis-
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criminator between composite and singleton samples and a successful indicator of confusion be-
tween a set of classes when there is composite evidence. RAPS and E-CNN, however, do not
provide any measurement to evaluate these uncertainties. ENN’s vacuity, similar to epistemic
uncertainty, which is more useful for OOD detection (Fig. 1) and is not suitable to our case.

(a) CIFAR100 M=15 (b) tinyImageNet M=15

Figure 2: ROC curves of separating composite and sin-
gleton examples among different measurements: vague-
ness of HENN, vacuity and dissonance of ENN, and
entropy of DNN on based on kernel size 7×7.

While dissonance and entropy are better than
vacuity, they are still inferior to vagueness. A
data point with high dissonance is usually lo-
cated in the decision boundary, and a point with
high vagueness can also be close to the deci-
sion boundary. However, the verse does not
apply for vagueness, because vagueness could
also be decided by the labeling bias of the an-
notators, but not purely by their closeness to
the decision boundary between the associated
singleton classes. For instance, an annotator
who has extensive knowledge about different
cat breeds (i.e., Tabby, Egyptian, Persian), will
still annotate them as singletons, even if they are
near decision boundaries. However, this annota-
tor may give composite labels for other animal
breeds, such as dog breeds (i.e., Husky, Malamute, Samoyed), that he may not be knowledgeable
about. For this reason, a data point with high dissonance may likely have low vagueness.

Table 3: Model performance of different regular-
ization on M=15, and kernel size: 7×7 on nonliv-
ing26.

Methods OverJS CompJS Acc

HENN-only-UPCE 78.25 62.89 84.96
HENN-KL-Dir 86.66 94.15 82.13
HENN-Ent 86.68 94.44 86.33
HENN-KL 86.93 94.78 85.19

Effect of regularization. To show the effec-
tiveness of KL divergence regularization, we
compare different regularizations and UPCE
loss without any regularization in Tab. 3.HENN-
KL refers to the HENN with the proposed
regularization (Eq. 14). HENN-Ent refers to
the HENN with the entropy of GDD as the
regularization Reg = −H

[
GDD(p|α, c)

]
(see

App. B.4). HENN-KL-Dir refers to the HENN
using KL-divergence only for singleton classes
Reg = KL

[
Dir(p|α)

]
. Generally, the compar-

ison of their performances is HENN-KL≈HENN-Ent > HENN-KL-Dir > HENN-only-UPCE.
App. F.4 illustrates the coefficient effect of the KL regularizer.
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Number of Composite Sets

83.25

83.50

83.75

84.00

84.25

Ov
er

al
lJS

 (%
)

DNN
HENN

(a) OverJS

10 15 20
Number of Composite Sets

81.5

82.0

82.5

83.0

83.5

84.0

Ac
cu

ra
cy

 (%
)

DNN
ENN
RAPS
HENN

(b) Accuracy

Figure 3: OverJS and Accuracy trends vs. the number
of composite labels in tinyImageNet.

Effect of varying numbers of composite la-
bels. To investigate the effect of ratio of com-
posite class labels during training, we vary
M = {10, 15, 20} in experiments. Fig. 3 shows
OverallJS and Accuracy regarding the number
of composite sets. Regularized HENN outper-
forms other baselines for these two metrics. In
particular, with the increase of number of com-
posite sets, the gap between HENN and base-
lines is enlarging in terms of accuracy (Fig. 3b),
which demonstrates the advantage of HENN.

6 CONCLUSION

In this work, we propose a novel hyper-evidential network framework (HENN) designed to predict
hyper-opinions and quantify predictive classification uncertainty caused by composite class labels
(introduced as vagueness) by utilizing composite training examples. This framework is capable of
identifying either a singleton class or a composite set with the highest belief, and it can predict the
singleton class with the greatest projected class probability. Extensive empirical findings show that
HENN outperforms other competitive methods, demonstrating its effectiveness and potentiality.
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A NOTATIONS

For clear interpretation, we list main notations used in this paper and their corresponding explanation,
as shown in Table 4.

Table 4: Important Notations and Descriptions

Notation Description

Y Domain of singleton elements or classes
R(Y) Hyper-domain of Y
C (Y) Domain of composite classes
D = {(x(i),y(i))}Ni=1 Training data with size N
B(·), Γ(·), ψ(·),ψ1(·) Beta function, Gamma function, Digamma function, trigamma function
Dir(α) Dirichlet distribution with strength α

GDD(α, c) Grouped Dirichlet distribution with strength α and composite evidence c

K,M Total number of singleton (composite) classes
Z Normalizing constant of the Grouped Dirichlet distribution
∆K K-dimensional simplex, i.e., ∆K := {p|p = [p1, · · · , pK ] ∈ [0, 1]K and ∥p∥1 = 1}
y Singleton ground truth label
bS Vague belief mass of value S in R(Y)
u Vacuity of evidence in a hyper-opinion
η Total number of partitions
κ Total number of elements in R(Y), i.e., the total no. of singleton and composite classes
ϵ A small error
ω Hyper-opinion of a random hyper-variable y ∈ R(Y)
x(i) The feature vector of the i-th sample
ỹ Binary vector over {0, 1}K

b = [b1, .., bK , bS1 , .., bSη ]
⊺ Belief mass distribution over R(Y)

e = [e1, ..., eκ]
⊺ Observed evidence vector over R(Y), e = [e1, · · · , eK , eK+1, · · · , eκ]⊺

p = [p1, ..., pK ]⊺ Class probability vector over Y
α = [α1, ..., αK ]⊺ Strength vector of a Dirichlet distribution or the singleton part in grouped Dirichlet distribution
S An element as a set in hyper-domain (singleton or composite)
S = {S1, ...,Sη} The set of partitions
Sj j-th composite set in GDD
c = [c1, ..., cη]

⊺ Evidence vector for the partitions in S
f(x(i);θ) HENN parameterized by θ that takes x(i) as input
IS Singleton ground-truth index
IC Composite ground-truth index
L(θ) Uncertainty loss function w.r.t. parameters θ
UPCE(θ) UPCE loss
Reg(θ) KL-divergence regularizer
ρ(α) Natural parameter based on α (only in Appendix)
γ(c) Natural parameter based on c (only in Appendix)
u(p) Sufficient statistic of natural parameter ρ(α) (only in Appendix)
v(p) Sufficient statistic of natural parameter γ(c) (only in Appendix)
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B DERIVATIVES OF LOSS FUNCTION

B.1 EXPECTATION OF GDD

Theorem. Let x ∼ GDDn,2(α, c) with 2 partitions, x ∈ ∆n, where ∆n denotes the n-dimensional
simplex, α = (α1, · · · , αn)⊺ is the strength parameter, and c = (c1, c2)

⊺ is the composite evidence
parameter. Let S1,S2 denote the 2 partitions. The moment of xi is given by

E(xi) =
αi
β12

(
β1
αS1

· 1(i ∈ S1) +
β2
αS2

· 1(i ∈ S2)

)
(16)

where αS1
=
∑
l∈S1

αl, αS2
=
∑
l∈S2

αl, β1, β2, and β12 are defined as β1 = αS1
+ c1, β2 =

αS2 + c2, β12 = β1 + β2, and 1(·) denotes the indicator function.

According to the above Theorem which is from the book of Dirichlet and Related Distributions (Ng
et al., 2011), analogy from two partitions to multiple partitions, we can get Eq. 8 in the main paper:

E[pk] =
αk
β0

( η∑
j=1

βj
αSj

· 1(k ∈ Sj)
)

where β0 =
∑η
j=1 βj , αSj

=
∑
l∈Sj

αl, and βj = αSj
+ cj .

B.2 UPCE LOSS OF GDD

Proposition A1 (Analytical form of UPCE). Given the i-th sample (x(i), ỹ(i)) ∈ D, and a HENN
f(·;θ), the Uncertainty Partial Cross Entropy (UPCE) loss for this sample can be formulated as the
following analytical form:

UPCE(x(i), ỹ(i);θ) = Ep∼GDD(p|α(i),c(i))(− log

K∑
k=1

ỹkpk)

=
[
ψ(

η∑
j=1

β
(i)
j )− ψ(β

(i)
IC )

]
1(∥ỹ(i)∥1 > 1)+

[(
ψ(

η∑
j=1

β
(i)
j )− ψ(α

(i)
IS )

)
−

η∑
j=1

(
ψ(β

(i)
j )− ψ(

∑
l∈Sj

α
(i)
l )

)
· 1(ỹ(i) ∈ Sj)

]
1(∥ỹ(i)∥1 = 1)

where βj =
∑
l∈Sj

αl + cj .

Proof. The formal formulation of UPCE loss is formulated as follows.

UPCE(θ) = Ep∼GDD(p|α(i),c(i))(− log

K∑
k=1

ỹkpk)

= E
[
− log

∑
l:ỹ

(i)
l

=1

p
(i)
l

]
︸ ︷︷ ︸

Term 1

1(∥ỹ(i)∥1 > 1) + E
[
− log p

(i)
IS

]
︸ ︷︷ ︸

Term 2

1(∥ỹ(i)∥1 = 1) (17)

We need to get the log expectations Term 1 and Term 2 above to calculate the UPCE loss. The
following is to explain how we can derive these two terms.

Given the PDF of GDD GDD(p|α, c) (Eq. 4) we can rewrite it in the form of exponential family:

p(x;γ) = h(x) exp (γ⊺u(x)−A(γ)) (18)

with natural parameters γ, sufficient statistic u(x), and log-partition A(γ).

Construct the pdf of GDD as exponential family:

p(x;γ) = exp (log GDD(p|α, c)) . (19)
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The logarithm term can be constructed as:

log GDD(p|α, c) = log

K∏
k=1

pαk−1
k

η∏
j=1

(∑
l∈Sj

pl

)cj
− logZ

=

K∑
k=1

log pαk−1
k +

η∑
j=1

log
(∑
l∈Sj

pl

)cj
− logZ

=

K∑
k=1

(αk − 1) log pk +

η∑
j=1

cj log
(∑
l∈Sj

pl

)
− logZ.

(20)

Note that Gamma function has the transition relation between Beta function:

Γ(a)Γ(b) = B(a, b)Γ(a+ b), (21)

which can be generalized to multiple variables (Murphy, 2022) as follows,

B(a1, a2, ..., aK) =

∏K
k=1 Γ(ak)

Γ(
∑K
k=1 ak)

(22)

Therefore, the normalizing constant:

Z =

[ η∏
j=1

B
(
{αl}l∈Sj

)]
·B
(
{βj}ηj=1

)
=

[ η∏
j=1

∏
l∈Sj

Γ(αl)

Γ(
∑
l∈Sj

αl)

]
·
∏η
j=1 Γ(βj)

Γ(
∑η
j=1 βj)

,

(23)

Now define the log-partition A(α, c) as follows:

logZ =

η∑
j=1

log

[∏
l∈Sj

Γ(αl)

Γ(
∑
l∈Sj

αl)

]
+ log

∏η
j=1 Γ(βj)

Γ(
∑η
j=1 βj)

=

η∑
j=1

log
∏
l∈Sj

Γ(αl)−
η∑
j=1

log Γ(
∑
l∈Sj

αl) + log

η∏
j=1

Γ(βj)− log Γ(

η∑
j=1

βj)

=

η∑
j=1

∑
l∈Sj

log Γ(αl)−
η∑
j=1

log Γ(
∑
l∈Sj

αl) +

η∑
j=1

log Γ(βj)− log Γ(

η∑
j=1

βj)

= A(α, c).

(24)

Suppose ρk = αk − 1, ρ = α − 1 = [α1 − 1, ..., αK − 1]⊺, u(p) = [log p1, log p2, ..., log pK ]⊺

and γj = cj , γ = c = [c1, ..., cη]
⊺, v(p) = [log

∑
l∈S1

pl, log
∑
l∈S2

pl, ..., log
∑
l∈Sη

pl]
⊺, then

the PDF of GDD would be in the form of exponential family as follows:

GDD(p|α, c) = exp
[ K∑
k=1

(αk − 1) log pk +

η∑
j=1

cj log(
∑
l∈Sj

pl)−A(α, c)
]

= exp
[
ρ(α)⊺ · u(p) + γ(c)⊺ · v(p)−A(α, c)

]
.

(25)

We can identify that {ρ(α),γ(c)} are natural parameters, {u(p),v(p)} are corresponding sufficient
statistics, respectively.

According to the property with respect to the exponential family, we can state that

E[u(p)k] =
dA(α, c)

dρk
=
dA(α, c)

dαk
, E[v(p)j ] =

dA(α, c)

dγj
=
dA(α, c)

dcj
. (26)
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Since βj =
∑
l∈Sj

αl + cj , so ∂βj

∂αk
= 1(k ∈ Sj). In addition, since ψ(x) = d

dx log Γ(x), the log
expectation E[u(p)k] in Eq. 26 would be:

E[log(pk)] =
∂A(α, c)

∂αk

=

η∑
j=1

∂
∑

l∈Sj
log Γ(αl)

∂αk
−

η∑
j=1

∂ log Γ(
∑

l∈Sj
αl)

∂αk
+

η∑
j=1

∂ log(Γ(βj))

∂αk
−
∂ log(Γ(

∑η
j=1 βj))

∂αk

=

η∑
j=1

∑
l∈Sj

∂ log Γ(αl)

∂αk
−

η∑
j=1

ψ(
∑
l∈Sj

αl)

∑
l∈Sj

∂αl

∂αk
+

η∑
j=1

ψ(βj)
∂βj
∂αk

− ψ(

η∑
j=1

βj)

η∑
j=1

∂βj
∂αk

=

η∑
j=1

ψ(αk) · 1(k ∈ Sj)−
η∑

j=1

ψ(
∑
l∈Sj

αl) · 1(k ∈ Sj) +

η∑
j=1

ψ(βj) · 1(k ∈ Sj)− ψ(

η∑
j=1

βj)

η∑
j=1

1(k ∈ Sj)

= ψ(αk)−
η∑

j=1

ψ(
∑
l∈Sj

αl) · 1(k ∈ Sj) +

η∑
j=1

ψ(βj) · 1(k ∈ Sj)− ψ(

η∑
j=1

βj)

=
(
ψ(αk)− ψ(

η∑
j=1

βj)
)
+

η∑
j=1

(
ψ(βj)− ψ(

∑
l∈Sj

αl)
)
· 1(k ∈ Sj).

(27)

Similarly, with the leverage of E[v(p)j ] in Eq. 26,

E[log(
∑
l∈Sj

pl)] =
∂A(α, c)

∂cj

=

η∑
j=1

∂
∑

l∈Sj
log Γ(αl)

∂cj
−

η∑
j=1

∂ log Γ(
∑

l∈Sj
αl)

∂cj
+

η∑
j=1

∂ log(Γ(βj))

∂cj
−
∂ log(Γ(

∑η
j=1 βj))

∂cj

=

η∑
j=1

∂ log(Γ(βj))

∂cj
−
∂ log(Γ(

∑η
j=1 βj))

∂cj

=
∂ log(Γ(βj))

∂cj
− ψ(

η∑
j=1

βj)
∂
∑η

j=1 βj

∂cj

= ψ(βj)
∂βj
∂cj

− ψ(

η∑
j=1

βj)
∂βj
∂cj

= ψ(βj)− ψ(

η∑
j=1

βj).

(28)

Thus, we successfully derive the essential component Term 1 (Eq. 28) and Term 2 (Eq. 27), which
can be used to calculate UPCE loss as follows,

UPCE(θ) = Ep∼GDD(p|α(i),c(i))(− log

K∑
k=1

ỹkpk)

= E
[
− log

∑
l:ỹ

(i)
l

=1

p
(i)
l

]
1(∥ỹ(i)∥1 > 1) + E

[
− log p

(i)
IS

]
1(∥ỹ(i)∥1 = 1)

=
[
ψ(

η∑
j=1

β
(i)
j )− ψ(β

(i)
IC )

]
1(∥ỹ(i)∥1 > 1)+

[(
ψ(

η∑
j=1

β
(i)
j )− ψ(α

(i)
IS )

)
−

η∑
j=1

(
ψ(β

(i)
j )− ψ(

∑
l∈Sj

α
(i)
l )

)
· 1(ỹ(i) ∈ Sj)

]
1(∥ỹ(i)∥1 = 1)

where βj =
∑
l∈Sj

αl + cj .
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B.3 KL DIVERGENCE AS REGULARIZATION

Let KL(·) denote the KL-divergence of two distributions. According to the Appendix C.3 in Ulmer
et al. (2023), the KL-divergence of two GDD distributions can be written as:

KL

(
GDD(p|ᾱ, c̄)||GDD(p|α, c)

)
= E

[
log

GDD(p|ᾱ, c̄)
GDD(p|α, c)

]
= E

[
log GDD(p|ᾱ, c̄)

]
− E

[
log GDD(p|α, c)

]
.

(29)

Since we derived the entropy of GDD distribution in Eq. 33, we have

−E[log GDD(p|α, c)] = logZ(α, c)−
K∑
k=1

(αk − 1)E
[
log pk

]
−

η∑
j=1

cjE
[
log
∑
l∈Sj

pl

]
, (30)

By putting the above term into the Eq. 29, we now have:

KL

(
GDD(p|ᾱ, c̄)||GDD(p|α, c)

)
= − logZ(ᾱ, c̄) +

K∑
k=1

(ᾱk − 1)E
[
log pk

]
+

η∑
j=1

c̄jE
[
log
∑
l∈Sj

pl

]

−
[
− logZ(α, c) +

K∑
k=1

(αk − 1)E
[
log pk

]
+

η∑
j=1

cjE
[
log
∑
l∈Sj

pl

]]

= log
Z(α, c)

Z(ᾱ, c̄)
+

K∑
k=1

(ᾱk − αk)E
[
log pk

]
+

η∑
j=1

(c̄j − cj)E
[
log
∑
l∈Sj

pl

]
.

(31)

Therefore, we derive the following regularization based on GDD(p|1K ,0η),

KL

(
GDD(p|ᾱ, c̄)||GDD(p|1K ,0η)

)
= logZ(1K ,0η)− logZ(ᾱ, c̄) +

K∑
k=1

(ᾱk − 1)E
[
log pk

]
+

η∑
j=1

c̄jE
[
log
∑
l∈Sj

pl

]
,

(32)

where E [log pk] and E
[
log
∑
l∈Sj

pl

]
are derived in Eq. 27 and Eq. 28 respectively, ᾱk = ỹk +

(1 − ỹk) ⊙ αk is the Dirichlet parameter after removal of the non-misleading evidence from the
predicted parameters α, specifically, we skip the comparison of αk with 1k given y = k for k ∈ [K].
c̄j = (1− ỹj)⊙ cj as composite evidence parameter with the target class setting to be 0, for j ∈ [η].

B.4 ENTROPY OF GDD

We can derive the entropy of a GDD distribution from its definition, and by using the component
E [log pk] and E

[
log
∑
l∈Sj

pl

]
which are derived in Eq. 27 and Eq. 28 respectively, the full analytical
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form can be derived:

H[p] = −E
[
log GDD(p|α, c)

]
= −E

[
logZ−1 + log

K∏
k=1

p
αk−1
k + log

η∏
j=1

( ∑
l∈Sj

pl
)cj

]

= logZ − E
[ K∑
k=1

log p
αk−1
k

]
− E

[ η∑
j=1

log
( ∑

l∈Sj

pl
)cj

]

= logZ −
K∑

k=1

(αk − 1)E
[
log pk

]
−

η∑
j=1

cjE
[
log

∑
l∈Sj

pl
]

= logZ −
K∑

k=1

(αk − 1)

((
ψ(αk)− ψ(

η∑
j=1

βj)
)
+

η∑
j=1

(
ψ(βj)− ψ(

∑
l∈Sj

αl)
)
· 1(k ∈ Sj)

)

−
η∑

j=1

cjE
[
log

∑
l∈Sj

pl
]

= logZ −
K∑

k=1

(αk − 1)ψ(αk) +

K∑
k=1

(αk − 1)ψ(

η∑
j=1

βj)−
K∑

k=1

(αk − 1)

η∑
j=1

(
ψ(βj)− ψ(

∑
l∈Sj

αl)
)
· 1(k ∈ Sj)

−
η∑

j=1

cj
(
ψ(βj)− ψ(

η∑
j=1

βj)
)

(33)

C THEORETICAL ANALYSIS OF LOSS FUNCTION

C.1 CONVEXITY OF CE & PCE

To prove the convexity of CE and PCE loss with respect to class probabilities, we only need to
show that the second-order derivative of both losses is non-negative. For CE loss CE(p, ỹ) =

−
∑K
k=1 ỹk log pk, since pk ≥ 0 and ỹk ≥ 0 for any k ∈ {1, 2, ...,K}:

CE′
k =

d

dpk
CE =

d

dpk
[−ỹk log pk] = − ỹk

pk
,

CE′′
k =

d

dpk
CE′

k =
d

dpk
[− ỹk
pk

] =
ỹk
p2k

≥ 0.

(34)

By Eq. 34, we can know that the Hessian matrix is diagonal and positive semi-definite. Hence, the
CE loss is convex.

For PCE loss PCE(p, ỹ) = − log(
∑K
k=1 ỹkpk), we have:

PCE′
k =

d

dpk
PCE = − ỹk∑K

j=1 ỹjpj
,

PCE′′
k =

d

dpk
PCE′

k = −ỹk
[
− (

K∑
j=1

ỹjpj)
−2
]
ỹk = (

ỹk∑K
j=1 ỹjpj

)2 ≥ 0,

(35)

where ỹk is the k-th element in the binary vector ỹ representing classes in R(Y). Analogously, PCE
loss is convex and thus follows Jensen’s inequality.

Proposition A2 (Lower Bound of UPCE). Given any instance (x, ỹ), and a HENN f(·;θ), the
Uncertainty Partial Cross Entropy (UPCE) for this sample UPCE(x, ỹ;θ) has the following lower
bound:

UPCE(x, ỹ;θ) ≥ PCE(Ep∼GDD(p|α,c)[p], ỹ;θ). (36)
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Proof. Since PCE(p, ỹ;θ) is convex (proved earlier), it is straightforward to get the following
inequality through Jensen’s inequality:

UPCE(x, ỹ;θ) = Ep∼GDD(p|α,c)

[
PCE(p, ỹ;θ)

]
≥ PCE(Ep∼GDD(p|α,c)[p], ỹ;θ).

(37)

C.2 PROOF OF PROPOSITION 1

Proposition 1 (Properties of the empirical UPCE risk function). Assume that the universal ap-
proximation property (UAP) holds for a HENN, i.e., the network can learn an arbitrary mapping
function from the input feature vector x to the evidence vector e. Then, the empirical UPCE risk
function R(f) = 1

N

∑N
i=1 UPCE(x

(i), ỹ(i);θ) approaches the infimum 0 if the solution θ⋆ satisfies
the following properties, with e = f(x;θ⋆): (1) ∀(x, ỹ) ∈ D, where ỹ denotes a singleton class
label, k ∈ [K], the predicted evidence values ek → +∞ and eSi → +∞,∀Si ∈ S, such that
k ∈ Si; and (2) ∀(x, ỹ) ∈ D, where ỹ denotes a composite set label Si, the predicted evidence
values eSi → +∞ and ek → +∞,∀k ∈ Si.

Proof. Given the HENN with empirical risk as R(f) = 1
N

∑N
i=1

[
UPCE(x(i), ỹ(i);θ)

]
, we can

show that one of the optimal risk minimizers can always predict non-confident evidence while still
maintain the property regarding the loss minimizer for arbitrary examples in the training set.

First, we show the properties hold for a UPCE loss minimizer. Since opinions in Subjective Logic rely
on estimating evidence to form subjective opinions and reflect structural knowledge, it is necessary
to have accurate and consistent evidence output that supports a subset of the hypothesis space.
Based on this definition, the composite evidence should not be too large given only singleton training
examples, and vice versa. Nonetheless, Proposition 1 states that for a given data point (x, ỹ), different
minimizers trained with the same UPCE objective can end up with different evidence predictions.

As UPCE loss is convex in terms of evidence, we consider analyzing the impact of output evidence
on UPCE loss. We start with partial derivatives because the UPCE loss is multivariate differentiable.
For clarity, we’ve organized our proof into two parts: one dealing with a single ground-truth scenario,
and the other with a composite ground-truth.

Case 1: Under singleton ground-truth assumption.

Ideally, under the singleton ground-truth assumption, we anticipate that, as the singleton ground-truth
evidence increases, the UPCE loss should decrease. When composite evidence increases, the UPCE
loss should increase, i.e., ∂

∂αν
UPCE < 0,∀ν ∈ [K] and ∂

∂cν
UPCE ≥ 0,∀ν ∈ [η]. This expectation is

rooted in the fact that the UPCE loss is multivariate differentiable. If we explicitly write the partial
derivative for composite evidence cν (ν ∈ [η]) with singleton ground-truth, we will have

∂

∂cν
UPCE =

∂

∂cν

[
ψ(

η∑
j=1

βj)− ψ(αIS) +

η∑
j=1

(
ψ(

∑
l∈Sj

αl)− ψ(
∑
l∈Sj

αl + cj)
)
1(y ∈ Sj)

]

=
∂

∂cν
ψ(

K∑
k=1

αk +

η∑
j=1

cj)−
η∑

j=1

1(y ∈ Sj)
∂

∂cν
ψ(

∑
l∈Sj

αl + cj)

= ψ1(

K∑
k=1

αk +

η∑
j=1

cj)−
η∑

j=1

1(y ∈ Sj)ψ1(
∑
l∈Sj

αl + cj)1(ν = j).

(38)

where ψ1(·) is ψ1(x) =
dψ(x)
dx , known as the trigamma function, which is positive and monotonically

decreasing on (0,+∞) (Qi & Berg, 2013). Next, we will go through different composite set labels to
simplify the partial derivative.

If the partial derivative taken is not for the composite class label including the singleton ground-truth,
then ∂

∂cν
UPCE = ψ1(

∑K
k=1 αk+

∑η
j=1 cj). Since αk ≥ 1, cj ≥ 0, and ψ1(·) is positive on (0,+∞),
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it follows that ∂
∂cν

UPCE > 0. However, if the partial derivative taken is exactly for the composite set

label including the singleton ground-truth, then ∂
∂cν

UPCE = ψ1(
∑K
k=1 αk+

∑η
j=1 cj)−

∑η
j=1 1(y ∈

Sj)ψ1(
∑
l∈Sj

αl + cj)1(ν = j). Since αk ≥ 1, cj ≥ 0, and ψ1(·) is monotonically decreasing on

(0,+∞), therefore ψ1(
∑K
k=1 αk +

∑η
j=1 cj) <

∑η
j=1 1(y ∈ Sj)ψ1(

∑
l∈Sj

αl + cj)1(ν = j) It
follows that ∂

∂cν
UPCE < 0. This outcome, which is not desirable, reveals that the optimal HENN has

the potential to increase the composite evidence output, even in cases where the singleton ground-
truth does not apply. Remember that in Eq.2, Subjective Logic determines the subjective opinion
based on evidence. Therefore, this approach to prediction can negatively impact the quantification
of uncertainty and further affect the classification accuracy that relies on evidence-related projected
class probabilities.

Under the same singleton ground-truth assumption, the partial derivative for singleton evidence
αν(ν ∈ [K]) is:

∂

∂αν
UPCE =

∂

∂αν

[
ψ(

η∑
j=1

βj)− ψ(αIS) +

η∑
j=1

(
ψ(

∑
l∈Sj

αl)− ψ(
∑
l∈Sj

αl + cj)
)
1(y ∈ Sj)

]
= ψ1(

η∑
j=1

βj)− ψ1(αIS)1(ν = IS) +
η∑

j=1

1(y ∈ Sj)1(ν ∈ Sj)(ψ1(
∑
l∈Sj

αl)− ψ1(βj)).

(39)

Following the same strategy, if the partial derivative taken is not for the singleton ground-truth
class, then ∂UPCE

∂αν
= ψ1(

∑η
j=1 βj) +

∑η
j=1 1(y ∈ Sj)1(ν ∈ Sj)(ψ1(

∑
l∈Sj

αl) − ψ1(βj)). Since
βj ≥

∑
l∈Sj

αl, the dereasing monotonicity of trigamma function gives ψ1(
∑
l∈Sj

αl)−ψ1(βj) > 0.
So the partial derivative ∂UPCE

∂αν
> 0. If the partial derivative is for the singleton ground-truth,

we can rewrite the equation as ∂UPCE
∂αν

=
[
ψ1(
∑η
j=1 βj) −

∑η
j=1 1(y ∈ Sj)1(ν ∈ Sj)ψ1(βj)

]
+[∑η

j=1 1(y ∈ Sj)1(ν ∈ Sj)ψ1(
∑
l∈Sj

αl)−ψ1(αIS)1(ν = IS)
]
. Noting that βj <=

∑η
j=1 βj and

αIS <
∑
l∈Sj

αl, so we know that ∂UPCE∂αν
< 0 by decreasing monotonicity of trigamma function.

Hence, for ∀(x, ỹ) ∈ D, with fixed finite values of c and α except for either ground-truth singleton
evidence or for both the singleton ground-truth evidence and the composite evidence including the
singleton ground-truth, the limits

lim
αIS→+∞

UPCE = lim
αIS→+∞

[
ψ(β0)− ψ(αIS) +

η∑
j=1

(ψ(
∑
l∈Sj

αl)− ψ(βj))1(IS ∈ Sj)

]
→ 0,

lim
αIS→+∞,
cj→+∞,

IS∈Sj

UPCE = lim
αIS→+∞,
cj→+∞,

IS∈Sj

[
ψ(β0)− ψ(αIS) +

η∑
j=1

(ψ(
∑
l∈Sj

αl)− ψ(βj))1(IS ∈ Sj)

]
→ 0.

(40)

hold.

Recall that αk = ek + 1, and trigamma function ψ1(·) is also strictly convex. Therefore, rewrite the
concentration parameters as evidence, for ∀(x, ỹ) ∈ D, where ỹ is a singleton class label k ∈ [K],
when ek → +∞ and eSi

→ +∞,∀Si ∈ S, such that k ∈ Si, we will have UPCE(x(i), ỹ(i);θ)
approaches the infimum 0. It is worth noting that the infimum can also be approached when solely
maximizing the singleton ground-truth evidence. Hence, with different evidence predictions causing
the same loss for the same learning objective, hyper-opinions derived from the evidence will also
become inconsistent.

Case 2: Under composite ground-truth assumption.

If we assume the ground-truth is a composite class label, we expect that as the composite ground-truth
evidence increases, the UPCE loss decreases, in contrast, if any singleton evidence increases, the
UPCE loss should increase. Mathmatically, our goal is ∂

∂cν
UPCE < 0,∀ν ∈ [η], and ∂

∂αν
UPCE ≥

0,∀ν ∈ [K]. For composite ground-truth, the partial derivative with respect to cν , ν ∈ [η] is known
as:
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∂

∂cν
UPCE =

∂

∂cν

[
ψ(

η∑
j=1

βj)− ψ(βIC)

]

= ψ1(

η∑
j=1

βj)− ψ1(βIC)1(ν = IC)

(41)

If the partial derivative taken is for a composite class label that is not the ground-truth, ∂
∂cν

UPCE =

ψ1(
∑η
j=1 βj). Since βj > 0, and ψ1(·) is positive on (0,+∞), it follows that ∂

∂cν
UPCE > 0. This

means the HENN will compress non-related composite evidence. Nonetheless, the partial derivative
for the composite ground-truth is ∂

∂cν
UPCE = ψ1(

∑η
j=1 βj)− ψ1(βIC). Since

∑η
j=1 βj > βIC, and

ψ1(·) is monotonically decreasing on (0,+∞), it follows that ψ1(
∑η
j=1 βj) < ψ1(βIC)1(ν = IC),

∂
∂cν

UPCE < 0, indicating HENN will only enlarge the evidence of ground-truth among all composite
set classes during training.

Similarly, the partial derivative for singleton evidence αν (ν ∈ [K]) under composite ground-truth is:

∂

∂αν
UPCE =

∂

∂αν

[
ψ(

η∑
j=1

βj)− ψ(βIC)
]

= ψ1(

η∑
j=1

βj)− 1(ν ∈ SIC)ψ1(βIC),

(42)

If the partial derivative taken is not for the singleton class included in the composite ground-truth,
then ∂

∂αν
UPCE = ∂

∂αν

[
ψ(
∑η
j=1 βj)

]
> 0. In contrast, if the partial derivative is with respect to the

singleton class included in composite ground-truth, then ∂
∂αν

UPCE = ∂
∂αν

[
ψ(
∑η
j=1 βj)− ψ1(βIC)

]
Since

∑η
j=1 βj > βIC, then we have ψ1(

∑η
j=1 βj) < ψ1(βIC) , ∂

∂cν
UPCE < 0, which causes the

confusion. In other words, the UPCE loss guides HENN to enlarge the evidence of composite
ground-turth and the singleton classes included in the ground-truth.

Now given finite fixed values of α and c except for either the cIC or cIC with several other αk included
in composite ground-truth, we have the limits:

lim
cIC→+∞

UPCE = lim
cIC→+∞

[
ψ(β0)−

η∑
j=1

ψ(βj)1(IC = j)

]
→ 0,

lim
cIC→+∞,
αk→+∞,

k∈SIC

UPCE = lim
cIC→+∞,
αk→+∞,

k∈SIC

[
ψ(β0)−

η∑
j=1

ψ(βj)1(IC = j)

]
→ 0.

(43)

If we convert the parameters back to evidence space, then the limits show that for ∀(x, ỹ) ∈ D, where
ỹ is a composite class label Si, the UPCE(x(i), ỹ(i);θ) approaches the infimum 0 as the predicted
evidence values eSi → +∞ and ek → +∞,∀k ∈ Si. The infimum value can also be approached
by only maximizing the composite evidence for the ground truth. Again, with different evidence,
predictions correspond to the same empirical loss for the same composite learning objective, causing
unreliable issues in subjective opinion modeling.

After proving 2 cases of inconsistent evidence predictions regarding the optimal loss minimizer, we
prove that the risk minimizer can be approximated by a UPCE loss minimizer for each training data
point. This step is crucial for connecting the empirical risk minimizer with the loss minimizer and for
highlighting the inconsistency in evidence predictions made by the empirical risk minimizer HENN.
Under the assumption of universal approximation property (UAP) (Cybenko, 1989; Leshno et al.,
1993a), suppose the HENN has the capability to produce sufficient non-linearity to estimate any
functions in the evidential space, we can have at least one optimal HENN f(·;θ⋆) (or f∗ for short)
such that

R(f∗) = inf
θ∈Θ

R(f) = inf
θ∈Θ

[
1

N

N∑
i=1

[
UPCE(x(i), ỹ(i);θ)

]]
=

1

N

N∑
i=1

[
inf
θ∈Θ

UPCE(x(i), ỹ(i);θ)
]
. (44)
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This equation connects the empirical risk minimizer and the loss minimizer on each train-
ing data. To prove Eq.(44), we apply the assumed UAP. Note that UPCE(x(i), ỹ(i);θ) =
UPCE(f(x(i);θ), ỹ(i)). We abbreviate them by UPCE(i) for simplicity. Since UPCE(x, ỹ;θ) ≥
inf UPCE(x, ỹ;θ), we have 1

N

∑N
i=1

[
UPCE(i)

]
≥ 1

N

∑N
i=1

[
inf UPCE(i)

]
, and a trivial conclusion

is
[
inf 1

N

∑N
i=1

[
UPCE(i)

]]
≥ 1

N

∑N
i=1

[
inf UPCE(i)

]
.

Now recall the universal approximation property demonstrates the existence of a function that can
approximate any function within the same function space. Applying assumed UAP to our setting, it
states for any (x, ỹ) ∈ D, and arbitrary function g(x, ỹ;θ) = inf UPCE(f(x;θ), ỹ), there exists an
optimal HENN can approximate g(·) by mapping input features to evidence f(x;θ⋆). s.t.

sup
x,ỹ

∥g(x, ỹ;θ)− UPCE(f(x;θ⋆), ỹ)∥ < ϵ, ∀ϵ > 0. (45)

Because of the relation β0 > βIC and αSj
> αIS, the form of UPCE loss based on digamma functions

in Eq.(12) determines its positive value, according to the increasing monotonicity of digamma
function on (0,+∞).

Given the limits shown in Eq.(40) and Eq.(43), we know that the infimum of UPCE is 0, Eq.(45) can
be rewritten as:

sup
x,ỹ

UPCE(f(x;θ⋆), ỹ) < ϵ, ∀ϵ > 0. (46)

Based on the inequality

0 <
1

N

N∑
i=1

[
inf UPCE(i)

]
≤
[
inf

1

N

N∑
i=1

[
UPCE(i)

]]
<

1

N

N∑
i=1

ϵ = ϵ, (47)

with both lower bound and upper bound as 0, according to the squeeze theorem, the exchangeability
of inf operators 1

N

∑N
i=1

[
inf UPCE(x, ỹ;θ)

]
= inf 1

N

∑N
i=1 UPCE(x, ỹ;θ) = 0 holds for each

training data point, and the Eq.(44) is proved.

Knowing the existence of an empirical minimizer for all observations also works as the loss minimizer
on each training data point, the HENN should always predict evidence f(x;θ⋆) = (α̃, c̃),∀(x, ỹ) ∈
D, s.t.

UPCE(f(x;θ⋆), ỹ) → inf UPCE = 0, ∀(x, ỹ) ∈ D (48)

We can conclude that the properties derived from the analysis of the UPCE loss UPCE(x, ỹ;θ) for
arbitrary (x, ỹ) ∼ D also holds for the HENN with empirical risk R(f) under the assumption of
UAP.

C.3 PROOF OF PROPOSITION 2

Proposition 2 (Effectiveness of the regularization term Reg(x, ỹ;θ)). Following the UAP assump-
tion, the regularized empirical UPCE risk defined in Eq. (15) approaches the infimum 0 if the
solution θ⋆ satisfies the following properties: 1) ∀(x, ỹ) ∈ D, where ỹ is a singleton class la-
bel k ∈ [K], the predicted evidence values ek → +∞ and et → 0,∀t ∈ S ∪ [K] \ k; and 2)
∀(x, ỹ) ∈ D, where ỹ denotes a composite set label Si, the predicted evidence values eSi

→ +∞
and et → 0, ∀t ∈ S ∪ [K] \ Si.

Proof. To address the inconsistent prediction issue of our evidence output, the KL-divergence between
the predicted GDD and a flat GDD is introduced as a regularizer. All 0 evidence for each element in
the hyper-domain composes a flat GDD as GDD(p|1K ,0η). In following section, for simplicity, we ab-
breviate KL

[
GDD(p|ᾱ(i), c̄(i))∥GDD(p|1K ,0η)

]
by KL(ᾱ(i), c̄(i)), UPCE(x(i), ỹ(i);θ) by UPCE(i),

and let [K] denote {1, ...,K}, [η] denote {1, ..., η}. Now the optimal regularized generalization risk
is
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R(f∗) → inf

[
1

N

N∑
i=1

[
UPCE(x(i), ỹ(i);θ) + λ · KL(ᾱ(i), c̄(i))

]]

= inf

[
1

N

N∑
i=1

[
UPCE(i) + λ · KL(ᾱ(i), c̄(i))

]]

= inf

[
1

N

N∑
i=1

UPCE(i) + λ ·
[ 1
N

N∑
i=1

KL(ᾱ(i), c̄(i))
]]
.

(49)

According to the partial derivatives and the convexity of UPCE loss proved in section C.2, we already
have two special limits for singleton ground truth as shown in Eq.(40). Correspondingly, to make
UPCE loss approach its infimum value with composite ground-truth, there are also two special limits
mentioned in Eq.(43). Multiple choices to minimize the UPCE loss imply different combinations of
α and c can become the loss minimizer and output by HENN.

Consider the KL-divergence between predicted GDD and flat GDD

KL(ᾱ(i), c̄(i)) =

∫
∆K

GDD(p|ᾱ(i), c̄(i)) log
GDD(p|ᾱ(i), c̄(i))

GDD(p|1K ,0η)
dp. (50)

It is straightforward to have its minimizer when the value of log GDD(p|ᾱ(i),c̄(i))
GDD(p|1K ,0η)

is 0. This indicates that

we aim to minimize the difference between ᾱ(i) and 1K , as well as between c̄(i) and 0η . Predicting
flat GDD except for the evidence of the ground-truth to make the KL-divergence reach the minimum
value of 0. Therefore,

argminKL(ᾱ(i), c̄(i))

=
{
(α, c) : αk = 1, k ̸= IS, k ∈ [K], c = 0η} ∪

{
(α, c) : α = 1K , cj = 0, j ̸= IC, j ∈ [η]

}
.

(51)

Note that the feasible region of the output evidence for minimizers of UPCE loss and the KL-
divergence overlaps, which illustrates that both infimums can be approached simultaneously. Specif-
ically, for singleton ground-truth, the intersection of feasible evidence between KL-divergence
minimizer and UPCE loss minimizer is {(α, c) : αk = 1, αIS → +∞, k ̸= IS, k ∈ [K], c = 0η}.
In contrast, the intersection for composite ground-truth can be written as {(α, c) : α = 1K , cj =
0, cIC → +∞, j ̸= IC, j ∈ [η]

}
.

The overlap of feasible evidence towards the lower bound of the UPCE loss, along with its regularizer,
also enables the application of the Uniform Approximation Property (UAP) to the regularizer, with
inf
[
1
N

∑N
i=1 Reg

]
= 1

N

∑N
i=1

[
inf Reg

]
. Based on the assumed UAP, there exists configuration θ′

such that HENN is an empirical UPCE loss minimizer for each training data point. Within the feasible
evidence region for minimizing the UPCE loss with θ′, the learning objective is improved when
considering the overlap in evidence outputs. This suggests the presence of an optimal configuration
θ⋆ within the feasible range of θ′ that can attain the minimal KL-divergence at every training data
point without hurting the optimality for empirical UPCE risk. By focusing on learning θ⋆, we finally
can get the optimal regularized HENN given UAP assumption holds.

Therefore, we can move the infimum operator into the empirical risk,

R(f∗) → inf

[
1

N

N∑
i=1

UPCE(i) + λ ·
[
1

N

N∑
i=1

KL(ᾱ(i), c̄(i))

]]

=
1

N

N∑
i=1

[
inf UPCE(i) + λ · inf KL(ᾱ(i), c̄(i))

]
,

(52)

As proved in section C.2, based on the assumption of UAP, there exists a regularized loss minimizer for
each data point, which also works as the empirical regularized minimizer for D = {(x(i), ỹ(i))}Ni=1.
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Table 5: Dataset Statistic.

Dataset CIFAR100 tinyImageNet Living17 Nonliving26

Image Resolution 32×32 64×64 224×224 224×224
# superclasses 20 29 17 26

# subclasses 100 200 68 104
Training set size 45k 90k 79.56k 119.5k

Validation set size 5k 10k 8.84k 13.3k
Test set size 10k 10k 3.4k 5.2k

# SELECTED composite classes {20,15,10} {20,15,10} {15,10} {20,15,10}

Algorithm 1 Pseudo-code of HENN (one epoch)

Require: Training dataset D = {(x(i), ỹ(i))}|Ni=1; HENN model f(·,θ); tradeoff coefficient λ; learning rate
γ; the number of sampling data N ; Batch size: |B|;

1: Initialize model parameters θ.
2: for iter = 1, 2, ... , do
3: Sample a mini-batch B from D
4: Generate the evidence vector e(i)||B|

i=1 (e ∈ R|B|×κ): e(i) = f(x(i),θ)

5: for each (x(i), ỹ(i)) ∈ B do
5: //based on Grouped Dirichlet Distribution (GDD)
6: Get the UPCE loss for this example UPCE(i)(θ) via Eq. 12
7: Get the entropy regularization for this example Reg(i)(θ) via Eq. 14
8: Get the loss for this example: L(i)(θ) = UPCE(i)(θ) + λReg(i)(θ)
9: end for

10: Get the loss L for all examples in this batch B: L(θ) = 1
|B|

∑|B|
i=1 L

(i)(θ).
11: Update model parameters θ via gradient descent θ′ = θ − γ∇L(θ)
12: end for

By replacing the empirical risk minimizer with the regularized loss minimizer. We focus on loss
minimizer that produces:

UPCE+ λ · Reg → inf
[
UPCE+ λ · Reg

]
= inf UPCE+ λ · inf Reg (53)

Clearly, optimal regularized HENN f(x;θ) = (α̃, c̃) will take the intersection of the feasible space
for approaching minimal UPCE loss and regularizer, that is, (α̃, c̃) =

{
(α, c) : αk = 1, k ̸= IS, k ∈

[K], αIS → +∞, c = 0η
}
∪
{
(α, c) : α = 1K , cj = 0, j ̸= IC, j ∈ [η], cIC → +∞

}
. Convert

parameter space back to evidence space, then we can say for ∀(x, ỹ) ∈ D where ỹ is a singleton
class label k ∈ [K], the predicted evidence has the form of ek → +∞, et → 0,∀t ∈ S ∪ [K] \ k.
For ∀(x, ỹ) ∈ D, where ỹ denotes a composite class label Si, the predicted evidence should be
eSi → +∞ and et → 0,∀t ∈ S ∪ [K] \ Si.

D RELATIONS WITH ALEATORIC AND EPISTEMIC UNCERTAINTIES

Epistemic and aleatoric uncertainties are two broad categories used to classify existing predictive
uncertainty measures. Epistemic uncertainty is due to a lack of evidence or knowledge in the
training data – it is a known unknown. It is reducible by collecting more data. In comparison,
aleatoric uncertainty is due to the inherent complexity of the data (e.g., wrong labels, incomplete
or partial labels, and other data randomness) – it is a unknown unknown. It is irreducible by
collecting more data (e.g., the stochasticity of a dice roll cannot be reduced by observing more rolls),
assuming the same measurement precision in the collected data (Gal, 2016). The aforementioned
evidential uncertainties, including vacuity, vagueness, and dissonance, and other uncertainty measures,
such as model uncertainty (mutual information between model parameters and the predicted class
probabilities), data uncertainty (entropy of the predicted class probabilities), and confidence (the
largest predicted class probability) can be classified to epistemic and aleatoric uncertainties based
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on whether they can be reduced by collecting more data. In particular, the vacuity and model
uncertainty fall into the category of epistemic uncertainty, and the dissonance and vagueness belong
to the category of aleatoric uncertainty. The dissonance is irreducible by collecting more conflicting
evidence. The vagueness is irreducible when we use the same measurement precision (sensor
and annotator) to collect extra training data due to the invariant underlying distribution for getting
composite labels. A recent work (Shi et al., 2020) demonstrates that the entropy of the predicted class
probabilities can be decomposed into two distinct sources of uncertainty: vacuity and dissonance.
As confidence is correlated with this entropy, both data uncertainty and confidence may involve a
mixture of epistemic and aleatoric uncertainties.

D.1 EXAMPLE ABOUT EVIDENCE

In medical diagnostics, the presence of 24 pieces of composite evidence could suggest that there
are approximately 24 similar cases resulting in diseases 2, 3 based on the current observation. This
implies that the cases are identified as having either disease 2 or 3, but without specific information
to distinguish between them. Conversely, 3 instances of class 1 evidence indicate that 3 similar
cases have been identified as disease 1. In such scenarios, doctors might not have a clear preference
between diseases 2 and 3, while maintaining a conflicting opinion between disease 1 and {2, 3} for
this observation.

D.2 DISSONANCE IN HYPER-OPINION

Given a hyper-opinion with non-zero belief masses, the dissonance measure can be estimated as:

diss(ω) =
∑

S∈R(Y)

(
bS
∑

S′∈R(Y),S′ ̸=S d(S△S ′)bS′ Bal (bS′ , bS)∑
S′∈R(Y),S′ ̸=S d(S△S ′)bS′

)
(54)

where Bal(S ′,S) = 1− |bS′ − bS |/(bS′ + bS), and d(S△S ′) is the size of the symmetric difference
between S and S ′ (Jøsang et al., 2018).

E REPRODUCIBILITY

E.1 DATASET

Table 5 shows detailed statistics for four datasets we used. In particular, tinyImageNet has 29
superclasses because we keep all superclasses which have 2-3 subclasses only.

We use CIFAR100 (Krizhevsky & Hinton, 2009), tinyImageNet (Fei-Fei et al., 2015), Living17 (San-
turkar et al., 2021), and Nonliving26 (Santurkar et al., 2021) in our experiments. CIFAR100 has 100
classes containing 600 images each (500 for training and 100 for testing, and the image size is 32×32).
The 100 classes in this dataset are divided into 20 disjoint superclasses, each with 5 unique subclasses.
Note that we compose composite class labels within the same superclass. Dataset tinyImageNet
has 200 classes containing 550 images each (500 for training and 50 for testing, and the image
size is 64×64). We generate the hierarchy information of tinyImageNet and generate superclasses
according to the existing ImageNet class hierarchy - WordNet (Miller, 1995). In addition, it usually
can be challenging to distinguish between different classes due to their similar visual features. While
WordNet is a hierarchy based on semantic relationships between words, rather than visual similarities.
Therefore, Living17 and Nonliving26 are considered because their class hierarchy is generated based
on visual and semantic similarities. Both of them are subsets of ImageNet dataset (Deng et al., 2009)
with an image size 224×224. Refer to Table 5 and 6 in their paper for more information.

We split the original training set into a training and a validation set according to the ratio 9:1.
Therefore, the number of images per class will be: 450/50/50 for training/validation/test set for
CIFAR100, similarly for other datasets.

E.2 DATASET PREPROCESSING

For each dataset, the first step is to select vague images. To achieve that, first, we selectM superclasses
randomly from all superclass candidates as SELECTED composite classes in our experiments. For
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each SELECTED composite class, 2 or more subclasses belonging to this superclass will be selected
randomly as components of the composite class label. Given the designed composite class labels, we
can further select a fraction of images under each of the singleton classes included in the domain of
composite classes C (Y). The selected examples are therefore expected to be converted to composite
examples by applying Gaussian-blurring and label replacement to introduce vagueness. When
selecting images to blur, for each selected singleton class, we balanced the number of singleton
images remaining and the number of composite examples converted. Please check our code for
implementation 1.

The selected vague examples will be blurred by Gaussian Blurring operation. To apply the Gaussian
blur operation, there are two parameters to set: kernel size and variance sigma. We use three
different kernel sizes (3 × 3, 5 × 5, 7 × 7), and sigma is determined by the default relation
between them in PyTorch: sigma = 0.3 ∗ ((kernel size− 1) ∗ 0.5− 1) + 0.8 2.

We used 2 methods for data augmentation following a typical computer vision setting. First, each
image is applied to a random horizontal flip with the flipping probability of 0.5. After that, a random
corp is introduced for each image with a size of 32 × 32 and padding of 4. Then, resize images
to 224×224 because the pretrained model is trained by ImageNet (Deng et al., 2009) which is
224×224, we need to match the input size for model predictions. We apply regular data augmentation
approaches and normalization to the data. Data augmentation approaches are only applied to the
training set. For validation and test sets, we only use resize and normalization.

E.3 IMPLEMENTATION

Baselines. DNN and ENN cannot predict set directly. In practice, it is necessary to set a threshold to
make set prediction for DNN and ENN. The prediction set should consist of all classes with softmax
probabilities larger than or equal to the pre-defined threshold.

In addition, DNN and ENN are only able to deal with singleton class labeled examples and cannot
deal with composite class label during training. Note that there are vague images with composite
class labels during training. To make baselines can handle these examples, and to avoid removing
training examples, we duplicate composite examples and provide them singleton class labels which
are from the subclasses of composite class labels. This ensures that all classes remain exclusive.
For example, assuming there is an image x with the composite class label A,B during training, we
duplicate x and take image x with the singleton class label A and the same image with the singleton
class label B as input for model training.

HENN: Pseudo-code of HENN is shown in Algorithm 1.

E.4 HYPERPARAMETERS TUNING

We list all related methods and their corresponding hyperparameter settings below. For our method
and all other baselines, we adopt Adam (Kingma & Ba, 2014) as optimizer with parameters β1 = 0.9,
β2 = 0.999, weight decay is 0, ϵ = 1e− 8 provided in (Kingma & Ba, 2014). The number of epochs
for all experiments is set to 100. Other hyperparameters used in this paper mainly are learning rate
and weight of entropy regularizer. Grid search is leveraged to determine the best hyperparameters
based on a held-out validation set for each specific experiment. Specifically, (1) DNN. the learning
rate is chosen from {1e-5, 1e-4, 1e-3}; the cutoff is chosen from {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,
0.35, 0.4, 0.45, 0.5}. (2) ENN. the learning rate is chosen from {1e-5, 1e-4, 1e-3}; the weight of
entropy regularizer λ is chosen from {1, 1e-1, 1e-2, 1e-3, 1e-4, 1e-5}. the cutoff is chosen from [i
for i in range(0, 0.02, 0.001)]. (3) E-CNN. the learning rate is chosen from {1e-5,
1e-4, 1e-3}; the optimizer is Nadam. (4) RAPS. kreg is chosen from {1, 2, 5, 10, 50}; λ is chosen
from {0, 1e-4, 1e-3, 0.01, 0.02, 0.05, 0.2, 0.5, 0.7, 1}; α is chosen from {0.1, 0.2, 0.3, 0.4}. (5)
PiCO. learning rate is chosen from {1e-5, 1e-4, 1e-3}. (6) HENN. the learning rate is chosen from
{1e-5, 1e-4, 1e-3} and the weight of regularizer λ is chosen from {1, 1e-1, 1e-2, 1e-3, 1e-4, 1e-5}.

1Our code: https://github.com/Hugo101/HyperEvidentialNN
2https://pytorch.org/vision/main/generated/torchvision.transforms.

functional.gaussian_blur.html
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A fixed number of epochs is given, and the highest validation accuracy is used to determine the best
epoch.

For HENN, validation accuracy means the classification accuracy including the additional composite
class labels on hyperdomain, such as 215-class classification in tinyImageNet dataset. Even though
we report multiple metrics, such as OverJS, CompJS, and Acc, we use validation accuracy to select
the model. We use the Best validation accuracy to evaluate and determine which combination of
hyperparameters to use.

For DNN, there are two sets of hyperparameters. The first set includes the hyperparameter of
general DNN: learning rate (we only tune this hyperparmeter for now). The second set includes the
hyperparameter used to generate set prediction: the cutoff on class probability. For example, if there
are only three classes and the prediction of the DNN for one test image is: {0.6, 0.3, 0.1}. If the
cutoff is 0.3, then the set is: {class 1, class 2}.

For the first set, use the accuracy on the validation set to tune. Note that it is always 100-class
classification after using duplicates for vague examples. Each duplicated image has its own class
label. For example, for one training/validation image that has a set label: class 1, class 3. We will
create two duplicates of this image labeled class 1 and class 3, respectively. For the second set, use
the overJS on the validation set to tune. Here, we will replace duplicates with the images with vague
labels in the validation set, in order to calculate the overJS.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 ADDITIONAL RESULTS

Table 6, 11, 12 show composite and singleton prediction results for different Gaussian kernel size 3×3,
5×5, 7×7 for CIFAR100 and tinyImageNet dataset, and Table 8, 9, 10 show composite and singleton
prediction results for living17 and nonliving26 dataset, which represents consistent observation as in
main paper.

Table 6: Results (%) based on Gaussian kernel size: 3×3 on CIFAR100 and tinyImageNet. (The
average and 95% confidence interval of three runs are provided.)

CIFAR100 tinyImageNet
M Methods OverJS CompJS Acc OverJS CompJS Acc

DNN (Tan & Le, 2019) 86.8±0.36 68.6±1.42 84.3±0.51 83.4±0.38 66.9±0.93 79.8±0.32
ENN (Sensoy et al., 2018) 84.4±0.28 42.3±1.23 84.8±0.22 75.9±0.31 63.5±1.26 80.7±0.27

10 E-CNN (Tong et al., 2021) 38.5±0.74 34.2±2.63 73.2±0.92 33.4±0.83 31.1±2.38 68.2±0.92
RAPS (Angelopoulos et al., 2021) 81.5±0.33 51.1±1.41 84.3±0.51 73.1±0.37 43.6±0.96 79.8±0.32
PiCO (Wang et al., 2022b) 59.6±0.38 28.3±4.41 63.6±0.48 57.2±0.39 35.6±3.53 64.3±0.63
HENN (ours) 86.5±0.47 90.4±3.63 86.5±0.53 84.4±0.44 93.4±2.57 82.5±0.72

DNN (Tan & Le, 2019) 86.6±0.35 71.6±1.43 82.2±0.39 84.3±0.43 67.3±1.43 79.5±0.35
ENN (Sensoy et al., 2018) 84.2±0.27 47.8±1.25 83.8±0.37 83.5±0.20 60.7±1.14 81.2±0.26

15 E-CNN (Tong et al., 2021) 33.2±0.74 31.3±3.43 68.6±0.93 32.5±0.83 33.3±3.52 68.4±0.95
RAPS (Angelopoulos et al., 2021) 81.5±0.36 54.1±1.44 82.2±0.39 68.1±0.44 45.6±1.52 79.5±0.35
PiCO (Wang et al., 2022b) 58.4±0.74 25.5±4.32 61.3±0.50 56.8±0.38 35.3±3.53 64.6±0.64
HENN (ours) 86.8±0.28 90.1±4.36 85.8±0.19 84.6±0.45 90.6±2.61 81.6±0.71

DNN (Tan & Le, 2019) 86.8±0.35 75.4±1.65 80.3±0.35 84.0±0.33 57.9±1.06 81.5±0.36
ENN (Sensoy et al., 2018) 83.3±0.23 53.7±1.14 81.9±0.19 57.4±0.29 41.9±1.11 58.9±0.36
E-CNN (Tong et al., 2021) 28.6±0.78 23.7±3.25 73.6±0.87 23.3±0.86 22.4±2.51 67.8±0.97

20 RAPS (Angelopoulos et al., 2021) 80.5±0.35 56.7±1.54 80.3±0.35 76.1±0.42 41.1±1.47 81.5±0.36
PiCO (Wang et al., 2022b) 57.5±0.71 29.1±4.45 61.9±0.56 57.5±0.41 39.6±3.66 65.3±0.71
HENN (ours) 86.7±0.17 90.2±1.36 86.3±0.34 84.9±0.40 90.7±2.87 81.7±0.69

F.2 MODEL-AGNOSTIC PROPERTY

Table 7 shows model agnostic performance (%) on M=10, and kernel size: 5×5 on CIFAR100,
including confidence interval for three different runs. It demonstrates different methods’ performance
based on ResNet50 and VGG16 on CIFAR100. HENN outperforms other approaches, for example,
the Acc of HENN surpasses that of DNN by 2% for CIFAR100. The consistent observation is
demonstrated based on different backbones, which validates the model agnostic property of our
proposed approach.
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Table 7: Model agnoistic performance (%) on M=10, and kernel size: 5×5 on CIFAR100. (The
average and 95% confidence interval of three runs are provided.)

ResNet50 (He et al., 2015) VGG16 (Simonyan & Zisserman, 2015)
Methods OverallJS CompJS Acc OverallJS CompJS Acc

DNN 82.0±0.26 56.7±1.29 80.6±0.21 77.6±0.32 53.3±1.35 75.2±0.38
ENN (Sensoy et al., 2018) 80.1±0.28 46.7±1.32 80.9±0.25 74.6±0.33 42.7±1.41 76.2±0.43
RAPS (Angelopoulos et al., 2021) 71.8±0.26 40.1±1.31 80.6±0.21 66.4±0.34 35.5±1.38 75.2±0.38
HENN (ours) 82.9±0.34 85.7±2.41 81.1±0.32 78.4±0.37 78.5±2.83 77.7±0.47

Table 8: Results (%) of BREEDS-living17 based on two Gaussian kernel sizes. (The average and 95%
confidence interval of three runs are provided.)

Gaussian kernel size: 3×3 Gaussian kernel size: 5×5
M Methods OverJS CompJS Acc OverJS CompJS Acc

DNN (Tan & Le, 2019) 88.1±0.28 81.0±1.74 83.3±0.29 88.4±0.33 80.4±0.78 83.2±0.43
ENN (Sensoy et al., 2018) 88.0±0.19 72.3±0.41 84.5±0.12 88.0±0.16 70.9±1.07 84.6±0.01

10 E-CNN (Tong et al., 2021) 30.5±0.67 36.8±1.34 65.7±0.86 30.4±1.34 35.8±0.88 65.7±0.42
RAPS (Angelopoulos et al., 2021) 86.4±0.27 61.3±1.56 83.3±0.29 85.8±0.33 60.7±0.89 83.2±0.43
HENN (ours) 88.8±0.39 96.5±0.72 85.6±1.24 88.7±0.35 96.9±0.81 85.9±0.33

DNN (Tan & Le, 2019) 88.1±0.39 84.8±1.62 80.2±0.34 88.4±0.23 84.5±1.08 80.6±0.48
ENN (Sensoy et al., 2018) 88.0±0.03 78.3±0.65 82.4±0.36 87.8±0.23 75.4±2.38 84.7±1.60

15 E-CNN (Tong et al., 2021) 31.6±1.45 37.3±1.58 65.5±0.82 33.3±1.21 35.1±0.91 64.8±1.12
RAPS (Angelopoulos et al., 2021) 85.5±0.35 66.5±0.72 80.2±0.34 85.9±0.42 67.6±0.62 80.6±0.48
HENN (ours) 88.8±0.17 96.6±0.65 85.7±1.27 88.9±0.14 97.5±0.49 85.4±1.78

Table 9: Results (%) of BREEDS-nonliving26 based on two different Gaussian kernel sizes. (The
average and 95% confidence interval of three runs are provided.)

Gaussian kernel size: 3×3 Gaussian kernel size: 5×5
M Methods OverJS CompJS Acc OverJS CompJS Acc

DNN (Tan & Le, 2019) 85.6±0.32 62.0±0.35 82.9±0.33 86.0±0.26 64.0±1.60 83.0±0.12
ENN (Sensoy et al., 2018) 85.0±0.49 52.9±2.74 84.5±0.43 85.0±0.48 52.8±3.79 84.2±0.76

10 E-CNN (Tong et al., 2021) 28.3±0.68 35.8±4.23 60.6±0.97 29.6±0.74 37.1±3.93 60.8±0.76
RAPS (Angelopoulos et al., 2021) 82.7±0.36 46.3±1.01 82.9±0.33 83.4±0.42 49.5±1.43 83.0±0.12
HENN (ours) 86.9±0.13 96.8±0.57 85.4±0.35 87.0±0.12 96.2±1.70 85.3±0.39

DNN (Tan & Le, 2019) 85.6±0.39 68.9±0.30 81.5±0.16 85.5±0.50 67.3±3.41 81.4±0.55
ENN (Sensoy et al., 2018) 85.4±0.26 62.6±1.59 82.9±0.21 85.3±0.08 61.9±1.31 83.2±0.35

15 E-CNN (Tong et al., 2021) 29.8±1.22 35.1±4.41 60.1±0.87 28.9±0.73 35.1±4.67 60.3±0.84
RAPS (Angelopoulos et al., 2021) 83.8±0.42 56.1±0.28 81.5±0.16 83.7±0.43 55.9±0.59 81.4±0.55
HENN (ours) 86.9±0.03 96.2±1.14 84.1±0.30 86.9±0.21 95.6±1.09 84.8±0.40

DNN (Tan & Le, 2019) 86.7±0.34 74.5±0.32 80.3±0.15 86.5±0.42 76.2±0.41 79.8±0.23
ENN (Sensoy et al., 2018) 85.9±0.43 68.3±2.13 81.7±0.35 86.0±0.49 67.9±2.44 82.2±0.73

20 E-CNN (Tong et al., 2021) 29.8±0.92 35.1±2.43 60.5±0.81 28.6±0.75 36.8±3.46 60.9±0.65
RAPS (Angelopoulos et al., 2021) 82.4±0.41 57.7±0.32 80.3±0.15 84.1±0.23 57.8±0.45 79.8±0.23
HENN (ours) 87.4±0.22 94.5±0.46 85.5±0.41 87.5±0.17 94.5±1.00 85.3±0.45

Table 10: Results (%) of Gaussian kernel size: 7×7 on Living17 and Nonliving26. (The average and
95% confidence interval of three runs are provided.)

Living17 Nonliving26
M Methods OverJS CompJS Acc OverJS CompJS Acc

DNN (Tan & Le, 2019) 88.4±0.24 79.0±1.05 83.3±0.49 85.8±0.34 63.8±1.48 82.9±0.19
ENN (Sensoy et al., 2018) 87.9±0.23 71.0±0.99 84.4±0.23 85.3±0.29 54.6±1.42 84.1±0.33

10 E-CNN (Tong et al., 2021) 30.4±0.98 36.7±1.65 65.5±1.87 28.2±0.74 35.5±1.43 59.4±2.91
RAPS (Angelopoulos et al., 2021) 85.9±0.32 60.8±1.72 83.3±0.49 83.5±0.37 53.6±1.73 82.9±0.19
HENN (ours) 88.7±0.36 96.0±0.82 85.3±0.28 86.8±0.07 95.9±3.22 85.0±0.49

DNN (Tan & Le, 2019) 88.4±0.35 83.2±2.31 80.2±0.79 85.8±0.11 70.6±1.20 81.2±0.63
ENN (Sensoy et al., 2018) 88.1±0.22 78.3±0.20 82.7±1.00 85.4±0.14 62.1±0.76 83.0±0.57

15 E-CNN (Tong et al., 2021) 30.5±0.47 36.6±1.84 65.6±2.99 28.1±0.59 35.6±1.97 60.1±2.86
RAPS (Angelopoulos et al., 2021) 85.7±0.38 66.9±1.33 80.2±0.79 83.7±0.46 56.0±0.84 81.2±0.63
HENN (ours) 88.7±0.29 97.1±0.33 84.4±1.71 86.9±0.21 94.8±1.42 85.2±0.55
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Table 11: Results (%) of Gaussian kernel size: 5×5 on CIFAR100 and tinyImageNet (based on one
run).

CIFAR100 tinyImageNet
M Methods OverJS CompJS Acc OverJS CompJS Acc

DNN (Tan & Le, 2019) 86.5 65.3 83.8 83.9 46.0 83.2
ENN (Sensoy et al., 2018) 83.1 58.8 84.5 54.8 43.1 56.1

10 E-CNN (Tong et al., 2021) 28.5 22.4 74.2 23.4 21.3 68.2
RAPS (Angelopoulos et al., 2021) 80.5 49.8 83.8 72.5 43.7 83.2
HENN (ours) 85.9 88.7 83.1 86.2 85.0 83.5

DNN (Tan & Le, 2019) 86.2 69.9 82.4 83.2 50.4 82.3
ENN (Sensoy et al., 2018) 82.8 58.4 84.5 52.8 47.6 55.7

15 E-CNN (Tong et al., 2021) 28.7 23.4 70.2 23.3 21.2 68.5
RAPS (Angelopoulos et al., 2021) 80.2 52.6 82.5 75.0 43.5 82.3
HENN (ours) 86.1 85.4 84.2 86.2 83.3 82.3

DNN (Tan & Le, 2019) 86.2 73.1 80.6 83.2 53.8 81.7
ENN (Sensoy et al., 2018) 82.4 65.3 82.3 57.7 21.6 59.1

20 E-CNN (Tong et al., 2021) 28.6 23.6 73.5 23.4 22.5 68.2
RAPS (Angelopoulos et al., 2021) 78.8 55.2 80.6 75.4 40.2 81.7
HENN (ours) 86.7 82.5 83.4 85.5 81.0 83.1

Table 12: Results (%) of Gaussian kernel size: 7×7 on CIFAR100 and tinyImageNet (based on one
run).

CIFAR100 tinyImageNet
M Methods OverJS CompJS Acc OverJS CompJS Acc

DNN (Tan & Le, 2019) 86.2 62.4 83.8 83.7 44.8 83.3
ENN (Sensoy et al., 2018) 82.4 30.5 84.8 46.2 43.4 83.3

10 E-CNN (Tong et al., 2021) 28.5 22.4 74.2 23.6 21.8 68.0
RAPS (Angelopoulos et al., 2021) 80.0 49.3 83.8 71.5 43.9 83.3
HENN (ours) 87.0 82.7 85.8 84.3 86.9 83.8

DNN (Tan & Le, 2019) 85.7 64.2 82.5 83.6 52.1 82.5
ENN (Sensoy et al., 2018) 82.5 39.6 83.6 48.0 42.3 82.4

15 E-CNN (Tong et al., 2021) 28.7 23.4 70.2 23.5 21.9 68.2
RAPS (Angelopoulos et al., 2021) 78.3 51.6 82.5 73.8 43.5 82.5
HENN (ours) 86.4 79.9 84.3 84.1 83.0 83.5

DNN (Tan & Le, 2019) 85.3 69.8 80.5 83.5 56.4 81.7
ENN (Sensoy et al., 2018) 81.5 44.6 81.8 43.3 41.2 81.7

20 E-CNN (Tong et al., 2021) 28.6 23.7 73.4 23.3 21.5 68.2
RAPS (Angelopoulos et al., 2021) 74.4 53.2 80.5 74.1 39.3 81.7
HENN (ours) 85.5 81.0 80.7 83.9 81.2 83.1

F.3 SEPERATION OF SINGLETON AND COMPOSITE EXAMPLES

Fig. 4 and 5 show comprehensive ROC curves for CIFAR100 and tinyImageNet based on different
Ms and different Gaussian kernel sizes, which indicates that vagueness is the best indicator compared
to other different uncertainty measurements.
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(a) M=10, Ker=3 (b) M=10, Ker=5 (c) M=10, Ker=7

(d) M=15, Ker=3 (e) M=15, Ker=5 (f) M=15, Ker=7

(g) M=20, Ker=3 (h) M=20, Ker=5 (i) M=20, Ker=7

Figure 4: ROC curves of separating composite examples and singleton examples among different
measurements: vagueness of HENN, vacurity of ENN, dissonance of ENN, and entropy of DNN on
CIFAR100 for different numbers of selected composite classes and kernel sizes (”Ker” represents
”kernel size”).
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(a) M=10, Ker=3 (b) M=10, Ker=5 (c) M=10, Ker=7

(d) M=15, Ker=3 (e) M=15, Ker=5 (f) M=15, Ker=7

(g) M=20, Ker=3 (h) M=20, Ker=5 (i) M=20, Ker=7

Figure 5: ROC curves of separating composite examples and singleton examples among different
measurements: vagueness of HENN, vacurity of ENN, dissonance of ENN, and entropy of DNN on
tinyImageNet for different numbers of selected composite classes and kernel sizes. (”Ker” represents
”kernel size”)
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F.4 ABLATION STUDY ON REGULARIZER

To explore the effect of Regularizer for singleton evidence, we try different tradeoff coefficients λ for
KL regularization in our HENN method. Experiments are conducted on CIFAR100 with a pre-trained
EfficientNet-b3 model and a fixed learning rate 1e-5. The results are represented in Table 13. Without
this regularization term, the CompJS is 0, which means that the model does not predict composite
prediction, and the Acc is 78.5%. The reason is minimizing UPCE loss solely cannot provide sufficient
composite evidence output for those composite sets. In this way, the composite examples will have
relatively low accuracy compared to singleton ones. If the coefficient λ increases, demonstrating a
larger preference on flat GDDs instead of UPCE minimizer, the evidence for singleton classes will
reduce to be flat as we proved in Proposition 2. Therefore, the CompJS will no longer be zero since
the model tend to replace confusing singleton evidence for composite examples. λ = 0.1 gives us the
best performance on both the composite prediction metrics (OverJS, CompJS) as well as singleton
prediction accuracy (Acc). This means that HENN can predict composite class labels but also has
good singleton class label prediction. This ablation study verifies the importance of the regularization
term and shows a fine-tuned tradeoff hyperparameter can provide reliable composite and singleton
prediction simultaneously. In addition, the OverallJS remains high across different choices of λs,
demonstrating the robustness of our method.

Table 13: Effect of Regularizer: Different trade-off coefficient λ on CIFAR100 with pretrained
EfficientNet-b3 model and 1e-5 learning rate.

λ OverJS CompJS Acc

0 76.4 0.0 78.5
0.01 83.6 76.3 85.1
0.1 87.9 87.7 85.3
1.0 81.8 72.0 79.7

F.5 ADDITIONAL RESULTS

Table 14: Results (%) of NAbirds based on the pre-trained EfficientNet-b3 backbone. (The average
and 95% confidence interval of three runs are provided based on three runs.)

Methods OverJS CompJS Acc

DNN (Tan & Le, 2019) 77.38±0.19 35.24±3.52 78.04±0.27
ENN (Sensoy et al., 2018) 76.72±0.56 37.46±2.39 78.45±0.31
HENN (ours) 80.01±0.37 71.42±1.43 80.14±0.35

F.5.1 EXPERIMENTS ON FINE-GRAINED DATASET: NABIRDS

We also conduct experiments on one fine-grained dataset: NAbirds (Van Horn et al., 2015). It has
555 different categories of birds and each category has around 50 images for both training and test
set. According to the provided class hierarchy information, these 555 subclasses can be divided
into 404 groups (superclasses). After filtering out superclasses which has only a single subclass, the
same procedure as previous four datasets (TinyImageNet, Living17, Nonliving26, and CIFAR100) is
applied to randomly select 10 composite class labels. Tab. 14 shows results based on the fine-grained
dataset NAbirds (Van Horn et al., 2015). Consistent with previous experiments on four datasets,
HENN outperforms DNN and ENN for a large margin in terms of CompJS. And HENN also performs
better in terms of OverJS and Acc.

F.5.2 REAL-WORLD DATASET WITH COMPOSITE CLASS LABELS

We admit that the datasets with Gaussian blurring are semi-synthetic. From a sizable pool of
applicants, we selected 23 students from our department and tasked them with annotating images in
the CIFAR10 dataset and one subset of tinyImageNet (renamed as tinyImageNet-20), categorizing
each as either a singleton class or a composite set. This effort successfully resulted in a real-world
dataset enriched with human-annotated singleton and composite labels. Tab. 15 shows results based
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Table 15: Results (%) on CIFAR10 based on two backbones. (The average and 95% confidence interval
of three runs are provided based on five runs.).

ResNet18 EfficientNet-b3
Methods OverJS CompJS Acc OverJS CompJS Acc

DNN (Tan & Le, 2019) 79.73±0.33 40.10±7.06 82.17±0.54 92.53±0.11 53.59±3.15 96.49±0.21
ENN (Sensoy et al., 2018) 67.09±0.75 46.80±0.06 82.75±0.19 77.84±3.86 54.83±0.59 96.82±0.38
E-CNN (Tong et al., 2021) 59.68±0.62 31.84±0.81 66.23±1.47 63.65±0.93 34.74±2.91 68.98±0.72
RAPS (Angelopoulos et al., 2021) 62.60±0.46 33.80±4.86 82.17±0.54 65.70±0.80 39.40±2.29 96.49±0.21
HENN (ours) 80.74±0.17 51.44±1.02 83.03±0.14 93.38±0.06 72.87±1.25 97.52±0.04

Table 16: Results (%) on tinyImageNet-20 based on the ResNet18 backbone. (The average and 95%
confidence interval of three runs are provided based on five runs.).

ResNet18
Methods OverJS CompJS Acc

DNN (Tan & Le, 2019) 40.03±0.29 24.70±1.85 42.20±1.24
ENN (Sensoy et al., 2018) 36.44±1.65 22.78±1.48 42.45±1.15
HENN (ours) 42.43±0.78 25.32±1.87 43.93±1.23
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Figure 6: AUC curves of different uncertainty types: Vagueness, Vacuity, Dissonance, and Entropy
for two datasets. (a) CIFAR10 based on ResNet18 training from scratch; (b) CIFAR10 fine-tuned on
pre-trained EfficientNet-b3; (c) tinyImageNet-20 based on ResNet18 training from scratch.

on real-world dataset CIFAR10 Krizhevsky & Hinton (2009) based on two backbones. HENN
outperforms DNN and ENN for a large margin. Fig. 6a and 6b show AUROC curves and scores for
different metrics: vagueness, dissonance, vacuity, and entropy. It demonstrates that vagueness is a
good indicator to identify whether the image is singleton-labeled or composite-labeled, indicating
HENN’s advantage.

F.5.3 ANOTHER DATA CORRUPTION

Table 17: Results (%) of BREEDS-Living-17 based on the pre-trained EfficientNet-b3 backbone.
(The average and 95% confidence interval of three runs are provided based on three runs).

Methods OverJS CompJS Acc

DNN (Tan & Le, 2019) 87.28±0.23 74.61±2.57 84.35±0.36
ENN (Sensoy et al., 2018) 87.46±0.34 69.44±3.25 85.38±0.28
RAPS (Angelopoulos et al., 2021) 85.38±0.32 62.10±0.26 84.35±0.36
HENN (ours) 88.09±0.21 96.33±3.54 86.12±0.37

Besides the Gaussian blurring we used, the Bicubic transformation was also examined as detailed in
Tab.17. The findings from this analysis align consistently with the result of the experiment based on
Gaussian blurring.

F.5.4 CASE STUDY ON HENN TRAINED WITH EXCLUSIVE SINGLETON CLASS DATA

Tab.18 presents the accuracy results from the ENN and HENN methods trained and evaluated on
CIFAR100 with only singleton class data (without Gaussian blurring and label replacement) across 5
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Table 18: Case Study: HENN Trained with Exclusive Singleton Class Data.

Methods ENN HENN

Acc(%) 85.82 ± 1.0 85.81 ± 2.4

trials each. The mean accuracy and the standard deviation are reported. Under a traditional singleton
classification setting, HENN still shows comparable performance in terms of accuracy compared to
ENN model. A notable advantage of HENN is its ability to quantify an additional type of uncertainty
compared to ENN with minimal performance degradation observed even if the training data consists
of exclusive singleton ones.

F.5.5 CASE STUDY ON EVIDENCE OUTPUT

In this section, we show the effect of the regularization coefficient λ by demonstrating its impact
on the output evidence throughout a case study. To verify our intuitions for Proposition 2, we set
experiments to inspect the non-zero ratio of both singleton evidence and composite evidence among
all testing examples. A small positive threshold value of γ = 10−4 is introduced to determine
whether the mean singleton or composite evidence is non-zero while adapting to the computation
precision in practice. In other words, for each testing data point, we calculate the predicted evidence
f(x;θ) = (α, c), and based on the given hyper-domain, it is feasible to get mean evidence in
singleton domain ᾱ = 1

|Y|
∑|Y|
k=1 αk, and the composite domain c̄ = 1

|C (Y)|
∑|C (Y)|
j=1 cj . Define the

indicator function of non-zero singleton prediction as

gsngl(ᾱ) =

{
1, if ᾱ ≥ γ,

0, otherwise,
gcomp(c̄) =

{
1, if c̄ ≥ γ,

0, otherwise,
(55)

and the non-zero ratios are nzsngl =
1
Ntest

∑Ntest
i=1 gsngl(ᾱ)(i), nzcomp = 1

Ntest

∑Ntest
i=1 gcomp(c̄)

(i) by taking
the mean of all testing samples. The case study is carried out on CIFAR100 with EfficientNet-b3
backbone with the same setting as in previous sections. By controlling regularization coefficient
λ at different levels of value, the predicted evidence from HENN is listed in Table 19, indicating
that larger regularization can adjust the evidence distribution to be more balanced between singleton
and composite parts. Oppositely, a lower regularization coefficient or without any regularization can
result in concentrating predictive evidence only on the singleton part.

Table 19: Case Study: Effectiveness of regularization term on evidence distribution.

λ nzsngl nzcomp

0.01 71.52% 71.72%
10−4 100.0% 0.04%
10−8 100.0% 0.2%
0 100.0% 0.3%

Empirical verification of Propositions 1 and Eq.14. Our case study on CIFAR100 in App. F.5.5
demonstrates observations consistent with our propositions: (1) HENN trained based on UPCE and a
training set consisting of only singleton class labels predicts non-zero evidence on composite class
labels for 14.4% of the training samples even that the training set does not have evidence of composite
class labels to accumulate, and (2) The HENN trained based on UPCE and a training set consisting
of only composite class labels predicts non-zero evidence on singleton class labels for 100.0% of
the training samples even that the training set does not have evidence of singleton class labels to
accumulate. Our proposed regularization can avoid these unexpected behaviors. The UAP for neural
networks has been studied (Leshno et al., 1993b) and recently used in the theoretical analyses of
ENN-related paper for graph data (Alan Hart et al., 2023).
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